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The First-Come First-Served (FCFS) scheduling policy is the most popular scheduling algorithm used in

practice. Furthermore, its usage is theoretically validated: for light-tailed job size distributions, FCFS has

weakly optimal asymptotic tail of response time. But what if we don’t just care about the asymptotic tail?

What if we also care about the 99th percentile of response time, or the fraction of jobs that complete in under

one second? Is FCFS still best? Outside of the asymptotic regime, only loose bounds on the tail of FCFS are

known, and optimality is completely open.

In this paper, we introduce a new policy, Nudge, which is the first policy to provably stochastically improve

upon FCFS. We prove that Nudge simultaneously improves upon FCFS at every point along the tail, for

light-tailed job size distributions. As a result, Nudge outperforms FCFS for every moment and every percentile

of response time. Moreover, Nudge provides a multiplicative improvement over FCFS in the asymptotic tail.

This resolves a long-standing open problem by showing that, counter to previous conjecture, FCFS is not

strongly asymptotically optimal.
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1 INTRODUCTION
1.1 The Case for FCFS
While advanced scheduling algorithms are a popular topic in theory papers, it is unequivocal

that the most popular scheduling policy used in practice is still First-Come First-Served (FCFS).

There are many reasons for the popularity of FCFS. From a practical perspective, FCFS is easy to

implement. Additionally, FCFS has a feeling of being fair.

However, there are also theoretical arguments for why one should use FCFS. For one thing,

FCFS minimizes the maximum response time across jobs for any finite arrival sequence of jobs. By

response time we mean the time from when a job arrives until it completes service.
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For another thing, in an M/G/1 with a light-tailed job size distribution, FCFS is known to have a

weakly optimal asymptotic tail of response time [5, 36]. Specifically, using 𝑇 to denote response

time, the asymptotic tail under FCFS is of the form:

P
{
𝑇 FCFS > 𝑡

}
∼ 𝐶FCFS𝑒

−\ ∗𝑡 , (1)

where “∼” indicates that the ratio of the two quantities converges to 1 in the 𝑡 → ∞ limit.

The exponent \ ∗ in (1) is known to be optimal, while the optimality of 𝐶FCFS is an open problem

[5]. The asymptotic tail growth under FCFS has been compared with more sophisticated policies

[5]. It has been shown that, for light-tailed job size distributions, the tail of response time under

Processor-Sharing (PS), Preemptive Last-Come-First-Served (PLCFS), and Shortest-Remaining-

Processing-Time (SRPT) each take the asymptotic form of

P{𝑇 > 𝑡} ∼ 𝐶 ′𝑒−\
′𝑡 ,

where \ ′ is the worst possible exponential decay rate [25] over all work-conserving scheduling

policies. Roughly, FCFS’s tail exponent \ ∗ arises from the tail of the workload distribution, while

the other policies’ tail exponent \ ′ arises from the tail of the busy period distribution, which is

much larger under light-tailed job size distributions.

1.2 The Case For Light-Tailed Job Size Distributions
In this paper, we choose to focus on the case of light-tailed job size distributions. Light-tailed

job size distributions show up naturally in workloads where all the transactions are of the same

type (say shopping); while there is some variability in the time it takes to purchase an item, even

high-variability distributions that arise in such settings are often light-tailed. Also, many natural

distributions, like the Normal distribution, Exponential distribution, and all Phase-type distributions,

are light-tailed. Finally, while heavy-tailed job size distributions are certainly prevalent in empirical

workloads (see for example [9, 14, 37]), in practice, these heavy-tailed workloads are often truncated,
which immediately makes them light-tailed. Such truncation can happen because there is a limit

imposed on how long jobs are allowed to run. Alternatively, truncation can occur when a heavy-

tailed job size distribution is divided into a few size classes as in [15, 18] where the smaller size

classes end up being truncated distributions.

1.3 The Case for Non-Asymptotic Tails
Within the world of light-tailed job size distributions, FCFS is viewed as the best policy. However,

while FCFS has a weakly optimal asymptotic tail, it is not best at minimizing P{𝑇 > 𝑡} for all 𝑡 . In
practice, one cares less about the asymptotic case than about particular 𝑡 [17]. For example, one

might want to minimize the fraction of response times that exceed 𝑡 = 0.5 seconds, because such

response times are noticeable by users. One might also want to meet several additional Service

Level Objectives (SLOs) where one is charged for exceeding particular response time values, such

as 𝑡 = 1 minute, or 𝑡 = 1 hour. SLOs are very common in the computing literature [8, 17, 24], in

service industries [10, 34, 38], and in healthcare [4, 19]. Unfortunately, different applications have

different SLOs. This leads us to ask:

When considering P{𝑇 > 𝑡}, is it possible to strictly improve upon FCFS for all values of 𝑡?
We are motivated by the fact that, for lower values of 𝑡 , Shortest-Remaining-Processing-Time

(SRPT) is better than FCFS, although FCFS clearly beats SRPT for higher values of 𝑡 , as FCFS is

weakly asymptotically optimal while SRPT is asymptotically pessimal [25, 26]. SRPT also minimizes

mean response time [29], which is closely related to lower values of 𝑡 . This motivates us to consider

whether prioritizing small jobs might have some benefit, even in the world of light-tailed job size

distributions.
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Fig. 1. The Nudge algorithm.
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Fig. 2. Empirical tail improvement of Nudge over FCFS in an M/G/1. The tail improvement ratio (TIR) is
defined as 1 − P

{
𝑇Nudge > 𝑡

}
/P

{
𝑇 FCFS > 𝑡

}
. Specific job size distributions, each with mean 1: Uniform(0,2);

Exponential with mean 1; Hyperexponential with branches drawn from Exp(2) and Exp(1/3), where the first
branch has probability 0.8 and where 𝐶2 = 3; BoundedLomax(_ = 2, max= 4, 𝛼 = 2). Distributions in legend
ordered by asymptotic improvement. Simulations run with 10 billion arrivals. Load 𝜌 = 0.8. Nudge parameters:
𝑥1 = 1, 𝑥2 = 1, 𝑥3 = ∞. Note that 𝑥1 = 𝑥2, so there are no medium-sized jobs. Empirically, Nudge often
achieves its best performance with 𝑥1 = 𝑥2, though our proofs involve setting 𝑥1 < 𝑥2. See Section 9.

We ask more specifically:

Can partial prioritization of small jobs lead to a strict improvement over FCFS? Specifically,
is there a scheduling policy which strictly improves upon FCFS with respect to P{𝑇 > 𝑡},
for every possible 𝑡 including large 𝑡?

1.4 Our Answer: Nudge
This paper answers the above question in the affirmative. We will define a policy, which we call

Nudge, whose response time tail is provably better than that of FCFS for every value of 𝑡 , assuming a

light-tailed job size distribution
1
(see Theorem 4.2). We say that Nudge’s response time stochastically

improves upon that of FCFS, in the sense of stochastic dominance. Moreover, we prove that the

asymptotic tail of response time of Nudge is of the form

𝑃{𝑇Nudge > 𝑡} ∼ 𝐶Nudge𝑒
−\ ∗𝑡 ,

with optimal decay rate \ ∗ and a superior leading constant 𝐶Nudge < 𝐶FCFS (see Corollary 4.4).

Thus, we demonstrate that FCFS is not strongly optimal, answering an open problem posed by

Boxma and Zwart [5]. In particular, this is contrary to a conjecture of Wierman and Zwart [40].

(see Section 2.1).

1
Technically, a Class I job size distribution. See Definition 3.3.
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The intuition behind the Nudge algorithm is that we’d like to basically stick to FCFS, which we

know is great for handling the extreme tail (high 𝑡 ), while at the same time incorporating a little bit

of prioritization of small jobs, which we know can be helpful for the mean and lower 𝑡 . We need to

be careful, however, not to make too much use of size, because Nudge still needs to beat FCFS for

high 𝑡 ; hence we want just a little “nudge” towards prioritizing small jobs.

We now describe the Nudge algorithm. Imagine that the job size distribution is divided into

size regions, as shown in Fig. 1, consisting of small, medium, large, and extra large jobs. Most

of the time, Nudge defaults to FCFS. However, when a “small” job arrives and finds a “large” job

immediately ahead of it in the queue, we swap the positions of the small and large job in the queue.

The one caveat is that a job which has already swapped is ineligible for further swaps. The size

cutoffs defining small and large jobs will be defined later in the paper.

The degree of the tail improvement of Nudge over FCFS is non-trivial. In Fig. 2, we see that for

many common light-tailed job size distributions, Nudge results in a multiplicative improvement of

4-7% throughout the tail. In Section 9.2, we show that with low load and a high-variability job size

distribution, Nudge’s improvement can be as much as 10-15% throughout the tail. The magnitude

of these improvements highlights the importance of scheduling, even in the light-tailed setting.

We additionally present an exact analysis of the performance of Nudge. Nudge does not fit

into any existing framework for M/G/1 transform analysis, including the recently developed

SOAP framework [32] (see Section 2.3). Nonetheless, we derive a tagged-job analysis of Nudge in

Theorem 4.5, deriving the Laplace-Stieltjes transform of response time of Nudge.

1.5 Contributions and Roadmap
This paper makes the following contributions.

• In Section 3.5, we introduce the Nudge policy.

• In Sections 4 to 6 we prove that with appropriately chosen parameters, Nudge stochastically

improves upon FCFS for light-tailed
2
job size distributions; we also give a simple expression

for such parameters. Moreover, in Section 8, we prove that Nudge achieves a multiplicative

asymptotic improvement over FCFS.

• In Section 7, we derive the Laplace-Stieltjes transform of response time under Nudge.

• In Section 9, we empirically demonstrate the magnitude of Nudge’s stochastic improvement

over FCFS. We also discuss how to tune Nudge’s parameters for best performance.

• In Section 10, we discuss practical considerations for using Nudge.

• In Section 11, we discuss several notable variants of Nudge.

2 PRIORWORK
Most prior work on scheduling to optimize the tail of response time focuses on the asymptotic case,
characterizing P{𝑇 > 𝑡} in the 𝑡 → ∞ limit. We review these results in Section 2.1.

Our main result, Theorem 4.2, is a non-asymptotic statement, characterizing the behavior of

P{𝑇 > 𝑡} for all 𝑡 , not just the 𝑡 → ∞ limit. There is much less prior work on the tail of response

time outside of the asymptotic regime. We review the few results in this area in Section 2.2.

In addition to characterizing Nudge’s tail of response time, we also give an exact transform

analysis of Nudge’s response time. Our analysis requires a novel approach that significantly differs

from traditional analyses, as we discuss in Section 2.3.

Our paper’s focus is the M/G/1 queue. All of the results cited in this section apply to the M/G/1,

with some also applying to more general models, such as the GI/GI/1.

2
Technically, any Class I job size distribution. See Definition 3.3.
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2.1 Asymptotic Tails: Extensive Theory, but Open Problems Remain
When optimizing the asymptotic tail, the goal is to find a policy 𝜋∗

such that for all scheduling

policies 𝜋 ,

lim sup

𝑡→∞

P
{
𝑇 𝜋∗

> 𝑡
}

P{𝑇 𝜋 > 𝑡} ≤ 𝑐

for some constant 𝑐 ∈ [1,∞). Such a policy 𝜋∗
is called weakly optimal; if 𝑐 = 1, then 𝜋∗

is called

strongly optimal [5]. While weak optimality has been well studied, proving or disproving strong

optimality is much harder.

One major theme of the prior work is that optimizing the asymptotic tail looks very different

depending on the job size distribution.

• For light-tailed job sizes, FCFS is weakly optimal [5]. Specifically, the tail of response time

has a form given in (1). Moreover, many popular preemptive policies such as PS, SRPT,

and Foreground-Background (FB)
3
are “weakly pessimal”: they have the maximum possible

asymptotic tail, up to a constant factor, of any work-conserving scheduling policy [25, 26].

• For heavy-tailed job sizes, the reverse is true: PS, SRPT, FB, and similar policies are all weakly

optimal [5, 26, 33], while FCFS is weakly pessimal.

This state of affairs prompts a question: is any policy weakly optimal in both the light-tailed and

heavy-tailed cases? Nair et al. [25] show that a variant of PS achieves this, but their variant requires

knowledge of the system’s load. Wierman and Zwart [40] show that any policy that is weakly

optimal in both the light- and heavy-tailed cases requires knowing some information about the

system parameters, such as the load.

The above results mostly characterize weakly optimal scheduling policies, but the problem of

strongly optimizing the tail remains open. Boxma and Zwart [5] pose the strong optimality of

FCFS as an open problem. Wierman and Zwart [40] go further and conjecture that FCFS is in fact

strongly optimal for light-tailed job size distributions. Despite a large of body of work analyzing

the tail asymptotics of FCFS [1–3, 28], the problem has remained open. We solve the problem by

showing that FCFS is not strongly optimal. Specifically, our Corollary 4.4 implies

lim

𝑡→∞

P
{
𝑇Nudge > 𝑡

}
P
{
𝑇 FCFS > 𝑡

} =
𝐶Nudge

𝐶FCFS
< 1.

