
Differentially Private Sparse Vectors with Low Error,
Optimal Space, and Fast Access

Martin Aumüller

maau@itu.dk

IT University of Copenhagen

Copenhagen, Denmark

Christian Janos Lebeda

chle@itu.dk

BARC

IT University of Copenhagen

Copenhagen, Denmark

Rasmus Pagh

pagh@di.ku.dk

BARC

University of Copenhagen

Copenhagen, Denmark

ABSTRACT
Representing a sparse histogram, or more generally a sparse vector,

is a fundamental task in differential privacy. An ideal solution would

use space close to information-theoretical lower bounds, have an

error distribution that depends optimally on the desired privacy

level, and allow fast random access to entries in the vector. However,

existing approaches have only achieved two of these three goals.

In this paper we introduce the Approximate Laplace Projection

(ALP) mechanism for approximating 𝑘-sparse vectors. This mech-

anism is shown to simultaneously have information-theoretically

optimal space (up to constant factors), fast access to vector entries,

and error of the same magnitude as the Laplace-mechanism applied

to dense vectors. A key new technique is a unary representation of

small integers, which we show to be robust against “randomized

response” noise. This representation is combined with hashing, in

the spirit of Bloom filters, to obtain a space-efficient, differentially

private representation.

Our theoretical performance bounds are complemented by sim-

ulations which show that the constant factors on the main perfor-

mance parameters are quite small, suggesting practicality of the

technique.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
Algorithms, Differential Privacy, Sparse Vector

PUBLICATION
The paper appears in Proceedings of the 28th ACM Conference on

Computer and Communications Security, 2021.

https://doi.org/10.1145/3460120.3484735

1 INTRODUCTION
One of the fundamental results in differential privacy is that a

histogram can be made differentially private by adding noise from

the Laplace distribution to each entry of the histogram before it is

released [7]. The expectedmagnitude of the noise on each histogram

entry is𝑂 (1/Y), where Y is the privacy parameter, and this is known

to be optimal [12]. In fact, there is a sense in which the Laplace

mechanism is optimal [14]. However, some histograms of interest

are extremely sparse, and cannot be represented in explicit form.

Consider, for example, a histogram of the number of HTTP requests

to various servers. Already the IPv4 address space has over 4 billion

addresses, and the number of unique, valid URLs have long exceeded

1012, so it is clearly not feasible to create a histogram with a (noisy)

counter for each possible value.

Korolova, Kenthapadi, Mishra, and Ntoulas [13] showed that it

is possible to achieve approximate differential privacy with space

that depends only on the number of non-zero entries in the his-

togram. However, for (Y, 𝛿)-differential privacy the upper bound

on the expected per-entry error becomes𝑂

(
log(1/𝛿)

Y

)
, which is sig-

nificantly worse than the Laplace mechanism for small 𝛿 . Cormode,

Procopiuc, Srivastava, and Tran [5] showed how to achieve pure

Y-differential privacy with expected per-entry error bounded by

𝑂

(
log(𝑑)

Y

)
, where 𝑑 is the dimension of the histogram, i.e., the num-

ber of entries. While both these methods sacrifice accuracy they

are very fast, allowing access to entries of the private histogram

in constant time. If access time is not of concern, it is possible

to combine small space with small per-entry error, as shown by

Balcer and Vadhan [2]. They achieve an error distribution that is

comparable to the Laplace mechanism (up to constant factors) and

space proportional to the sum 𝑛 of all histogram entries — but the

time to access a single entry is 𝑂 (𝑛/Y), which is excessive for large

datasets.

1.1 Our results
Our contribution is a mechanism that achieves optimal error and

space (up to constant factors) with only a small increase in access

time. The mechanism works for either approximate or pure differ-

ential privacy, with the former providing faster access time. Our

main results are summarized in Theorem 1.1.

Theorem 1.1 (Informal Version of Theorems 5.10 and 5.11).

Let 𝑥 be a histogram with 𝑑 entries each bounded by some value 𝑢
where at most 𝑘 entries have non-zero values. Given privacy param-
eters Y > 0 and 𝛿 ≥ 0, there exists an (Y, 𝛿)-differentially private
algorithm to represent 𝑥 using 𝑂 (𝑘 log(𝑑 + 𝑢)) bits with per-entry
error matching the Laplace mechanism up to constant factors. The
access time is 𝑂 (log(1/𝛿)) when 𝛿 > 0 and 𝑂 (log(𝑑)) when 𝛿 = 0.

Here we assume that 𝑘 = Ω(log(𝑑)). Otherwise the mechanism

has an additional term of 𝑂 (log2 (𝑑)) or 𝑂 (log(𝑑) log(1/𝛿)) bits
in its space usage for pure and approximate differential privacy,

respectively.

1.2 Techniques
On a high level, we treat “small” and “large” values of the histogram

differently. Large values are handled by the thresholding technique

developed in [5, 13]. For small entries, we represent them using a

unary encoding as fixed-length bit strings. From [5, 13] we know

1

ar
X

iv
:2

10
6.

10
06

8v
2

 [
cs

.C
R

]
 2

7
Se

p
20

21

https://doi.org/10.1145/3460120.3484735

that their length is logarithmic in either𝑑 (for Y-DP) or 1/𝛿 (for (Y, 𝛿)-
DP). Privacy is achieved by perturbing each bit using randomized

response [15]. As it turns out, the unary encoding is redundant

enough to allow accurate estimation even when the probability of

flipping each bit is a constant bounded away from 1/2. In order to

pack all unary representations into small space, we use hashing

to randomize the position of each bit in the unary representation

of a given entry. The access time is linear in the length of the bit

representation, given constant time evaluation of the hash function.

Interestingly, although hash collisions can lead to overestimates,

they do not influence the error asymptotically.

We remark here that a direct application of randomized response

does not give the desired 𝑂 (1/Y) error dependency, but we solve
this issue with an initial scaling step that gives Y-differential pri-

vacy when combined with randomized response. Though the dis-

cussion above has been phrased in terms of histograms, which

makes the comparison to earlier work easier, our techniques apply

more generally to representing sparse real vectors, with privacy

for neighboring datasets with bounded ℓ1-distance.

1.3 Overview
In Section 2 we define differential privacy for vectors, discuss the

Laplace mechanism, and provide probabilistic tools necessary for

the analysis. In Section 3 we discuss related work on differentially

private sparse histograms. In Section 4 we introduce the Approx-

imate Laplace Projection (ALP) mechanism and analyze its theo-

retical guarantees. In Section 5 we improve space and access time

using techniques from earlier work [5, 13]. In Section 6 we evaluate

the performance of the ALP mechanism based on simulations. In

Section 7 we present suggestions for practical applications. We

conclude the paper by stating an open problem in Section 8.

2 PRELIMINARIES
Problem Setup. In this work, we consider 𝑑-dimensional 𝑘-sparse

vectors of non-negative real values. We say that a vector 𝑥 ∈ R𝑑+
is 𝑘-sparse if it contains at most 𝑘 non-zero entries. We assume

that 𝑘 = Ω(log(𝑑)). All entries are bounded from above by a value

𝑢 ∈ R, i.e.,max𝑖∈[𝑑] 𝑥𝑖 =: ∥𝑥 ∥∞ ≤ 𝑢. Here [𝑑] is the set of integers
{1, . . . , 𝑑}. We consider the problem of constructing an algorithm

M for releasing a differentially private representation of 𝑥 , i.e.,

𝑥 := M(𝑥). Note that 𝑥 does not itself need to be 𝑘-sparse.

Utility Measures. We use two measures for the utility of an algo-

rithm M. We define the per-entry error as |𝑥𝑖 − 𝑥𝑖 | for any 𝑖 ∈ [𝑑].
We define themaximum error asmax𝑖∈[𝑑] |𝑥𝑖 −𝑥𝑖 | = ∥𝑥 −𝑥 ∥∞. We

compare the utility of algorithms using the expected per-entry and

maximum error and compare the tail probabilities of the per-entry

error of our algorithm with the Laplace mechanism introduced

below.

Differential Privacy. Differential privacy is a constraint to limit

privacy loss introduced by Dwork, McSherry, Nissim, and Smith [7].

We use definitions and results as presented by Dwork and Roth [8].

Intuitively, a differentially private algorithm ensures that a slight

change in the input does not significantly impact the probability

of seeing any particular output. We measure the distance between

inputs using their ℓ1-distance. In this work, two vectors are neigh-

bors iff their ℓ1-distance is at most 1. That is for all neighboring

vectors 𝑥, 𝑥 ′ ∈ R𝑑+ we have ∥𝑥 − 𝑥 ′∥1 :=
∑
𝑖∈[𝑑] |𝑥𝑖 − 𝑥 ′

𝑖
| ≤ 1. We

can now define differential privacy for neighboring vectors.

Definition 2.1 (Differential privacy [8, Def 2.4]). Given Y > 0 and

𝛿 ≥ 0, a randomized algorithm M : R𝑑+ → R is (Y, 𝛿)-differentially
private if for all subsets of outputs 𝑆 ⊆ R and pairs of 𝑘-sparse

input vectors 𝑥, 𝑥 ′ ∈ R𝑑+ such that ∥𝑥 − 𝑥 ′∥1 ≤ 1 it holds that:

Pr[M(𝑥) ∈ 𝑆] ≤ 𝑒Y · Pr[M(𝑥 ′) ∈ 𝑆] + 𝛿 .

M satisfies approximate differential privacy when 𝛿 > 0 and

pure differential privacy when 𝛿 = 0. In particular, a pure differen-

tially private algorithm satisfies Y-differential privacy. The following
properties of differential privacy are useful in this paper.

Lemma 2.2 (Post-processing [8, Proposition 2.1]). LetM : R𝑑+ →
R be an (Y, 𝛿)-differentially private algorithm and let 𝑓 : R → R ′

be any randomized mapping. Then 𝑓 ◦ M : R𝑑+ → R ′ is (Y, 𝛿)-
differentially private.

Lemma 2.3 (Composition [8, Theorem 3.16]). LetM1 : R
𝑑
+ →

R1 andM2 : R
𝑑
+ → R2 be randomized algorithms such that 𝑀1 is

(Y1, 𝛿1)-differentially private and M2 is (Y2, 𝛿2)-differentially pri-
vate. Then the algorithm M where M(𝑥) = (M1 (𝑥),M2 (𝑥)) is
(Y1 + Y2, 𝛿1 + 𝛿2)-differentially private.

Throughout this paper, we clamp the output of all algorithms to

the interval [0, 𝑢]. An estimate outside this interval is due to noise

and clamping outputs cannot increase the error. It follows from

Lemma 2.2 that clamping the output does not affect privacy. We

clamp the output implicitly to simplify presentation.

Probabilistic Tools. The Laplace Mechanism introduced by Dwork,

McSherry, Nissim, and Smith [7] satisfies pure differential privacy

by adding noise calibrated to the ℓ1-distance to each entry. For

completeness, Algorithm 1 provides a formulation of the Laplace

mechanism in the context of releasing an Y-differentially private

representation of a sparse vector.

