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ABSTRACT
The X.509 Public-Key Infrastructure (PKI) standard is widely used
as a scalable and flexible authentication mechanism. Flaws in X.509
implementations can make relying applications susceptible to im-
personation attacks or interoperability issues. In practice, many
libraries implementing X.509 have been shown to suffer from flaws
that are due to noncompliance with the standard. Developing a
compliant implementation is especially hindered by the design
complexity, ambiguities, or under-specifications in the standard
written in natural languages. In this paper, we set out to alleviate
this unsatisfactory state of affairs by re-engineering and formal-
izing a widely used fragment of the X.509 standard specification,
and then using it to develop a high-assurance implementation. Our
X.509 specification re-engineering effort is guided by the princi-
ple of decoupling the syntactic requirements from the semantic
requirements. For formalizing the syntactic requirements of X.509
standard, we observe that a restricted fragment of attribute gram-
mar is sufficient. In contrast, for precisely capturing the semantic
requirements imposed on the most-widely used X.509 features, we
use quantifier-free first-order logic (QFFOL). Interestingly, using
QFFOL results in an executable specification that can be efficiently
enforced by an SMT solver. We use these and other insights to
develop a high-assurance X.509 implementation named CERES. A
comparison of CERES with 3 mainstream libraries (i.e., mbedTLS,
OpenSSL, and GnuTLS) based on 2 million real certificate chains
and 2 million synthetic certificate chains shows that CERES right-
fully rejects malformed and invalid certificates.
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1 INTRODUCTION
Many networked applications nowadays rely on the Public-Key
Infrastructure (PKI) for achieving authentication guarantee. Among
PKI proposals, X.509 is the most prominent one and is widely used
for establishing a secure communication channel together with
Transport Layer Security (TLS). It is also used in other application
scenarios including, but not limited to, the signing and verifica-
tion of emails and software packages. Consequently, the ability to
correctly parse, process, and validate X.509 certificates is often a
critical prerequisite for achieving the desired security guarantees.

The X.509 PKI is designed to be flexible in terms of the stipula-
tion and enforcement of security policies. Specifically, version 3 of
the X.509 standard, which is by far the most used version on the
Internet today, introduced the concept of certificate extensions. Ex-
tensions enable issuers to specify and impose additional restrictions
on the usage of the certificates issued by them. Moreover, apart
from the standard extensions that were profiled for Internet usage,
organizations and entities are free to introduce and incorporate
custom-made extensions on X.509 version 3 certificates. As an ex-
ample, the Google Certificate Transparency project uses a custom
certificate extension as a means for distributing signed timestamps.