2.2 Non-asymptotic Tails: Few Optimality Results
Characterizing P{𝑇 > 𝑡} outside the asymptotic regime is a much harder problem than characteriz-

ing the asymptotic tail. As such, the strongest results in this area are for relatively simple scheduling

policies. For FCFS under light-tailed job size distributions, it is known that P{𝑇 > 𝑡} < 𝑒−\
∗𝑡
for the

same constant \ ∗ as appears in FCFS’s asymptotic tail formula [21, 22]. As a result, this bound is tight

up to a constant factor [22], subject to subtleties discussed in Section 3.3. Beyond FCFS, one of the

few known results gives an improved characterization of response time under preemptive-priority

scheduling policies [3, Section 2].

Very little is known about more complicated scheduling policies. While the Laplace-Steiltjes

transform of 𝑇 is known for a wide variety of scheduling policies [32, 35], these transforms do not

readily yield useful bounds on P{𝑇 > 𝑡} for general job size distributions.
Given that characterizing P{𝑇 > 𝑡} is difficult, it comes as no surprise that optimizing P{𝑇 > 𝑡}

is harder still. As such, rather than trying to crown a single optimal policy, we focus on a relative
measure. Specifically, as we define in Definition 3.1, we say that policy 𝜋1 stochastically improves
upon another policy 𝜋2 if P{𝑇 𝜋1 > 𝑡} ≤ P{𝑇 𝜋2 > 𝑡} for all 𝑡 .

3
FB at all times serves the jobs that have received the least service so far.
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There are two stochastic improvement results in the literature, but both are much simpler than

our Nudge result. Both results start with a well-known policy that does not use job sizes and show

that a variation that does use job sizes stochastically improves response time.

• Nuyens et al. [26] show that SRPT and similar policies stochastically improve upon FB.

• Friedman and Henderson [11] and Friedman and Hurley [12] show that one can stochastically

improve upon PS by using job sizes. Their policy, Fair Sojourn Protocol (FSP), guarantees in

a sample-path sense that no job departs later than it would if the server were using PS.

The results above fit a common theme. Both FB and PS often share the server between multiple

jobs. Sharing the server is fundamentally suboptimal. For example, when sharing the server between

jobs 1 and 2, if we knew that we would finish job 1 first, then it would be better to devote the entire

server to job 1 at first. Doing so improves the response time of job 1 without harming the response

time of job 2. Roughly speaking, when FB and PS would share the server between jobs, SRPT and

FSP serve the jobs one at a time, using job size information to choose the ordering.

FCFS is more difficult to stochastically improve upon than FB and PS. For one thing, FCFS never

shares the server, removing this easy opportunity for stochastic improvement. Moreover, there is

a sense in which FCFS is unimprovable: on any specific finite arrival sequence, FCFS minimizes

the sorted vector of response times, where we order vectors lexicographically. For example, FCFS

minimizes the maximum response time. As a result, the sample path arguments that work for

improving FB and PS do not apply to improving FCFS.

In spite of these obstacles, we show in Theorem 4.2 that Nudge stochastically improves upon

FCFS. Rather than reasoning in terms of sample paths, we take a fundamentally stochastic approach

from the beginning. See our proofs in Section 5.

2.3 Transform of Response Time: Nudge Needs a Novel Approach
In Theorem 4.5, we give a closed-form expression for the Laplace-Stieltjes transform of Nudge’s

response time. There has been much prior work on analyzing the transform of response time of

the M/G/1 under various scheduling policies. Some analysis techniques cover a wide variety of

scenarios [13, 32]. However, as we explain below, none of these prior techniques can analyze Nudge.

SOAP Policies. Policies in the SOAP class, introduced by Scully et al. [32], schedule jobs based

on an index calculated from each job’s size and attained service
4
, and their response time can

be analyzed via the SOAP framework [32]. These include SRPT [31], FB [30], some multi-level

processor sharing policies [23], and certain cases of the Gittins policy [27]. Unfortunately, Nudge is

not a SOAP policy, so we cannot leverage this analysis method. This is because whether Nudge will

swap a small job 𝑠 with a large job ℓ depends in part on whether any other jobs arrive between ℓ

and 𝑠 . In contrast, a SOAP policy would make such a decision based on properties of ℓ and 𝑠 alone.

Variations on FCFS. Nudge serves jobs in FCFS order by default and only ever swaps adjacent

arrivals. One might therefore hope that Nudge could be analyzed as a variation on FCFS. There are

many papers analyzing a variety of M/G/1 variants under FCFS scheduling. These include systems

with generalized vacations [13] and exceptional first service [39]. Unfortunately, to the best of our

knowledge, no prior analysis of a variation of FCFS applies to Nudge.

Other Analysis Techniques. There are a number of scheduling policies whose transform analyses

do not fit into either of the previous categories, such as random order of service [20] and systems

with accumulating priority [35]. However, these policies do not resemble Nudge, and the techniques

used in their analyses do not readily apply to Nudge.

4
The index can also depend on certain other characteristics of the job, e.g. its class if there are multiple classes of jobs.

Size and attained service are the attributes relevant to Nudge.
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3 MODEL
3.1 Notation
We consider the M/G/1 queue in which job sizes are known. Let _ be the arrival rate, 𝑆 be the job

size distribution, and 𝑠min be the minimum possible job size. Specifically, let 𝑠min be the infimum of

the support of 𝑆 . We denote the load by 𝜌 = _E[𝑆] and assume 0 < 𝜌 < 1.

The queueing time, 𝑇𝑄 , is the time from when a job arrives until it first receives service. The

response time, 𝑇 , is the time from when a job arrives until it completes. We write 𝑇
Alg
𝑄

and 𝑇 Alg
for

the queueing time and response time under scheduling algorithm Alg, respectively.
For any continuous random variable 𝑉 , we will use 𝑓𝑉 (·) to denote the probability density

function (p.d.f.) of 𝑉 . We write the 𝑉 (𝑠) for the Laplace-Stieltjes transform of 𝑉 .

3.2 Stochastic Improvement
In this paper, our goal is to prove that the Nudge policy stochastically improves upon the FCFS
policy. We now define stochastic improvement, along with the related notion of tail improvement

ratio.

Definition 3.1 (Stochastic Improvement). For two scheduling algorithms Alg
1
and Alg

2
, we say

that Alg
1
(strictly) stochastically improves upon Alg

2
if, for any response time cutoff 𝑡 > 𝑠min, the

probability that response time of Alg
1
exceeds 𝑡 is smaller than the probability that Alg

2
’s response

time exceeds 𝑡 , i.e.,

∀𝑡 > 𝑠min, P
{
𝑇 Alg

1 > 𝑡
}
< P

{
𝑇 Alg

2 > 𝑡
}
.

Definition 3.2 (Tail improvement ratio). For any response time cutoff 𝑡 , the tail improvement ratio
of Alg

1
versus Alg

2
at 𝑡 , denoted TIR(𝑡), is defined as

TIR(𝑡) ≜ 1 −
P
{
𝑇 Alg

1 > 𝑡
}

P
{
𝑇 Alg

2 > 𝑡
} .

The asymptotic tail improvement ratio, denoted AsymTIR, is defined as

AsymTIR ≜ lim inf

𝑡→∞
TIR(𝑡) = 1 − lim sup

𝑡→∞

P
{
𝑇 Alg

1 > 𝑡
}

P
{
𝑇 Alg

2 > 𝑡
} .

3.3 Class I “Light-Tailed” Distributions
In this paper, we focus on job size distributions for which the FCFS policy has an asymptotically

exponential waiting time distribution. This property of FCFS will be crucial for our analysis. Prior

work has exactly characterized the job size distributions for which FCFS has this property. These

distributions are known as “class I” distributions [1, 3, 28].

Definition 3.3 (Class I Distribution). For a distribution 𝑆 , let −𝑠∗ be the rightmost singularity of

𝑆 (𝑠), with −𝑠∗ = −∞ if 𝑆 (𝑠) is analytic everywhere. 𝑆 is a class I distribution if and only if 𝑠∗ > 0

and 𝑆 (−𝑠∗) = ∞.

Class I distributions can roughly be thought of as “well-behaved” light-tailed distributions. In

contrast, class II distributions, the other class of light-tailed distributions, are very unusual and

“paradoxical”, and rarely occur as job size distributions.

For our paper, the key property of class I job size distributions is that they cause FCFS to have

an asymptotically exponential waiting time distribution for all loads [1, 2]. However, as shown by

[1, 2], the waiting time also exhibits an exponential tail for light load if the job size is class II. For

this reason, while we focus only on class I distributions, we believe that our results also hold for

class II under light load. In Section 3.4, we characterize the exponential waiting time in more detail.
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3.4 Characterizing the FCFS Waiting Time Distribution
In this paper, we care about the exponential tail of the FCFS response time distribution. It turns out

to be simpler to focus on the FCFS waiting time distribution, which is closely related. We will make

use of two key concepts regarding the waiting time distribution. The first concept is the asymptotic

exponential decay rate, as investigated in [2, 5]. We refer to this quantity as \ ∗ and formally define

it to be the negative of the rightmost singularity of
�𝑇 FCFS
𝑄

. Based on the Cramer-Lundberg theory,

the waiting time distribution 𝑇 FCFS
𝑄

takes an asymptotic exponential tail:

P
{
𝑇 FCFS
𝑄 > 𝑡

}
∼ 𝐶𝑒−\

∗𝑡 . (2)

The quantity \ ∗ is the least positive real solution to the equation

𝑆 (−\ ∗) = _ + \ ∗
_

.

We also define the normalized p.d.f. to be

𝑔(𝑡) ≜ 𝑓𝑇 FCFS
𝑄

(𝑡) · 𝑒\ ∗𝑡 . (3)

Note that (2) relates to the c.d.f. of waiting time, while (3) relates to the p.d.f. of waiting time.

We characterize three important properties of the normalized p.d.f., namely its maximum, mini-

mum, and asymptotic limit. Let 𝑔max, 𝑔min, 𝑔
∗
denote respectively the maximum, minimum and

asymptotically limiting values of 𝑔(·) over [0,∞):
𝑔max ≜ sup

𝑡 ∈[0,∞)
𝑔(𝑡); 𝑔min ≜ inf

𝑡 ∈[0,∞)
𝑔(𝑡); 𝑔∗ ≜ lim

𝑡→∞
𝑔(𝑡).

The following lemma, proven in Appendix A, implies these quantities are well defined.

Lemma 3.1. Suppose 𝑆 is a continuous class I job size distribution. For any load 𝜌 , the normalized
p.d.f. 𝑔(𝑡) is bounded above and below by positive constants, and lim𝑡→∞ 𝑔(𝑡) exists.

The ratio 𝑔max/𝑔min will be particularly important in our analysis. Intuitively, we can think of the

ratio as measuring the deviation of the queueing time𝑇 FCFS
𝑄

from a perfect exponential distribution.

The queueing time distribution is exactly an exponential distribution in an𝑀/𝑀/1, and diverges

from an exponential to greater or lesser degree under any class I job size distribution. The degree

of divergence will show up in our later results.

3.5 Scheduling Algorithm: Nudge
We now formally define the Nudge algorithm. Nudge(𝑥1, 𝑥2, 𝑥3) first divides jobs into four regions

based on their sizes:

• “small”: 0 = 𝑥0 ≤ 𝑆 < 𝑥1.

• “medium”: 𝑥1 ≤ 𝑆 < 𝑥2.

• “large”: 𝑥2 ≤ 𝑆 < 𝑥3.

• “very large”: 𝑥3 ≤ 𝑆 < 𝑥4 = ∞.

Throughout the paper, we concentrate mostly on the “small” and the “large” jobs. For conciseness,

we define 𝑆small, 𝑆large, 𝑝small, 𝑝large as follows.

Definition 3.4. We define 𝑆small and 𝑆large to be the distribution of small and large jobs, respectively.

We also define 𝑝small and 𝑝large to be the fraction of small and large jobs, respectively.

𝑆small ∼ [𝑆 |𝑆 < 𝑥1], 𝑆large ∼ [𝑆 |𝑥2 ≤ 𝑆 < 𝑥3]
𝑝small ≜ P{𝑆 < 𝑥1} , 𝑝large ≜ P{𝑥2 ≤ 𝑆 < 𝑥3} .
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To determine which job to serve, Nudge maintains an ordering over jobs which have not yet

entered service. We call this ordering the “queue”. For each job, we also track whether or not it

each has already been “swapped”.

Whenever a job completes, Nudge serves the job at the front of the queue (if any), and serves

it to completion. By default, newly arriving jobs are placed at the back of the queue, resulting in

FCFS scheduling by default. However, if three conditions are satisfied, then a “swap” is performed. If

(1) the arriving job is a small job, 𝑗𝑠 ,

(2) the job at the back of queue is a large job, 𝑗ℓ , and

(3) the job 𝑗ℓ at the back of queue has never been swapped,

then Nudge places the small job 𝑗𝑠 just ahead of 𝑗ℓ , in the second-to-last position in the queue. This

is called a swap, and both 𝑗ℓ and 𝑗𝑠 are now marked as having been “swapped.”

