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ABSTRACT

Implementations of cryptographic libraries have been scrutinized
for secret-dependent execution behavior exploitable by microarchi-
tectural side-channel attacks. To prevent unintended leakages, most
libraries moved to constant-time implementations of cryptographic
primitives. There have also been efforts to certify libraries for use
in sensitive areas, like Microsoft CNG and Botan, with specific
attention to leakage behavior.

In this work, we show that a common oversight in these libraries
is the existence of utility functions, which handle and thus pos-
sibly leak confidential information. We analyze the exploitability
of base64 decoding functions across several widely used crypto-
graphic libraries. Base64 decoding is used when loading keys stored
in PEM format. We show that these functions by themselves leak
sufficient information even if libraries are executed in trusted exe-
cution environments. In fact, we show that recent countermeasures
to transient execution attacks such as LVI ease the exploitability
of the observed faint leakages, allowing us to robustly infer suffi-
cient information about RSA private keys with a single trace. We
present a complete attack, including a broad library analysis, a
high-resolution last level cache attack on SGX enclaves, and a fully
parallelized implementation of the extend-and-prune approach that
allows a complete key recovery at medium costs.

1 INTRODUCTION

Due to the widespread adoption of cloud-computing and virtual
machines, architectural and microarchitectural attacks exploiting
shared resources have become a major concern for security-critical
applications [1-3]. Within the last decade, these attacks have seen
great advances [4-7], culminating in jeopardizing the security of
trusted execution environments, cloud computing, and finally re-
vealing transient execution bugs in all modern processors [8-11].
A popular target of these attacks are cryptographic implemen-
tations, as they contain critical information that is both compact
and used for extensive and often highly optimized computations.
As a result, cryptographic implementations have been analyzed
for exploitable code behavior that leaks information in great de-
tail. This task has been significantly eased by the development of
more automated analysis techniques, which are offered by tools
like CacheAudit [12], DATA [13] or Microwalk [14]. In fact, recent
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studies have identified remaining exploitable code sections in cryp-
tographic implementations, with increasingly small leakages [7, 15—
17] and have resulted in a long stream of CVEs for these libraries.
These remaining leakages are getting smaller and more difficult to
find due to the vast effort that went into the analysis. Some libraries
have even been certified for secure implementation and design:
Microsoft Cryptography API: Next Generation (CNG) is periodically
FIPS-validated [18]; Botan has been extensively audited to be resis-
tant against common side-channel attacks, and is thus authorized
for use in sensitive applications [19].

At the same time, Intel has released numerous mitigations for
transient execution bugs which significantly altered the efficacy of
microarchitectural attacks, in particular in highly protected envi-
ronments such as Intel Software Guard Extensions (SGX). Coun-
termeasures to Foreshadow [10], also known as L1 Terminal Fault,
now prevent L1 Cache attacks on SGX [20], while attacks exploit-
ing Simultaneous Multithreading (SMT) should be prevented by
enclave developers ensuring operation on private cores.

1.1 Our Contribution

In this work, we show that despite the increasingly rigorous analy-
sis of cryptographic libraries, microarchitectural attacks are still a
threat. Our analysis finds that remaining issues are not in the cryp-
tographic routines that have been extensively analyzed by other
publications. Instead, we investigate utility functions, which are a
vital part of cryptographic libraries, but have thus far been ignored
in most studies. Clearly, these functions compute on sensitive data
and are thus potential subject to information leakage.

In particular, we focus on functionality that decodes secret keys
from a format suitable for storage and converts them into binary
data used at runtime. We show how such a functionality can be
exploited via a faint last level cache (LLC) leakage.

More concretely, we investigate RSA keys that are stored in the
popular PEM format, which uses base64 to encode binary data in
printable characters. The decoded information is later processed in
the constant-time cryptographic implementations of the library.

Usually, the leakage of the decoding process is quite faint and ex-
tremely difficult to exploit: Subsequent table accesses during decod-
ing are only few instructions apart and will be executed out-of-order,
resulting in extremely high noise, while featuring only minimal
leakage to begin with. In fact, even a powerful attack that combines



three different microarchitectural attack techniques, the page fault
side channel [21], the single-stepping of SGX-step [22], and a last-
level cache attack for spatial resolution of cache accesses [2] has
problems to distinguish two close cache hits in the LLC due to the
noise. Thus, other studies which already noticed such leakages in
key decoding [13] ignored these findings, likely because they were
not deemed exploitable, and the vulnerable code remained unfixed.

Many of the recent microcode updates render side-channel at-
tacks on SGX more difficult, in particular by flushing the L1 data
cache and reflecting the SMT state in the attestation. However,
it turns out that the recent mitigation against Load Value Injec-
tion (LVI) and the resulting serialization of memory accesses in
SGX enclaves enables us to sample the decoding with significantly
reduced noise and to obtain almost error-free leakage, even from a
single key loading event. To practically exploit the observed leak-
ages, we make use of state-of-the-art cryptanalytic methods.

In summary our contributions are:

o Fine-grained leakage analysis of the base64 decoding func-
tions for several common crypto libraries, including the cer-
tified Botan library.

o A sophisticated microarchitectural attack that manages to
extract the observed leakages from SGX enclaves with a sin-
gle observation, in spite of and because of the microcode and
countermeasures introduced by Intel in response to transient
execution attacks.

e An optimized RSA key recovery method including a highly
scalable implementation that, given medium resources, al-
lows to reconstruct the key from very weak leakages of 5
of the 6 redundant key parameters commonly used for RSA
key storage, as well as a thorough performance analysis.

We plan to publish the complete code of our attack.

1.2 Responsible Disclosure

We have informed the maintainers of all studied libraries about our
findings in December 2020.

Botan: CVE-2021-24115, fixed with version 2.17.3
GNU Nettle: No response, not yet fixed

mbedTLS: CVE-2021-24119, fixed with version 2.26.0
MS CryptoAPI: Declared as not urgent

NSS: Not yet fixed

OpenSSL: No response, not yet fixed

RustSGX: CVE-2021-24117, pending fix

wolfSSL: CVE-2021-24116, fixed with version 4.6.0

2 BACKGROUND
2.1 Microarchitectural Attacks

A common approach in microarchitectural attacks is the exploita-
tion of contention in microarchitectural buffers within the CPU,
which are intended to improve performance. The usually unprivi-
leged attacker manipulates the content of a buffer or cache to pro-
voke abnormal behavior, which can be measured as side-channel
information like timing behavior, and leak secrets partially.

2.1.1 Cache attacks. A frequent target are CPU caches, from the
core-specific L1 caches [4, 23], to the unified, inclusive and shared
L3 caches [2, 5]. Many techniques evolved, allowing the adversary

Florian Sieck, Sebastian Berndt, Jan Wichelmann, and Thomas Eisenbarth

to measure timing differences regarding data or instruction accesses
[6, 24-26], in order to determine whether the victim code accessed
a certain cache line.

Intel’s processors have a set-associative cache layout, where each
64-byte cache line maps into a specific cache set. Each cache set has
a limited number of ways, which is the number of cache lines it
can contain at any time. The cache sets of the L3 cache are divided
into slices, where the number of slices usually corresponds to the
number of logical cores. The mapping of physical address to slices
is computed by an undocumented hash function.

Prime+Probe [24] determines a victim’s cache access by first
priming a complete cache set with attacker values, the so-called
eviction set, then waiting on the victim’s code execution and finally
probing the complete cache set with the same attacker values. If
the probing access time is below a threshold, all attacker values
were served from the cache and the victim did not access the data
of interest. Otherwise, if the access time is above that threshold, the
victim accessed data that was mapped to the same cache set and
thus evicted some of the attacker’s values. Unlike Flush+Reload [6],
this procedure does not require any shared memory, but it is less
precise and prone to noise, since a complete set is probed instead
of a single cache line. When attacking the sliced L3 cache, it is
advisable to use one eviction set per slice, to reduce noise caused by
the remaining system and its processes. Prime+Probe first requires
to construct eviction set(s), meaning finding csiz. addresses which
map to the cache set that is to be primed, where c;;z, specifies the
size of a cache set. Depending on the attacker model, this can be
done using virtual to physical address translation, or through huge
pages usually giving the attacker control over the cache set index
bits [2, 27]. Constructing eviction sets per slice does not require
the knowledge of the address to slice mapping. Instead they can be
derived incrementally from the cache set’s eviction set [2].

2.1.2  Vulnerability Detection. Finding side-channel vulnerabilities
in programs by manually inspecting high level and assembly code
is a cumbersome task and will reveal only a small portion of vulner-
abilities, and has to be repeated each time the code was changed.

Automated vulnerability finding can assist in this endeavor. One
approach to this end is to leverage dynamic binary instrumentation
and analysis combined with input fuzzing, as done by DATA [13]
and Microwalk [14]. These frameworks find non-constant-time be-
havior by instrumenting a piece of code under test and executing it
multiple times with different inputs (secrets), while recording the
execution traces. Deviations between traces suggest secret depen-
dent behavior. The tools quantify the leakages by calculating the
mutual information between input and observed traces.

There also are different approaches like e. g. CacheAudit [12],
which applies static analysis to find cache side channels.

2.2 Intel SGX

Running security relevant software or algorithms processing confi-
dential data in untrusted environments has become quite common.
Intel Software Guard Extensions (SGX) aims to provide a hardware
root of trust, enabling users to run software in isolated environ-
ments, called enclaves, which can perform confidential computa-
tions in the presence of an untrusted operating system (OS) without
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leaking secret information [28, 29]. To allow the application devel-
oper to verify the integrity and security of their application, Intel
SGX supports two remote attestation schemes [30, 31].