Algorithm 1: The Laplace Mechanism

Parameters :Y > 0.
Input :𝑘-sparse vector 𝑥 ∈ R𝑑+.
Output :Y-differentially private approximation of 𝑥 .

(1) Let 𝑥𝑖 = 𝑥𝑖 + [𝑖 for all 𝑖 ∈ [𝑑], where [𝑖 ∼ Lap(1/Y).
(2) Release 𝑥 .

Here Lap(1/Y) is the Laplace distribution with scale parameter

1/Y. The PDF and CDF of the distribution are presented in Defi-

nitions 2.4 and 2.5 and the expected error and tail bound of the

mechanism are shown in Propositions 2.6 and 2.7. The Laplace

mechanism works well for vectors with low dimensionality and

serves as a baseline for our work. However, it is impractical or even

infeasible in the setting of 𝑘-sparse vectors. The output vector is

dense, and as such the space requirement scales linearly in the input

dimensionality 𝑑 .

2

Definition 2.4. The probability density function of the Laplace

distribution centered around 0 with scale parameter 1/Y is

𝑓 (𝜏) = Y

2
𝑒−|𝜏 |Y .

Definition 2.5. The cumulative distribution function of the Laplace

distribution centered around 0 with scale parameter 1/Y is:

Pr[Lap(1/Y) ≤ 𝜏] =
{
1
2𝑒

𝜏Y , if 𝜏 < 0

1 − 1
2𝑒

−𝜏Y , if 𝜏 ≥ 0

Proposition 2.6 (Expected Error [8, Theorem 3.8]). The ex-
pected per-entry and maximum error of the Laplace mechanism are

E[|𝑥𝑖 − 𝑥𝑖 |] = 𝑂 (1/Y) and E[∥𝑥 − 𝑥 ∥∞] = 𝑂

(
log(𝑑)

Y

)
respectively.

Proposition 2.7 (Tail bound [8, Theorem 3.8]). With probabil-
ity at least 1 −𝜓 we have:

|Lap(1/Y) | ≤ 1

Y
ln

1

𝜓
.

Random rounding or stochastic rounding is used for rounding a

real value probabilistically based on its fractional part. We define

random rounding for any real 𝑟 ∈ R as follows:

RandRound (𝑟) =
{
⌈𝑟⌉ with probability 𝑟 − ⌊𝑟⌋
⌊𝑟⌋ with probability 1 − (𝑟 − ⌊𝑟⌋)

Lemma 2.8. The expected error of random rounding is maximized
when 𝑟 − ⌊𝑟⌋ = 0.5. For any 𝑟 we have:

E[|𝑟 − RandRound (𝑟) |] ≤ 1

2
.

Randomized response was first introduced by Warner [15]. The

purpose of the mechanism is to achieve plausible deniability by

changing one’s answer to some question with probability 𝑝 and

answer truthfully with probability 𝑞 = 1−𝑝 . We define randomized

response for a boolean value 𝑏 ∈ {0, 1} as follows:

RandResponse (𝑏, 𝑝) =
{
1 − 𝑏 with probability 𝑝

𝑏 with probability 𝑞

Universal Hashing. A hash family is a collection of functions H
mapping keys from a universe𝑈 to a range 𝑅. A familyH is called

universal, if each pair of different keys collides with probability at

most 1/|𝑅 |, where the randomness is taken over the random choice

of ℎ ∈ H . A particularly efficient construction that uses𝑂 (log |𝑈 |)
bits and constant evaluation time is presented in [6].

Model of Computation. We use the𝑤-bit word RAM model de-

fined by Hagerup [11] where𝑤 = Θ(log(𝑑) + log(𝑢)). This model

allows constant time memory access and basic operations on𝑤-bit

words. As such, we can store a 𝑘-sparse vector using𝑂 (𝑘 log(𝑑+𝑢))
bits with constant lookup time using a hash table. We assume that

the privacy parameters Y and 𝛿 can be represented in a single word.

Negative Values. In this paper, we consider vectors with non-

negative real values, but the mechanism can be generalized for

negative values using the following reduction. Let 𝑣 ∈ R𝑑 be a

real valued 𝑘-sparse vector. Construct 𝑥,𝑦 ∈ R𝑑+ from 𝑣 such that

𝑥𝑖 = max(𝑣𝑖 , 0) and 𝑦𝑖 = −min(𝑣𝑖 , 0). By construction both 𝑥 and

𝑦 are 𝑘-sparse and the ℓ1-distance between vectors is preserved. We

can access elements in 𝑣 as 𝑣𝑖 = 𝑥𝑖 − 𝑦𝑖 . As such, any differentially

private representation of 𝑥 and 𝑦 can be used as a differentially

private representation of 𝑣 with at most twice the error.

3 RELATEDWORK
Previous work on releasing differentially private sparse vectors

primarily focused on the special case of discrete vectors in the

context of releasing the histogram of a dataset.

Korolova, Kenthapadi, Mishra, and Ntoulas [13] first introduced

an approximately differentially private mechanism for the release

of a sparse histogram. A similar mechanism was later introduced

independently by Bun, Nissim, and Stemmer [3] in another con-

text. The mechanism adds noise to non-zero entries and removes

those with a noisy value below a threshold 𝑡 = 𝑂

(
log(1/𝛿)

Y

)
. The

threshold is chosen such that the probability of releasing an en-

try with true value 1 is at most 𝛿 . The expected maximum error

is 𝑂

(
log(max(𝑘,1/𝛿))

Y

)
. Since 𝛿 is usually chosen to be negligible

in the input size, we assume that 𝛿 ≤ 1/𝑘 . As such, the expected
maximum error is 𝑂

(
log(1/𝛿)

Y

)
. We discuss the per-entry error be-

low. Their mechanism is designed to satisfy differential privacy for

discrete data. We extend their technique to real-valued data as part

of Section 5, where we combine it with our mechanism.

Cormode, Procopiuc, Srivastava, and Tran [5] introduced a dif-

ferentially private mechanism in their work on range queries for

sparse data. The mechanism adds noise to all entries and removes

those with a noisy value below a threshold 𝑡 = 𝑂

(
log(𝑑)

Y

)
. Here the

threshold is used to reduce the expected output size. The number

of noisy entries above 𝑡 is 𝑂 (𝑘) with high probability. The con-

struction time of a naive implementation of their technique scales

linearly in 𝑑 . They improve on this by sampling from a binomial

distribution to determine the number of zero entries to store. They

show that their approach produces the same output distribution

as a naive implementation that adds noise to every entry. Their

mechanism works for real-valued data in a straightforward way.

Since the expected number of non-zero entries in the output

is 𝑂 (𝑘) for both mechanisms above, their memory requirement

is 𝑂 (𝑘 log(𝑑 + 𝑢)) bits using a hash table. An entry is accessed in

constant time. The expected per-entry error depends on the true

value of the entry. If the noisy value is above the threshold with

sufficiently high probability, the expected error is𝑂 (1/Y). However,
this does not hold for entries that are likely removed. Consider

for example an entry with a true value exactly at the threshold

𝑡 . This entry is removed for any negative noise added. As such

the expected per-entry error is 𝑂 (𝑡) for worst-case input, which is

𝑂

(
log(1/𝛿)

Y

)
and 𝑂

(
log(𝑑)

Y

)
for the two mechanisms, respectively.

In their work on differential privacy on finite computers, Bal-

cer and Vadhan [2] introduced several algorithms including some

with similar utility as the mechanisms described above. Moreover,

they provided a lower bound of Ω
(
min{log(𝑑), log(Y/𝛿), 𝑛}

Y

)
for the

expected per-entry error of any algorithm that always outputs a

sparse histogram. (See [2, Theorem 7.2] for the precise technical

statement.) Here 𝑛 is the number of rows in the dataset, i.e., the sum

of all entries of the histogram. This lower bound means that an algo-

rithm that always outputs a 𝑂 (𝑘)-sparse histogram cannot achieve

𝑂 (1/Y) expected per-entry error for all input. They bypass this

3

Algorithm Space (bits) Access time Per-entry error Maximum error

Dwork et al. [7] 𝑂 (𝑑 log(𝑢)) 𝑂 (1) 𝑂

(
1
Y

)
𝑂

(
log(𝑑)

Y

)
Cormode et al. [5] 𝑂 (𝑘 log(𝑑 + 𝑢)) 𝑂 (1) 𝑂

(
log(𝑑)

Y

)
𝑂

(
log(𝑑)

Y

)
Balcer & Vadhan [2] 𝑂

(
𝑛
Y log(𝑑)

)
𝑂
(
𝑛
Y

)
𝑂

(
1
Y

)
𝑂

(
log(𝑑)

Y

)
Theorem 5.10 (this work) 𝑂 (𝑘 log(𝑑 + 𝑢)) 𝑂 (log(𝑑)) 𝑂

(
1
Y

)
𝑂

(
log(𝑑)

Y

)
Korolova et al. [13] 𝑂 (𝑘 log(𝑑 + 𝑢)) 𝑂 (1) 𝑂

(
log(1/𝛿)

Y

)
𝑂

(
log(1/𝛿)

Y

)
Theorem 5.11 (this work) 𝑂 (𝑘 (log(𝑑 + 𝑢) + log(1/𝛿))) 𝑂 (log(1/𝛿)) 𝑂

(
1
Y

)
𝑂

(
log(1/𝛿)

Y

)
Table 1: Comparison with previous work of expected values for worst-case input. The first four rows are results on

Y-differential privacy, and the last two are on (Y, 𝛿)-differential privacy. The 𝑂-notation suppresses logarithmic factors.

bound by producing a compact representation of a dense histogram.

Their representation has expected per-entry and maximum error

of𝑂 (1/Y) and𝑂
(
log(𝑑)

Y

)
, respectively. It requires𝑂

(
𝑛
Y log(𝑑)

)
bits

and an entry is accessed in time 𝑂
(
𝑛
Y

)
. Note that their problem

setup differs from ours in that each entry is bounded only by 𝑛 such

that ∥𝑥 ∥∞ ≤ 𝑛. That is, 𝑛 serves a similar purpose as 𝑢 does in our

setup. We do not know how to extend their approach to our setup

with real-valued input.

In light of the results achieved in previous work, our motivation

is to design a mechanism that achieves three properties simulta-

neously: 𝑂 (1/Y) expected per-entry error for arbitrary input, fast

access, and (asymptotically) optimal space. Previous approaches

only achieved at most two of these properties simultaneously. More-

over, we want the per-entry error to match the tail bounds of the

Laplace mechanism up to constant factors. We construct a com-

pact representation of a dense vector to bypass the lower bound

for sparse vectors by Balcer and Vadhan [2]. The access time of

our mechanism is𝑂 (log(𝑑)) and𝑂 (log(1/𝛿)) for pure and approx-
imate differential privacy, respectively. Table 1 summarizes the

results of previous work and our approach.