Because Nudge never swaps the same job twice, a job is only in the last position in the queue

and eligible to be swapped immediately after it arrives. As a result, Nudge only ever swaps a job

with the job that arrives immediately before or after it.

4 MAIN RESULTS
4.1 Nudge Improves upon FCFS Non-Asymptotically
Our main goal is to show that Nudge stochastically improves upon FCFS. Nudge’s performance

crucially depends on the choice of parameters 𝑥1, 𝑥2, and 𝑥3, i.e. which jobs are small and which

jobs are large. We begin by asking: given job size distribution 𝑆 and load 𝜌 , for what choices

of parameters 𝑥1, 𝑥2, and 𝑥3 does Nudge stochastically improve upon FCFS? We answer this in

Theorem 4.1, which gives sufficient conditions on the parameters for Nudge to stochastically

improve upon FCFS. We prove Theorem 4.1 in Section 5.

Theorem 4.1 (Stochastic Improvement Regime). Suppose 𝑆 is a continuous class I job size
distribution. Then Nudge(𝑥1, 𝑥2, 𝑥3) stochastically improves upon FCFS for any 𝑠min < 𝑥1 ≤ 𝑥2 ≤ 𝑥3
satisfying5

• 𝑔max

𝑔min

_ + \ ∗
_

<
1 − 𝑆large (−\ ∗)−1

1 − 𝑆small (−\ ∗)−1
, (4)

• 𝑥1 + 𝑥3 ≤ 2𝑥2. (5)

With Theorem 4.1 in hand, our goal reduces to the following question: given 𝑆 and 𝜌 , do there exist

parameters satisfying the sufficient condition from Theorem 4.1? We answer this in Theorem 4.2,

showing that as long as the minimum job size 𝑠min = 0, such parameters always exist. Our proof of

Theorem 4.2 in Section 6 gives a simple construction of those parameters.

Theorem 4.2 (Existence of Stochastic Improvement). For any continuous class I job size
distribution 𝑆 with 𝑠min = 0 and any load 0 < 𝜌 < 1, there exist 𝑥1, 𝑥2, 𝑥3 satisfying (4) and (5),
implying that Nudge(𝑥1, 𝑥2, 𝑥3) stochastically improves upon FCFS.

4.2 Nudge Improves upon FCFS Asymptotically
Having shown that Nudge stochastically improves upon FCFS, we ask: is Nudge’s improvement

non-negligible in the asymptotic limit? We answer this in Theorem 4.3. Specifically, recall that in

the 𝑡 → ∞ limit, P
{
𝑇 FCFS > 𝑡

}
∼ 𝐶FCFS𝑒

−\ ∗𝑡
. We show that P

{
𝑇Nudge > 𝑡

}
∼ 𝐶Nudge𝑒

−\ ∗𝑡
and that,

with appropriately set parameters, 𝐶Nudge < 𝐶FCFS. This implies that FCFS is not strongly optimal

for asymptotic tail behavior (see Section 2.1), resolving a long-standing open problem [5, 40]. We

5
Recall from Definition 3.4 that 𝑆small and 𝑆large depend on 𝑥1, 𝑥2, and 𝑥3. This applies throughout the paper.
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also exactly derive the difference 𝐶FCFS −𝐶Nudge. We prove Theorem 4.3 in Section 8, making use

of Theorem 4.5.

Theorem 4.3 (Asymptotic Improvement Regime). Suppose 𝑆 is a continuous class I job size
distribution. For any 𝑠min < 𝑥1 ≤ 𝑥2 ≤ 𝑥3, the asymptotic tail improvement ratio of Nudge(𝑥1, 𝑥2, 𝑥3)
compared to FCFS is

AsymTIR = 𝑝small𝑝large
_

_ + \ ∗

(
𝑆large (−\ ∗) −

_

_ + \ ∗ 𝑆small (−\ ∗) −
\ ∗

_ + \ ∗ 𝑆large (−\
∗)𝑆small (−\ ∗)

)
.

Furthermore, AsymTIR is positive, meaning 𝐶Nudge < 𝐶FCFS, if

_ + \ ∗
_

<
1 − 𝑆large (−\ ∗)−1

1 − 𝑆small (−\ ∗)−1
.

Note that the asymptotic improvement regime in Theorem 4.3 is a superset of the non-asymptotic

improvement regime in Theorem 4.1, because 𝑔max/𝑔min ≥ 1. Thus, whenever Theorem 4.1 guaran-

tees a stochastic improvement, we also have 𝐶FCFS > 𝐶Nudge. Thus, by Theorem 4.2, there exists an

asymptotic improvement whenever 𝑠min = 0.

Corollary 4.4 (Existence of Asymptotic Improvement). For any continuous class I job size
distribution 𝑆 with 𝑠min = 0 and any load 0 < 𝜌 < 1, there exist 𝑥1, 𝑥2, 𝑥3 such that 𝐶Nudge < 𝐶FCFS.

While Theorem 4.3 shows that there is a multiplicative improvement in the asymptotic tail, we

find empirically that the same multiplicative improvement exists throughout nearly the entire tail.

See Fig. 2 and Section 9.

4.3 Exact Analysis of Nudge
All of the above results compare Nudge’s performance to that of FCFS. In particular, none of these

results give an exact analysis of Nudge’s response time. We give such an analysis in Theorem 4.5,

in which we exactly derive
�𝑇Nudge (𝑠). This result is nontrivial, because Nudge does not fall into

any class of policies with known analyses (see Section 2.3). We prove Theorem 4.5 in Section 7.

Theorem 4.5 (Transform of Response Time). The response time of Nudge has Laplace-Stieltjes
transform

�𝑇Nudge (𝑠) = �𝑇 FCFS (𝑠) + 𝑝small𝑝large

©«𝑆large (𝑠) (1 − 𝑆small (𝑠))
( �𝑇 FCFS

𝑄
(_ + 𝑠) − �𝑇 FCFS

𝑄
(𝑠)

)
+ 𝑆small (𝑠) (1 − 𝑆large (𝑠))

©«
�𝑇 FCFS
𝑄

(𝑠)

𝑆 (𝑠)
− (1 − 𝜌) _/𝑆 (_) − 𝑠/𝑆 (𝑠)

_ − 𝑠

ª®¬
ª®®¬ .

5 PROOF OF THEOREM 4.1: STOCHASTIC IMPROVEMENT REGIME
Our goal in this section is to prove Theorem 4.1, which gives sufficient conditions on the parameters

𝑥1, 𝑥2, and 𝑥3 for Nudge to stochastically improve upon FCFS. To do so, we employ a tagged job

approach. In particular, we follow an arbitrary tagged job 𝑖 making its way through a pair of coupled

systems, one employing the FCFS policy and one employing the Nudge policy, both with the same

arrival process and job sizes.

We focus on one particular response time threshold 𝑡 , and in particular on the events 𝐷𝑖,𝑡 and

𝐼𝑖,𝑡 , where the tagged job 𝑖 has response time greater than 𝑡 in one system and below in the other

system. In (6), we write the difference in the response time tails of Nudge and FCFS in terms of the

events 𝐷𝑖,𝑡 and 𝐼𝑖,𝑡 . In Lemma 5.1, we derive formulas for the probabilities of these events.
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Using these formulas, in Lemma 5.2, we derive a sufficient condition for Nudge to improve upon

FCFS relative to a specific threshold 𝑡 . This sufficient condition is dependent on the threshold 𝑡 .

In order to remove this dependence, we prove Lemma 5.3, a technical lemma regarding arbitrary

random variables.

Finally, in Section 5.2, we prove Theorem 4.1, by demonstrating that the conditions given in

Theorem 4.1 ensure that the sufficient condition in Lemma 5.2 holds relative to every response time

threshold 𝑡 , making use of Lemma 5.3 to do so.

5.1 Intermediate Lemmas
Consider a tagged job 𝑖 that arrives into the steady state of the pair of coupled systems. We write

𝑇
Nudge
𝑖

and 𝑇 FCFS
𝑖 for job 𝑖’s response time in the Nudge and FCFS systems, respectively. For any

𝑡 ≥ 0, define the events

𝐼𝑖,𝑡 ≜
{
𝑇 FCFS
𝑖 ≤ 𝑡 < 𝑇

Nudge
𝑖

}
, 𝐷𝑖,𝑡 ≜

{
𝑇
Nudge
𝑖

≤ 𝑡 < 𝑇 FCFS
𝑖

}
.

Intuitively, 𝐷𝑖,𝑡 is the event in which Nudge decreases job 𝑖’s response time relative to FCFS,

specifically from above 𝑡 to below 𝑡 . Similarly, 𝐼𝑖,𝑡 is the event in which Nudge increases job 𝑖’s
response time relative to FCFS. We can write

P
{
𝑇
Nudge
𝑖

> 𝑡

}
= P

{
𝑇 FCFS
𝑖 > 𝑡

}
+ P

{
𝐼𝑖,𝑡

}
− P

{
𝐷𝑖,𝑡

}
. (6)

The events 𝐷𝑖,𝑡 and 𝐼𝑖,𝑡 are defined using the Nudge and FCFS systems. Our next step is to express

them in terms of only the FCFS system, which we understand well.

We begin by defining the relevant quantities in the FCFS system. Let 𝑖− be the arrival immediately

before job 𝑖 , and let 𝑖+ be the arrival immediately after, and let

𝑊𝑖 ≜ amount of work in the system (either Nudge or FCFS) when job 𝑖 arrives,

𝐴𝑖 ≜ interarrival time between jobs 𝑖 and 𝑖+,

𝑆𝑖 ≜ size of job 𝑖 .

We define analogous quantities for 𝑖− and 𝑖+. The work is the same in both systems because both

Nudge and FCFS are work-conserving.

Note that Nudgewill only ever swap job 𝑖 with one of the adjacent arrivals, 𝑖− or 𝑖+ (see Section 3.5).
Under what condition do we swap job 𝑖 with job 𝑖+? This happens if and only if the following

events occur:

(a) Job 𝑖 is large, which is when 𝑥2 ≤ 𝑆𝑖 < 𝑥3.

(b) Job 𝑖+ is small, which is when 𝑆𝑖+ < 𝑥1.

(c) Job 𝑖+ arrives before job 𝑖 enters service in the Nudge system.

(d) Job 𝑖 has not swapped with any other job, namely job 𝑖−.

Because job 𝑖 cannot be both large and small, (a) implies (d). But (d) implies that (c) happens when

𝐴𝑖 ≤𝑊𝑖 . This is because in the absence of swaps, job 𝑖 would enter service after𝑊𝑖 time. Therefore,

the event that job 𝑖 swaps with job 𝑖+ is

swap𝑖,𝑖+ ≜ {(𝑥2 ≤ 𝑆𝑖 < 𝑥3) ∧ (𝑆𝑖+ ≤ 𝑥1) ∧ (𝐴𝑖 ≤𝑊𝑖 )}. (7)

Crucially, this definition of swap𝑖,𝑖+ depends only on quantities in the FCFS system. We define

swap𝑖−,𝑖 analogously.
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Lemma 5.1 (Evaluating P
{
𝐼𝑖,𝑡

}
and P

{
𝐷𝑖,𝑡

}
). We have

P
{
𝐼𝑖,𝑡

}
= P

{
swap𝑖,𝑖+ ∧ (𝑊𝑖 + 𝑆𝑖 ≤ 𝑡 <𝑊𝑖 + 𝑆𝑖 + 𝑆𝑖+ )

}
, (8)

P
{
𝐷𝑖,𝑡

}
= P

{
swap𝑖−,𝑖 ∧ (𝑊𝑖− −𝐴𝑖− + 𝑆𝑖 ≤ 𝑡 <𝑊𝑖− −𝐴𝑖− + 𝑆𝑖 + 𝑆𝑖− )

}
. (9)

Proof. We begin by computing P
{
𝐼𝑖,𝑡

}
. The event 𝐼𝑖,𝑡 occurs only if 𝑇

Nudge
𝑖

> 𝑇 FCFS
𝑖 , which

in turn occurs only if job 𝑖 swaps with the next arrival, namely job 𝑖+. If this swap occurs, then

𝑇
Nudge
𝑖

= 𝑇 FCFS
𝑖 + 𝑆𝑖+ . We know that 𝑇 FCFS

𝑖 =𝑊𝑖 + 𝑆𝑖 , so (8) follows from

𝐼𝑖,𝑡 = swap𝑖,𝑖+ ∧ (𝑇 FCFS
𝑖 ≤ 𝑡 < 𝑇

Nudge
𝑖

)
= swap𝑖,𝑖+ ∧ (𝑇 FCFS

𝑖 ≤ 𝑡 < 𝑇 FCFS
𝑖 + 𝑆𝑖+ )

= swap𝑖,𝑖+ ∧ (𝑊𝑖 + 𝑆𝑖 ≤ 𝑡 <𝑊𝑖 + 𝑆𝑖 + 𝑆𝑖+ ).