2.2.1 Memory management. Intel SGX leaves the memory man-
agement to the OS, which is responsible for allocating memory
and mapping physical to virtual memory addresses. This allows
untrusted software to tamper with page table entry (PTE) meta in-
formation like the PTE accessed bit [22]. However, Intel SGX specif-
ically guarantees integrity and confidentiality of the data in RAM.
All data in RAM is protected by memory encryption [32] and kept
in the Enclave Page Cache (EPC), which is inaccessible from out-
side SGX. To counteract manipulations of the address translation,
SGX keeps track of all EPC memory pages including their expected
virtual address in the Enclave Page Cache Map (EPCM) [33].

2.2.2  Context switches. Programs running in Intel SGX are subject
to context switches as any other process. Since enclaves are iso-
lated from the remaining system, context switch require dedicated
instructions provided by SGX [29, 33]. After an enclave was created
with the ECREATE instruction, it can be entered with EENTER. In case
the processor is interrupted while in enclave mode, SGX ensures
that Asynchronous Enclave Exit (AEX) is executed, storing the
execution state to a secure area and cleaning up the registers. Ad-
ditionally, the instruction pointer is set to the Asynchronous Exit
handler Pointer (AEP), causing the system’s interrupt handler to
return to AEP when it finishes. Finally, ERESUME can be called from
the asynchronous exit handler to resume execution of the enclave.

2.2.3 Attacks on Intel SGX. Trusted execution environments like
Intel SGX feature an attacker model which assumes an untrusted OS,
and thus enables adversaries to tamper with all system resources
to extract information from isolated enclaves.

Amplifying side-channels with control over system events and
resources, such as page faults or interrupts, and using this to reduce
noise, is called a controlled-channel attack [21].

SGX-Step [22] introduced a framework for controlled-channel
attacks on SGX, which was used in many subsequent attacks [7,
11, 34, 35]. It enables the attacker to single step enclaves and to
manipulate page table entries in order to get insight into the control
flow.

Transient execution attacks on SGX [10, 11, 36-38] have forced
Intel to publish microcode and software mitigations. One counter-
measure pushed via microcode updates is to flush microarchitec-
tural buffers such as the L1 data cache upon enclave exit [20]. In
addition, compilers now insert fences in enclave code to prevent
Spectre-like attacks. Furthermore, disabling simultaneous multi-
threading is recommended when executing enclaves. In addition to
transient execution attacks and controlled-channel attacks, other
vulnerabilities were found targeting e. g. the cache [39, 40] or the
branch history [41].

2.3 RSA Key recovery

Recovering the complete RSA key from partial information has
been studied in numerous settings. In theory, it is sufficient to
store only one of the primes p or q as private key, but this is very
inefficient. To speed up the decryption of messages via the Chinese
Remainder Theorem (CRT), all of the values (p, g, d, dp, dq, q;,l) are

stored, where dp :=d (mod p — 1), dq :=d (mod g — 1), and
(q;,1 -q) (mod p) = 1. Note that the knowledge of any single of
these variables is sufficient to reconstruct all other variables, given
the public key (N, e) [42].

There are roughly two kinds of partial information that are
obtained by side-channel attacks: consecutive information and non-
consecutive information. In the consecutive case, the attacker ob-
tains a few number of consecutive blocks of information about some
of the variables, e. g. the (p)/2 most significant bits of p, where
(p) is the encoding length of p, i.e. (p) := [logy(p + 1)] or the
(p)/4 most significant bits of p and the (p)/4 least significant bits
of p. This continuity gives a high amount of structured information,
which allows an attacker to mount attacks based on lattices. For
the many applications of this technique to reconstruct parts of the
private key, we refer to the surveys [43-45]. This technique was
also used in a recent work to recover RSA keys [46], where the
authors were able to obtain partial leakages of q on consecutive
positions and could use this information to derive g completely.

In the non-consecutive case, the information is widely spread
over the variables.

A widely used algorithm for this case was presented by Heninger
and Shacham and subsequently generalized by Henecka et al. and
Paterson et al. [42, 47, 48]. In a naive fashion, one could try to
construct a search tree that aims to test all possibilities for the 6
different unknown variables, which gives a solution space of 26",
Whenever a candidate is encountered that does not fit to the partial
known information, we can prune this candidate. The main idea of
Heninger and Shacham is to use the different dependencies between
the variables to set up an equation system containing 4 equations
and 5 variables, which drastically reduces the solution space to 2".
Given sufficient information from side-channel attacks can then be
used to further reduce this space. This approach was used for many
attacks, e. g. [49-52]. In all variations of the algorithm, the partial
information contains information on a bit-wise level, while our
attack works on information about blocks of bits. We thus adapt
the algorithm of Heninger and Shacham to this setting in Section 5.

3 EXPLOITING KEY DECODING

In this section we analyze possible leakages in the key decoding
routines of various cryptographic libraries. First, we describe the
Privacy-enhanced Electronic Mail (PEM) format, which is used for
storing and exchanging cryptographic material, and is supported
by many common cryptographic implementations. We use the Mi-
crowalk [14] framework to conduct a broad analysis of several
popular libraries, including OpenSSL [53], wolfSSL [54], NSS [55],
and Botan [56] in order to find and assess possible leakages in key
decoding. Microsoft CNG itself does not offer native key decoding,
and offloads this onto the user; however, its largely deprecated
predecessor Microsoft Crypto API [57] is still included in recent
Windows versions, and supports loading and storing PEM format-
ted keys. WolfSSL, RustSGX [58] and mbedTLS [59] offer native
SGX support, and with TaLoS [60] there also is an SGX mode for
OpenSSL. Finally, we analyze Microwalk’s findings and show that
lookup table (LUT)-based base64 decoding poses a significant and
widespread source of leakage, which we exploit to infer the entire
private key in Sections 4 and 5.



3.1 Storing Cryptographic Material

Storage formats for cryptographic data face several challenges:
The format should be standardized, such that it can be exchanged
between different implementations without compatibility issues.
Then, fingerprints of keys and certificates should be unambiguous,
i.e., there shouldn’t be two equivalent representations of the same
cryptographic entity. Finally, while not a hard requirement, the
format should be easily usable in practice, to allow transferring
cryptographic data without worrying about encoding issues.

3.1.1  PEM Format. To accomplish this, RSA private keys are com-
monly stored in PKCS #8 format [61], which is specified in Abstract
Syntax Notation One (ASN.1) interface description language [62]
and uses the Distinguished Encoding Rules (DER) encoding to gen-
erate a unique binary representation for cryptographic data. This
encoding is defined in such a way that it is ensured that the same
key material always yields the same binary data. Listing 9 in the
appendix shows an example 1024-bit RSA private key in ASN.1 for-
mat, encoded with DER. Data encoded with DER can be encrypted
using a symmetric algorithm and wrapped into another DER layer,
to protect it in case the key file gets stolen; however, for server de-
ployments, the same applies for the used passphrase, which usually
is stored next to the encrypted key file, limiting the security benefit.
For this reason, unencrypted key files are still prevalent.

Finally, in order to allow easy handling and transmission over
non-binary channels, the binary DER data is base64 encoded and
complemented with start and end markers, which denote the se-
mantics of the base64-encoded payload, and allow implementations
to easily determine the correct decoding technique. These markers
also allow to store multiple entities in one file, e. g. certificate files,
containing certificates of an entire chain. These files are usually
referred to as PEM format.

3.1.2  Encoded RSA Private Keys: An RSA private key typically
consists of the public parameters N and e, as well as the private
parameter d. These values are sufficient for decrypting and signing
messages. For better performance, many implementations utilize
the CRT, which additionally requires the primes p and g, and three
parameters dp = d mod (p — 1), dg = d mod (g — 1) and giny =
g ! mod p.

3.2 Finding Leakages

3.2.1 Leakage Detection. In order to avoid time-consuming and
error-prone manual analysis, we utilized the Microwalk [14] frame-
work to automatically analyze the key decoding of several major
cryptographic libraries, and infer possibly interesting leakages. This
approach has the advantage that we can focus on the code sections
which actually do behave differently depending on the secret input
(and thus may leak), and it also finds very subtle leakages often
missed when doing manual analysis, but exploitable nonetheless.
Since Microwalk relies on dynamic instrumentation, we ran-
domly generated a set of 4,096 private key PEM files with slightly
varying parameter sizes, and traced the key decoding of each library.
We then instructed the analysis module to compute the amount of
leaked bits per memory accessing instruction. After Microwalk had
generated and analyzed the traces for each test case, we manually
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removed false positives like subtle variations in the memory allo-
cator and reports relating to cryptographic operations, and sorted
the results by their estimated severity.

For OpenSSL, the resulting leakage candidates were all related
to decoding the private key. Functions prefixed with the string
EVP were assigned the highest possible leakage estimation: The
EVP_DecodeUpdate

method does an initial scan of the entire input string, in order
to determine its length and remove invalid characters, and then
passes it to the EVP_DecodeBlock method, which performs a LUT-
based base64 decoding of the input. Another notable leakage is
the BN_bin2bn function, which converts the decoded key parame-
ters into big number objects: It loops over the currently processed
parameter, and thus leaks its length. Detailed analysis results for
OpenSSL are listed in Table 5 in the appendix. We continue with
explaining and discussing these leakages in detail.

3.3 Analysis of Key Decoding Techniques

3.3.1 Decoding of PEM Files. When loading the private key, cryp-
tographic libraries parse the PEM file, decode the base64 DER, and
convert the binary DER representation into an internal format. For
those libraries that employ a lookup table (LUT)-based approach,
we found that in each analyzed library this process leaks key infor-
mation for every base64 character, and thus every parameter stored
in the key file.

All libraries roughly follow the same high-level approach: First,
they parse the start/end markers to locate the base64-encoded pay-
load. Then, they decode each base64-character and reconstruct the
underlying binary data, while skipping invalid characters like line
breaks and spaces. Finally, the DER container is handed to the next
decoder stage, which parses the DER blocks following the ASN.1
specification, and initializes a corresponding private key object.