4 THE ALP MECHANISM
In this section, we introduce the Approximate Laplace Projection

(ALP) mechanism
1
and give an upper bound on the expected per-

entry error. The ALP mechanism consists of two algorithms. The

first algorithm constructs a differentially private representation of

a 𝑘-sparse vector and the second estimates the value of an entry

based on its representation.

4.1 A 1-differentially private algorithm
We start by considering the special case of Y = 1 and later generalize
to all values of Y > 0. Moreover, the mechanism works well only

for entries bounded by a parameter 𝛽 . In general, this would mean

that we had to set 𝛽 = 𝑢 if we only were to use the ALP mechanism.

However, in Section 5 we will discuss how to set 𝛽 smaller and still

perform well for all entries.

1
The name is chosen to indicate that the error distribution is approximately like the

Laplace distribution, and that we project the sparse vector to a much lower-dimensional

representation. It also celebrates the mountains, whose silhouette plays a role in a

certain random walk considered in the analysis of the ALP mechanism.

Algorithm 2: ALP1-projection
Parameters :𝛼, 𝛽 > 0, and 𝑠 ∈ N.
Input :𝑘-sparse vector 𝑥 ∈ R𝑑+ where 𝑠 > 2𝑘 .

Sequence of hash functions from domain [𝑑]
to [𝑠], ℎ = (ℎ1, . . . , ℎ𝑚), where𝑚 =

⌈
𝛽
𝛼

⌉
.

Output :1-differentially private representation of 𝑥 .

(1) Apply random rounding to a scaled version of each

non-zero entry of 𝑥 such that 𝑦𝑖 = RandRound

(𝑥𝑖
𝛼

)
.

(2) Construct 𝑧 ∈ {0, 1}𝑠×𝑚 by hashing the unary

representations of 𝑦 such that:

𝑧𝑎,𝑏 =

{
1, ∃𝑖 : 𝑏 ≤ 𝑦𝑖 and ℎ𝑏 (𝑖) = 𝑎

0, otherwise

(3) Apply randomized response to each bit of 𝑧 such that

𝑧𝑎,𝑏 = RandResponse

(
𝑧𝑎,𝑏 ,

1
𝛼+2

)
.

(4) Release ℎ and 𝑧.

In the first step of the projection algorithm, we scale every non-

zero entry by a parameter of the algorithm and use random round-

ing to map each such entry to an integer. We then store the unary

representation of these integers in a two-dimensional bit-array

using a sequence of universal hash functions [4]. We call this bit-

array the embedding. Lastly, we apply randomized response on the

embedding to achieve privacy. The pseudocode of the algorithm is

given in Algorithm 2 and we discuss it next.

Figure 1 shows an example of an embedding before applying

randomized response. The input is a vector 𝑥 where the 𝑖th entry

𝑥𝑖 is the only non-zero value. The result of evaluating 𝑖 for each

hash function is shown in the table at the bottom and the𝑚 = 8
bits representing the 𝑖th entry in the bit-array are highlighted.

In Step (1) of the algorithm, 𝑥𝑖 is scaled by 1/𝛼 and randomized

rounding is applied to the scaled value. This results in 𝑦𝑖 = 5. Using
the hash functions, we represent this value in unary encoding by

setting the first five bits to 1 in Step (2), where the 𝑗 th bit is selected

by evaluating the hash function ℎ 𝑗 on 𝑖 . The final three bits are

unaffected by the entry. Finally, we apply randomized response in

each cell of the bit-array. The bit-array after applying randomized

response is not shown here, but we present it later in Figure 2. Both

4

Figure 1: Embedding with𝑚 = 8, 𝑠 = 5 and 𝑦𝑖 = 5.
The 𝑖th entry is the only non-zero entry.

the bit-array and the hash functions are the differentially private

representation of the input vector 𝑥 . We use this construction when

estimating the value of 𝑥𝑖 later.

The algorithm takes three parameters 𝛼, 𝛽 , and 𝑠 . The parameters

𝛼 and 𝑠 are adjustable. We discuss these parameters later as part

of the error analysis. In Section 6 we discuss how to select values

for 𝛼 and 𝑠 . Throughout the paper we sometimes assume that 𝛼

is a constant and 𝑠 is a constant multiple of 𝑘 that is 𝛼 = Θ(1)
and 𝑠 = Θ(𝑘). The parameter 𝛽 bounds the values stored in the

embedding. We discuss 𝛽 as part of the error analysis as well.

Lemma 4.1. Algorithm 2 satisfies 1-differential privacy.

Proof. Let 𝑥, 𝑥 ′ ∈ R𝑑+ denote two neighboring vectors.We prove

the lemma in several steps. First, the vectors differ only in their

𝑖th entry. In this case, we start by assuming that only a single bit

of 𝑧 is affected by changing 𝑥 to 𝑥 ′ and that there are no hash

collisions. We then allow them to differ in several bits and include

hash collisions. Finally, we generalize to the case that they differ in

more than one entry.

Assume that 𝑧 differs only in a single bit for 𝑥 and 𝑥 ′. Let 𝑌
denote the event that the affected bit is set to one after running

the algorithm. Let 𝑝 = 1
𝛼+2 be the parameter of the randomized

response step and let 𝑞 = 1−𝑝 . Then the probability of 𝑌 occurring

with input 𝑥 is Pr[𝑌 | 𝑥] = (1 − 𝑟) · 𝑝 + 𝑟 · 𝑞, where 𝑟 =
𝑥𝑖
𝛼 −⌊

min(𝑥𝑖 ,𝑥 ′𝑖)
𝛼

⌋
denotes the probability of the bit being one before the

randomized response step. Similarly for 𝑥 ′ we define 𝑟 ′ =
𝑥 ′𝑖
𝛼 −⌊

min(𝑥𝑖 ,𝑥 ′𝑖)
𝛼

⌋
. The minimum term is needed whenmax(𝑥𝑖 , 𝑥 ′𝑖) is a

multiple of 𝛼 such that max(𝑟, 𝑟 ′) = 1. We find the difference in

the probability of 𝑌 occurring for 𝑥 and 𝑥 ′ as:

Pr[𝑌 | 𝑥] − Pr[𝑌 | 𝑥 ′] = ((1 − 𝑟)𝑝 + 𝑟𝑞) − ((1 − 𝑟 ′)𝑝 + 𝑟 ′𝑞)
= (𝑟 − 𝑟 ′) · (𝑞 − 𝑝)

=
𝑥𝑖 − 𝑥 ′

𝑖

𝛼
· 𝛼

𝛼 + 2

=
𝑥𝑖 − 𝑥 ′

𝑖

𝛼 + 2
.

By symmetry, the absolute difference in probability for setting

the bit to either zero or one is

|𝑥𝑖−𝑥 ′𝑖 |
𝛼+2 . Let 𝑍 be an arbitrary output

of Algorithm 2. Since 𝑥 and 𝑥 ′ agree on all but the 𝑖th entry, the

change in probability of outputting 𝑍 depends only on the affected

bit. Let 𝑌 ′
denote the event that the bit agrees with output 𝑍 . Then

we find the ratio of probabilities of outputting 𝑍 as:

Pr[ALP1-projection(𝑥 ′) = 𝑍]
Pr[ALP1-projection(𝑥) = 𝑍] =

Pr[𝑌 ′ | 𝑥 ′]
Pr[𝑌 ′ | 𝑥] ≤

Pr[𝑌 ′ | 𝑥] + |𝑥𝑖−𝑥 ′𝑖 |
𝛼+2

Pr[𝑌 ′ | 𝑥]

≤
𝑝 + |𝑥𝑖−𝑥 ′𝑖 |

𝛼+2
𝑝

= 1 + |𝑥𝑖 − 𝑥 ′𝑖 |

≤ 𝑒 |𝑥𝑖−𝑥
′
𝑖 | .

Here the second inequality follows from 𝑝 ≤ Pr[𝑌 ′ | 𝑥] ≤ 𝑞.

From here it is easy to take hash collisions into account as follows:

Let 𝑝 ′ denote the probability of 𝑌 occurring after setting the 𝑖th

entry to zero. That is, we have 𝑝 ≤ 𝑝 ′ ≤ 𝑞 and Pr[𝑌 | 𝑥] =

(1 − 𝑟) · 𝑝 ′ + 𝑟 · 𝑞. The absolute difference in probability is still

bounded such that Pr[𝑌 | 𝑥] −Pr[𝑌 | 𝑥 ′] ≤ |𝑥𝑖−𝑥 ′𝑖 |
𝛼+2 . As such it still

holds that:

Pr[ALP1-projection(𝑥 ′) = 𝑍]
Pr[ALP1-projection(𝑥) = 𝑍] ≤ 𝑒 |𝑥𝑖−𝑥

′
𝑖 | .

Next, we remove the assumption that only a single bit is affected

by composing probabilities. We provide the following inductive

construction. Let 𝑥, 𝑥 ′ ∈ R𝑑+ be vectors that differ in the 𝑖th entry

such that exactly two bits are affected. We consider the case of

𝑥𝑖 < 𝑥 ′
𝑖
and fix a vector 𝑥 ′′ ∈ R𝑑+ with 𝑥𝑖 < 𝑥 ′′

𝑖
< 𝑥 ′

𝑖
such that the

differences affects exactly one bit each. Again, let 𝑍 be an arbitrary

output of Algorithm 2. Applying the upper bound from above twice,

we may bound the change in probabilities by:

Pr[ALP1-projection(𝑥 ′) = 𝑍]
Pr[ALP1-projection(𝑥) = 𝑍] =

Pr[ALP1-projection(𝑥 ′′) = 𝑍]
Pr[ALP1-projection(𝑥) = 𝑍]

· Pr[ALP1-projection(𝑥 ′) = 𝑍]
Pr[ALP1-projection(𝑥 ′′) = 𝑍]

≤ 𝑒 |𝑥𝑖−𝑥
′′
𝑖 | · 𝑒 |𝑥

′′
𝑖 −𝑥 ′𝑖 |

= 𝑒 |𝑥𝑖−𝑥
′
𝑖 | ,

which can be applied inductively if changing an entry affects more

than two bits.

We are now ready to generalize to any vectors 𝑥, 𝑥 ′ ∈ R𝑑+, i.e.,
where vectors may differ in more than a single position. Using the

5

bound from above, we can bound the ratio of probabilities by:

Pr[ALP1-projection(𝑥 ′) = 𝑍]
Pr[ALP1-projection(𝑥) = 𝑍] ≤

∏
𝑖∈[𝑑]

𝑒 |𝑥𝑖−𝑥
′
𝑖 |

= 𝑒
∑

𝑖∈[𝑑] |𝑥𝑖−𝑥 ′𝑖 |

= 𝑒 ∥𝑥−𝑥
′ ∥1 .

The privacy loss is thus bounded by the ℓ1-distance of the vectors

for any output. Recall that the ℓ1-distance is upper bounded by 1 for
two neighboring vectors. As such the algorithm is 1-differentially
private as for any pair of neighboring vectors 𝑥 and 𝑥 ′ and any

subset of outputs 𝑆 we have:

Pr[ALP1-projection(𝑥) ∈ 𝑆] ≤ 𝑒 ∥𝑥−𝑥
′ ∥1 Pr[ALP1-projection(𝑥 ′) ∈ 𝑆]

≤ 𝑒 · Pr[ALP1-projection(𝑥 ′) ∈ 𝑆] .