We now compute P
{
𝐷𝑖,𝑡

}
. By similar reasoning to the above, the event 𝐷𝑖,𝑡 occurs only if job 𝑖

swaps with job 𝑖−. If this swap occurs, then𝑇
Nudge
𝑖

= 𝑇 FCFS
𝑖 − 𝑆𝑖− . We again have𝑇 FCFS

𝑖 =𝑊𝑖 + 𝑆𝑖 , so

𝐷𝑖,𝑡 = swap𝑖−,𝑖 ∧ (𝑇Nudge
𝑖

≤ 𝑡 < 𝑇 FCFS
𝑖 )

= swap𝑖−,𝑖 ∧ (𝑇 FCFS
𝑖 − 𝑆𝑖− ≤ 𝑡 < 𝑇 FCFS

𝑖 )
= swap𝑖−,𝑖 ∧ (𝑊𝑖 + 𝑆𝑖 − 𝑆𝑖− ≤ 𝑡 <𝑊𝑖 + 𝑆𝑖 ).

To obtain (9), observe that conditioned on swap𝑖−,𝑖 , we have𝑊𝑖 =𝑊𝑖− + 𝑆𝑖− −𝐴𝑖− . □

Now, we give sufficient conditions for Nudge to improve upon FCFS relative to a particular

threshold 𝑡 .

Lemma 5.2 (Strict Improvement at a Given Threshold). Given any 𝑡 > 𝑠min, where 𝑠min is the
smallest value of 𝑆 ,

P
{
𝑇Nudge > 𝑡

}
< P

{
𝑇 FCFS > 𝑡

}
if the following inequality in terms of 𝑡 holds:

𝑔max

𝑔min

_ + \ ∗
_

<
E
[
𝑒\

∗
min(𝑡,𝑆small+𝑆large) − 𝑒\

∗
min(𝑡,𝑆small)

]
E
[
𝑒\

∗
min(𝑡,𝑆small+𝑆large) − 𝑒\

∗
min(𝑡,𝑆large)

] . (10)

Proof. Because the tagged job 𝑖 is a random sample arriving to the steady state of the system,

by (6), we have P
{
𝑇Nudge > 𝑡

}
< P

{
𝑇 FCFS > 𝑡

}
if and only if P

{
𝐼𝑖,𝑡

}
< P

{
𝐷𝑖,𝑡

}
. Our approach is to

use Lemma 5.1 to bound each of P
{
𝐼𝑖,𝑡

}
and P

{
𝐷𝑖,𝑡

}
, from which the desired sufficient condition

follows.
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We begin by computing P
{
𝐼𝑖,𝑡

}
:

P
{
𝐼𝑖,𝑡

}
= P

{
swap𝑖,𝑖+ ∧ (𝑊𝑖 + 𝑆𝑖 ≤ 𝑡 <𝑊𝑖 + 𝑆𝑖 + 𝑆𝑖+ )

}
[by Lemma 5.1]

= P{(𝐴𝑖 ≤𝑊𝑖 ) ∧ (𝑊𝑖 + 𝑆𝑖 ≤ 𝑡 <𝑊𝑖 + 𝑆𝑖 + 𝑆𝑖+ ) ∧ (𝑥2 ≤ 𝑆𝑖 < 𝑥3) ∧ (𝑆𝑖+ < 𝑥1)} [by (7)]

≤ P{(𝑊𝑖 + 𝑆𝑖 ≤ 𝑡 <𝑊𝑖 + 𝑆𝑖 + 𝑆𝑖+ ) ∧ (𝑥2 ≤ 𝑆𝑖 < 𝑥3) ∧ (𝑆𝑖+ < 𝑥1)} [discarding 𝐴𝑖 ≤𝑊𝑖 ]

= P
{(
(𝑡 − 𝑆𝑖 − 𝑆𝑖+ )+ ≤𝑊𝑖 ≤ (𝑡 − 𝑆𝑖 )+

)
∧ (𝑥2 ≤ 𝑆𝑖 < 𝑥3) ∧ (𝑆𝑖+ < 𝑥1)

}
= 𝑝large𝑝small · E𝑆𝑖∼𝑆large,𝑆𝑖+∼𝑆small

[∫ (𝑡−𝑆𝑖 )+

𝑤=(𝑡−𝑆𝑖−𝑆𝑖+ )+
𝑓𝑊𝑖

(𝑤) d𝑤
] [

change of measure for 𝑆𝑖 and 𝑆
+
𝑖
,

independence of 𝑆𝑖 , 𝑆𝑖+ , and𝑊𝑖

]
≤ 𝑝large𝑝small · E𝑆𝑖∼𝑆large,𝑆𝑖+∼𝑆small

[∫ (𝑡−𝑆𝑖 )+

𝑤=(𝑡−𝑆𝑖−𝑆𝑖+ )+
𝑔max𝑒

−\ ∗𝑤
d𝑤

] [
by Lemma 3.1 and the

fact that𝑊𝑖 ∼ 𝑇 FCFS
𝑄

]
= 𝑝large𝑝small ·

𝑒−\
∗𝑡

\ ∗
· 𝑔maxE

[
𝑒\

∗
min(𝑡,𝑆small+𝑆large) − 𝑒\

∗
min(𝑡,𝑆large)

]
. (11)

Similarly, we compute P
{
𝐷𝑖,𝑡

}
:

P
{
𝐷𝑖,𝑡

}
= P

{
swap𝑖−,𝑖 ∧ (𝑊𝑖− −𝐴𝑖− + 𝑆𝑖 ≤ 𝑡 <𝑊𝑖− −𝐴𝑖− + 𝑆𝑖 + 𝑆𝑖− )

}
= P{(𝐴𝑖− ≤𝑊𝑖− ) ∧ (𝑊𝑖− −𝐴𝑖− + 𝑆𝑖 ≤ 𝑡 <𝑊𝑖− −𝐴𝑖− + 𝑆𝑖 + 𝑆𝑖− ) ∧ (𝑆𝑖 < 𝑥1) ∧ (𝑥2 ≤ 𝑆𝑖− < 𝑥3)}
= P

{(
𝐴𝑖− + (𝑡 − 𝑆𝑖 − 𝑆𝑖− )+ ≤𝑊𝑖− ≤ 𝐴𝑖− + (𝑡 − 𝑆𝑖 )+

)
∧ (𝑆𝑖 < 𝑥1) ∧ (𝑥2 ≤ 𝑆𝑖− < 𝑥3)

}
= 𝑝small𝑝large · E𝑆𝑖∼𝑆small,𝑆𝑖−∼𝑆large,𝐴𝑖−∼Exp(_)

[∫ 𝐴𝑖−+(𝑡−𝑆𝑖 )+

𝑤=𝐴𝑖−+(𝑡−𝑆𝑖−𝑆𝑖− )+
𝑓𝑊𝑖− (𝑤) d𝑤

] [
mutual independence

of 𝑆𝑖 , 𝑆𝑖+ , 𝐴𝑖− , and𝑊𝑖

]
≥ 𝑝small𝑝large · E𝑆𝑖∼𝑆small,𝑆𝑖−∼𝑆large,𝐴𝑖−∼Exp(_)

[∫ 𝐴𝑖−+(𝑡−𝑆𝑖 )+

𝑤=𝐴𝑖−+(𝑡−𝑆𝑖−𝑆𝑖− )+
𝑔min𝑒

−\ ∗𝑤
d𝑤

] [
by Lemma 3.1 and the

fact that𝑊𝑖 ∼ 𝑇 FCFS
𝑄

]
≥ 𝑝small𝑝large · E𝑆𝑖∼𝑆small,𝑆𝑖−∼𝑆large

[∫ ∞

𝑎=0

∫ 𝑎+(𝑡−𝑆𝑖 )+

𝑤=𝑎+(𝑡−𝑆𝑖−𝑆𝑖− )+
𝑔min𝑒

−\ ∗𝑤 · _𝑒−_𝑎 d𝑤 d𝑎

]
[𝐴𝑖− ∼ Exp(_)]

= 𝑝small𝑝large ·
𝑒−\

∗𝑡

\ ∗
· 𝑔min

_

_ + \ ∗ E
[
𝑒\

∗
min(𝑡,𝑆small+𝑆large) − 𝑒\

∗
min(𝑡,𝑆small)

]
. (12)

Combining the bounds (11) and (12), we find that P
{
𝐼𝑖,𝑡

}
< P

{
𝐷𝑖,𝑡

}
holds if

𝑔maxE
[
𝑒\

∗
min(𝑡,𝑆small+𝑆large)−𝑒\ ∗

min(𝑡,𝑆large)
]
< 𝑔min

_

_+\ ∗ E
[
𝑒\

∗
min(𝑡,𝑆small+𝑆large)−𝑒\ ∗

min(𝑡,𝑆small)
]
. (13)

□

Having proven Lemma 5.2, we have a sufficient condition, namely (10), for Nudge to improve

upon FCFS at a specific value of 𝑡 . But our goal is to improve upon FCFS for all values of 𝑡 . We

therefore seek a condition which implies that (10) holds for all 𝑡 .

We start by simplifying (10). Let 𝐴 = 𝑒\
∗𝑆small , 𝐵 = 𝑒\

∗𝑆large
, and 𝑐 = 𝑒\

∗𝑡
. Then (10) becomes

𝑔max

𝑔min

_ + \ ∗
_

<
E[min(𝐴𝐵, 𝑐) −min(𝐴, 𝑐)]
E[min(𝐴𝐵, 𝑐) −min(𝐵, 𝑐)] . (14)

Here the only appearance of the specific value of 𝑡 is via 𝑐 . Our strategy is to lower-bound the

right-hand side of (14) by a quantity that does not include 𝑐 . The following lemma, which we prove

in Appendix A, helps accomplish this under an additional assumption.

Lemma 5.3. Let𝐴, 𝐵 be two independent real-valued random variables and 𝑐 be a fixed constant. Sup-
pose 1 ≤ 𝐴 ≤ 𝑐 and 𝐴 < 𝐵. Under these assumptions, if P{𝐵 > 𝑐} > 0 and 𝑐E[𝐵] ≥ E[𝐴] E[𝐵 |𝐵 > 𝑐],
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then
E[min(𝐴𝐵, 𝑐) −min(𝐴, 𝑐)]
E[min(𝐴𝐵, 𝑐) −min(𝐵, 𝑐)] =

E[min(𝐴𝐵, 𝑐) −𝐴]
E[min(𝐴𝐵, 𝑐) −min(𝐵, 𝑐)] ≥ E[𝐴𝐵 −𝐴]

E[𝐴𝐵 − 𝐵] .

5.2 Main Proof
Theorem 4.1. Suppose 𝑆 is a continuous class I job size distribution. ThenNudge(𝑥1, 𝑥2, 𝑥3) stochas-

tically improves upon FCFS for any 𝑠min < 𝑥1 ≤ 𝑥2 ≤ 𝑥3 satisfying

• 𝑔max

𝑔min

_ + \ ∗
_

<
1 − 𝑆large (−\ ∗)−1

1 − 𝑆small (−\ ∗)−1
, (15)

• 𝑥1 + 𝑥3 ≤ 2𝑥2. (16)

Proof. We prove Theorem 4.1 by verifying the condition in Lemma 5.2. For every 𝑡 > 𝑠min, we

will show that Inequalities (15) and (16) together imply (10).

(i) When 𝑠min < 𝑡 ≤ 𝑥2, the denominator of the right hand side of (10) becomes

E
[
𝑒\

∗
min(𝑡,𝑆small+𝑆large) − 𝑒\

∗
min(𝑡,𝑆large)

]
= E

[
𝑒𝑡 − 𝑒𝑡

]
= 0.

Thus (10) is not well defined, but (13) holds trivially, which is sufficient.

(ii) When 𝑥2 < 𝑡 < 𝑥3, we let 𝐴 = 𝑒\
∗𝑆small , 𝐵 = 𝑒\

∗𝑆large
and 𝑐 = 𝑒\

∗𝑡
. Then clearly 1 ≤ 𝐴 ≤ 𝑐 and

𝐴 < 𝐵. By (16), we know that

𝑐E[𝐵] = 𝑒\
∗𝑡E

[
𝑒\

∗𝑆large
]
≥ 𝑒\

∗ (2𝑥2) ≥ 𝑒\
∗ (𝑥1+𝑥3)

≥ E
[
𝑒\

∗ (𝑆small+𝑆large)
]
≥ E

[
𝑒\

∗
min(𝑆small+𝑆large,𝑡 )

]
≥ E[𝐴] E[𝐵 |𝐵 > 𝑐] .

We can therefore apply Lemma 5.3 to obtain

E
[
𝑒\

∗
min(𝑆small+𝑆large,𝑡 ) − 𝑒\

∗𝑆small
]

E
[
𝑒\

∗
min(𝑆small+𝑆large,𝑡 ) − 𝑒\

∗
min(𝑆large,𝑡 )

] ≥
E
[
𝑒\

∗ (𝑆small+𝑆large) − 𝑒\
∗𝑆small

]
E
[
𝑒\

∗ (𝑆small+𝑆large) − 𝑒\
∗𝑆large

] . (17)

Moreover, condition (15) implies that

𝑔max

𝑔min

_ + \ ∗
_

<
1 − 𝑆large (−\ ∗)−1

1 − 𝑆small (−\ ∗)−1
=
E
[
𝑒\

∗ (𝑆small+𝑆large) − 𝑒\
∗𝑆small

]
E
[
𝑒\

∗ (𝑆small+𝑆large) − 𝑒\
∗𝑆large

] (18)

Combining (17) with (18) establishes (10).