3.3.2 Leakages in base64 Decoding. In base64 encoding, the binary
data is divided into 6-bit chunks, interpreted as alphanumeric char-
acters, the plus sign or the slash, making up 64 distinct characters,
all from the ASCII character set.

For decoding, these characters are converted back into 6-bit
chunks, where each group of four chunks corresponds to 3 bytes of
binary data. While this conversion can be realized as a case decision,
most implementations rely on LUTs, where each ASCII character
maps to the corresponding 6-bit chunk (or an invalid value). Since
an ASClI-encoded character takes up 7 bits, the LUTs need to have
at least 128 entries. Listing 1 shows the decoding table used by
OpenSSL. Note that due to its length, the table takes up at least two
64-byte cache lines, which allows an attacker to infer a part of the
table index through a cache attack, as we will show in Section 4.
While all analyzed libraries use a LUT-based base64-decoding, the
exact implementations vary in detail: For example, OpenSSL and
NSS parse the base64 string twice, to handle invalid or white space
characters, and determine the length of the resulting decoded binary
string. This allows the attacker to do multiple measurements per
input, which reduces the measurement error.

Another difference between the libraries and even between dif-
ferent configurations of a single library is the alignment of the
base64 LUT. If a 128-byte LUT is aligned at a cache line boundary
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o0x00 ffffffff fFffffff
0x08 ffeofoff fff1ffff # TAB LF CR
ox1o fFffffff fEEfffff
ox18 ffffffff fFEfffff
0x20 e@ffffff ffffffff
ox28 ffffff3e fff2ff3f
0x30 34353637 38393a3b
0x38 3c3dffff ffooffff
0x40 ff000102 03040506
0x48 0708090a 0bocedee
0x50 0f101112 13141516
0x58 171819ff ffffffff
0x60 fflalblc 1dlelf20
0x68 21222324 25262728
0x70 292a2b2c 2d2e2f30
0x78 313233ff ffffffff
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Figure 1: base64-decoding lookup table as present in the
OpenSSL binary. The comment column on the right lists the
ASCII representations of valid code points (non-0xFF bytes).

(64 bytes), it takes up exactly two cache lines. As depicted in List-
ing 1, the LUT entries are not evenly distributed: Considering only
the base64 character set, the first half has 12 entries, while the sec-
ond half has 52, so observing an access to the first cache line yields
more information than an access to the second one. However, if
the LUT is aligned at 32 bytes, the entries are split over three cache
lines: The first one does not have any base64 entry, the second has
38, and the third has 26.

To measure the average information that is leaked by a LUT
access when observed at cache line level, we compare the number
of base64 entries per cache line. Let random variable B denote the
64 possible base64 characters, where each character b has the same
probability: Pr[B = b] = 6%1. Also, let random variable C denote
the cache lines which contain a part of the LUT. The probability
that we observe a certain cache line ¢ is thus Pr[C = ¢], which
equals the fraction of base64 characters which map to this cache
line. Finally, Pr[B = b | C = c] denotes the probability of a certain
base64 character b if we observed cache line c.

We can then compute the average information I(B, C) = H(B) —
H(B|C) leaked by observing a cache line, where H denotes the
Shannon-entropy.

Table 1 shows the investigated libraries and the expected leakage
for base64 decoding.

Note that the amount of leaked information depends on the
structure and the alignment of the LUT: If the LUT takes up two
cache lines and the base64 character entries are distributed evenly,
so Pr[C=c] = % and Pr[B=b|C=c] = 3—12, we see the maximum
possible leakage value of I(B, C) = 1, which means that we learn
one bit of each base64 character by observing the accessed cache
line. If the table is not evenly distributed, the entropy for the sparser
cache line decreases, making it easier to infer the respective base64
character; however, at the same time, the entropy for the denser
cache line increases, making up for an overall smaller leakage. If the
alignment is not at a cache line boundary, but within a cache line,
the table may spread over more than two cache lines, leading to a
potentially higher leakage. In our experiments, we mostly observed
64 byte and 32 byte alignments, except for libraries compiled with
the SGX framework: Due to the memory constraints, the standard

Makefiles enable optimization for space (-0s in GCC), which reduces
the table alignment down to 1 byte. While the leaked information
per base64 character is rather small and capped at one bit, the
redundancy imposed by storing multiple secret key parameters
makes up for this, as we show in Section 5.

Non-LUT-based base64 decoding: Another approach for base64
decoding is treating each case separately: Most characters (letters
and numbers) are ASCII-encoded in contiguous chunks, with only
few exceptions. Thus, one can test whether the current character
is in a specific interval, and then simply add/subtract a certain
constant which then yields the associated 6-bit value. This approach
has, e. g., been used by BoringSSL [64] and the Rust base64 package,
although the latter has since moved to a LUT-based implementation.

Depending on the binary layout of the code handling each case,
an attacker may be able to acquire much more fine-grained infor-
mation about each character than in a LUT-based attack: If they can
distinguish each case, which may be possible by counting the num-
ber of executed instructions per loop iteration, they learn whether
the current character is an upper- or lower-case letter, a number, or
a special symbol. This corresponds to more than 1 bit of information,
even higher than the leakage induced by LUT-based decoding.

3.3.3 Exploiting the DER Format. Even though the majority of the
detected leakages are found in the base64 decoder, we also iden-
tified subtle secret-dependent computations in the DER decoder
and the big number initialization. In DER, the parameters are not
stored directly next to each other, but have a prefix denoting their
type (integer, 02) and byte length (see Listing 9 in the appendix).
Since base64 encoding divides the payload into 6-bit chunks, some
chunks may contain bits from both a secret parameter and a byte
belonging to DER formatting. If this DER byte is known to an at-
tacker, they can reduce the remaining uncertainty from detecting
the corresponding LUT cache line, and infer up to 4 bits of the
first or last secret parameter byte. While the parameter type byte
is constant, the length byte is not; however, an attacker can learn
the length of the parameter through other leakages, like in cases
where a parameter is copied when initializing a big number object:
In order to speed up arithmetic operations, many big number imple-
mentations divide their state into 64-bit integer chunks, which are
initialized by copying the number bytes using bitwise operations
like shifts and OR. The attacker can then simply count the number
of loop iterations and thus learn the parameter length, if the loop
is not constant-time.

4 CACHE ATTACK ON INTEL SGX ENCLAVE

Attacking a simple lookup procedure, which mainly involves mem-
ory loads executed in a very short time frame, requires a high
temporal attack resolution or a slowed down victim process. Thus,
we attack the base64 decoding process of RSA keys in an Intel SGX
enclave, which allows us to analyze the decoding process on a per-
instruction basis. The attack we implemented is specific to the way
OpenSSL implements the decoding of base64 keys into its internal
data format, especially the offline analysis part which leverages
OpenSSL’s access pattern to the LUT. However, the translation
from base64 to binary by means of a LUT is a recurring pattern
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Table 1: LUT properties and expected leakage of base64 decoding implementations of several standard and SGX crypto libraries.
The observed LUT alignment is taken from our test system and may vary between systems and package sources. The estimated
leakage I(B, C) depends on the LUT size, its observed alignment and the distribution of relevant entries over cache lines.

Library Version Decode iterations LUT size LUT alignment (observed) # Cache Lines I(B,C)

Botan [56] 2.17.0 1 256 byte variable (32 byte) 5 0.974 bit
GNU Nettle [63] 3.6 1 256 byte variable (32 byte) 5 0.974 bit
mbedTLS [59] 2.24.0 2 128 byte variable (32 byte) 3 0.974 bit
MS CryptoAPI [57] 10.0.18362.476 1 80 byte unknown! (64 byte) 2 0.811 bit
NSS [55] 3.58 1 256 byte variable (64 byte) 4 0.696 bit
OpenSSL [53] 1.1.1h 2 128 byte variable (32 byte) 3 0.974 bit
RustSGX [58] 1.1.3% 1 256 byte variable (20 byte) 5 0.564 bit
wolfSSL [54] 4.5.0 1 80 byte variable (64 byte) 2 0.811 bit

1 The source code is not publicly available, so we could not determine whether Microsoft uses a fixed or a variable alignment.

2 The base64 decoder itself is included in a separate package (version 0.13.0), which gets pulled into the SGX enclave.

in all of the libraries shown in Table 1. Thus, the general attack
scheme is applicable to other libraries as well.

In short, our attack on the base64 LUT-based decoding process
of RSA keys consists of several steps. First, we run OpenSSL’s key
decoding in an SGX enclave and execute it in a controlled, single-
stepped fashion, where the corresponding memory page accesses to
the LUT and decoding function are tracked. We combine the page
access monitoring with a classic Prime+Probe attack on the LLC to
track which cache line of the decoding table is accessed when the
investigated code is executed. The resulting trace is then processed
during an offline analysis step, which outputs a cache line access
pattern with the same length as the original base64 string in the
PEM file holding the private key.

We first run the attack without mitigation against recent tran-
sient execution attacks like LVI [11] and obtain mostly negative
results. However, as we show in this section, running the same
experiments with enabled mitigation drastically reduces noise in
the measurements, which allows to reliably extract all information
introduced by non-constant time behavior in the base64 decoding.

4.1 Attack description

4.1.1 Attacker model. Intel SGX aims to protect programs by run-
ning them in enclaves isolated by special hardware mechanisms.
Ultimately, it allows enclaves to be guarded from a malicious OS
and otherwise rogue software environments and system adminis-
trators as long as the authenticity and integrity of the enclave and
SGX instance are verified by attestation [29, 30, 33]. Consequently,
attacking a process running in a protected enclave assumes an
attacker with system level privileges having full control over the
OS kernel and the system BIOS: They are capable of translating
virtual to physical addresses, manipulating page access bits and
setting timed interrupts using the APIC timer. Additionally, they
have access to the program’s binary and control the unprotected
application part. By using the SGX-Step framework [22], the enclave
can be single-stepped.