□

The following lemma summarizes the space complexity of stor-

ing the bit-array and the collection of hash functions.

Lemma 4.2. The number of bits required to store ℎ and 𝑧 is

𝑂

(
(𝑠 + log𝑑) · 𝛽

𝛼

)
.

Proof. By definition𝑚 = 𝑂

(
𝛽
𝛼

)
and as such 𝑠 ·𝑚 = 𝑂

(
𝑠𝛽
𝛼

)
bits

are used to store 𝑧. Each hash function uses 𝑂 (log(𝑑)) bits for a
total of 𝑂

(
log(𝑑)𝛽

𝛼

)
bits to store ℎ. □

4.2 Estimating an entry
We now introduce the algorithm to estimate an entry based on the

embedding from Algorithm 2. When accessing the 𝑖th entry, we

estimate the value of 𝑦𝑖 and multiply by 𝛼 to reverse the initial

scaling of 𝑥𝑖 . The estimate of 𝑦𝑖 is chosen to maximize a partial

sum. If multiple values maximize the sum we use their average.

Intuition. The first 𝑦𝑖 bits representing the 𝑖th entry are set to

one before applying noise in Algorithm 2, cf. Figure 1. The last

𝑚 − 𝑦𝑖 bits are zero, except if there are hash collisions. Some bits

might be flipped due to randomized response, but we expect the

majority of the first 𝑦𝑖 bits to be ones and the majority of the

remaining𝑚−𝑦𝑖 bits to be zeros. As such the estimate of𝑦𝑖 is based

on prefixes maximizing the difference between ones and zeros. The

pseudocode for the algorithm is given as Algorithm 3.

Figure 2 shows an example of Algorithm 3. The example is based

on the embedding from Figure 1 after adding noise. The plot shows

the value of 𝑓 for all candidate estimates. This sum is maximized at

positions 3 and 5. This is visualized as the global peaks in the plot.

The estimate is the average of those positions.

Lemma 4.3. The evaluation time of Algorithm 3 is 𝑂
(
𝛽
𝛼

)
.

Proof. We can compute all partial sums by evaluating each bit

(𝑧ℎ1 (𝑖),1, . . . , 𝑧ℎ𝑚 (𝑖),𝑚) once using dynamic programming. As such

the evaluation time is 𝑂 (𝑚) with 𝑚 =

⌈
𝛽
𝛼

⌉
. We have 𝑚 = 𝑂 (𝛽)

when 𝛼 = Θ(1). □

Algorithm 3: ALP1-estimator

Parameters :𝛼 > 0.
Input :Embedding 𝑧 ∈ {0, 1}𝑠×𝑚 . Sequence of hash

functions ℎ = (ℎ1, . . . , ℎ𝑚). Index 𝑖 ∈ [𝑑].
Output :Estimate of 𝑥𝑖 .

(1) Define the function 𝑓 : {0, . . . ,𝑚} → Z as:

𝑓 (𝑛) =
𝑛∑︁

𝑎=1

2𝑧ℎ𝑎 (𝑖),𝑎 − 1

(2) Let 𝑃 be the set of arguments maximizing 𝑓 . That is,

𝑃 = {𝑛 ∈ {0, . . . ,𝑚} : 𝑓 (𝑎) ≤ 𝑓 (𝑛) for all 𝑎 ∈ {0, . . . ,𝑚}}
(3) Let 𝑦𝑖 = average(𝑃)
(4) Return 𝑦𝑖 · 𝛼 .

Figure 2: Estimation of 𝑖th entry from Figure 1.
The partial sum is maximized at indices 3 and 5.
The estimate is 4, while the true value was 5.

We now analyze the per-entry error of Algorithm 3. We first

analyze the expected error based on the parameters of the algorithm.

The results are presented in Lemma 4.8. In Lemmas 4.9 and 4.10 we

bound the tail distribution of the per-entry error of the algorithm.

Lemma 4.4. The expected per-entry error of Algorithm 3 is bounded
by (12 + E[|𝑦𝑖 − 𝑦𝑖 |]) · 𝛼 for entries with a value of at most 𝛽 .

Proof. It is clear that the error of the 𝑖th entry is 𝛼 times the

difference between 𝑦𝑖 and
𝑥𝑖
𝛼 . The expected difference is bounded

6

by:

E[| 𝑥𝑖
𝛼

− 𝑦𝑖 |] ≤ E[|
𝑥𝑖

𝛼
− 𝑦𝑖 |] + E[|𝑦𝑖 − 𝑦𝑖 |]

≤ 1

2
+ E[|𝑦𝑖 − 𝑦𝑖 |] .

The last inequality follows from Lemma 2.8. □

We find an upper bound on E[|𝑦𝑖 − 𝑦𝑖 |] by analyzing simple

random walks. A simple random walk is a stochastic process such

that 𝑆0 = 0 and 𝑆𝑛 =
∑𝑛
ℓ=1 𝑋ℓ , where 𝑋 are independent and

identically distributed random variables with Pr[𝑋ℓ = 1] = 𝑝 and

Pr[𝑋ℓ = −1] = 1 − 𝑝 = 𝑞.

Lemma 4.5. Let 𝑆 be a simple random walk with 𝑝 < 𝑞. At any
step 𝑛 the probability that there exists a later step ℓ > 𝑛 such that
𝑆ℓ > 𝑆𝑛 is 𝑝

𝑞 .

Proof. It follows directly from Theorem 1 by Alm [1]. □

For our analysis, we are concerned with the maximum 𝑛 such

that 𝑆𝑛 ≥ 0. For an infinite random walk where 𝑝 < 𝑞 such an

𝑛 exists with probability 1.

Lemma 4.6. Let 𝑆 be a simple random walk with 𝑝 < 𝑞. The
expected last non-negative step of 𝑆 is: E[max𝑛 : 𝑆𝑛 ≥ 0] = 4𝑝𝑞

(𝑞−𝑝)2 .

Proof. We use Lemma 4.5 to find the probability that 𝑆𝑛 is the

unique maximum in {𝑆𝑛, . . . , 𝑆∞} as follows:
Pr[𝑆𝑛 > max({𝑆𝑛+1, . . . , 𝑆∞})] = Pr[𝑋𝑛+1 = −1]·

Pr[𝑆𝑛+1 = max({𝑆𝑛+1, . . . , 𝑆∞})]

= 𝑞 · (1 − 𝑝

𝑞
)

= 𝑞 − 𝑝 .

The last non-negative step must have value exactly zero and as

such must be at an even numbered step. The probability that step

2𝑖 is the last non-negative is:

Pr[(max
𝑛

: 𝑆𝑛 ≥ 0) = 2𝑖] = Pr[𝑆2𝑖 = 0]·

Pr[𝑆𝑖 > max({𝑆𝑖+1, . . . , 𝑆∞})]

=

(
2𝑖

𝑖

)
(𝑝𝑞)𝑖 (𝑞 − 𝑝) .

We are now ready to find the expected last non-negative step of

an infinite simple random walk as:

E[max
𝑛

: 𝑆𝑛 ≥ 0] =
∞∑︁
𝑖=0

2𝑖 · Pr[(max
𝑛

: 𝑆𝑛 ≥ 0) = 2𝑖]

=

∞∑︁
𝑖=0

2𝑖

(
2𝑖

𝑖

)
(𝑝𝑞)𝑖 (𝑞 − 𝑝)

= 2(𝑞 − 𝑝)
∞∑︁
𝑖=0

𝑖

(
2𝑖

𝑖

)
(𝑝𝑞)𝑖

=
4𝑝𝑞

(𝑞 − 𝑝)2
.

The last equality follows from the identity

∑∞
𝑖=0 𝑖

(2𝑖
𝑖

)
(𝑝𝑞)𝑖 =

2𝑝𝑞
(𝑞−𝑝)3 . See Appendix A for a proof of this identity. □

We are now ready to bound E[|𝑦𝑖 − 𝑦𝑖 |]. We consider entries

with value at most 𝛽 , i.e., 𝑦𝑖 ≤ 𝑚.

Lemma 4.7. Let 𝑦𝑖 ≤ 𝑚 and 𝛾 = 𝛼+2
1+𝛼𝑘

𝑠

− 2. Then the expected

value of |𝑦𝑖 − 𝑦𝑖 | is bounded such that

E[|𝑦𝑖 − 𝑦𝑖 |] ≤
4𝛼 + 4

𝛼2
+ 4𝛾 + 4

𝛾2
.

Proof. Recall the definition of 𝑃 from Algorithm 3. Let 𝑦𝑖 ∈ 𝑃

denote an element furthest from 𝑦𝑖 that is |𝑦𝑖 − 𝑎 | ≤ |𝑦𝑖 − 𝑦𝑖 | for
all 𝑎 ∈ 𝑃 . It it clearly sufficient to consider 𝑦𝑖 for the proof since

|𝑦𝑖 −𝑦𝑖 | ≤ |𝑦𝑖 −𝑦𝑖 |. We first consider the case of 𝑦𝑖 ≤ 𝑦𝑖 . It follows

from the definition of 𝑦𝑖 as a maximum that

∑𝑦𝑖
𝑗=𝑦𝑖+1 𝑧ℎ 𝑗 (𝑖), 𝑗 ≤ 0.

As such at least half the bits (𝑧ℎ𝑦𝑖+1 (𝑖),𝑦𝑖+1, . . . , 𝑧ℎ𝑦𝑖
(𝑖),𝑦𝑖) must be

zero, that is they were flipped by randomized response in Step (3)

of Algorithm 2. As such the length of the longest interval ending

at bit 𝑧ℎ𝑦𝑖
(𝑖),𝑦𝑖 where at least half the bits were flipped is an upper

bound on the value of 𝑦𝑖 − 𝑦𝑖 . The expected size of said interval is

bounded by the expected last non-negative step of a simple random

walk with 𝑝 = 1
𝛼+2 . It follows from Lemma 4.6 that:

E[𝑦𝑖 − 𝑦𝑖 | 𝑦𝑖 ≤ 𝑦𝑖] ≤
4𝑝𝑞

(𝑞 − 𝑝)2
=

4𝛼+4
(𝛼+2)2
𝛼2

(𝛼+2)2
=

4𝛼 + 4

𝛼2
.