(iii) When 𝑡 ≥ 𝑥3, we have min(𝑡, 𝑆small) = 𝑆small and min(𝑡, 𝑆large) = 𝑆large. Therefore, condition (15)

is equivalent to (10).

Therefore, for every 𝑡 > 𝑠min, we have proven that P
{
𝑇Nudge > 𝑡

}
< P

{
𝑇 FCFS > 𝑡

}
. □

6 PROOF OF THEOREM 4.2: EXISTENCE OF STOCHASTIC IMPROVEMENT
Theorem 4.2. For any continuous class I job size distribution 𝑆 with 𝑠min = 0 and any load 0 < 𝜌 < 1,

there exist 𝑥1, 𝑥2, 𝑥3 satisfying (15) and (16), implying that Nudge(𝑥1, 𝑥2, 𝑥3) stochastically improves
upon FCFS.

Proof. We start by constructing 𝑥1, 𝑥2, 𝑥3 that satisfy both Inequality (15) and (16). For notational

convenience, let𝑀 =
𝑔max

𝑔min

_+\ ∗

_
. First fix an arbitrary 𝑥3 > 0 and let 𝑥2 =

3

4
𝑥3, then compute 𝑆large (−\ ∗)

and choose a small enough 𝑥1 such that

𝑥1 < min

{
− 1

\ ∗
ln

(
1 −

1 − 𝑆large (−\ ∗)−1

𝑀

)
,
1

2

𝑥3

}
. (19)
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Clearly, such 𝑥1 > 𝑠min = 0 in (19) exists because𝑀 > 1, so we have

• 𝑥1 + 𝑥3 <
3

2

𝑥3 = 2𝑥2, (20)

•
1 − 𝑆large (−\ ∗)−1

1 − 𝑆small (−\ ∗)−1
=

1 − 𝑆large (−\ ∗)−1

1 − E
[
𝑒\

∗𝑆small
]−1 ≥

1 − 𝑆large (−\ ∗)−1

1 − 𝑒−\ ∗𝑥1
> 𝑀 =

𝑔max

𝑔min

_ + \ ∗
_

. (21)

By Theorem 4.1, (20) and (21) together imply that P
{
𝑇Nudge ≥ 𝑡

}
< P

{
𝑇 FCFS ≥ 𝑡

}
for every 𝑡 >

𝑠min = 0. Therefore,

∀𝑡 > 0, P
{
𝑇Nudge > 𝑡

}
< P

{
𝑇 FCFS > 𝑡

}
. □

7 PROOF OF THEOREM 4.5: TRANSFORM OF RESPONSE TIME
In this section we compute an exact formula for

�𝑇Nudge (𝑠). The formula holds for arbitrary job size

distributions, not just those of class I.

At a high level, our analysis works by considering two systems experiencing identical arrivals:

one using Nudge, and one using FCFS. We consider a tagged job arriving to this pair of systems in

equilibrium and determine how its Nudge queueing time relates to its FCFS queueing time.

• Small jobs: Nudge queueing time is FCFS queueing time, possibly minus a large job’s size.

• Large jobs: Nudge queueing time is FCFS queueing time, possibly plus a small job’s size.

• Other jobs: Nudge queueing time is identical to FCFS queueing time.

We will determine

�
𝑇
Nudge
𝑄,small (𝑠) and

�
𝑇
Nudge
𝑄,large (𝑠), from which

�𝑇Nudge (𝑠) easily follows.

7.1 Probabilistic Interpretation of the Laplace-Stieltjes Transform
Before jumping into the Nudge queueing time analysis, we recall a probabilistic interpretation of

the Laplace-Stieltjes transform.

Let 𝑉 be a nonnegative random variable. Consider a time interval of length 𝑉 and a Poisson

process of rate 𝑠 that is independent of 𝑉 . We call the increments of the Poisson process “interrup-

tions”. Let NoPoisson(𝑉 , 𝑠) be the event that there are no interruptions during the time interval.

Then [16, Exercise 25.7]

𝑉 (𝑠) = P{NoPoisson(𝑉 , 𝑠)} . (22)

The interpretation in (22) necessarily requires 𝑠 ≥ 0. Fortunately, formulas we derive using (22)

are still valid for 𝑠 < 0 because Laplace transforms are uniquely defined by their value on any

bounded interval on the real line [7].

7.2 Transform for Large Jobs
Lemma 7.1. The queueing time of large jobs under Nudge has Laplace-Stieltjes transform�

𝑇
Nudge
𝑄,large (𝑠) =

(
1 − 𝑝small (1 − 𝑆small (𝑠))

) �𝑇 FCFS
𝑄

(𝑠) + 𝑝small (1 − 𝑆small (𝑠)) �𝑇 FCFS
𝑄

(_ + 𝑠).

Proof. Consider a large tagged job arriving to the pair of systems, one using Nudge and the

other using FCFS, in equilibrium. We can think of the job’s Nudge queueing time as the time it

takes to do the following two steps:

(a) We first wait for its FCFS queueing time, namely 𝑇 FCFS
𝑄

.

(b) If during that 𝑇 FCFS
𝑄

time there has been at least one arrival, and if the first such arrival is

a small job, we then wait for that small job’s service, which takes 𝑆small time. Note that the

small job’s size is independent of the FCFS queueing time.
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We will use (22) to compute

�
𝑇
Nudge
𝑄,large (𝑠). To that end, we associate each of the Nudge and FCFS

systems with a Poisson “interruption” process of rate 𝑠 . The interruption processes are independent

of the arrival times and job sizes of each system, but they are coupled to each other in the following

way. At any moment in time when the systems are busy, some job 𝑗 has been in service for some

amount of time 𝑡 . We couple the interruption processes such that interruptions occur at the same

( 𝑗, 𝑡) pairs in both systems.

By (22),

�
𝑇
Nudge
𝑄,large (𝑠) is the probability that no interruptions occur during steps (a) and (b). We

compute this probability by conditioning on the following event:

𝐸 =

{
the next arrival after the tagged job is small,

and an interruption occurs during its service

}
Note that 𝐸 does not consider whether the next arrival occurs before the tagged job exits the queue.

Therefore, it is independent of the length 𝑇 FCFS
𝑄

of step (a).

If 𝐸 does not occur, then there are no interruptions during step (b). Therefore, there are no

interruptions if and only if there are no interruptions during step (a). By (22), this happens with

probability
�𝑇 FCFS
𝑄

(𝑠).
If 𝐸 does occur, then an interruption will occur during step (b) if and only if a new job arrives

during step (a). That is, by conditioning on 𝐸, we have predetermined that the next arrival will

be small and, if it swaps with the tagged job, will cause an interruption. Therefore, to avoid

interruptions, we need to avoid interruptions and arrivals during step (a). Merging the arrival and

interruption processes yields a Poisson process of rate _ + 𝑠 , so avoiding interruptions corresponds

to the event NoPoisson(𝑇 FCFS
𝑄

, _ + 𝑠). By (22), this happens with probability
�𝑇 FCFS
𝑄

(_ + 𝑠).
Conditioning on whether 𝐸 occurs and using (22) to compute P{𝐸} = 𝑝small (1 − 𝑆small (𝑠)), we

obtain the desired expression. □

7.3 Transform for Small Jobs
Lemma 7.2. The queueing time of small jobs under Nudge has Laplace-Stieltjes transform�
𝑇
Nudge
𝑄,small (𝑠) =

�𝑇 FCFS
𝑄

(𝑠)
(
1 +

𝑝large (1 − 𝑆large (𝑠))
𝑆 (𝑠)

)
− 𝑝large (1 − 𝑆large (𝑠)) (1 − 𝜌) · _/𝑆 (_) − 𝑠/𝑆 (𝑠)

_ − 𝑠
.

The analysis of small jobs is more involved than the analysis of large jobs. We therefore state

and prove several more intermediate results before proving Lemma 7.2.

Consider a small tagged job arriving to the pair of systems, one using Nudge and the other

using FCFS, in equilibrium. The main question we need to answer is whether the tagged job will

swap with a large job in the Nudge system. Our main insight is that we can tell whether the swap

will occur by examining just the FCFS system. Because we understand FCFS well, this makes it

relatively simple to tell whether a swap will occur.

Lemma 7.3. The small tagged job swaps with a large job in the Nudge system if and only if, when it
arrives, the FCFS system has a nonempty queue whose last job is large.

The proof of Lemma 7.3 follows very similar reasoning to our analysis at the start of Section 5.1.

For completeness, we provide a proof in Appendix B.

Thanks to Lemma 7.3, we can determine the queueing time of the small tagged job by looking at

the state of the FCFS system when it arrives. We describe the equilibrium state of the FCFS system

with the following quantities:

• 𝑊 : the amount of work in the system.
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• 𝑁𝑄 : the number of jobs in the queue.

• 𝑊most: the amount of work in the system, excluding the last job in the queue if 𝑁𝑄 ≥ 1.

• 𝑆last: the size of the last job in the queue, or 0 if 𝑁𝑄 = 0.

Note that these quantities are not independent. In particular,𝑊 =𝑊most + 𝑆last. However,𝑊most
and 𝑆last are conditionally independent given 𝑁𝑄 ≥ 1.

Armed with Lemma 7.3 and the system state notation, we are ready to compute 𝑇
Nudge
𝑄,small (𝑠), thus

proving Lemma 7.2. Our computation will make use of an additional lemma which we state after

the proof and prove in Appendix B.

Proof of Lemma 7.2. Consider the small tagged job arriving to the pair of systems in equilibrium.

By Lemma 7.3, its Nudge queueing time is

𝑇
Nudge
𝑄,small =

{
𝑊most if 𝑁𝑄 = 0

𝑊most + 𝑆last1(¬(𝑥2 ≤ 𝑆last < 𝑥3)) if 𝑁𝑄 ≥ 1.

Applying (22) and the conditional independence of𝑊most and 𝑆last yields�
𝑇
Nudge
𝑄,small (𝑠) = P

{
NoPoisson(𝑊most, 𝑠) ∧ 𝑁𝑄 = 0

}
+ P

{
NoPoisson(𝑊most, 𝑠) ∧ 𝑁𝑄 ≥ 1 ∧ (NoPoisson(𝑆last, 𝑠) ∨ 𝑥2 ≤ 𝑆last < 𝑥3)

}
= P

{
NoPoisson(𝑊most, 𝑠) ∧ 𝑁𝑄 = 0

}
+ P

{
NoPoisson(𝑊most, 𝑠) ∧ 𝑁𝑄 ≥ 1

}
·
(
𝑆 (𝑠) + 𝑝large (1 − 𝑆large (𝑠))

)
. (23)

It remains only to compute the two probabilities in (23). Let

𝑞 ≜ P
{
NoPoisson(𝑊, 𝑠) ∧ 𝑁𝑄 = 0

}
= P

{
NoPoisson(𝑊most, 𝑠) ∧ 𝑁𝑄 = 0

}
, (24)

making 𝑞 the first probability in (23). We now compute the second probability in (23) in terms of 𝑞.

First, note that 𝑇 FCFS
𝑄

and𝑊 are identically distributed. Recalling the conditional independence of

𝑊most and 𝑆last, we have, using (22) throughout,�𝑇 FCFS
𝑄

(𝑠) − 𝑞 =𝑊 (𝑠) − 𝑞 = P
{
NoPoisson(𝑊, 𝑠) ∧ 𝑁𝑄 ≥ 1

}
= P

{
NoPoisson(𝑊most, 𝑠) ∧ 𝑁𝑄 ≥ 1 ∧ NoPoisson(𝑆last, 𝑠)

}
= P

{
NoPoisson(𝑊most, 𝑠) ∧ 𝑁𝑄 ≥ 1

}
· 𝑆 (𝑠). (25)

Plugging (24) and (25) into (23) yields

�
𝑇
Nudge
𝑄,small (𝑠) = 𝑞 +

( �𝑇 FCFS
𝑄

(𝑠) − 𝑞
) (

1 +
𝑝large (1 − 𝑆large (𝑠))

𝑆 (𝑠)

)
.

Lemma 7.4 below, proven in Appendix B, computes the value of 𝑞, yielding the desired result. □

Lemma 7.4. Let 𝑞 ≜ P
{
NoPoisson(𝑊, 𝑠) ∧ 𝑁𝑄 = 0

}
. We have

𝑞 = �𝑇 FCFS
𝑄

(_) · _𝑆 (𝑠) − 𝑠𝑆 (_)
_ − 𝑠

=
1 − 𝜌

𝑆 (_)
· _𝑆 (𝑠) − 𝑠𝑆 (_)

_ − 𝑠
.
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7.4 Overall Response Time Transform
Theorem 4.5. The response time of Nudge has Laplace-Stieltjes transform

�𝑇Nudge (𝑠) = �𝑇 FCFS (𝑠) + 𝑝small𝑝large

©«𝑆large (𝑠) (1 − 𝑆small (𝑠))
( �𝑇 FCFS

𝑄
(_ + 𝑠) − �𝑇 FCFS

𝑄
(𝑠)

)
+ 𝑆small (𝑠) (1 − 𝑆large (𝑠))

©«
�𝑇 FCFS
𝑄

(𝑠)

𝑆 (𝑠)
− (1 − 𝜌) _/𝑆 (_) − 𝑠/𝑆 (𝑠)

_ − 𝑠

ª®¬
ª®®¬ .