While in theory X.509’s flexibility makes it adaptable to differ-
ent application scenarios, in reality it greatly complicates both the
specification of X.509 and implementations of certificate valida-
tion. Implementation flaws can thus result in failures to enforce the
desired security policies stipulated by the certificate fields and ex-
tensions. In fact, flaws in implementations of certificate validation
abound in practice. Previous testing efforts explored the usage of
fuzzing [14, 17] and dynamic symbolic execution [15] to find bugs
in common implementations of certificate validation. They found
numerous instances of deviation from the specification. Many of
these noncompliance instances severely threaten the expected guar-
antees stemmed from the correct enforcement of security policies.
Such implementation flaws and non-compliant behavior are further
exacerbated due to a lack of formalized specification or a refer-
ence implementation accompanying the X.509’s natural language
specification [19]. In this paper, we aim to improve the status-quo
by first re-engineering and formalizing a fragment of X.509’s spec-
ification, and then using the formalized specification to develop a
high-assurance implementation.
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Challenges. There are several challenges to our work. First, the
X.509 standard is written in a natural language (English), which
can be ambiguous and inconsistent. Moreover, the specification
is not always explicit in whether a particular input is acceptable,
especially, when requirements can be classified as “producer rules”
(which are to be followed by the certificate issuers, as discussed in a
prior work on misissuance [35]) instead of “consumer rules” (which
need to be enforced by the certificate validation implementations).
Second, prior to enforcing the semantic requirements of certificate
validation, one needs to be able to parse the certificates, which
requires dealing with the ASN.1 notation and its Distinguished
Encoding Rule (DER). Due to its design, a grammar that parses
objects encoded with DER is inherently context-sensitive [32], and
as such, it is difficult to use an off-the-shelf parser generator to
develop an X.509 certificate parser.
Re-engineering the specification.We attempt to re-engineer the
X.509 specification to better facilitate the proper implementation
of security policy enforcement. As such, we set out to manually
inspect the current standard and partition the consumer rules into
two categories: syntactic requirements and semantic requirements.
Among them, the syntactic requirements regulate the correct for-
mat of an X.509 certificate as in the DER encoding of ASN.1. The
semantic requirements, on the other hand, impose restrictions on
the field values of individual certificate as well as inter-relationships
that must hold between different certificate fields. Intertwined na-
ture of these two types of requirements makes it challenging to
decompose the specification. In our decomposition of the specifica-
tion, we take the stance that anything specific to the DER encoding
of the certificates are essentially syntactic restrictions whereas the
rest are considered semantic requirements.
Formalization. Formalizing the syntactic restrictions of the DER
encoding of an X.509 certificate requires a context-sensitive gram-
mar [32]. We first used a parser combinator framework to provide
an executable specification for the X.509 syntactic requirements.
During this exercise, we observed that a restricted fragment of
attribute grammar, is expressive enough to precisely capture these
syntactic requirements. For this fragment, we provide a domain-
specific language (DSL) in which one can write the X.509’s syntactic
requirements. We then developed a parser generator that can auto-
matically generate parsers for a grammar written in our DSL. We
want to emphasize that our DSL is sufficiently generic and expres-
sive to capture certificate fields with complex formats, as well as
other objects such as the encoded (and padded) hash digest used in
PKCS#1 v1.5 RSA signatures [30]. We particularly developed this
DSL to study and validate the exact expressive power needed to
capture the syntactic requirements of an X.509 certificate.

For the semantic requirements of the most widely used certificate
fields and extensions (guided by our measurements), we observe
that these requirements are essentially assertions imposed on the
decoded certificate field values and hence form an executable speci-
fication. We use quantifier-free first order logic (QFFOL) to capture
these assertions. This choice of formalism has two advantages:
(1) one can use an SMT solver to check whether the semantic re-
strictions are consistent and conflict-free (i.e., there is at least one
certificate which satisfies all the requirements); (2) it is possible to
use the SMT solver to check whether a decoded X.509 certificate
is specification compliant. Such an approach allows one to use the

SMT solver to obtain rich diagnostic information when the certifi-
cate chain being checked does not comply with the specification.
Executable specification to CERES. Based on these and other
insights, we develop a high-assurance X.509 implementation named
CERES (CERtificate Executable Specification). Roughly, CERES
glues together the parser (generated either from the parser-combinator
specification, or the DSL-based parser generator) with the SMT-
based semantic checker. In reality, to have a full-fledged implemen-
tation, we need to address additional challenges including building
a chain of X.509 certificates, computing signatures, normalizing
name fields, etc. For evaluating CERES, we carry out a differential
testing with three widely used libraries (i.e., mbedTLS, OpenSSL,
GnuTLS) in terms of compliance and overhead. In our differential
testing, we first use 2 million certificate chains constructed from a
local snapshot of unique certificates provided by Censys in 2019.
We also used 2 million certificate chains generated by a specialized
X.509 fuzzer called Frankencert [14]. Our evaluation revealed that
CERES is more restrictive in terms of compliance than the tested
libraries while incurring around 11𝑥 runtime overhead (0.462 sec-
onds compared to 0.042 seconds). The large overhead of CERES is
expected as we use an SMT solver to enforce the semantic restric-
tions. The large overhead is not a concern as we expect CERES to
be used for compliance checking purposes of other libraries instead
of being directly used in the wild. Notable findings include GnuTLS
and OpenSSL allowing extensions with unexpected certificate ver-
sions (e.g., version 1 or 4), not enforcing exact length restrictions,
and allowing relaxed bit-string encodings. GnuTLS also accepts
any malformed critical extensions containing random octet strings.
Contributions. In summary, the current paper makes the follow-
ing technical contributions:

(1) We re-engineered the specification of X.509 by decoupling
the syntactic restrictions from their semantic counterparts.