We can use a similar argument when 𝑦𝑖 ≥ 𝑦𝑖 to show that at

least half the bits in (𝑧ℎ𝑦𝑖+1 (𝑖),𝑦𝑖+1, . . . , 𝑧ℎ𝑦𝑖
(𝑖),𝑦𝑖) must be 1 since

𝑦𝑖 is a maximum. In this case we have to consider the possibility

of hash collisions. Each hash function maps to [𝑠] and at most 𝑘

entries result in a hash collision. The probability of a hash collision

is at most
𝑘
𝑠 using a union bound. As such for 𝑗 > 𝑦𝑖 we have

Pr[𝑧ℎ 𝑗 (𝑖), 𝑗 = 1] ≤ (1 − 𝑘
𝑠) · 𝑝 + 𝑘

𝑠 · 𝑞 =
1+𝛼𝑘

𝑠

𝛼+2 . We let

1+𝛼𝑘
𝑠

𝛼+2 = 1
𝛾+2

such that E[𝑦𝑖 − 𝑦𝑖 | 𝑦𝑖 ≥ 𝑦𝑖] ≤ 4𝛾+4
𝛾2 by Lemma 4.6 and the

calculation above. We isolate 𝛾 to find:

1

𝛾 + 2
=

1 + 𝛼𝑘
𝑠

𝛼 + 2

(⇔) 𝛾 + 2 =
𝛼 + 2

1 + 𝛼𝑘
𝑠

(⇔) 𝛾 =
𝛼 + 2

1 + 𝛼𝑘
𝑠

− 2 .

Note that 𝛾 > 0 holds due to the requirement 𝑠 > 2𝑘 of Algo-

rithm 2. By conditional expectation, we may upper bound the total

expected error by

E[|𝑦𝑖 − 𝑦𝑖 |] ≤ E[|𝑦𝑖 − 𝑦𝑖 |]
≤ E[𝑦𝑖 − 𝑦𝑖 | 𝑦𝑖 ≤ 𝑦𝑖] + E[𝑦𝑖 − 𝑦𝑖 | 𝑦𝑖 ≥ 𝑦𝑖]

≤ 4𝛼 + 4

𝛼2
+ 4𝛾 + 4

𝛾2
. (1)

□

As such we can bound the expected per-entry error for entries

with a true value of at most 𝛽 by a function of the parameters 𝛼

and 𝑠 . In Section 6 we discuss the choice of these parameters based

on the upper bond and experiments. For any fixed values of 𝛼 and

𝑘
𝑠 we have:

7

Lemma 4.8. Let 𝛼 = Θ(1) and 𝑠 = Θ(𝑘). Then the expected per-
entry error of Algorithm 3 is E[|𝑥𝑖 − 𝑥𝑖 |] ≤ max(0, 𝑥𝑖 − 𝛽) +𝑂 (1).

Proof. It follows from Lemmas 4.4 and 4.7 that the expected

error for any entry bounded by 𝛽 is:

E[|𝑥𝑖 − 𝑥𝑖 | | 𝑥𝑖 ≤ 𝛽] ≤
(
1

2
+ 4𝛼 + 4

𝛼2
+ 4𝛾 + 4

𝛾2

)
· 𝛼 ,

where 𝛾 = 𝛼+2
1+𝛼𝑘

𝑠

− 2. Entries above 𝛽 have an additional error

of up to 𝑥𝑖 − 𝛽 , since 𝑦𝑖 =𝑚 and 𝑦𝑖 > 𝑚 are represented identically

in the embedding by Algorithm 2. Since 𝛼 and
𝑘
𝑠 are constants we

have:

E[|𝑥𝑖 − 𝑥𝑖 |] ≤ max(0, 𝑥𝑖 − 𝛽) +𝑂 (1) .

□

Next, we bound the tail probabilities for the per-entry error of the

mechanism. We bound the error of the estimate 𝑦𝑖 , which implies

bounds on the error of the mechanism.

Lemma 4.9. Let 𝛾 = 𝛼+2
1+𝛼𝑘

𝑠

− 2 and 𝜏 > 0. Let 𝑝 = 1
𝛾+2 and

𝑞 = 1 − 𝑝 . Then for Algorithm 3 we have:

Pr[|𝑦𝑖 − 𝑦𝑖 | ≥ 𝜏] ≤ 2 · (4𝑝𝑞)𝜏/2
√
𝜋 (𝑞 − 𝑝)

,

Proof. Let 𝑆 be a simple random walk. We find an upper bound

on the probability that the position of the last non-negative step in

𝑆 is at least 𝜏 :

Pr[(max
𝑛

: 𝑆𝑛 ≥ 0) ≥ 𝜏] =
∞∑︁

𝑗= ⌈𝜏/2⌉

(
2 𝑗

𝑗

)
(𝑝𝑞) 𝑗 (𝑞 − 𝑝)

≤ 𝑞 − 𝑝
√
𝜋

∞∑︁
𝑗= ⌈𝜏/2⌉

(4𝑝𝑞) 𝑗

=
𝑞 − 𝑝
√
𝜋

(4𝑝𝑞) ⌈𝜏/2⌉
1 − 4𝑝𝑞

≤ (4𝑝𝑞)𝜏/2
√
𝜋 (𝑞 − 𝑝)

,

where the first inequality follows from

(2𝑗
𝑗

)
≤ 4𝑗

√
𝜋 𝑗

when 𝑗 ≥ 1 [9].

The last inequality follows from 1−4𝑝𝑞 = (𝑞−𝑝)2. As discussed in
the proof of Lemma 4.7, the expectation of |𝑦𝑖 −𝑦𝑖 | can be bounded

by two random walks each with 𝑝 at most
1

𝛾+2 . □

Lemma 4.10. Let 𝛾 = 𝛼+2
1+𝛼𝑘

𝑠

− 2, 𝑝 = 1
𝛾+2 and 𝑞 = 1 − 𝑝 . With

probability at least 1 −𝜓 for Algorithm 3 we have:

|𝑦𝑖 − 𝑦𝑖 | ≤
2 log

(
2

𝜓
√
𝜋 (𝑞−𝑝)

)
log(1/(4𝑝𝑞)) .

Proof. We set𝜓 =
2· (4𝑝𝑞)𝜏/2√

𝜋 (𝑞−𝑝) and isolate 𝜏 as follows:

𝜓 =
2 · (4𝑝𝑞)𝜏/2
√
𝜋 (𝑞 − 𝑝)

(4𝑝𝑞)−𝜏/2 =
2

𝜓
√
𝜋 (𝑞 − 𝑝)

log(1/(4𝑝𝑞)) · 𝜏
2
= log

(
2

𝜓
√
𝜋 (𝑞 − 𝑝)

)
𝜏 =

2 log
(

2
𝜓
√
𝜋 (𝑞−𝑝)

)
log(1/(4𝑝𝑞)) .

By Lemma 4.9 we have: Pr[|𝑦𝑖 − 𝑦𝑖 | ≤ 𝜏] ≥ 1 −𝜓 . □

Up to constant factors, the tail probabilities of our mechanism

are similar to the properties of the Laplace mechanism summarized

in Proposition 2.7. The probabilities depend on the parameters of

the mechanism. In Section 6 we fix the parameters and evaluate the

error in practice. We summarize the tail probabilities for |𝑥𝑖 − 𝑥𝑖 |
in Lemma 4.11.

Lemma 4.11. Let 𝛾 = 𝛼+2
1+𝛼𝑘

𝑠

− 2, 𝑝 = 1
𝛾+2 , 𝑞 = 1 − 𝑝 , 𝑥𝑖 ≤ 𝛽 , and

𝜏 ≥ 𝛼 . Then for Algorithm 3 we have:

Pr[|𝑥𝑖 − 𝑥𝑖 | ≥ 𝜏] < 2 · (4𝑝𝑞) (𝜏/2𝛼)−1/2
√
𝜋 (𝑞 − 𝑝)

,

With probability at least 1 −𝜓 we have:

|𝑥𝑖 − 𝑥𝑖 | <
©«1 +

2 log
(

2
𝜓
√
𝜋 (𝑞−𝑝)

)
log(1/(4𝑝𝑞))

ª®®¬ · 𝛼 .

Proof. It is easy to see that |𝑥𝑖 − 𝑥 ′
𝑖
| < (1 + |𝑦𝑖 − 𝑦𝑖 |) · 𝛼 holds,

as the error of random rounding is strictly less than 1. The bounds
follow from Lemmas 4.9 and 4.10. □

4.3 Generalization to Y-differential privacy
We now generalize the ALP mechanism from 1-differential privacy
to satisfying Y-differential privacy. A natural approach is to use a

function of Y as the parameter for randomized response in Algo-

rithm 2. The projection algorithm is Y-differentially private if we

remove the scaling step and set 𝑝 = 1
Y+2 . However, the expected

per-entry error would be bounded by
8Y+8
Y2

by Equation 1 (with-

out considering hash collisions), which is as large as 𝑂

(
1
Y2

)
for

small values of Y. Other approaches modifying the value of 𝑝 have

a similar expectation.

In the following, we use a simple pre-processing and post-processing

step to achieve optimal error. The idea is to scale the input vector as

well as the parameter 𝛽 by Y before running Algorithm 2. We scale

back the estimates from Algorithm 3 by 1/Y. These generalizations
are given as Algorithm 4 and Algorithm 5, respectively.

Lemma 4.12. Algorithm 4 satisfies Y-differential privacy.

Proof. It follows from the proof of Lemma 4.1 that for any

subset of outputs 𝑆 we have
Pr[ALP1-projection(𝑥 ′) ∈𝑆]
Pr[ALP1-projection(𝑥) ∈𝑆] ≤ 𝑒 ∥𝑥−𝑥

′ ∥1
.

8

Algorithm 4: ALP-projection
Parameters :𝛼, 𝛽, Y > 0, and 𝑠 ∈ N.
Input :𝑘-sparse vector 𝑥 ∈ R𝑑+, where 𝑠 > 2𝑘 .

Sequence of hash functions from domain [𝑑]
to [𝑠], ℎ = (ℎ1, . . . , ℎ𝑚), where𝑚 =

⌈
𝛽Y
𝛼

⌉
.

Output :Y-differentially private representation of 𝑥 .

(1) Scale the entries of 𝑥 such that 𝑥𝑖 = 𝑥𝑖 · Y.
(2) Let ℎ, 𝑧 = ALP1-projection𝛼,𝛽 ·Y,𝑠 (𝑥, ℎ).
(3) Release ℎ and 𝑧.

Algorithm 5: ALP-estimator

Parameters :𝛼, Y > 0.
Input :Embedding 𝑧 ∈ {0, 1}𝑠×𝑚 . Sequence of hash

functions ℎ = (ℎ1, . . . , ℎ𝑚). Index 𝑖 ∈ [𝑑].
Output :Estimate of 𝑥𝑖 .

(1) Let 𝑥𝑖 = ALP1-estimator𝛼 (𝑧, ℎ, 𝑖).
(2) Return

𝑥𝑖
Y .

As such for any pair of neighboring vectors 𝑥 and 𝑥 ′ we have:

Pr[ALP-projection(𝑥 ′) ∈ 𝑆]
Pr[ALP-projection(𝑥) ∈ 𝑆] =

Pr[ALP1-projection(𝑥 ′) ∈ 𝑆]
Pr[ALP1-projection(𝑥) ∈ 𝑆]

≤ 𝑒 ∥𝑥−𝑥
′ ∥1 = 𝑒Y · ∥𝑥−𝑥

′ ∥1 ≤ 𝑒Y .