Proof. The expression follows by plugging the results of Lemmas 7.1 and 7.2 into�𝑇Nudge (𝑠) = 𝑝small ·
�
𝑇
Nudge
𝑄,small (𝑠) · 𝑆small (𝑠) + 𝑝large ·

�
𝑇
Nudge
𝑄,large (𝑠) · 𝑆large (𝑠)

+ (1 − 𝑝small − 𝑝large) · �𝑇 FCFS
𝑄

(𝑠) ·
𝑆 (𝑠) − 𝑝small𝑆small (𝑠) − 𝑝large𝑆large (𝑠)

1 − 𝑝small − 𝑝large

and simplifying the resulting expression. One key step is recognizing
�𝑇 FCFS (𝑠) = �𝑇 FCFS

𝑄
(𝑠) ·𝑆 (𝑠). □

8 PROOF OF THEOREM 4.3: ASYMPTOTIC IMPROVEMENT
Theorem 4.3. Suppose 𝑆 is a continuous class I job size distribution. For any 𝑠min < 𝑥1 ≤ 𝑥2 ≤ 𝑥3,

the asymptotic tail improvement ratio of Nudge(𝑥1, 𝑥2, 𝑥3) compared to FCFS is

AsymTIR = 𝑝small𝑝large
_

_ + \ ∗

(
𝑆large (−\ ∗) −

_

_ + \ ∗ 𝑆small (−\ ∗) −
\ ∗

_ + \ ∗ 𝑆large (−\
∗)𝑆small (−\ ∗)

)
.

Furthermore, AsymTIR is positive, meaning 𝐶Nudge < 𝐶FCFS, if

_ + \ ∗
_

<
1 − 𝑆large (−\ ∗)−1

1 − 𝑆small (−\ ∗)−1
.

Below we give a high-level overview of the proof. We provide full computations in Appendix B.

Proof sketch. Using the Final Value Theorem, one can show that for Alg ∈ {Nudge, FCFS},

𝐶Alg =
1

\ ∗
lim

𝑠→0

𝑠𝑇 Alg (𝑠 − \ ∗).

Combining this with Theorem 4.5, which relates
�𝑇Nudge (𝑠) to �𝑇 FCFS (𝑠), will relate 𝐶Nudge to 𝐶FCFS.

To obtain AsymTIR = 1 −𝐶Nudge/𝐶FCFS, we compute lim𝑠→0 (𝑠 �𝑇 FCFS (𝑠 − \ ∗) − 𝑠�𝑇Nudge (𝑠 − \ ∗))
via Theorem 4.5. Each non-vanishing term has an 𝑠𝑇 FCFS

𝑄
(𝑠 − \ ∗) factor. Because �𝑇 FCFS

𝑄
(𝑠) =�𝑇 FCFS (𝑠)/𝑆 (𝑠), we can express𝐶FCFS−𝐶Nudge as a constant times𝐶FCFS; this constant isAsymTIR. □

9 EMPIRICAL LESSONS
This paper proves that Nudge stochastically improves upon FCFS under the correct choice of

parameters, and achieves multiplicative improvement in the asymptotic tail. However, there are a

few practical questions remaining. These questions center around finding Nudge parameters in

practice. In this section, we demonstrate several practical lessons on choosing Nudge parameters.

(1) (Section 9.1) We find that Nudge typically achieves its greatest improvement over FCFS when

the Nudge parameters specify that all jobs are either large or small (i.e. 𝑥1 = 𝑥2, 𝑥3 = ∞).
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Fig. 3. Empirical tail improvement of Nudge over FCFS under a variety of Nudge parameter choices. Highest
improvement occurs when 𝑥1 = 𝑥2, 𝑥3 = ∞. Job size distribution is hyperexponential with branches drawn
from Exp(2) and Exp(1/3), where the first branch has probability 0.8. E[𝑆] = 1, 𝐶2 = 3. Simulations run with
10 billion arrivals. Load 𝜌 = 0.8. Parameter choices are listed in order of asymptotic improvement.

(2) (Section 9.2) We find that when load is low, Nudge can dramatically improve upon FCFS

(10-20%) in the common case where job size variability is relatively high (i.e. 𝐶2 > 1). When

job size variability is lower and load is low, improvement is smaller.

(3) (Section 9.3) We find that the space of parameters that lead Nudge to asymptotically improve

upon FCFS typically also cause Nudge to stochastically improve upon FCFS. This is serendipi-

tous, because Theorem 4.3 provides a simple, exact method to check whether given Nudge

parameters will achieve asymptotic improvement over FCFS.

9.1 All Jobs Should Be Either Large or Small
When evaluating Nudge on common job size distributions, we have found that the greatest im-

provement over FCFS is achieved by setting the Nudge parameters such that all jobs are either

large or small (i.e. 𝑥1 = 𝑥2, 𝑥3 = ∞), with no medium or very large jobs. This is a pattern we have

seen with great consistency across a variety of job size distributions.

In Fig. 3, we show one instance of this pattern, for the case of a particular hyperexponential

distribution. We see that the two choices of Nudge parameters that display the least improvement

over FCFS are those where both medium and very large jobs exist, i.e. 𝑥1 ≠ 𝑥2 and 𝑥3 ≠ ∞.

To explain this phenomenon, note that when we remove medium and very large jobs, we end

up with more swaps. Empirically, we have found that the quantity of swaps is more important

than the quality of those swaps, and thus maximizing the number of swaps leads to the largest

improvement. While empirically removing medium and very large jobs improves performance, our

analytical result in Theorem 4.2 requires medium and very large jobs.

Setting the Nudge parameters so that all jobs are either large or small dramatically simplifies the

problem of choosing Nudge parameters, in addition to achieving consistently strong performance.

Now, only one free parameter remains: the cutoff between small and large jobs.

9.2 Low Load: Dramatic Improvement when Variability is High
At low load, Nudge has the potential for dramatic improvement over FCFS (>10% throughout the

tail), in the common case where the job size distribution is more variable than an exponential

distribution, i.e.𝐶2 > 1. On the other hand, under low-variability job size distributions (𝐶2 < 1), we

find that Nudge’s improvement shrinks at lower loads; here it helps to set the 𝑥1 cutoff close to 0.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 21. Publication date: June 2021.



21:20 Isaac Grosof et al.

t= 0 t= 7 t= 14 t= 21 t= 28
0.00

0.04

0.08

0.12

0.16

T
a
il 

im
p
ro

v
e
m

e
n
t 

ra
ti

o

Mixed Uniform

Hyperexponential

Chi Squared

Inverse Gaussian

t= 0 t= 3 t= 6 t= 9 t= 12
0.00

0.01

0.02

0.03
Triangle

Uniform

Erlang

Beta

(a) High variance: 𝐶2 > 1; 𝑥1 = 𝑥2 = 1, 𝑥3 = ∞ (b) Low variance: 𝐶2 < 1; 𝑥1 = 𝑥2 = 0.2, 𝑥3 = ∞

Fig. 4. Empirical tail improvement of Nudge over FCFS at low load (𝜌 = 0.4) under a variety of job size
distributions with E[𝑆] = 1. (a) Higher variance distributions show dramatic improvement. (b) Lower variance
distributions show modest improvement. Specific distributions: In (a), Mixed Uniform: Uniform(0, 1) w/prob.
0.9, else Uniform(0, 11),𝐶2 = 3.33; Hyperexponential: Exp(2) w/ prob. 0.8, else Exp(1/3),𝐶2 = 3; ChiSquared(1),
𝐶2 = 2; InverseGaussian(` = 1, _ = 1/2), 𝐶2 = 2. In (b), Triangle w/ min = 0, mode = 0, max = 3, 𝐶2 = 1/2;
Uniform(0, 2), 𝐶2 = 1/3; Erlang(𝑘 = 3, _ = 1/3, 𝐶2 = 1/3; Beta(𝛼 = 2, 𝛽 = 2) scaled by a factor of 2, 𝐶2 = 1/5.
Distributions listed in order of asymptotic improvement. Simulations run with 10 billion arrivals.

In Fig. 4 we show these patterns for a wide variety of distributions at relatively low load 𝜌 = 0.4.

In Fig. 4(a), we have four high-variance job size distributions, each with 𝐶2 ∈ [2, 3.33]. In every

case, Nudge dramatically improves upon FCFS, with TIR in the range of 10-15%. In Fig. 4(b), we

have four low-variance job size distributions, each with 𝐶2 ∈ [1/5, 1/2]. In these cases, we reduce

the cutoff 𝑥1 to 0.2 for best performance, and Nudge’s improvement over FCFS is under 3%.

Intuitively, when load is low, each job waits behind fewer other jobs on average, so Nudge’s one

swap per job has a greater relative impact. When those swaps are broadly beneficial for the tail, as

occurs when job size variance is high, Nudge achieves the most dramatic improvement over FCFS.

When job size variance is low, swaps involving small jobs that are near the mean job size cause the

response time of the large jobs to suffer too much. To alleviate this, we reduce the small job cutoff

𝑥1 to maintain stochastic improvement over FCFS.

9.3 Asymptotic Improvement Means Stochastic Improvement
After extensively simulating Nudge under different loads and job size distributions, we have found

that the space of parameters under which Nudge asymptotically improves upon FCFS typically

matches the space under which Nudge stochastically improves upon FCFS.

In Table 1, we show the consistency of this relationship across a wide variety of job size dis-

tributions and choices of Nudge parameters. The distributions range from a low-variance Beta

distribution with 𝐶2 = 1/5 to a hyperexponential distribution with 𝐶2 = 3. Across the spectrum,

Nudge stochastically improves over FCFS whenever it asymptotically improves over FCFS.

This connection between asymptotic and stochastic improvement is surprising given that the

conditions that we need to prove stochastic improvement (Theorem 4.1) are much more stringent

than what we need to prove asymptotic improvement (Theorem 4.3). Nonetheless, the connection

is highly useful because we have provided a simple analytical formula for determining when Nudge

asymptotically improves upon FCFS (Theorem 4.3).
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Job size dist. 𝑥1 Asym. Stoc. 𝑥1 Asym. Stoc. 𝑥1 Asym. Stoc. 𝑥1 Asym. Stoc. 𝑥1 Asym. Stoc.

Exponential 0.5 ✓ ✓ 1 ✓ ✓ 2 × × 4 × × 8 × ×
Hyperexponential 0.5 ✓ ✓ 1 ✓ ✓ 2 ✓ ✓ 4 ✓ ✓ 8 ✓ ✓
Bounded Lomax 0.5 ✓ ✓ 1 ✓ ✓ 1.5 × × 2 × × 3 × ×

Uniform 0.1 ✓ ✓ 0.2 ✓ ✓ 0.5 × × 0.75 × × 1 × ×
Beta 0.1 ✓ ✓ 0.2 ✓ ✓ 0.3 × × 0.4 × × 0.5 × ×

Table 1. Presence or absence of asymptotic and stochastic improvement of Nudge over FCFS under a variety
of job size distributions and Nudge parameter choices. Stochastic improvement occurs whenever asymptotic
improvement occurs. Each row gives a distinct job size distribution, and each cell gives a distinct Nudge
parameter setting. In every case, 𝑥2 = 𝑥1 and 𝑥3 = ∞, so only 𝑥1 is specified. Load 𝜌 = 0.4. Specific job size
distributions, each with mean 1: Exponential with mean 1, Uniform(0, 2), Hyperexponential drawn from
Exp(2) w/ prob. 0.8 and Exp(1/3) with prob. 0.2, BoundedLomax(_ = 2,max = 4, 𝛼 = 2), Beta(𝛼 = 2, 𝛽 = 2)
scaled by a factor of 2.

10 NUDGE IN PRACTICE
Nudge can be used in practice even if some of the assumptions made in this paper are not perfectly

satisfied.

In this paper, we assume that exact job size information is known to the scheduler. However,

such information is only used to determine which size class (small, large, etc.) a job should be

placed in. In practice, only estimates of job size may be known. In such a setting, the scheduler

could assign jobs that are clearly above or below a size threshold to the large and small classes,

while placing ambiguous jobs in the medium class. If the estimates are reasonably accurate, we

would expect such a Nudge policy to stochastically improve upon FCFS.

We also assume that the exact job size distribution is known to the scheduler. This assumption

is needed to choose the Nudge parameters for our proofs in Section 4. However, our empirical

results in Section 9 show that much less information is needed in practice to choose good Nudge

parameters. For instance, as we saw in Section 9.2, the following choice of parameters works well

empirically: By default, set 𝑥1 = 𝑥2 = 𝐸 [𝑆], 𝑥3 = ∞. However, if load is low and job size variability

(𝐶2
) is low, set 𝑥1 = 𝑥2 = 𝐸 [𝑆]/5, 𝑥3 = ∞.

11 VARIANTS ON NUDGE
As Nudge is such a simple policy, there are many interesting variants of Nudge that one could

investigate. We now discuss the advisability of several such variants.