(2) For formalizing the syntactic restrictions, we identified a
fragment of attribute grammar that is sufficiently expressive.
We developed a DSL which can capture grammar written in
this fragment. We also developed a parser generator that can
generate a parser for this fragment of attribute grammar. This
allows us to obtain a high-assurance, specification-compliant
X.509 certificate parser.

(3) We used the concept of executable specification and developed
an executable specification for X.509 semantic requirements
in QFFOL, which can be enforced by an SMT solver.

(4) We implemented a high-assurance implementation called
CERES, and showed its effectiveness in identifying non-
compliant behaviors of other libraries with differential test-
ing. We responsibly disclosed our findings to the correspond-
ing library developers. The implementation of CERES and
its detailed documentation are publicly available at [21].

2 BACKGROUND AND RELATEDWORK
2.1 X.509 and noncompliance
An X.509 certificate consists of three parts: TbsCertificate, Signa-
tureAlgorithm, and SignatureValue; see Figure 1 for the high level
structure of a certificate. The TbsCertificate part generally contains
information on certificate version, unique serial number, validity
period, certificate issuer name, certificate subject name (owner),
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Figure 1: A typical structure of an X.509 certificate [7].

public key, the algorithm used by the issuer to sign this certificate,
and few optional fields (i.e., unique identifiers, a sequence of X.509
version 3 extensions). The certificate issuer signs the whole content
of TbsCertificate part to generate a signature. This signature is
appended at the end of the certificate as SignatureValue.

Validating a certificate chain entails the parsing and checking of
certificates fields and extensions. Many previous research efforts fo-
cused on testing the certificate validation logic of TLS libraries, with
the use of fuzzing [14, 17], and dynamic symbolic execution [15].
Apart from validation, issuance of X.509 certificates can also deviate
from the specification [24, 35], sometimes resulting in malformed,
non-compliant certificates. While numerous instances of noncom-
pliance were found by these previous efforts, they inherently suffer
from false negatives. More fundamentally, they do not prescribe an
alternative approach of implementing certificate validation, which
is a gap that we want to address in this paper.

2.2 Avoiding weaknesses and being compliant
Developing bug-free implementations that are compliant with the
specification is a general challenge shared by many security-critical
network and cryptographic protocols. Efforts have been made in
implementing and formally verifying cryptographic libraries [13,
40, 49]. However, these efforts currently do not have a verified
implementation of X.509 certificate validation.

Re-engineering the X.509 natural language specification has been
attempted before as part of an effort to re-engineer the TLS nat-
ural language specification [31]. The OCaml source code of their
TLS stack written as part of their re-engineering effort, which also
includes the X.509 certificate chain validation, can be viewed as a
form of executable specification. Our re-engineering and formal-
ization efforts of X.509, however, vary from theirs in the following
ways: we have (1) a clear separation of syntactic and semantic
requirements; (2) identified the different formalization sufficient
to precisely capture these two types of requirements; (3) formal
evidence of the consistency of our formalization. We note that their
code for parsing DER-encoded certificates is very similar to our
parser-combinator based approach.