□

Lemma 4.13. Let 𝛼 = Θ(1) and 𝑠 = Θ(𝑘). The output of Algo-
rithm 4 can be stored using 𝑂 (𝑘𝛽Y) bits.

Proof. It follows from Lemma 4.2 that the output can be stored

using 𝑂

(
(𝑠+log(𝑑))𝛽Y

𝛼

)
bits. Recall that we assume 𝑘 = Ω(log(𝑑)),

i.e., 𝑂

(
(𝑠+log(𝑑))𝛽Y

𝛼

)
= 𝑂 (𝑘𝛽Y). □

Lemma 4.14. Let 𝛼 = Θ(1) and 𝑠 = Θ(𝑘). Then the expected per-
entry error of Algorithm 5 is E[|𝑥𝑖 − 𝑥𝑖 |] ≤ max(0, 𝑥𝑖 − 𝛽) +𝑂 (1/Y)
and the evaluation time is 𝑂 (𝛽Y).

Proof. It is clear that the error of Algorithm 5 is
1
Y times the

error of Algorithm 3 for entries at most 𝛽 . As such the expected per-

entry error follows from Lemma 4.8. The evaluation time follows

directly from Lemma 4.3. □

Lemma 4.15. Let 𝛾 = 𝛼+2
1+𝛼𝑘

𝑠

− 2, 𝑝 = 1
𝛾+2 , 𝑞 = 1 − 𝑝 , 𝑥𝑖 ≤ 𝛽 , and

𝜏 ≥ 𝛼
Y . Then for Algorithm 5 we have:

Pr[|𝑥𝑖 − 𝑥𝑖 | ≥ 𝜏] < 2 · (4𝑝𝑞) (𝜏Y/2𝛼)−1/2
√
𝜋 (𝑞 − 𝑝)

,

With probability at least 1 −𝜓 we have:

|𝑥𝑖 − 𝑥𝑖 | <
©«1 +

2 log
(

2
𝜓
√
𝜋 (𝑞−𝑝)

)
log(1/(4𝑝𝑞))

ª®®¬ ·
𝛼

Y
.

Proof. It follows directly from Lemma 4.11. □

Algorithm 6: Threshold [5]

Parameters :Y, 𝑡 > 0.
Input :𝑘-sparse vector 𝑥 ∈ R𝑑+.
Output :Y-differentially private representation of 𝑥 .

(1) Let 𝑣𝑖 = 𝑥𝑖 + [𝑖 for all 𝑖 ∈ [𝑑], where [𝑖 ∼ Lap(1/Y).
(2) Truncate entries below 𝑡 :

𝑣𝑖 =

{
𝑣𝑖 , if 𝑦𝑖 ≥ 𝑡

0, otherwise

(3) Return 𝑣 .

We are now ready to state the following theorem which summa-

rizes the properties of the ALP mechanism.

Theorem 4.16. Let 𝛼 = Θ(1), 𝑠 = Θ(𝑘). Then there exist an
algorithm where the expected per-entry error is𝑂 (1/Y) for all entries,
the access time is 𝑂 (𝑢Y), and the space usage is 𝑂 (𝑘𝑢Y) bits.

Proof. By setting 𝛽 = 𝑢, it follows directly from Lemmas 4.13

and 4.14. □

The space usage and access time of the mechanism both scale

linearly with the parameter 𝛽 . As such the mechanism performs

well only for small values of 𝑢. However, in many contexts 𝑢 scales

with the input size. One example is a histogram, where 𝑢 is the

number of rows in the underlying dataset. Next, we show how to

handle such cases.

5 COMBINED DATA STRUCTURE
In this section, we combine the ALP mechanism with techniques

from previous work to improve space requirements and access time.

As shown in Theorem 4.16 the ALP mechanism performs well when

all entries are bounded by a small value. The per-entry error is low

only for entries bounded by 𝛽 but the space requirements and access

time scale linearly with 𝛽 . Some of the algorithms from previous

work perform well for large entries but have large per-entry error

for small values. The idea of this section is to combine the ALP

mechanism with such an algorithm to construct a composite data

structure that performs well for both small and large entries.

To handle large values, we use the thresholding technique from

Cormode et al. [5]. It adds noise to each entry, but only stores

entries above a threshold. The pseudocode of the algorithm is given

as Algorithm 6.

Lemma 5.1. Algorithm 6 satisfies Y-differential privacy.

Proof. The algorithm is equivalent to the Laplace mechanism

followed by post-processing. The Laplace mechanism satisfies Y-

differential privacy, and privacy is preserved under post-processing

as stated by Lemma 2.2. □

Lemma 5.2. Let 𝑡 =
ln(𝑑/2)

Y . Then the output of Algorithm 6 is
𝑂 (𝑘)-sparse with high probability.

Proof. Using Definition 2.5 we find that the probability of stor-

ing a zero entry is:

Pr[Lap(1/Y) ≥ 𝑡] = Pr[Lap(1/Y) ≤ −𝑡] = 1

2
𝑒−𝑡Y =

1

𝑑
.

9

Algorithm 7: Threshold ALP-projection

Parameters :𝛼, Y1, Y2 > 0, and 𝑠 ∈ N.
Input :𝑘-sparse vector 𝑥 ∈ R𝑑+, where 𝑠 > 2𝑘 .

Sequence of hash functions from domain [𝑑]
to [𝑠], ℎ = (ℎ1, . . . , ℎ𝑚), where𝑚 =

⌈
𝛽Y2
𝛼

⌉
.

Output : (Y1 + Y2)-differentially private representation

of 𝑥 .

(1) Let 𝑡 =
ln(𝑑/2)

Y1
.

(2) Let 𝑣 = ThresholdY1,𝑡 (𝑥).
(3) Let ℎ, 𝑧 = ALP-projection𝛼,Y2,𝑡,𝑠

(𝑥, ℎ)
(4) Return 𝑣 , ℎ and 𝑧.

By linearity of expectation, the expected number of stored true zero

entries is at most one, and as such the vector is 𝑂 (𝑘)-sparse with
high probability. □

As discussed in Section 3, the expected per-entry error of Al-

gorithm 6 is 𝑂

(
log(𝑑)

Y

)
for worst-case input. We combine the al-

gorithm with the ALP mechanism from the previous section to

achieve 𝑂 (1/Y) expected per-entry error for any input. We use the

threshold parameter 𝑡 as value for parameter 𝛽 in Algorithm 4. The

algorithm is presented in Algorithm 7.

Lemma 5.3. Algorithm 7 satisfies (Y1 + Y2)-differential privacy.

Proof. The two parts of the algorithm are independent as there

is no shared randomness. The first part of the algorithm satisfies

Y1-differential privacy by Lemma 5.1 and the second part satisfies

Y2-differential privacy by Lemma 4.12. As such it follows directly

from composition (Lemma 2.3) that Algorithm 7 satisfies (Y1 + Y2)-
differential privacy. □

Lemma 5.4. Let 𝛼 = Θ(1), 𝑠 = Θ(𝑘), Y1 = Θ(Y2). Then the
output of Algorithm 7 is stored using 𝑂 (𝑘 log(𝑑 + 𝑢)) bits with high
probability.

Proof. It follows from Lemma 5.2 that we can store 𝑣 using

𝑂 (𝑘 log(𝑑+𝑢)) bits with high probability. Since 𝛽 = 𝑡 it follows from

Lemma 4.13 that we can store ℎ and 𝑧 using𝑂 (𝑘𝑡Y2) = 𝑂 (𝑘 log(𝑑))
bits. □

To estimate an entry, we access 𝑣 when a value is stored for

the entry and the ALP embedding otherwise. This algorithm is

presented in Algorithm 8.

Lemma 5.5. Let 𝛼 = Θ(1), 𝑠 = Θ(𝑘), and Y1 = Θ(Y2). Let 𝑣 , ℎ,
and 𝑧 be the output of Algorithm 7 given these parameters. Then the
evaluation time of Algorithm 8 is 𝑂 (log(𝑑)). The expected per-entry
error is 𝑂 (1/Y) and the expected maximum error is 𝑂

(
log(𝑑)

Y

)
.

Proof. The evaluation time follows from Lemma 4.14. That is,

the evaluation time is 𝑂 (𝛽Y) = 𝑂 (𝑡Y) = 𝑂 (log(𝑑)).
The error depends on both parts of the algorithm. The expected

per-entry error for the 𝑖th entry ismax(0, 𝑥𝑖 − 𝛽) +𝑂 (1/Y2) when
𝑣𝑖 = 0 by Lemma 4.14. That is, when [𝑖 is less than 𝛽 − 𝑥𝑖 in Algo-

rithm 6. When 𝑣𝑖 ≠ 0 the error is the absolute value of [𝑖 . That is,

Algorithm 8: Threshold ALP-estimator

Parameters :𝛼, Y2 > 0.
Input :Vector 𝑣 ∈ R𝑑+. Embedding 𝑧 ∈ {0, 1}𝑠×𝑚 .

Sequence of hash functions ℎ = (ℎ1, . . . , ℎ𝑚).
Index 𝑖 ∈ [𝑑].

Output :Estimate of 𝑥𝑖 .

(1) Estimate the entry using either the vector or the embedding

such that:

𝑥𝑖 =

{
𝑣𝑖 , if 𝑣𝑖 ≠ 0

ALP-estimatorY2,𝛼 (𝑧, ℎ, 𝑖), otherwise

(2) Return 𝑥𝑖 .

we can analyze it using conditional probability and the probability

density function of the Laplace distribution from Definition 2.4.

E[|𝑥𝑖 − 𝑥𝑖 |] = E[|𝑥𝑖 − 𝑥𝑖 | | 𝑣𝑖 = 0] · Pr[𝑣𝑖 = 0]
+ E[|𝑥𝑖 − 𝑥𝑖 | | 𝑣𝑖 ≠ 0] · Pr[𝑣𝑖 ≠ 0]

≤ (max(0, 𝑥𝑖 − 𝛽) +𝑂 (1/Y2)) · Pr[Lap(1/Y1) < 𝛽 − 𝑥𝑖]

+
∫ ∞

𝛽−𝑥𝑖
|𝑣 − 𝑥𝑖 | ·

Y1

2
𝑒−|𝑣−𝑥𝑖 |Y1 𝑑𝑣

<

∫ 𝛽−𝑥𝑖

−∞
(|𝑣 − 𝑥𝑖 | +𝑂 (1/Y2)) ·

Y1

2
𝑒−|𝑣−𝑥𝑖 |Y1 𝑑𝑣

+
∫ ∞

𝛽−𝑥𝑖
|𝑣 − 𝑥𝑖 | ·

Y1

2
𝑒−|𝑣−𝑥𝑖 |Y1 𝑑𝑣

<

∫ ∞

−∞
|𝑣 − 𝑥𝑖 | ·

Y1

2
𝑒−|𝑣−𝑥𝑖 |Y1 𝑑𝑣 +𝑂 (1/Y2)

= 𝑂 (1/Y1) +𝑂 (1/Y2) = 𝑂 (1/Y) .