Recall that Nudge only ever swaps a job at most once. One might consider allowing a job to swap

a second or third time with new arrivals, or even an unlimited number of times. Unfortunately,

this change could ruin Nudge’s stochastic improvement over FCFS, if implemented poorly. In

particular, under a Nudge variant where large jobs can be swapped with an unlimited number

of small arrivals, such highly-swapped large jobs will typically dominate the response time tail,

dramatically worsening the variant’s tail performance. A wiser variant might be to allow large jobs

to be swapped with a bounded number of small jobs, or to allow only the small jobs to be swapped

an unlimited number of times.

Another interesting variant of Nudge would only swap in a probabilistic fashion, such as with an

i.i.d. coin flip. We believe such a policy could achieve stochastic improvement over FCFS. However,

proving such a result would be no simpler than for Nudge, because probabilistic swapping does

not change the shape of the distribution of swaps. Moreover, the variant’s tail improvement ratios
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would likely be smaller than those of Nudge, because a smaller fraction of jobs are involved in

swaps.

Finally, one could design a more complicated variant of Nudge which would consider a job’s exact

size when deciding whether to swap, rather than simply comparing the job’s size to a threshold.

For instance, one might decide to swap all pairs of jobs whose sizes differ by a factor of 2, as long

as neither job has yet been swapped. These more complicated Nudge variants might achieve even

larger stochastic improvements over FCFS than Nudge. Beyond FCFS, such Nudge variants might

be able to stochastically improve upon some or even all Nudge policies. We leave this possibility as

an open question.

12 CONCLUSION
We introduce Nudge, the first scheduling policy whose response time distribution stochastically

improves upon that of FCFS. Specifically, we prove that with appropriately chosen parameters,

Nudge stochastically improves upon FCFS for light-tailed job size distributions
6
. From an asymptotic

viewpoint, we prove that Nudge achieves a multiplicative improvement over FCFS, disproving the

strong asymptotic optimality conjecture for FCFS. Finally, we derive the Laplace-Stieltjes transform

of response time under Nudge, using a novel technique. Nudge is simple to implement and is a

practical drop-in replacement for FCFS when job sizes are known.

One of the major insights of this paper is that improving the tail does not follow the same

intuitions that we use in improving the mean. While improving mean response time is often a

matter of helping small jobs jump ahead of large ones, when it comes to the tail, this has to be done

in a very measured way. Too much help to the small jobs causes the tail to get a lot worse. Nudge

finds the exactly appropriate way to do this.

One direction for future work is further exploring the stochastic improvement frontier. Can we

stochastically improve upon other commonly used scheduling policies? Can we improve upon

Nudge itself, such as with a more complicated variant of Nudge (see Section 11)? One policy which

cannot be stochastically improved upon is SRPT, due to its optimal mean response time. Can we

prove that other policies are unimprovable?

Another direction is simplifying the definition of Nudge. Our empirical results in Section 9

indicate that in practice, Nudge can always stochastically improve upon FCFS with only two classes

of jobs: small and large. It would be of practical importance to figure out how to extend the theorems

in this paper to hold for this simplified definition of Nudge.
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A PROOFS FOR STOCHASTIC IMPROVEMENT
Lemma 3.1. Suppose 𝑆 is a continuous class I job size distribution. For any load 𝜌 , the normalized

p.d.f. 𝑔(𝑡) is bounded above and below by positive constants, and lim𝑡→∞ 𝑔(𝑡) exists.

Proof. First we show (following prior work [1, 3, 28]) that
�𝑇 FCFS
𝑄

has a simple pole −\ ∗ as its
rightmost singularity.

We let −\ ∗ be the root of the denominator of
�𝑇 FCFS
𝑄

(𝑠), which is

_𝑆 (𝑠) − _ + 𝑠 = 0 ⇐⇒ 𝑆 (𝑠) = _ − 𝑠

_
.

Since the left hand 𝑆 (𝑠) is convex in 𝑠7, and the right hand
_−𝑠
_

is only linear in 𝑠 , their intersection

𝑠 = −\ ∗ must be a simple root. Moreover, such an intersection exists for 𝑠 < 0 because

• 𝑆 (0) = _−0
_

= 1;

• 𝑆 ′(0) = − 1

`
> − 1

_
;

• 𝑆 (𝑠) → ∞ when 𝑠 approaches the rightmost singularity of 𝑆 (since 𝑆 is a class I distribution).

Now we use final value theorem to establish the limit of the ratio between the p.d.f. 𝑓𝑇 FCFS
𝑄

and

the exponential function 𝑒−\
∗𝑡
. Recall the function 𝑔(𝑡) = 𝑓𝑇 FCFS

𝑄
(𝑒)𝑒\ ∗𝑡

and consider its Laplace

transform𝐺 (𝑠) = �𝑇 FCFS
𝑄

(𝑠−\ ∗). Since the poles of𝐺 (𝑠) map one-to-one to the poles of
�𝑇 FCFS
𝑄

(𝑠−\ ∗),
the above arguments show that every pole of 𝐺 (𝑠) is either in the open left half plane or at the

origin, and the origin is a simple pole. Therefore, the Final Value Theorem for 𝑔(𝑡) tells us

lim

𝑡→∞
𝑓 FCFS𝑇𝑄

(𝑡)𝑒\ ∗𝑡 = lim

𝑡→∞
𝑔(𝑡) = lim

𝑠→0

𝑠𝐺 (𝑠) = (1 − 𝜌)\ ∗

−_𝑆 ′(−\ ∗) − 1

≜ 𝑔∗ > 0. (26)

Since the limit 𝑔∗ exists, for 𝜖 =
𝑔∗

2
, there exists 𝑁𝜖 < ∞ such that ∀𝑡 ≥ 𝑁𝜖 ,

|𝑔(𝑡) − 𝑔∗ | ≤ 𝑔∗

2

⇒ 𝑔∗

2

𝑒−\
∗𝑡 ≤ 𝑓 FCFS𝑇𝑄

(𝑡) ≤ 3𝑔∗

2

𝑒−\
∗𝑡 .

Next, we want to show that

min

0≤𝑡<𝑁𝜖

𝑔(𝑡) > 0 and max

0≤𝑡<𝑁𝜖

𝑔(𝑡) < ∞. (27)

7
We have 𝑆′′ (𝑠) =

∫ ∞
𝑡=0

𝑡2𝑒−𝑠𝑡 𝑓𝑆 (𝑡 ) d𝑡 > 0 for every 𝑠 in the convergence region of 𝑆 ( ·) .
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First, note that 𝑓 FCFS
𝑇𝑄

satisfies the following level-crossing differential equations [6] (we abbreviate

𝑓 FCFS
𝑇𝑄

to 𝑓 ): {
𝑓 (0) = (1 − 𝜌)_;
𝑓 ′(𝑡) = _𝑓 (𝑡) − (1 − 𝜌)_𝑓𝑆 (𝑡) − _

∫ 𝑡

𝑗=0
𝑓 (𝑡 − 𝑗) 𝑓𝑆 ( 𝑗) d 𝑗 .

To begin with, 𝑓 (𝑡) is continuous because 𝑓𝑆 (𝑡) is continuous. If 𝑓 (𝑡) = 0 for some 𝑡 < 𝑁𝜖 ,

we let 𝑡0 = inf {𝑡 < 𝑁𝜖 : 𝑓 (𝑡) = 0}. Clearly 𝑡0 > 0 because 𝑓 (0) = (1 − 𝜌)_ > 0. Note also that

𝑓 (𝑡0) = 0, because 𝑓 is continuous. Since 𝑓 (𝑡0) < 𝑓 (0), ∃0 < 𝑠0 < 𝑡0 s.t. 𝑓𝑆 (𝑠0) > 0. Then ∃𝑎, 𝑏
where 0 ≤ 𝑎 < 𝑠0 < 𝑏 ≤ 𝑡0, s.t. 𝑓 (𝑡) > 0 for all 𝑡 ∈ [𝑎, 𝑏]. Now we have

𝑓 ′(𝑡0) = −(1 − 𝜌)_𝑓𝑆 (𝑡0) − _

∫ 𝑡0

𝑗=0

𝑓 (𝑡0 − 𝑗) 𝑓𝑆 ( 𝑗) d 𝑗 < 0

because the first term −(1 − 𝜌)_𝑓𝑆 (𝑡0) ≤ 0 and the second term

−_
∫ 𝑡0

𝑗=0

𝑓 (𝑡0 − 𝑗) 𝑓𝑆 ( 𝑗) d 𝑗 ≤ −_
∫ 𝑏

𝑗=𝑎

𝑓 (𝑡0 − 𝑗) 𝑓𝑆 ( 𝑗) d 𝑗 < 0.

But 𝑓 ′(𝑡0) < 0 is impossible, because we assumed that 𝑓 (𝑡0) = 0. The implication that 𝑓 ′(𝑡0) < 0

contradicts the fact that 𝑓 is a non-negative probability density function. Therefore,

min

0≤𝑡<𝑁𝜖

𝑔(𝑡) ≥ min

0≤𝑡<𝑁𝜖

𝑔(𝑡) > 0.

On the other hand, since 𝑓 ′(𝑡) ≤ _𝑓 (𝑡) everywhere, we have 𝑓 (𝑡) ≤ (1 − 𝜌)_𝑒_𝑡 . Note that this
bound holds even if 𝑆 has infinite density at one or more points. As a result,

max

0≤𝑡<𝑁𝜖

𝑔(𝑡) ≤ max

0≤𝑡<𝑁𝜖

[
𝑓 FCFS𝑇𝑄

(𝑡)𝑒\ ∗𝑁𝜖

]
≤ (1 − 𝜌)_𝑒_𝑁𝜖𝑒\

∗𝑁𝜖 < ∞.

Finally, note that

inf

𝑡 ∈[0,∞)
𝑔(𝑡) ≜ 𝑔min ≥ min

{
inf

0≤𝑡<𝑁𝜖

[
𝑓 FCFS𝑇𝑄

(𝑡)𝑒\ ∗𝑡
]
,
𝑔∗

2

}
> 0

sup

𝑡 ∈[0,∞)
𝑔(𝑡) ≜ 𝑔max ≤ max

{
sup

0≤𝑡<𝑁𝜖

[
𝑓 FCFS𝑇𝑄

(𝑡)𝑒\ ∗𝑡
]
,
3𝑔∗

2

}
< ∞

which indicates both 𝑔min and 𝑔max are well-defined and nonzero. This completes the proof. □

Lemma 5.3. Let 𝐴, 𝐵 be two independent real-valued random variables and 𝑐 be a fixed constant.
Suppose 1 ≤ 𝐴 ≤ 𝑐 and 𝐴 < 𝐵. Under these assumptions, if P{𝐵 > 𝑐} > 0 and

𝑐E[𝐵] ≥ E[𝐴] E[𝐵 |𝐵 > 𝑐] , (28)

then
E[min(𝐴𝐵, 𝑐) −min(𝐴, 𝑐)]
E[min(𝐴𝐵, 𝑐) −min(𝐵, 𝑐)] =

E[min(𝐴𝐵, 𝑐) −𝐴]
E[min(𝐴𝐵, 𝑐) −min(𝐵, 𝑐)] ≥ E[𝐴𝐵 −𝐴]

E[𝐴𝐵 − 𝐵] . (29)

Proof. First we observe E[min(𝐴𝐵, 𝑐) −𝐴] > min(𝐴𝐵, 𝑐) −min(𝐵, 𝑐) because 𝐴 < min(𝐵, 𝑐).
Based on this, we can shrink the left hand side of inequality (29) by adding the same positive term

to both the denominator and numerator. We compute

E[min(𝐴𝐵, 𝑐) −𝐴]
E[min(𝐴𝐵, 𝑐) −min(𝐵, 𝑐)] =

E[𝐴𝐵 −𝐴] − E[(𝐴𝐵 − 𝑐)1𝐴𝐵>𝑐 ]
E[𝐴𝐵 − 𝐵] − E[(𝐴𝐵 − 𝑐)1𝐴𝐵>𝑐 ] + E[(𝐵 − 𝑐)1𝐵>𝑐 ]

. (30)

Since 𝐴 ≥ 1 and 𝐵 > 0, we have 𝐴𝐵 ≥ 𝐵. Therefore,

0 ≤ 1𝐴𝐵>𝑐 − 1𝐵>𝑐 ≤ 1𝐴𝐵>𝑐 = 1𝐴𝐵−𝑐>0.
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We proceed by adding a positive term, E[(𝐴𝐵 − 𝑐) (1𝐴𝐵>𝑐 − 1𝐵>𝑐 )], to both the denominator and

numerator of the right hand side of (30) and obtain

E[min(𝐴𝐵, 𝑐) −𝐴]
E[min(𝐴𝐵, 𝑐) −min(𝐵, 𝑐)] ≥ E[𝐴𝐵 −𝐴] − E[(𝐴𝐵 − 𝑐)1𝐵>𝑐 ]

E[𝐴𝐵 − 𝐵] − E[(𝐴𝐵 − 𝐵)1𝐵>𝑐 ]
.