4.1.2 Cache Attack. For our cache attack, we use Prime+Probe
with eviction sets. After the discovery of Foreshadow [10], Intel

published a microcode fix which conducts an L1 cache flush on
every enclave exit, so we are restricted to attacking the L3 cache.

4.1.3  Attack process. Figure 2 shows an overview of the attack
process on base64 decoding in Intel SGX. We start with initializing

I#l't‘ I " *2Eviction set #3 Activate
nitialize enclave p———— single stepping
W ]
Start decoding
#6 #8
}—» IRQ handler Offline analysis
7 T

#7 AEP ‘

Check page access bit
Probe cache lines
Prime cache lines

Reset page access bit

#> Enclave
Decoding

— = = = Log

Figure 2: Attack process. Red: Attacker activity, Blue: Vic-
tim activity; The attacker is in control of the environment
as well as the enclave host application and calls the victim
code to start the attack process.

the victim’s enclave (#1) and constructing eviction sets (#2) for
every cache set possibly containing the cache lines holding the
lookup table. Since the last level cache is divided into slices, the
number of required eviction sets is determined by the number of
cache lines occupied by the LUT times the number of slices. To
construct the eviction sets, we implement an algorithm similar to
the procedure presented by Liu et al. [2] using virtual to physical
address translation. After constructing the eviction sets, we use
SGX-Step to configure APIC timer interrupts which allow us to
single step code running in the enclave (#3) and subsequently trigger
the base64 decoding (#4).

Next, we enter the enclave with the EENTER instruction and
execute one instruction (#5) during which the APIC timer interrupt
arrives. The interrupt causes an EEXIT, which is followed by the



Util::Lookup: Exploiting key decoding in cryptographic libraries

IRQ handler (#6) which redirects to our customized AEP function
(#7). The latter is used to implement the attack code and finally
resume the enclave, returning to state #5. The cycle is terminated
when the end of the base64 procedure is detected.

Single stepping the victim code allows us to analyze the cache
behavior on a per instruction resolution, and, since the enclave is
in an interrupted state, our attack code in step #7 is not time con-
strained. However, entering the enclave takes substantially longer
than executing the next victim instruction, which adds potential
for noise accumulation in the LLC cache from other processes on
the system.

To reduce unwanted side-effects and noise in the LLC, the AEP
routine starts with checking the page access bits of the memory
pages holding the LUT and the decoding routine, and then immedi-
ately continues with probing the cache.

After probing the cache, the results of the cache eviction mea-
surements and the page access states are stored to disk for offline
analysis (#8). Before resuming the enclave, the cache sets of interest
are primed, the page access bits belonging to the memory pages
holding the LUT and decoding routine are reset and the APIC timer
is reprogrammed.

4.1.4  Offline Analysis. The data collected in step #7 is processed
in an offline analysis after the measurement finished. It contains
cache eviction time measurements and page access information, as
explained in 4.1.3, for every single-stepped instruction. In the fol-
lowing, a measurement refers to all the data collected for one single
stepped instruction. The goal of the offline analysis is identifying
those instructions that read data from the LUT and determining
the respectively accessed cache lines. Finally, a trace of cache line
accesses corresponding to the base64 characters in the private key’s
PEM file is constructed.

We first determine the median eviction times and corresponding
standard deviations for each eviction set over all measurements, ex-
cluding those with observed memory page access to the pages hold-
ing the LUT and decoding function. Those measurements which
show an access to both pages are, with a few exceptions at the
beginning of the trace, the ones corresponding to an actual lookup
operation. The median eviction times and standard deviation serve
as a basis to determine evictions in the measurements which repre-
sent actual lookup operations. Prefiltering the measurements using
the page access information significantly reduces the chance for
false positives, meaning measurements will not falsely be identified
as LUT hit if there is noise in non-relevant cache probings. We
identify an access to a cache line containing LUT information by
having an eviction time which differs by two standard deviations.

As stated in Section 3.3.2, OpenSSL looks up each symbol in a
PEM file at least twice. Additionally, it parses the PEM file in blocks
of 64 symbols. The symbols which are at the boundaries of a block
are even parsed three times as they are checked for white space and
end of line characters. Thus, we see a clear access pattern to the
lookup table, which can be used to eliminate remaining irrelevant
elements from the beginning of the trace and match the two passes
for every 64 byte block against each other. The last step also allows
for error correction or filling up gaps.

In order to extract each key parameter, the trace needs to be
partitioned according to the DER format, by identifying parameter

lengths and removing meta data: As mentioned in Section 3.3.3,
OpenSSL leaks the parameter length information in the BN_bin2bn
method, which iterates over every byte in the DER binary, and
converts the data to an internal array representation. It can be
attacked in a similar manner as the lookup operation, except that the
single-stepped Prime+Probe attack must be run against the cache
line holding the instruction which loads the next key byte. Counting
the number of evictions and translating them to the iteration count
determines the length of each parameter easily.

4.2 Experimental Evaluation

In the following, we describe the experimental setup to conduct the
single-stepped cache attack against base64 decoding, and discuss
our observed results. We show that a mitigation against an attack
in the transient domain greatly simplifies the process of leaking
information from the decoding operation.

4.2.1  Setup. For the evaluation of the attack and leakage extrac-
tion we evaluated two different enclaves and took measurements
on three different CPUs. First, we crafted an enclave containing
the relevant code parts for base64 decoding from OpenSSL and
ran experiments on an Intel i5-8259U processor with an 6144 kB
inclusive L3 cache and 4 GB main memory. The cache has 12 ways
and, as assessed in our experiments, 8 slices with 1024 sets each.

Second, we conducted the same measurements on an enclave
which decodes a base64 encoded private key using the intel-sgx-
ssl [65] library in version 1.1.1k, compiled with default settings.
The intel-sgx-ssl project compiles and installs the trusted OpenSSL
libraries with and without mitigation by default. We linked our
enclave against intel-sgx-ssl with MITIGATION-CVE-2020-0551 set
to LOAD, CF and no mitigation and compared the results. The mea-
surements with intel-sgx-ssl were run on an Intel Xeon E-2286M
with 16384 kB inclusive L3 cache and 16 GB main memory and on
an Intel i5-6400 with an 6144 kB inclusive L3 cache and 4 GB main
memory.

All CPUs used the latest stable microcode patches. For compat-
ibility with SGX-Step, we used Intel SGX SDK version 2.11. We
disabled hardware prefetching for the L1 and L2 caches on each
core. Additionally, the CPU frequency was fixed to the processor’s
base frequency on all cores, Intel Speedstep was disabled and the
maximal C-State was set to 0 in order to decrease variability in
the measurements. Finally, we assigned the enclave and its host
application to a specific logical core, which was removed from the
OS scheduler.

4.2.2  Results. The first experiments were run without configuring
the make process to apply mitigations against LVI [11], which are
available since the Intel SGX Platform Software (PSW) and Software
Development Kit (SDK) version 2.9.100. 2.

The results are very noisy and hardly exploitable, in fact most
measurement runs are not usable at all, as the eviction time mea-
surements of the Prime+Probe attack are inconclusive: Extracting
the sequence of lookups of base64 symbols is not possible, as both
monitored sets were accessed, even though we performed a single-
stepping attack. Simultaneous accesses are likely caused by specula-
tive or out-of-order accesses of the lookups, as subsequent lookups
are only few instructions apart. While single-stepped execution
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Table 2: Exemplary eviction set measurements during cache set probing from the experiments without LVI mitigations. The
rows show measurements with and without accesses to the LUT, which correspond to accesses to the LUT page. Each time we
observe a page access, we also see an eviction (orange); however, those evictions always occur in both cache sets, not allowing
us to draw any conclusions which set has been accessed. The last row specifies the slice number.

Page Access Set 1 Set 2

No 848 784 756 808 842 780 758 852 888 800 794 760 798 852 760 788

No 846 778 750 806 844 778 756 842 888 802 782 760 804 848 760 788

Yes 842 784 754 846 782 756 846 802 790 764 802 844 764 788

Yes 842 778 756 844 784 766 850 802 790 766 808 846 760 784
S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8

ensures that only one instruction commits between interrupts, sev-
eral are issued in parallel in that time window. We further suspect
that this transient effect is amplified by resetting the page accessed
bits, which increases the out-of-order window. The measurements
for this experiment without the LVI mitigation reveal that most of
the time, evictions are observed for both investigated cache sets,
which renders a distinction infeasible. Table 2 shows a few example
measurements for both cache sets without mitigation.

Next, we repeated the measurements with MITIGATION-CVE-
2020-0551 set to LOAD [66]. This LVI mitigation places load fences
after every instruction which has a load micro-op [11, 67]. Con-
sequently, it prohibits out-of-order execution of instructions after
the traced load instruction, which otherwise might have accessed
further cache lines in the LLC. Figure 3 depicts a comparison of
eviction times for measurements with and without LVI mitigation.
It is observable that with the LVI countermeasure, only one of the
two monitored cache lines is accessed, while both are accessed
when the countermeasure is turned off. We thus conclude that the
LVI countermeasure greatly enhances granularity of cache attacks.

The attack we ran against base64 decoding in Intel SGX requires
only one execution to create a trace, which leaks all information we
can obtain from priming and probing the cache sets holding the
LUT. In order to determine the reliability of the measurements, we
ran the attack 100 times against the same key and tried to extract the
respective cache line access trace. For our experiments, we aligned
the lookup table on a 64 byte boundary, such that the LUT used in
OpenSSL spread over exactly 2 cache lines. The cache access trace
created by the offline analysis is a string with elements from {1, 2,
x}, where x means that no clear distinction can be made and 1 and
2 identify the accessed cache lines.