Recall that, capturing the ASN.1 DER encoding rules of a syn-
tactically valid X.509 certificate requires a context-sensitive gram-
mar [32]. There are several parser generators (with the support of
context-sensitivity) [9, 22, 25, 29, 36, 38, 43] one can consider for de-
veloping a high-assurance parser for an X.509 certificate. However,
all of these languages for expressing a context-sensitive grammar

are more general than what is needed for X.509. As a result, even
though many of them can be used for our purpose, we rely on our
own DSL so that we can experiment and determine the precise ex-
pressive power needed to capture the syntactic requirements. This
exercise enabled us to conclude that one does not need backtracking
to parse an X.509 certificate.

There are other DSLs devised to focus on syntactic requirements
similar to that of X.509 [10, 41]. Among them, Ramananandro et
al. [41] presented Everparse which is a framework for generating
provably correct, zero-copy parsers from declarative descriptions
of tag-length-value (TLV) binary message formats. However, it is
not clear how to encode the length constraints of X.509 certifi-
cates with Everparse’s front-end. We, however, do not preclude the
possibility of bypassing Everparse’s front-end and instead using
their parser combinator library directly to write a formally correct
parser of X.509 certificates. More recently, Tao et al. [44] developed
a formally correct and memory safe encoder of X.509 certificates
in F*. Their guarantee includes being able to correctly encode an
internal representation of X.509 certificates to their corresponding
byte stream format in DER. For our purpose, however, we require
the decoder of a certificate. Barenghi et al. [10] attempted to create
context-free and regular specifications for X.509. However, their
effort depended on major simplifications of the X.509 grammar and
discretizations of few certificate fields to avoid context-sensitivity.

3 OVERVIEW OF OUR APPROACH
In this section, we present our overarching objective, scope of the
work, and a high-level description of our approach.
Overarching objective. The overarching objective of this work
is to facilitate developing a formally verified, RFC 5280-compliant
reference implementation for X.509 certificate chain validation
logic. For achieving this overarching objective, a typical workflow
has the following steps: ❶ develop a formal specification for the
X.509 certificate chain validation logic Φ in some suitable formalism
that precisely captures the requirements prescribed in RFC 5280;
❷ check the formal specification Φ is logically consistent, that is,
there does not exist two requirements that are at odds with each
other; ❸ develop an implementation 𝐼 that realizes all the security
policy checks mandated by RFC 5280; ❹ finally, using some formal
verification technique, show that 𝐼 satisfies Φ.
Our current work. In this work, we focus on the steps ❶, ❷, and
❸ of the above workflow. Interestingly, after developing the formal
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specification of the X.509 standard Φ, we observed that a high-
assurance, albeit not formally verified, implementation for X.509
certificate chain validation 𝐼HA follows directly from Φ, without
having to manually encode the requirements of Φ in programming
languages like C. This is because the resulting formal specificationΦ
essentially contains constraints on the different certificate fields and
hence induces an executable/operational specification. Intuitively,
given an executable specification Φ, one can use a high-assurance
interpreter (e.g., a constraint solver) that interprets Φ given the
concrete values of the certificate fields of the input certificates (or-
ganized in a chain), and thus enforcing the constraints imposed by
Φ. The resulting implementation CERES, stemmed from our speci-
fication re-engineering and formalization effort, faithfully follows
and enforces the requirements given in the specification, under the
assumption that the underlying constraint solver is correct, thus
leading to a higher level of assurance. We envision CERES to be
used in the following contexts: (1) an oracle for testing RFC compli-
ance of a given X.509 library through differential testing [14, 15, 17];
(2) checking whether a certificate chain to be used during the con-
figuration of a server with TLS support is RFC compliant.

Table 1: Example of syntactic and semantic requirements
Field Syntactic Requirement Semantic Requirement

Version Version ::= INTEGER { v1(0), v2(1), v3(2) }
When extensions are used,
as expected in this profile,
Version MUST be 3 (value is 2).

KeyUsage
Extension

KeyUsage ::= BIT STRING {
digitalSignature (0), nonRepudiation (1),
keyEncipherment (2), dataEncipherment (3),
keyAgreement (4), keyCertSign (5), cRLSign (6),
encipherOnly (7), decipherOnly (8) }

When the KeyUsage extension
appears in a certificate, at least
one of the bits MUST be set to 1.