Hence, to establish inequality (29), it suffices to show

E[(𝐴𝐵 − 𝑐)1𝐵>𝑐 ]
E[(𝐴𝐵 − 𝐵)1𝐵>𝑐 ]

≥ E[𝐴𝐵 −𝐴]
E[𝐴𝐵 − 𝐵]

⇐⇒ E[(𝐴𝐵 − 𝑐)1𝐵>𝑐 ] E[𝐴𝐵 − 𝐵] ≥ E[(𝐴𝐵 − 𝐵)1𝐵>𝑐 ] E[𝐴𝐵 −𝐴]
⇐⇒ (E[𝐴] E[𝐵 |𝐵 > 𝑐] − 𝑐) P{𝐵 > 𝑐} E[𝐴𝐵 − 𝐵] ≥ (E[𝐴] − 1) E[𝐵 |𝐵 > 𝑐] P{𝐵 > 𝑐} E[𝐴𝐵 −𝐴]
⇐⇒ 𝑐E[𝐵] (E[𝐴] − 1) ≥ E[𝐴] E[𝐵 |𝐵 > 𝑐] (E[𝐴] − 1)
⇐⇒ 𝑐E[𝐵] ≥ E[𝐴] E[𝐵 |𝐵 > 𝑐] ,

which is precisely the condition provided in (28). □

B PROOFS FOR TRANSFORM ANALYSIS
Lemma 7.3. The small tagged job swaps with a large job in the Nudge system if and only if, when it

arrives, the FCFS system has a nonempty queue whose last job is large.

Proof. By definition of Nudge, the tagged job swaps if and only if, when it arrives, the Nudge

system has a nonempty queue whose last job is a large job that has not been swapped. It therefore

suffices to show that at any moment in time, the FCFS system has a nonempty queue whose last

job is large if and only if the Nudge system has a nonempty queue whose last job is a large job that

has not been swapped.

We first note that the total amount of work in both systems is the same at every moment in time,

because both FCFS and Nudge are work conserving.

Suppose the FCFS system has a nonempty queue whose last job 𝑗 is large. Because it is the last

job in the FCFS queue, there have been no new arrivals after 𝑗 . In the Nudge system, this means

𝑗 has not been swapped, so either 𝑗 is the last job in the Nudge queue or has entered service. By

work conservation, both systems had the same amount of work when 𝑗 arrived, so 𝑗 must still be

in the Nudge queue, as desired.

Suppose the Nudge system has a nonempty queue whose last job 𝑗 is a large job that has not

been swapped. We argue similarly to the previous direction: there have been no arrivals since 𝑗

because it is at the end of the Nudge queue without being swapped, and 𝑗 cannot have entered

service in the FCFS system by work conservation, so 𝑗 must be the last job in the FCFS queue, as

desired. □

Lemma 7.4. Let 𝑞 ≜ P
{
NoPoisson(𝑊, 𝑠) ∧ 𝑁𝑄 = 0

}
. We have

𝑞 = �𝑇 FCFS
𝑄

(_) · _𝑆 (𝑠) − 𝑠𝑆 (_)
_ − 𝑠

=
1 − 𝜌

𝑆 (_)
· _𝑆 (𝑠) − 𝑠𝑆 (_)

_ − 𝑠
.

To prove Lemma 7.4, we require an additional lemma.

Lemma B.1. Let 𝑉 be a nonnegative random variable, and let Exp(𝑟 ) and Exp(𝑠) be exponentially
distributed random variables of rates 𝑟 and 𝑠 , respectively. Suppose𝑉 , Exp(𝑟 ), and Exp(𝑠) are mutually
independent. Then

P{𝑉 < Exp(𝑟 ) + Exp(𝑠)} = 𝑟𝑉 (𝑠) − 𝑠𝑉 (𝑟 )
𝑟 − 𝑠

.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 5, No. 2, Article 21. Publication date: June 2021.



Nudge: Stochastically Improving upon FCFS 21:27

Proof. We compute

P{𝑉 < Exp(𝑟 ) + Exp(𝑠)} =
∫ ∞

𝑣=0

P{𝑣 < Exp(𝑟 ) + Exp(𝑠)} 𝑓𝑉 (𝑣) d𝑣

=

∫ ∞

𝑣=0

(∫ ∞

𝑢=0

∫ ∞

𝑡=0

1(𝑣 < 𝑡 + 𝑢) · 𝑟𝑒−𝑟𝑡 · 𝑠𝑒−𝑠𝑢 d𝑡 d𝑢
)
𝑓𝑉 (𝑣) d𝑣

=

∫ ∞

𝑣=0

𝑟𝑒−𝑟 𝑣 − 𝑠𝑒−𝑠𝑣

𝑟 − 𝑠
𝑓𝑉 (𝑣) d𝑣

=
𝑟𝑉 (𝑠) − 𝑠𝑉 (𝑟 )

𝑟 − 𝑠
. □

Proof of Lemma 7.4. Consider a FCFS system in equilibrium along with an independent Poisson

“interruption” process of rate 𝑠 . Call a job lucky if it enters the system while 𝑁𝑄 = 0 and experiences

no interruptions during its queueing time. Because Poisson arrivals see time averages [41], 𝑞 is

probability an arriving job is lucky.

We compute 𝑞 in an unusual way. Let a job’s departure period be the time interval starting when

the job enters service and ending when the next job enters service. Jobs enter service at average

rate _, so 𝑞 is the average number of lucky jobs that arrive a departure period. More formally, by

renewal-reward theorem,

𝑞 = P{arrival is lucky}

=
average rate of lucky arrivals

_

=
average rate of lucky arrivals

average rate of departure periods

= E[number of lucky arrivals during a departure period] .

Moreover, because a job is lucky only if 𝑁𝑄 = 0, only the first arrival in a departure period can

possibly be lucky, so

𝑞 = P{first arrival in a departure period is lucky} .

Consider a job 𝑗 . The first arrival in 𝑗 ’s departure period is lucky if both of the following events

occur:

𝐸1 = there are no arrivals during 𝑗 ’s queueing time

𝐸2 = 𝑗 completes before the first interruption after the first arrival of 𝑗 ’s departure period.

By (22), P{𝐸1} = �𝑇 FCFS
𝑄

(_). We compute P{𝐸2 | 𝐸1} below.
Conditioned on 𝐸1, the queue is empty when 𝑗 enters service, so the first arrival during 𝑗 ’s

departure period is simply the first arrival after 𝑗 enters service. Let Exp(_) be the amount of time

between when 𝑗 enters service and the next arrival, and let Exp(𝑠) be the amount of time between

that next arrival and the first interruption after it. Both Exp(_) and Exp(𝑠) are exponentially

distributed with rates _ and 𝑠 , respectively, and they and 𝑗 ’s size are mutually independent. Because

𝑗 ’s size is distributed as 𝑆 , we have

P{𝐸2 | 𝐸1} = P{𝑆 < Exp(_) + Exp(𝑠)} = _𝑆 (𝑠) − 𝑠𝑆 (_)
_ − 𝑠

,

where the latter equality follows from Lemma B.1 below.
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It remains only to show
�𝑇 FCFS
𝑄

(_) = (1 − 𝜌)/𝑆 (_). Because response time 𝑇 FCFS
is a sum of

independent random variables with distributions 𝑇 FCFS
𝑄

and 𝑆 , we have �𝑇 FCFS
𝑄

(_) = �𝑇 FCFS (_)/𝑆 (_).
By (22),

�𝑇 FCFS (_) is the probability that no arrivals occur during a job’s response time. But this is

simply the probability that a job leaves an empty system when it departs, which is 1 − 𝜌 . □

Theorem 4.3. Suppose 𝑆 is a continuous class I job size distribution. For any 𝑠min < 𝑥1 ≤ 𝑥2 ≤ 𝑥3,
the asymptotic tail improvement ratio of Nudge(𝑥1, 𝑥2, 𝑥3) compared to FCFS is

AsymTIR = 𝑝small𝑝large
_

_ + \ ∗

(
𝑆large (−\ ∗) −

_

_ + \ ∗ 𝑆small (−\ ∗) −
\ ∗

_ + \ ∗ 𝑆large (−\
∗)𝑆small (−\ ∗)

)
.

Furthermore, AsymTIR is positive, meaning 𝐶Nudge < 𝐶FCFS, if

_ + \ ∗
_

<
1 − 𝑆large (−\ ∗)−1

1 − 𝑆small (−\ ∗)−1
.

Proof. We prove this theorem using the Laplace-Stieltjes transform derived in Theorem 4.5.

The transform of the tail of 𝑇Nudge
can be calculated as∫ ∞

𝑡=0

𝑒−𝑠𝑡P
{
𝑇Nudge > 𝑡

}
d𝑡 = −

∫ ∞

𝑡=0

P
{
𝑇Nudge > 𝑡

}
d

(
𝑒−𝑠𝑡

𝑠

)
= − P

{
𝑇Nudge > 𝑡

} (
𝑒−𝑠𝑡

𝑠

)����∞
0

+
∫ ∞

𝑡=0

𝑒−𝑠𝑡

𝑠
dP

{
𝑇Nudge > 𝑡

}
=
1

𝑠

(
1 −

∫ ∞

𝑡=0

𝑒−𝑠𝑡 𝑓𝑇Nudge (𝑡) d𝑡
)

=
1 − �𝑇Nudge (𝑠)

𝑠
. (31)

Then the transform of 𝑒\
∗𝑡P

{
𝑇Nudge > 𝑡

}
is obtained by translating (31) horizontally through \ ∗

units: ∫ ∞

𝑡=0

𝑒−𝑠𝑡
(
𝑒\

∗𝑡P
{
𝑇Nudge > 𝑡

})
d𝑡 =

1 − �𝑇Nudge (𝑠 − \ ∗)
𝑠 − \ ∗

.

Now, we are ready to calculate 𝐶Nudge using this transform. From Final Value Theorem,

𝐶Nudge = lim

𝑡→∞
𝑒\

∗𝑡P
{
𝑇Nudge > 𝑡

}
= lim

𝑠→0

𝑠
1 − �𝑇Nudge (𝑠 − \ ∗)

𝑠 − \ ∗

=
1

\ ∗
lim

𝑠→0

𝑠�𝑇Nudge (𝑠 − \ ∗)

Now, we substitute the expression from Theorem 4.5, and drop terms that are negligible in 𝑠 → 0

limit.

1

\ ∗
lim

𝑠→0

𝑠�𝑇Nudge (𝑠 − \ ∗)

= 𝐶FCFS +
1

\ ∗
𝑝small𝑝large

(
𝑆large (−\ ∗) (𝑆small (−\ ∗) − 1)𝐶𝑄,FCFS + 𝑆small (−\ ∗) (1 − 𝑆large (−\ ∗))

𝐶𝑄,FCFS

𝑆 (−\ ∗)

)
,

(32)
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where

𝐶𝑄,FCFS = lim

𝑠→0

𝑠 �𝑇 FCFS
𝑄

(𝑠 − \ ∗) = lim

𝑠→0

𝑠
�𝑇 FCFS (𝑠 − \ ∗)
𝑆 (𝑠 − \ ∗)

=
\ ∗𝐶FCFS

𝑆 (−\ ∗)
. (33)

We recall that −\ ∗ is the rightmost singularity of
�𝑇 FCFS
𝑄

(𝑠) = (1−𝜌)𝑠
_𝑆 (𝑠)−_+𝑠 , which indicates that \ ∗ is

the smallest positive value that satisfies

_𝑆 (−\ ∗) − _ − \ ∗ = 0 and 𝑆 (−\ ∗) = _ + \ ∗
_

. (34)

Using (33) and (34) to simplify (32), we obtain

𝐶Nudge

= 𝐶FCFS

(
1 − 𝑝small𝑝large

_

_ + \ ∗

(
𝑆large (−\ ∗) −

_

_ + \ ∗ 𝑆small (−\ ∗) −
\ ∗

_ + \ ∗ 𝑆large (−\
∗)𝑆small (−\ ∗)

))
.

This gives us

AsymTIR = 1 −
𝐶Nudge

𝐶FCFS

= 𝑝small𝑝large
_

_ + \ ∗

(
𝑆large (−\ ∗) −

_

_ + \ ∗ 𝑆small (−\ ∗) −
\ ∗

_ + \ ∗ 𝑆large (−\
∗)𝑆small (−\ ∗)

)
.

By assumption,

_ + \ ∗
_

<
1 − 𝑆large (−\ ∗)−1

1 − 𝑆small (−\ ∗)−1
,

so we have

AsymTIR = 𝑝small𝑝large
_

_ + \ ∗ 𝑆large (−\
∗)𝑆small (−\ ∗)

(
𝑆small (−\ ∗)−1 −

_

_ + \ ∗ 𝑆large (−\
∗)−1 − \ ∗

_ + \ ∗

)
= 𝑝small𝑝large

_

_ + \ ∗ 𝑆large (−\
∗)𝑆small (−\ ∗)

(
_

_+\ ∗
(
1−𝑆large (−\ ∗)−1

)
−

(
1−𝑆small (−\ ∗)−1

))
> 0.

Hence 𝐶Nudge < 𝐶FCFS . □
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