Finally, each of the extracted traces is checked for the correct
length and compared against the actual key, by checking for each
base64 symbol whether it matches the cache line access. The PEM
file holding the 1024 bit test key has a length of 848 base64 symbols,
thus requiring the same length for the measured cache access trace.

Figure 4 depicts the eviction time measurements for all sets over
all slices possibly holding cache line 2 of the LUT when probing
the corresponding eviction sets.

The sets in all slices but slice 8 reveal the same spectrum of
eviction times for measurements with and without observed page
accesses. However, for slice 8, a clear deviation in eviction time

measurements can be observed, which allows the detection of LUT
accesses.

Self-Crafted Enclave. The histogram in Figure 5 shows the num-
ber of trace elements which could not be classified (x) or which
received a wrong classification per execution. The measurement
was taken on the Intel i5-8259U with the “self-crafted” enclave and
LVI mitigation level set to LOAD.

The data shows that the attack runs stable in most cases. In
93 of the measurements the automated offline analysis is able to
extract a sequence of correct length, and in 62 the number of cache
line accesses which could not be classified is less than 10, which is
only 1.2% of the full trace. Figure 5 shows that there are only few
measurements with more than 30 ambiguous or wrong cache line
classifications. Additionally, in none of the 93 measurements, for
which extracting the sequence was feasible, a cache line hit was
detected for the wrong cache line. This very reliable classification
can partially be attributed to OpenSSL looking up each symbol
twice.

For the key reconstruction, we are only interested in the lower
half (least significant part) of bits of every parameter, as explained
in Section 5. This reduces the number of relevant missing cache
line classifications to about the half. Moreover, due to a random
distribution of missing information, running the attack twice is
sufficient to obtain a (near) complete trace.

Enclave with intel-sgx-ssl. In Figure 6, the measurement results
on the Intel Xeon E-2286M with an enclave using intel-sgx-ssl to
decode the base64 encoded key are depicted. The measurement
was taken with MITIGATION-CVE-2020-0551 set to LOAD, CF and
without mitigation. The results with the mitigation level set to
LOAD show that 14 of 100 traces don’t have any errors and 42% of
the automatically extracted traces have less than 1.2% of errors
(10/848). The attack also works when no mitigations are applied,
but significantly worse: On the Xeon, only about 7% of the observed
traces have less than 10 missing classifications and there is none
without wrong or ambiguous trace elements. As leakage is already
quite low, errors must be avoided at all cost, so many traces are
required to obtain a reliable trace with no mitigations. The CF
mitigation is comparable to no mitigations, as it does not inject
fences after load instructions in the decoding routine, but only for
control flow related instructions.
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Figure 3: Eviction set measurements with and without LVI mitigations enabled. The blue and orange lines correspond to
the eviction times of the cache sets holding the LUT. To level both graphs, the respective mean measurement time has been
subtracted, resulting in an expected value of 0 when the corresponding set has not been accessed. In the upper plot, with
enabled LVI mitigations, we see a clear separation of both sets: If the orange graph is positive, the blue one is 0, and vice versa.
Note that the LUT entries are not evenly distributed, leading to a bias towards the orange set. In the lower plot, without LVI
mitigations, we see that most of the time both sets are hit, so a clear separation is impossible.
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Figure 4: Eviction times measured after every instruction during the decoding process for all cache sets over all slices possibly
holding cache line 2 of the LUT. Violet boxes and whiskers show the eviction time of all measurements in which the memory
pages of the lookup table and decoding function were not accessed. Green shows the measurements for which the observed
pages were accessed. Since no knowledge of the slice mapping is assumed, the slice numbers cannot be matched to a logical

CPU core and will be assigned differently in every execution. In the depicted case, the victim’s accesses map to slice 8.

On the Intel i5-6400, the results with no mitigations applied are
better, but still clearly worse than with LOAD mitigations enabled.

4.2.3  Practical relevance of LVI mitigations. Setting MITIGATION-
CVE-2020-0551 to LOAD has a high performance impact. In general,
it is hard to say whether this mitigation is applied in commercial
enclaves; that also holds for open source software, since the miti-
gations are activated by explictly setting an environment variable.
However, we believe that this mitigation has its value in practical
applications and that should be applied to secret-dependent work-
loads like key loading procedures and cryptographic operations.

In general, Intel recommends applying the MITIGATION-CVE-
2020-0551 on LVI-affected platforms [68]: "Intel SGX Attestation
Service will report a new status code, SW_HARDENING_NEEDED, to
indicate the platform is affected by a security advisory for which
software hardening is recommended". Intel recommends enclave
developers to "determine the level of software hardening that their
environment requires, based on risk analysis and an evaluation of
the performance impacts of mitigation".

The CF (Control-Flow-Mitigation) mitigation level will only pro-
tect against LVI gadgets which use control-flow instructions for
secret transmission. However, secret transmissions with LVI can
also be encoded into the data flow [11], so memory load instructions
have to be protected with LFENCEs as well. Since this is rather impor-
tant in secret-dependent algorithms, there is a practical relevance
for the LOAD mitigation level in this case.

We found several concrete applications using these mitigations
by default or offering a version with mitigations applied:

e Inclavare Containers [69] and the RUST SGX SDK [58] en-
able their users to apply the mitigations. For the enclave-tls
module of the former, it is even stated in the documentation
that the SGX LVI mitigation is enabled by default, but not
which level [70]. Both frameworks consider both levels.

o SecretNetwork [71] enables the LOAD mitigation level in
their deployment / Docker files [72].

e According to a GitHub issue [73], Asylo [74] uses MITIGATION-
CVE-2020-0551 set to LOAD by default since May 2020.
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Figure 6: Number of ambiguous or wrong cache access mea-
surements across different mitigation levels. Traces with
LOAD mitigation level contain considerably less errors. The
measurements were performed on an Intel Xeon E-2286M
against the intel-sgx-ssl enclave.

o Intel offers a variant of its Crypto API Toolkit with all mitiga-
tions enabled [75]. Additionally, as already stated, by default
intel-sgx-ssl builds versions for each mitigation level.

5 RSA KEY RECOVERY

In the following, we will adapt the algorithm of Heninger and
Shacham [42] to the setting, where only information about certain
blocks of bits is known. Here, we only give a high-level overview
and refer the reader to the appendix, which contains a complete
formal description of both the setting and the algorithm.
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We first formalize the setting, describe the adapted algorithm,
and analyze its running time. Finally, we discuss optimizations used
in our implementation.

Blockwise Knowledge. We consider the situation that some block-
wise knowledge about the secret key sk* = (p*, ¢*, d*, d;, dy, q;fl)
was obtained. In the following, we focus on the first five variables
and treat sk* as a quintuple on the variables Vars = {p, q, d, dp, dq}.
To simplify the notation, for v € Vars, we denote the corresponding
entry in some key sk by sk[v]. We show in Sec. A.1 that integrat-
ing the last variable q;l into the key-recovery approach does not
directly give a usable linear equation in contrast to the other vari-
ables.

From a high-level perspective, our attack gives us the following
information: For each 6-bit block of a variable v € Vars, we know
that this block belongs to a certain cache line. This knowledge
allows us to rule out the values of the other cache lines for this
block. For example, we might know that the first 6 bits of p* belong
to cache line i. As we also know the content C; C {0,...,26 — 1}
of cache line i, we can reduce our search space for these 6 bits
from the complete space {0, ..., 26 _ 1} down to C;, but we still
have a remaining uncertainty about which concrete value in C;
was used. In contrast, in the scenarios studied in [42, 47, 48], the
knowledge always was about single bits. Hence, the attacks here
might have given the information that the fifth bit of p equals
0. The uncertainty in this scenario comes from the fact that this
information could potentially be wrong (e. g. due to a bit-flip in the
cold-boot scenario).

Modeling the Scenario. As described above, in the situation given by
our attack, we do not have observations on single bits, but on blocks
consisting of 6 bits, the length of a base64 symbol. To generalize this
knowledge, we let b € Z~( be the blocksize, i. e. the length of the
block on which we have obtained our knowledge. For a variable o,
we denote the j-th block of length b as block; (v), e. g. the six least
significant bits of p are denoted as blockq(p). In our attack, we
make use of the fact that the possible values for block;(v) are
partitioned into different sets to model the different cache lines
used in our attack. To formalize this, we consider a partition PART =
(PARTY, ..., PART | pagr |) Of all possible b-bit values {0, .. L2b -1y
The set PART; would thus correspond to the content of C; of cache
line i. Our algorithm is now given an observation about a certain
key sk* stating that for each variable v € Vars, the block block; (v)
belongs to PART;. In our concrete application, this translates to the
knowledge that the j-th base64 symbol of variable v belongs to
cache line i.

5.1 Recovery Algorithm

The main idea of the algorithm is to reconstruct the different bits
of the secret key sk* iteratively. We build up a set of candidates
iteratively. Each such candidate is a guess for the least significant
bits of the true secret key sk* compatible with our observation
and the RSA equations. We start our algorithm by producing a
single candidate sk of depth 1, i. e. each variable only consists of
a single bit. Informally, the depth of a candidate is the number of
bits each variable has. We then apply the expand operation on sk
to obtain two candidates sk; and ska of depth 2 by using the RSA
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equations described by Heninger and Shacham [42]. Whenever a
candidate has reached depth of a multiple of b, i.e., j - b for some j,
we apply the check operation on this candidate to verify that the
last produced block block;(v) of each variable v is possible under
our observation. If this candidate does not fit to our observation,
we prune it. We repeat these operations until a target depth D is
reached. All produced candidates of depth D are output. This target
depth is chosen such that the remaining bits can be reconstructed
via the Coppersmith method [76-78].