The expected maximum error of Algorithm 6 is 𝑂

(
log(𝑑)

Y

)
and the

output of the Algorithm 5 is at most 𝛽 . Since 𝛽 = 𝑂

(
log(𝑑)

Y

)
the

expected maximum error is 𝑂

(
log(𝑑)

Y

)
. □

5.1 Removing the dependency on dimension
To make access time independent of the dimension 𝑑 , we can turn

to approximate differential privacy. This allows us to use a smaller

threshold in the initial thresholding approach, which in turn results

in smaller values for 𝛽 in the ALP mechanism.

The following algorithm is similar to that introduced by Korolova

et al. [13], which we discussed in Section 3. It adds noise to non-zero

entries only, and uses a threshold to satisfy approximate differential

privacy. Our algorithm differs from the work of Korolova et al. by

using a random rounding step. This step is not needed in a discrete

setting, where at most a single zero-valued entry is changed to a

non-zero entry for neighboring vectors. However, in the real-valued

context, several zero entries can change.

Lemma 5.6. Algorithm 9 satisfies (Y, 𝛿)-differential privacy.

Proof. Let 𝑥 and 𝑥 ′ be neighboring vectors. We consider two

additional vectors 𝑥 and 𝑥 ′ such that:

𝑥𝑖 =

{
min(1, 𝑥 ′

𝑖
), if 𝑥𝑖 ≤ 1

𝑥𝑖 , otherwise;

10

Algorithm 9: Threshold2 (Following technique by [13])

Parameters :Y, 𝛿 > 0.
Input :𝑘-sparse vector 𝑥 ∈ R𝑑+.
Output : (Y, 𝛿)-differentially private approximation of 𝑥 .

(1) Apply random rounding to non-zero entries below 1 such

that:

𝑦𝑖 =

{
RandRound (𝑥𝑖) , if 0 < 𝑥𝑖 < 1

𝑥𝑖 , otherwise

(2) Let 𝑣𝑖 = 𝑦𝑖 + [𝑖 for all non-zero entries, where

[𝑖 ∼ Lap(1/Y).
(3) Let 𝑡 =

ln (1/𝛿)
Y + 2.

(4) Truncate entries below 𝑡 :

𝑣𝑖 =

{
𝑣𝑖 , if 𝑦𝑖 ≠ 0 and 𝑣𝑖 ≥ 𝑡

0, otherwise

(5) Return 𝑣 .

𝑥 ′𝑖 =

{
1, if 𝑥 ′

𝑖
< 1 and 1 < 𝑥𝑖

𝑥 ′
𝑖
, otherwise.

The vectors are constructed such that 𝑥 and 𝑥 can only differ for

entries at most 1 in both vectors. The same holds for 𝑥 ′ and 𝑥 ′.
Additionally, the ℓ1-distance is still at most 1 between any pair of

vectors.

We find the probability of outputting anything for an entry less

than or equal to 1 as:

Pr[𝑣𝑖 ≠ 0|𝑥𝑖 ≤ 1] = Pr[𝑦𝑖 = 1] · Pr[Lap(1/Y) ≥ 𝑡 − 1]
= 𝑥𝑖 · Pr[Lap(1/Y) ≤ −(𝑡 − 1)]

= 𝑥𝑖 ·
1

2
𝑒−(𝑡−1)Y

= 𝑥𝑖 ·
1

2
𝑒− ln(1/𝛿)−Y

= 𝑥𝑖
𝛿

2 · 𝑒Y .

Since 𝑥 and 𝑥 only differ for entries less than or equal to 1 we

have for any subset of outputs 𝑆 :

Pr[Threshold2(𝑥) ∈ 𝑆] ≤ Pr[Threshold2(𝑥) ∈ 𝑆]

+
∑︁
𝑖∈[𝑑]

|𝑥𝑖 − 𝑥𝑖 |
𝛿

2 · 𝑒Y

≤ Pr[Threshold2(𝑥) ∈ 𝑆] + 𝛿

2 · 𝑒Y .

The inequality holds in both directions and for the pair of 𝑥 ′ and
𝑥 ′ as well.

By definition 𝑥 and 𝑥 ′ only differ for entries of at least 1. As such
we can ignore the random rounding step and we have:

Pr[Threshold2(𝑥) ∈ 𝑆] ≤ 𝑒 ∥𝑥−𝑥
′ ∥1Y Pr[Threshold2(𝑥 ′) ∈ 𝑆]

≤ 𝑒Y · Pr[Threshold2(𝑥) ∈ 𝑆] .

Using the inequalities above we have:

Pr[Threshold2(𝑥) ∈ 𝑆] ≤ Pr[Threshold2(𝑥) ∈ 𝑆] + 𝛿

2𝑒Y

≤ 𝑒Y · Pr[Threshold2(𝑥 ′) ∈ 𝑆] + 𝛿

2 · 𝑒Y

≤ 𝑒Y ·
(
Pr[Threshold2(𝑥 ′) ∈ 𝑆] + 𝛿

2 · 𝑒Y

)
+ 𝛿

2 · 𝑒Y
≤ 𝑒Y · Pr[Threshold2(𝑥 ′) ∈ 𝑆] + 𝛿 .

□

Lemma 5.7. Let 𝛿 = 𝑂

(
1
𝑘

)
. Then the expected maximum error of

Algorithm 9 is 𝑂
(
log(1/𝛿)

Y

)
.

Proof. The expectedmaximum error added by the Laplace noise

is𝑂

(
log(𝑘)

Y

)
, since we add noise to at most 𝑘 entries. By removing

entries we add error of up to 𝑂

(
log(1/𝛿)

Y

)
. As such the expected

maximum error for worst-case input is:

E[∥𝑥 − 𝑣 ∥∞] ≤ 𝑂

(
log(𝑘)

Y

)
+𝑂

(
log(1/𝛿)

Y

)
= 𝑂

(
log(1/𝛿)

Y

)
.

□

In the following, we use Algorithm 9 instead of Algorithm 6 in

Step (2) of Algorithm 7.

Lemma 5.8. Let 𝛼 = Θ(1), 𝑠 = Θ(𝑘), Y1 = Θ(Y2), and 𝛿 > 0 with
𝛿 = 𝑂 (1/𝑘). By using Algorithm 9 in Algorithm 7 the access time is
𝑂 (log(1/𝛿)). The expected per-entry error is𝑂 (1/Y) and the expected
maximum error is 𝑂

(
log(1/𝛿)

Y

)
. The combined mechanism satisfies

(Y1 + Y2, 𝛿)-differential privacy.

Proof. The proof is the same as the proofs of Lemmas 5.3 and 5.5.

□

Lemma 5.9. Let 𝛼 = Θ(1), 𝑠 = Θ(𝑘), and Y1 = Θ(Y2). Then
the memory requirement of combining Algorithm 9 and the ALP
mechanism is 𝑂 (𝑘 (log(𝑑 + 𝑢) + log(1/𝛿))).

Proof. The output of Algorithm 9 is always 𝑘-sparse and can

be represented using 𝑂 (𝑘 log(𝑑 + 𝑢)) bits. We set 𝛽 =
ln(1/𝛿)

Y2
+ 2

and therefore ℎ and 𝑧 are represented using 𝑂 (𝑘 log(1/𝛿)) bits by
Lemma 4.13. □

We are now ready to summarize our results for both pure and

approximate differential privacy.

Theorem 5.10. Let 𝛼 = Θ(1), 𝑠 = Θ(𝑘), and Y > 0. Then there
exists an Y-differentially private algorithm with 𝑂 (1/Y) expected
per-entry error, 𝑂

(
log(𝑑)

Y

)
expected maximum error, access time of

𝑂 (log(𝑑)), and space usage of𝑂 (𝑘 log(𝑑 +𝑢)) with high probability.

Proof. It follows directly from Lemmas 5.3, 5.4 and 5.5. □

11

Theorem 5.11. Let 𝛼 = Θ(1), 𝑠 = Θ(𝑘), and Y, 𝛿 > 0. Then there
exist an (Y, 𝛿)-differentially private algorithm with 𝑂 (1/Y) expected
per-entry error, 𝑂

(
log(1/𝛿)

Y

)
expected maximum error, access time of

𝑂 (log(1/𝛿)), and space usage of 𝑂 (𝑘 (log(𝑑 + 𝑢) + log(1/𝛿))).

Proof. It follows directly from Lemmas 5.6, 5.8 and 5.9. □

6 EXPERIMENTS
In this section, we discuss the per-entry error of ALP1-estimator

(Algorithm 3) in practice. Let 𝛾 = 𝛼+2
1+𝛼𝑘

𝑠

− 2. By Lemma 4.4 and 4.7

the expected per-entry error of ALP1-estimator is upper bounded

by:

E[|𝑥𝑖 − 𝑥𝑖 |] ≤
(
1

2
+ 4𝛼 + 4

𝛼2
+ 4𝛾 + 4

𝛾2

)
· 𝛼 .

Figure 3(a) shows the upper bound for varying values of 𝑘/𝑠 and
𝛼 . Recall that 𝑘/𝑠 is a bound on the probability of a hash collision.

We see that the effect of hash collisions on the error increases for

large values of 𝛼 , as each bit in the embedding is more significant.

We discuss how the upper bound compares to practice next.

Experimental Setup. We designed experiments to evaluate the

effect of the adjustable parameters 𝛼 and 𝑠 on the expected per-

entry error of ALP1-estimator. The experiments were performed on

artificial data. For our setup, we set parameter 𝛽 = 5000 and chose

a true value 𝑥𝑖 uniformly at random in the interval [0, . . . , 𝛽]. We

run only on artificial data, as uniform data does not benefit the al-

gorithm, and we can easily simulate worst-case conditions for hash

collisions. We simulate running the ALP1-projection algorithm by

computing 𝑦𝑖 , simulating hash collisions, and applying randomized

response. The probability for hash collisions is fixed in each experi-

ment and the same probability is used for all bits. This simulates

worst-case input in which all other non-zero entries have a true

value of at least 𝛽 . We increment 𝛼 by steps of 0.1 in the interval

[0.1, . . . , 10] and the probability of a hash collision by 0.05 in the

interval [0, . . . , 0.2]. The probability of 0 serves only as a baseline,

as it is not achievable in practice for 𝑘 > 1. The experiment was

repeated 105 times for every data point.

Figure 3(b) shows plots of the mean absolute error of the exper-

iments. As 𝛼 is increased, the error drops off at first and slowly

climbs. The estimates of 𝑦𝑖 are more accurate for large values of 𝛼 .

However, any inaccuracy is more significant, as 𝑦𝑖 is scaled back

by a larger value. The error from the random rounding step also

increases with 𝛼 . The plots of the upper bound and observed error

follow similar trajectories. However, the upper bound is approxi-

mately twice as large for most parameters.

Fixed Parameters. The experiments show how different values of

𝛼 and 𝑠 affect the expected per-entry error. However, the parameters

also determine constant factors for space usage and access time.