Our algorithm first performs these operations in a breadth-first
fashion to utilize parallelisation and then in a depth-first fashion
(see Figure 7). The expand operation uses a set of 4 modular equa-
tions on 5 variables and the check operation compares the gener-
ated candidates to our observations.

Pseudocode of the key-reconstruction algorithm

Input: Observation oBS(PART), target depth D
1: find valid triples (k, kp, kg)
2: for each possible triple (k, kp, kg):
3: initialize empty stack S
4: add initial candidate sk(k, kp,kq) to S
5: while S is not empty:
6: let sk = S.pop()
78 let sk1, sko = expand(sk)
8 : for p € {1,2}:
9: if depth(skg) > D: output skg
10 : if depth(skg) mod b = 0 and check(oBs, skg):
il g S.push(gcﬁ)
12 else: S.push(ﬂcg)

Figure 7: Concise description of our adapted key-
reconstruction algorithm

5.2 Analyzing the Algorithm

In the following, we analyze the number of candidates of depth i,
produced by the algorithm. To do so, we need some probability no-
tions. Let pr= (pr[1],..., pr[k]) be a probability vector of length k,
i.e. pre [0, 1]* with Z{'C:l prli] = 1. For @ > 0 with @ # 1, the
Rényi entropy Hy (pr) measures the amount of information given
by prand is defined as Hy (pr) = 125 log (Z{;l pr[i]“),

The special case for @ = 2 is called the collision entropy, which we
will need in the run time analysis of our algorithm, similar to [49].
Intuitively, the usual Shannon-entropy used in Table 1 gives the
complete amount of information available, but we can only use
certain events to discard candidates not belonging to the observed
cache line, namely non-collision events.

To simplify the analysis of our algorithm, we use the heuristical
assumptions of [42, 49], namely

ASSUMPTION.
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Table 3: Overview on the number of calls to the lattice algo-
rithm for blocksize b = 6 compared with the security level
of the key length. Here, B denotes bits and L the number of
calls to the lattice algorithm.

Key (B) level() Ho=1(L) Ho=11(L) Hz=115(L)
1024 280 249 229 219
2048 2112 292 25() 229

(1) Upon random choice ofsk*,for eachv € {p,q.d, dp, dq} and
each block block;(v), we have Pr[block;(v) € PART;] =

‘PAQ}ZTj | and these probabilities are independent.

(2) Once a bit in a candidate sk is set incorrectly (w.r.t. sk*),
the set of satisfying solutions to the four congruences behaves
randomly and independently.

Using these, we can bound the expected number of candidates.

THEOREM 1. Let C be a set of incorrect candidates with depth j - b.
After expanding these candidates b times, the expected number of
incorrect candidates after pruning is |C| - 2075 H2(p) 1. 9b _ 1 yhere
prli] = | parT; | /2.

It is easy to see that we have exactly 261 initial candidates of
depth b. We can thus conclude the following theorem about the

expected number of candidates.

THEOREM 2. The expected number of incorrect candidates with

. . : k. . ob=5-Ha (pr))j+1_1
depth j - b is at most 2P -Z{ZO(Zb 5-Ha (pn)yi = 9b. W

5.3 Termination of the Algorithm

Finally, we need to describe how to set the target depth D of our
algorithm. In a naive approach, we could set D = (sk*[p]) and then
test for all candidates sk of depth D, whether sk[p] is a factor of N.
But using a lattice-based approach, we can factor N much faster. The
algorithm of Boneh, Durfee, and Frankel shows that it is sufficient
to obtain (sk*[p])/2 bits of p to factor N in polynomial time [79,
Corollary 1]. By setting our target depth D = (N)/4 and using the
algorithm of Boneh, Durfee, and Frankel on all candidates sk[p] out-
put by our algorithm, we can reconstruct the correct secret key sk*.
Together with Theorem 2, this shows that (20~5-Hz2(pn))(N)/(4b)
calls to the lattice algorithm are sufficient to reconstruct sk*. Ta-
ble 3 contains the total number of calls to the lattice algorithms for
different collision entropies for blocksize b = 6 (as in our attack),
compared with the security level in bits.

5.4 Experimental Evaluation

To make the connection between the algorithm described above
and our attack more explicit, the partition PART corresponds to the
(usually two) different cache lines and the block length b is 6 due
to the base64 encoding. To reconstruct the RSA key completely,
we implemented the adapted algorithm in C++ and implemented
the final reconstruction step via the lattice algorithm small_roots
in Sagemath 9.0. Note that, due to the depth-first approach used
in the algorithm, it is highly parallelizable: if we are given K + L
processors, we can compute the first K candidates in a breadth-first



Table 4: Experimental Evaluation of our implementation on
different key lengths and different cache distributions.

Length Cache Dist.  #Cand. genCands[s] testCand [s]

256 38/26 795,712 31 52,251
256 32/32 31,760 2 1,740
512 32/32 2.08-108 1.03-10° 1.53-107

fashion, distribute them across the processors, and run them in
depth-first fashion. The remaining L processors can then be used
to apply the lattice algorithm on all candidates of length D.

Table 4 contains the experimental results of our algorithm for
different key lengths. In order to obtain these experimental results,
we used idealized inputs to our algorithm, which were generated by
hand, and represent a separate trace for every parameter. Our ex-
perimental results showed that the running time of genCands and
testCand is relatively stable per candidate with at most 0.0006 sec-
onds for genCands and at most 0.07 seconds for testCand. An ex-
trapolation shows that such a non-optimized implementation does
not yet give an algorithm that reconstructs the complete 1024-RSA
key within a week: The generation of all candidates via genCands
would take about 60 CPU years and the reconstruction via testCand
would take about 6,000 CPU years. We estimate a cost of about
1,000,000 dollars on AWS and accordingly a few 100,000 dollars on
cheaper bare-bone clouds if we simply use many copies of small_-
roots. But, as shown by the evolution around the Data Encryption
Standard (DES), the time to brute-force over a search space of 259
(as given in our case for 1024-RSA) can be drastically reduced by
more specialized hardware. More concretely, [80] uses 120 low-cost
FPGAs and can make about 5 - 100 DES calls per second allowing
to break DES within two weeks. We thus expect more specialized
hardware will lead to a reconstruction time of a few weeks.

6 MITIGATIONS

The demonstrated attack and library analysis show that not only
cryptographic implementations themselves need to be protected
against attacks, but that it is equally important to shield utility
functions from side- and controlled-channel attacks, if they process
secret data. We propose two mitigations for the base64 attacks
described in this work: First, we describe a constant-time variant
of the original lookup table-based decoding algorithm, and discuss
the constant-time case decision approach from BoringSSL [64].
Additionally, we highlight how adjusting existing best practices
for key storage can help to reduce the surface for attacks on utility
functions in general.

6.1 Constant-time decoding

6.1.1 LUT-based. A naive mitigation to our attack on the lookup
table would work as follows: In order to make sure that the decoding
of each symbol happens in constant time, each entry of the lookup
table is accessed for each decoded symbol, and the correct symbol
is selected using a mask. This approach will decrease decoding
performance drastically, since decoding of each symbol does require
128 lookups (the size of the LUT in bytes), instead of only one.
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__attribute__ ((aligned (64)))
unsigned char lut[128] = { ... };

uint8_t decode_aligned(unsigned char b64ch) {
uint8_t result = 0x00, mask = OxAA;

unsigned char idx[2] = { b64ch

for (unsigned char i = 0; i < 2; ++i) {
mask = OxFF * ((idx[i] == b64ch) - 1);
result = result | (lut[idx[i]] & mask);

}

return result;

3

Figure 8: Optimized constant-time decoding of a single
base64 character, with a 64-byte aligned lookup table. Note
that the LUT only spans two cache lines, so two accesses are
sufficient in our leakage model.

To improve the performance of our naive mitigation, we add
a constraint on the memory alignment as shown in Listing 8. By
instructing the compiler to align the LUT to 64 byte, it is only
necessary to access each line once per symbol, which ensures that
a controlled-channel attacker cannot determine the correct access
in our leakage model. Therefore, we always access the LUT at
b64ch mod 64 and (b64ch mod 64) + 64 and select the correct
lookup with a mask as before. In case the current index is smaller
than 64, the first access correctly decodes the symbol, otherwise
the second. The overhead of the LUT dummy access should be
negligible, compared to operations like asymmetric decryption.

6.1.2  Case decision-based. Google’s BoringSSL [64] already imple-
ments a constant-time base64 decoding approach.

Constant-time behavior in base64 decoding is achieved by a LUT-
free implementation. In a first step, it is determined to which part
of the ASCII table the currently decoded symbol belongs. Then, the
corresponding binary value is selected using a mask. Listing 10 in
the appendix shows the relevant part of the decoding routine from
BoringSSL. Other examples for constant-time case decision-based
base64 decoding are libsodium [81] and Nimbus-JOSE-JWT [82].

We believe that using a case decision-based approach has some
advantages over using a LUT: Most cryptographic libraries already
offer well-tested and portable macros for constant-time compar-
ison and selection, so employing a separate technique in utility
functions does not make much sense. Also, the LUT-based tech-
nique highlighted in Listing 8 still makes certain assumptions on
the underlying hardware and leakage behavior, which may not
apply when compiling the same code for different target platforms.
Finally, due to the relatively few calls the performance difference is
negligible. We thus recommend to consider replacing LUT-based
decoding functions by case decision-based implementations.

6.2 Key Storage Practices

Our base64 decoding attack against RSA keys can also be mitigated
by using encrypted PEM files: In this case, the attacker would only
learn parts of the ciphertext, and is not able to derive the contained
key. After base64 decoding, the DER-encoded key is decrypted and
decoded. Assuming that the key loading routine uses the same
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symmetric primitives that a given crypto library offers anyway
(and which are thus subject to thorough security evaluation), this
method reduces the attack surface to the key decoder and the key
instantiation in memory. However, from our experience, many
default server configurations use unencrypted key files, especially
when doing automated replacement of keys and certificates (e. g.,
Let’s Encrypt). Since these files are usually bound to a single system
or instance, and do not leave this environment, a compromise of
such a file would almost certainly also mean a compromise of the
entire system and thus the passphrase needed to decrypt the key.
On the other hand, if those private key files are not intended to be
transmitted over the network or stored in text-based configuration
files, there is no real benefit in using base64 at all, since it just adds
overhead and increases the attack surface: In such cases, simply
storing the binary DER data would be sufficient.

7 RELATED WORK

In general, leakage in key decoding is not a new concept: The au-
thors of DATA [13] briefly mention true positives in OpenSSL’s
key loading functionality, but did not further investigate the issue.
In [83], the authors use alternative, but mathematically equivalent
key representations to trigger specific non-hardened branches of
the decoding routines, which deal with less common key formats
and have thus been overlooked in prior research. However, they do
not target generic utility functions, but arithmetic aspects of key de-
coding. To the best of our knowledge, the only other attack targeting
utility functions is Medusa [46]. Medusa is an attack which leaks key
information during base64 decoding in OpenSSL. However, their
focus is on extracting information from the transient domain and
attacking the associated rep mov instruction. Such attacks are only
possible if SMT is enabled and if the SGX enclave shares the core
with a malicious process. Intel advises against such operations [84].
Our attack, however, does not need simultaneous access to the
neighboring vCores and works fine on enclaves with disabled hy-
perthreading. Furthermore, we do not only concentrate on a single
instruction, but present a systematic analysis of key decoding func-
tionality in several widely used cryptographic libraries and show
that these utility functions leak sensitive information despite and
because of the mitigation introduced due to other microarchitec-
tural attacks on SGX and through the transient domain [8-11, 36].
We leverage techniques common in the microarchitectural attack
domain like Prime+Probe and combine them with a recent attack
framework [22] to extract all available leakage introduced through
non-constant time behaviour of the base64 decoding process and
analyze the leakage with an adapted and generalized version of the
Heninger and Shacham key reconstruction algorithm [42].

The algorithm of Heninger and Shacham was already general-
ized by Bernstein et al. [49], but only to their special scenario, in
which an observation on the variables of the square-and-multiply
algorithm was used. Our approach is more generic and general. In
the setting of cold-boot attacks, the generalizations by Henecka et
al. and Paterson et al. [47, 48] outperform the algorithm of Heninger
and Shacham [42]. The main reason for this is that, given some
partial information, there are some candidates compatible with
this observation that are much more likely than other candidates.
One can thus prune these unlikely candidates and only introduce a
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negligible error probability. In contrast, in our scenario all of the
candidates compatible with our observation are equally likely and
no probabilistic pruning is possible.

8 CONCLUSION

We showed that side-channel resistance is not only relevant for
cryptographic routines, but also for utility functions responsible
for encoding and decoding secret data. Nearly all of the major cryp-
tographic libraries used lookup tables for these decoding purposes,
allowing us to mount a high-resolution cache attack to significantly
weaken the security guarantees provided by the underlying encryp-
tion schemes. We thus believe that it is important to check all parts
of a cryptographic library for side-channel vulnerabilities, e. g., by
using automated analysis tools, especially for the case of strong
attacker models enabled by trusted execution environments.

There are two important parameters making our attack feasible:
First, the high resolution of our attack is possible only due to a
security fix for transient execution attacks, as the serialization of
memory loads greatly improves the signal-to-noise ratio. Second,
while the resulting leakage is quite small, the redundancy in the
storage of the RSA keys allows us to achieve a significant drop in the
security level of the secret key. Both improvements, one which is
intended to mitigate newly emerged attacks and the other targeting
at speeding up RSA computations, come at the cost of security and
in their combination render our attack possible. We thus believe that
studying performance optimizations, security patches and other
improvements for their side effects is a crucial task and should

be conducted

continuously and across all functions which process sensitive
data. We also propose to add side-channel analysis to the continu-
ous integration pipelines, such that existing and newly introduced
vulnerabilities are identified automatically, and known but minor
leakages are re-evaluated depending on new developments in attack
accuracy.
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A MISSING PARTS FROM SECTION 5

Blockwise Knowledge. We consider the situation that some block-
wise knowledge about the secretkey sk* = (p*, ¢*, d*, dj, dg, q}’,‘_l)
was obtained. In the following, we focus on the first five variables
and treat sk* as a quintuple on the variables Vars = {p, q,d, dp, dg}.
To simplify notation, for v € Vars, we denote the corresponding en-
try in some key sk by sk[v]. We show in Sec. A.1 that integrating the
last variable qul into the key-recovery approach does not directly
give a usable linear equation in contrast to the other variables.

In the situation given by our attack, we do not have observa-
tions on single bits, but on blocks consisting of 6 bits, the length
of a base64 symbol. In our model, we let b € Z- be the block-
size. Without loss of generality, we assume that for each v € Vars,
we have b|(sk*[v]) by zero-padding all variables, i.e. the length
(sk* [0]) of each variable v in our secret key sk* is a multiple of b.
We denote the i-th bit of a bit-string x by x[i], i. e. the numeri-
cal value of x is given by Zg& 2ix[i]. The j-th block block;(x) €
{0,...,20 — 1} of x is defined as the value of the bitstring in the
Jj-thblock of x, i. e. block; (x) = Z{;;Jr:_l x[i]277°% . In our attack,
we make use of the fact that the possible values for block;(x)
are partitioned into different sets to model the different cache
lines used in our attack. We consider a partition PART of the set
{0,...,2% =1}, i.e. PART is a set of sets PARTY, ..
that (i) U; PART; = {0,...,2% — 1} and pART; NPARTy = O for
all i # i’. An observation 0BS(PART) with regard to this partition
PART is a quintuple that contains for each variable v € Vars a
vector in {1,..., | parT |} (K" [2])/b We denote the j-th entry of
this vector by oBs(parT)[sk*[0]];. We say that an observation
0Bs(PART) is correct for a secret key sk* if for all v € Vars and all
j € {0,..., ((sk*[v])/b) — 1}, we have block;(sk*[0]) € PARTj
with j = oBs(PART)[sk*[v]]; if and only if block;(sk*[v]) €
PART;j.

- PART| pagr | SUch

A.1 Adapting the Algorithm

The main idea of the algorithm is to reconstruct the different bits
of the secret key sk* iteratively. We build up a set of candidates.
Each candidate is a guess for the least significant bits of the true
secret key sk* compatible with our observation and the RSA equa-
tions. We start our algorithm by producing a single candidate sk
of depth 1, i. e. each variable only consists of a single bit. We then
apply the expand operation on sk to obtain two candidates sk; and
sk of depth 2 by using the RSA equations described by Heninger
and Shacham [42]. Whenever a candidate has reached depth of a
multiple of b, i.e., j - b for some j, we apply the check operation on
this candidate to verify that the last produced block block () of
each variable v is feasible under our observation. If this candidate
does not fit to our observation, we prune it. We repeat these oper-
ations until a target depth D is reached. All produced candidates
of depth D are output. This target depth will be sufficient to re-
construct the remaining bits via the Coppersmith method [76-78].
Informally, the depth of a candidate is the number of bits each
variable has (see below for details). Our algorithm performs these
operations in a depth-first fashion (see Figure 7 in Sec. 5). We now
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give a more formal description of our algorithm. The expand opera-
tion uses a set of 4 modular equations on 5 variables and the check
operation compares the generated candidates to our observations.

(1) As a first step to set up our modular equations, we need to
determine values k, kp, and kq such that

e sk*[d] = k(N — sk*[p] — sk*[q] + 1) + 1,

e sk*[dp] = kp(sk*[p] — 1) + 1, and e - sk*[dg] = kq(sk*[q] -
1)+ 1.

We use the same technique as Heninger and Shacham [42] to
obtain these values.

Find k, kp, and kq. An argument by Boneh, Durfee, and Frankel [79]
showsthat0 < k < e: Asd < (sk*[p]-1)(sk*[q]-1) = N—p—q+1,
having k > e would be a contradiction to e-sk* [d] = k(N —sk*[p]—
sk*[q] +1) + 1. As e = 65537 is by far the most common choice,
we can thus enumerate all such values. For each such k, we can
combine the three equations and easily compute the two solutions
of the modular equation

- [k(N-1)+1]-x-k=0 (mod e).

This equation has two solutions x7 and x2 and it is easy to see
that {x1,x2} = {kp, kq} (see e.g. [42]). Hence, we can perform our
algorithm on (x1, x2) as well as on (x2, x1) to determine the values
k, kp, and kq correctly.

With the above approach, we need to run the algorithm 2 -
65537 times, which might take a long time. To rule out infeasible
possibilities for k earlier without running the complete algorithm,
Boneh, Durfee, and Frankel [79] defined the value §(k) = [ (k(N +
1) +1)/e] for 0 < k < e. They then showed that for the correct
value of k corresponding to our secret key sk*, we have 0 < §(k) <
sk* [p]+sk* [q]. Hence, (k) and sk* [d] agree on the | n/2| -2 most
significant bits. We can thus compare, for each possibility 0 < k < e,
the most significant bits of §(k) with the most significant bits given
by our observations 0Bs(PART)[d] on sk* [d]. If these do not agree,
we discard our guess k. Note that this reduces the running time
significantly to only 2 iterations of the algorithm, as almost always
there is only one possible value left after this check.