The space requirements scale linearly in
𝑠
𝛼 and the access time is

inversely proportional to 𝛼 . As such, the optimal parameter choice

depends on the use case due to space, access time, and error trade-

offs.

To evaluate the error distribution of the ALP1-estimator algo-

rithm we fixed the parameters of an experiment. We set 𝛼 = 3 and

the hash collision probability to 0.1. We repeated the experiment

106 times.

The error distribution is shown in Figure 3(c). The mean absolute

error of the experiment is 6.4 and the standard deviation is 11.
Plugging in the parameters in Lemma 4.11, with probability at least

0.9 the error is at most

|𝑥𝑖 − 𝑥𝑖 | < 3 +
6 log

(
5

0.12
√
𝜋

)
log

(
25

19.24

) ≈ 75.33 .

The error of the observed 90th percentile is 15.78, which is shown

in Figure 3(c) using vertical lines. Again, this shows that the upper

bounds are pessimistic.

For comparison, the plots include the Laplace distribution with

scale parameters 1 and 4.5. Note that the Laplace distribution with

parameter 1 is optimal for the privacy budget. The standard devia-

tion of the distribution with scale 4.5 is 6.36 and as such the mean

absolute error is similar to the ALP mechanism.

The distribution is slightly off-center, and the mean error is 2.33.
This is expected due to hash collisions. The effect of hash collisions

is also apparent for the largest observed errors. The lowest observed

error was−114, while the highest was 274. There is a clear trade-off
between space usage and per-entry error. We reran the experiment

with hash collision probability 0.01 using the same value for 𝛼 .

The error improved for all the metrics mentioned above. The mean

absolute error is 4.8, the standard deviation is 7.8, the mean error

is 0.18, the 90th percentile is 11.5, and the largest observed error

is 147.

7 SUGGESTIONS TO PRACTITIONERS
The ALP mechanism introduced in this paper combines the best

of three worlds: It has low error similar to the Laplace mechanism,

produces compact representations using asymptotically optimal

space, and has an access time that scales only with 𝑂 (log𝑑).
In an application that wants to make use of differentially private

histograms/vectors, one first has to get an overview of the assumed

properties of the data before making a choice on which approach

to use. If 𝑑 is small or the data is assumed to be dense, the Laplace

mechanism will offer the best performance. If the data is sparse

and the dimension 𝑑 is large, the analyst must know which error

guarantee she wishes to achieve, and which access time is feasible

in the setting where the application is deployed. If a larger error is

acceptable for “small” entries or access time is crucial, just applying

the thresholding technique [5, 13] is the better choice. Otherwise, if

small error is paramount or an access time of 𝑂 (log𝑑) is sufficient,

the ALP mechanism will provide the best solution.

Variants. We assume in this paper that𝑘 is a known bound on the

sparsity of the input data. However, in some applications the value

of 𝑘 itself is private. Here we briefly discuss approaches in such

settings. We use the value of 𝑘 to select the size of the embedding,

such that the probability of hash collisions is sufficiently small.

When 𝑘 is not known we can still bound the probability of hash

collisions.

If the input is a histogram the sparsity differs by at most 1 for

neighboring datasets. As such we can use a fraction of the pri-

vacy budget to estimate the sparsity. Note that this is not possible

12

(a) Upper bound on expected per-entry error (b) Observed mean per-entry error (c) Error distribution 𝛼 = 3 and collisions = 0.1.

Figure 3: Theoretical expected per-entry error and experiment results.
Note that the y-axes for the plots use different scales.

for vectors, as the difference in sparsity can be as large as 𝑑 for

neighboring datasets.

If ∥𝑥 ∥1 = 𝑛 is known then we have ∥𝑥 ∥1 = 𝑛Y for the scaled

input. We can bound the probability of hash collisions by a constant

when the size of the embedding is 𝑂 (𝑛Y) bits. If ∥𝑥 ∥1 is unknown

we can estimate it using a fraction of the privacy budget. Note that

the space differs from the 𝑘-sparse setting, and remains 𝑂 (𝑛Y) bits
when applying the thresholding techniques.

An implementation of a variant of the ALP mechanism is avail-

able as part of the open source project OpenDP (https://opendp.org/)

in the repository https://github.com/opendp/opendp.

8 OPEN PROBLEMS
The main open problem that we leave is if it is possible to achieve

similar space and error with constant time access. We know of a

way (based on the count-min sketch) to achieve optimal expected
error with constant time access and space within a logarithmic

factor of optimal. However, this method does not have strong tail

bounds on the error.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their detailed suggestions

that helped improve the paper. Christian Janos Lebeda and Rasmus

Pagh are affiliated with Basic Algorithms Research Copenhagen

(BARC), supported by the VILLUM Foundation grant 16582.

REFERENCES
[1] Sven Erick Alm. 2002. Simple random walk. Unpublished manuscript (2002).

http://www2.math.uu.se/~sea/kurser/stokprocmn1/slumpvandring_eng.pdf

[2] Victor Balcer and Salil P. Vadhan. 2019. Differential Privacy on Finite Computers.

J. Priv. Confidentiality 9, 2 (2019).

[3] Mark Bun, Kobbi Nissim, and Uri Stemmer. 2019. Simultaneous Private Learning

of Multiple Concepts. J. Mach. Learn. Res. 20 (2019), 94:1–94:34.
[4] Larry Carter and Mark N. Wegman. 1979. Universal Classes of Hash Functions.

J. Comput. Syst. Sci. 18, 2 (1979), 143–154.
[5] Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Thanh T. L. Tran.

2012. Differentially private summaries for sparse data. In ICDT. ACM, 299–311.

[6] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Pentto-

nen. 1997. A Reliable Randomized Algorithm for the Closest-Pair Problem. J.
Algorithms 25, 1 (1997), 19–51.

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2016. Cali-

brating Noise to Sensitivity in Private Data Analysis. J. Priv. Confidentiality 7, 3

(2016), 17–51.

[8] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-

tial Privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.
[9] Noam D. Elkies. 2013. Upper limit on the central binomial coeffi-

cient. https://mathoverflow.net/questions/133732/upper-limit-on-the-central-

binomial-coefficient. [Online; accessed 15-September-2021].

[10] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. 1994. Concrete Mathe-
matics: A Foundation for Computer Science, 2nd Ed. Addison-Wesley.

[11] Torben Hagerup. 1998. Sorting and Searching on the Word RAM. In STACS
(Lecture Notes in Computer Science, Vol. 1373). Springer, 366–398.

[12] Moritz Hardt and Kunal Talwar. 2010. On the geometry of differential privacy.

In STOC. ACM, 705–714.

[13] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros

Ntoulas. 2009. Releasing search queries and clicks privately. In WWW. ACM,

171–180.

[14] Fragkiskos Koufogiannis, Shuo Han, and George J. Pappas. 2015. Optimality of

the Laplace Mechanism in Differential Privacy. CoRR abs/1504.00065 (2015).

[15] Stanley LWarner. 1965. Randomized response: A survey technique for eliminating

evasive answer bias. J. Amer. Statist. Assoc. 60, 309 (1965), 63–69.

13

https://opendp.org/
https://github.com/opendp/opendp
http://www2.math.uu.se/~sea/kurser/stokprocmn1/slumpvandring_eng.pdf
https://mathoverflow.net/questions/133732/upper-limit-on-the-central-binomial-coefficient
https://mathoverflow.net/questions/133732/upper-limit-on-the-central-binomial-coefficient

A CLOSED-FORM PROOF OF LEMMA 4.6
Here we provide a closed-form expression used in the proof of

Lemma 4.6.

In the proof, we will make use of general binomial coefficient([10,

Equation 5.1]):

(
𝑟

𝑘

)
=
𝑟 (𝑟 − 1) . . . (𝑟 − 𝑘 + 2) (𝑟 − 𝑘 + 1)

𝑘!
,

and the binomial theorem ([10, Equation 5.12]):

(1 + 𝑧)𝑟 =

∞∑︁
𝑘=0

(
𝑟

𝑘

)
(𝑧)𝑘 .

Starting from an infinite series with 𝑧 < 1/4, we simplify as

follows:

∞∑︁
𝑘=0

𝑘

(
2𝑘

𝑘

)
(𝑧)𝑘 =

∞∑︁
𝑘=1

𝑘
(2𝑘)!
𝑘!𝑘!

𝑧𝑘

=

∞∑︁
𝑘=1

𝑘

𝑘 (𝑘 − 1
2) (𝑘 − 1) . . .

(
3
2

)
1
(
1
2

)
𝑘!𝑘!

22𝑘𝑧𝑘

=

∞∑︁
𝑘=1

(𝑘 − 1
2) (𝑘 − 3

2) . . .
(
5
2

) (
3
2

) (
1
2

)
(𝑘 − 1)! (4𝑧)𝑘

=
4𝑧

2

∞∑︁
𝑘=1

(𝑘 − 1
2) (𝑘 − 3

2) . . .
(
5
2

) (
3
2

)
(𝑘 − 1)! (4𝑧)𝑘−1

= 2𝑧
∞∑︁
𝑘=1

(
− 3
2

) (
− 5
2

)
. . . (−𝑘 + 3

2) (−𝑘 + 1
2)

(𝑘 − 1)! (−4𝑧)𝑘−1

= 2𝑧
∞∑︁
𝑘=1

(− 3
2

𝑘 − 1

)
(−4𝑧)𝑘−1

= 2𝑧
∞∑︁
𝑘=0

(− 3
2

𝑘

)
(−4𝑧)𝑘

=
2𝑧

(1 − 4𝑧)3/2
.

Let 𝑝 = 𝑎
𝑎+𝑏 and 𝑞 = 𝑏

𝑎+𝑏 . Then we have:

1 − 4𝑝𝑞 =
(𝑎 + 𝑏)2

(𝑎 + 𝑏)2
− 4𝑎𝑏

(𝑎 + 𝑏)2

=
𝑎2 + 𝑏2 − 2𝑎𝑏

(𝑎 + 𝑏)2

=
(𝑏 − 𝑎)2

(𝑎 + 𝑏)2

= (𝑞 − 𝑝)2 .

Finally, let 𝑝 < 𝑞 and let 𝑧 = 𝑝𝑞. This gives us the closed-form

expression:

∞∑︁
𝑘=0

𝑘

(
2𝑘

𝑘

)
(𝑝𝑞)𝑘 =

2𝑝𝑞

(1 − 4𝑝𝑞)3/2

=
2𝑝𝑞

((𝑞 − 𝑝)2)3/2

=
2𝑝𝑞

(𝑞 − 𝑝)3
.

14

	Abstract
	1 Introduction
	1.1 Our results
	1.2 Techniques
	1.3 Overview

	2 Preliminaries
	3 Related work
	4 The ALP mechanism
	4.1 A 1-differentially private algorithm
	4.2 Estimating an entry
	4.3 Generalization to 𝜀-differential privacy

	5 Combined data structure
	5.1 Removing the dependency on dimension

	6 Experiments
	7 Suggestions to Practitioners
	8 Open problems
	Acknowledgments
	References
	A Closed-form proof of Lemma 4.6