In the following, we thus assume that we found the correct values
for k, kp, and kq.

(2) In order to iteratively add more bits to our candidates, we
first need to find an initial candidate. As shown by Heninger and
Shacham [42], we know that

e-sk*[d] =1 (mod 22*7%)) e sk*[d,] = 1 (mod 21+7(kp)),
and e - sk*[dg] =1 (mod ol+7(ke)y,

where 7(x) is the exponent of the largest power of 2 that divides
x, i.e. 7(x) = max;{2!|x}. Furthermore, both sk*[p] and sk*[q]
are odd primes. Hence, for our first candidate sk, we know the least
significant bit of sk* [p], the least significant bit of sk* [q], the least
significant 2 + 7(k) bits of sk* [d], the least significantly 1 + 7(kp)
bits of sk* [dp], and the least significantly 1+ 7(kg) bits of sk* [dg].
(3) We say that a candidate sk has depth i, if the least significant
i bits of p are set (and thus the least significant i bits of g, the
least significant i + 7(k) bits of d, the least significant i + 7(kp) bits
of dp, and the least significant i + 7(kq) bits of dg). Now, given a
candidate sk with depth i, we perform an expand operation, that
produces two candidates of depth i + 1. In order to do this, we
need to determine the bits p[i], q[i], d[i + ©(k)], dp[i + 7(kp)],
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and dg[i + 7(kq)]. Note that a trivial approach would continue the
algorithm with all possible 25 = 32 assignments, but the partial
knowledge given by our candidate allows us to drastically shrink
the number of possibilities down to 2.

Therefore, we set up the following system of congruencies de-
rived from the relations between the variables. This is a system
with 5 variables and 4 constraints and thus has exactly 2 solutions.

plil +qli] =rhsi[i] (mod 2)
dli+ (k)] +pli] +qli] =rhsa[i+ (k)] (mod 2)
dpli+1(kp)] +pli] = rhsg[i+1(kp)] (mod 2)
dgli+1(kg)] +ql[i] =rhsq[i+1(kg)] (mod 2)

Here, the right-hand sides are given as
rhsy = (N - sk[p] - sklq])
thse = (k(N + 1) + 1 — k(sk[p] + sk[q]) — e - sk[d])
rhsg = (kp(sk[p] +1) + 1 — e - sk[dp])
rhsy = (kq(s7c[q] +1)+1-e- s7<[dq]).

Let sk1 and sko be the solutions of depth i + 1 obtained by set-
ting the position i (resp. i + t(k), i + 7(kp), andi + 7(kq)) of sk
to the solutions of the system. For example, if p[i] is part of the
first solution, the candidate sk [p] for p in sk; would be given by
sk1[p] = sk[p] +2° - pli]. B
(4) Now, whenever a candidate sk of depth j - b + b — 1 is reached,
we can check, whether the j-th block block;(v) of each variable
v is feasible under our observation oBs. We therefore check for
each v € Vars, whether we have blockj(s7<[v]) € PARTj with
j’ = oss(parr)[sk*[0]];. If this assignment is not possible, we
prune the solution. We denote this check against our observation
oBs as check(oBs, sk).

(5) Finally, whenever we find a candidate with our target depth D,
we output this candidate.

We say that a candidate sk of depth i is compatible with a secret
key sk* if the i (resp. i+7(k), i+1(kp), and i+7(kq)) least significant
bits of sk*[o] are identical to sk[o] for all v € Vars. The correctness
of the algorithm is easily seen by the following lemma.

LEMMA 3. Let sk* be the correct secret key and sk be a candidate
of depth i that is compatible with sk*.

e Ifi = j-b and oBs is correct, check(oBs, sk) will never prune sk.
o Let sky and sk be the output of expand(sk). Then, either sk or
sko are compatible with sk*.

o The initial candidate of depth 1 produced by the algorithm is com-
patible with sk*.

Proof of Theorem 1

Proor. Expanding all of the candidates in C with b bits gives
us exactly 25 . |C| incorrect candidates. If we expand any incorrect
candidate by b bits, our assumption says that the blocks j + 1 of
these candidates behave like random b-bit strings. Fix one of these
candidates sk. Now, sk is not pruned, if block j (sk[v]) € PART j with
j’ = oBs(pART) [sk*[0]]; for all v € Vars. By our assumption, for

each block, this happens with probability Zle (| PART; |2/ 22’7) =
2H2(P") where prli] = | PART; |/2P. As these are independent, the
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probability that such an incorrect sk is not pruned, is 27°H2(P)
Hence, the expected number of non-pruned candidates where each
block behaves like a random b-bit-string is exactly |C| - 26=5H2(p1)
Furthermore, the expansion of the correct candidate gives us an
additional 2% — 1 incorrect candidates. ]

Proof of Theorem 2

PrOOF. As noted above, we have 2°=1 < 20 candidates of depth
b. A simple induction combined with Theorem 1 shows that the
number of incorrect candidates with depth j - b is at most 27 -

J (9b=5-Ha(pr)yi _ ob . (22 5H20)it1 1
2i:O(2 2P ) =2 2b-5-Ha (pr) —1

THE LAST PARAMETER q;,l

The attentive reader might have noticed that we obtain information
about six parts of the secret key p, q, d, dp, dg, and q;l, but do not

O

use the information about q;,l in our key reconstruction algorithm.

In the following, we will shorty illustrate the problems of in-
tegrating q;l into the key-reconstruction algorithm. First, note
that, similar to the other variables of the secret key, one can easily
conclude that there is some value k’ such that q - q;)l =k"-p+1.

But the following adaption of an argument of Nguyen (described
in [42]) shows that knowing k” already reveals the factorization of
N.Asgq- q;,1 =k’ - p + 1, multiplying both sides of the equation by
p gives the equation N - q;l =k’ - p2 + p. Defining the polynomial
f(x) = k" - x% + x shows that f(p) mod N = 0. Hence, p is a small
root of a known polynomial (if k" is known) and can thus be found
by the method of Coppersmith [76-78].

B AN EXAMPLE KEY IN DER ENCODING

30 82 @2 77 # SEQUENCE: Length 0x277
02 01 00 # INTEGER: Version 00
30 od # SEQUENCE: Length oxd
06 09 2a 86 ... @1 @1 # Algorithm ID
05 00
04 82 02 61 # OCTET STRING: RSA Priv. Key
30 82 02 5d # SEQUENCE: Length 0x25d
# Private Key Parameters
02 01 00 # Version 00
02 81 81 00 ... a9 33 # n
02 03 01 00 01 # e
02 81 80 76 ... 79 al # d
02 41 00 f3 ... e8 1f # p
02 41 00 cf ... ac 6d # q
02 40 2b 96 ... ef 8d # d mod (p-1)
02 41 00 c0 ... 85 95 # d mod (qg-1)
02 41 00 89 ... 8c 19 # gq*-1 mod p

Figure 9: 1024-bit RSA private key, DER encoded according
to PKCS #8, in hexadecimal format.
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C LEAKAGE ESTIMATION WITH
MICROWALK

Table 5: The leakage estimation from Microwalk for
OpenSSL, generated from 4,096 test cases. For each instruc-
tion, Microwalk computes the Mutual Information (MI) be-
tween the memory access traces and the test case IDs, which
measures the ability of an attacker to infer the input from
an observed trace. Note that the leakage is upper bounded
by the logarithm of the number of test cases (12).

Instruction Avg. leakage (bits)
EVP_DecodeUpdate+105 12
EVP_DecodeBlock+E 12

EVP_DecodeBlock+59 12
EVP_DecodeBlock+C@ 12
EVP_DecodeBlock+D4 12
EVP_DecodeBlock+E5 12
EVP_DecodeBlock+FA 12

BN_bin2bn+AC 4.035
BN_bin2bn+24 4.016
ASN1_get_object+171 2.965
ASN1_get_object+16 2.941
ASN1_get_object+CC 2.941
PEM_read_bio+24E 1.012
EVP_DecodeUpdate+E2 1.012
EVP_DecodeUpdate+F8 1.012
EVP_DecodeBlock+49 1.012
EVP_DecodeBlock+14D 1.012
EVP_DecodeBlock+C8 1.012
EVP_DecodeBlock+D9 1.012
EVP_DecodeBlock+EE 1.012
EVP_DecodeBlock+138 1.012
EVP_DecodeBlock+142 1.012
EVP_DecodeBlock+148 1.012
PEM_read_bio+1D0 1.009
PEM_read_bio+1ED 1.009
PEM_read_bio+1F2 1.009
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static uint8_t base64_ascii_to_bin(uint8_t a) {
// Since PEM is sometimes used to carry private keys,
// itself in constant-time.
const uint8_t is_upper = constant_time_in_range_8(a,
const uint8_t is_lower = constant_time_in_range_8(a,

const uint8_t is_digit = constant_time_in_range_8(a,
const uint8_t is_plus = constant_time_eq_8(a, '+');
const uint8_t is_slash = constant_time_eq_8(a, '/');
const uint8_t is_equals = constant_time_eq_8(a, '=');
uint8_t ret = oxff; // oxff signals invalid.

ret = constant_time_select_8(is_upper, a - 'A', ret);
ret = constant_time_select_8(is_lower, a - 'a' + 26,
ret = constant_time_select_8(is_digit, a - '@' + 52,

ret = constant_time_select_8(is_plus, 62, ret);
ret = constant_time_select_8(is_slash, 63, ret);

we decode base64 data

A, 2
at, 'z');
9, '9');

// [0,26)

ret); // [26,52)
ret); // [52,62)

// Padding maps to zero, to be further handled by the caller.

ret = constant_time_select_8(is_equals, @, ret);
return ret;

Figure 10: Base64 decoding constant-time implementation in Google’s BoringSSL [64] (crypto/base64/base64.c)
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