Re-engineering the specification. Before formalizing the speci-
fication, we first re-engineer the requirements from RFC 5280 into
two classes of rules: syntactic rules and semantic rules. The syntactic
rules capture the obligations involved in decoding an X.509 certifi-
cate encoded under DER as a byte stream. In contrast, semantic
rules put restrictions on the individual field values of a certificate,
and as well as relationships that should be maintained by field
values in different certificates in a given chain. A few examples
of such requirements can be found in Table 1. In row 1 of this ex-
ample, syntactic requirement of the Version field of a certificate
is that it should be an integer that can take a value from the set
{0, 1, 2}. An example semantic requirement involving the Version
field states that Version field value should be 2 (i.e., version 3 cer-
tificates are represented by the certificate version field having the
value 2) when a certificate contains extensions. Note that, one can
further partition the rules into two more classes: producer rules and
consumer rules. Producer rules are imposed on certificate issuers
whereas consumer rules are requirements on certificate validation
implementations. In our formalization, we focus on consumer rules.

Separating the specification into syntactic and semantic require-
ments has several advantages. First, it makes the specification mod-
ular and allows extending one without impacting the other. Second,
one can use two different formalism to capture the two types of
requirements without having to resort to a single unifying formal-
ism expressive enough to capture both. Finally, one can use two
different types of proof techniques to discharge a modular imple-
mentation complying with the two different types of requirements.

Unfortunately, the two types of requirements are often intertwined
and there might not be a well-defined separation between them. At
one extreme, the whole X.509 specification can be viewed as just a
set of syntactic requirements to be enforced during the parsing/de-
coding. Such an extreme perspective, however, makes the parser
overly complicated. At the other extreme of delegating most of
the syntactic requirements to semantic checks, parsing can become
ambiguous, as we will discuss in Section 4.

To elaborate, suppose a certificate has the form 𝑎𝑛𝑏𝑛 where 𝑎, 𝑏
are terminals and 𝑛 ∈ Z+. This is a classic example of a context-
sensitive grammar that accepts strings in which 𝑎s are followed
by an equal number of 𝑏s. There are two ways to decompose this
certificate format into syntactic and semantic requirements, em-
bracing the two extremes discussed above. First, one can consider
the syntactic requirement to be the regular grammar 𝑎+𝑏+ whereas
the semantic requirement checks whether the number of 𝑎s equals
to the number of 𝑏s. Second, one can consider the syntactic restric-
tion to be 𝑎𝑛𝑏𝑛 with no semantic restrictions. Under the former
decomposition, to parse certificates, a parser capable of parsing
regular languages would suffice. However, under the latter decom-
position, a parser that can parse context-sensitive languages would
be needed. The sweet spot is somewhere in the middle of the two
extremes. Ideally, requirements related to DER encoding are consid-
ered as syntactic requirements, and the rest are taken as semantic
requirements. During our re-engineering effort, we try to stay close
to the sweet spot, sometimes using the simplicity of parsing as a
metric for partitioning requirements when it is not apparent.
Formalizing syntactic requirements.There are three challenges
to formalize the syntactic requirements of a DER-encoded X.509
certificate. First, the current standard is written in natural languages
and suffers from ambiguity and under-specification. Second, differ-
ent documents (e.g., RFC 4518 [48], X.690 [28]) need to be consulted
to get a complete picture of the syntactic requirements. Finally, the
DER encoding of an X.509 certificate is overall complex; containing
sub-components that have complex structures of their own (e.g.,
RSA signature). We first write an executable specification of the
syntactic requirements using a parser combinator framework. Dur-
ing this exercise, we observe that a restricted fragment of attribute
grammar is sufficient to capture the complex syntactic structure of
a certificate. At a high-level, one can view this fragment of attribute
to be enhancing the unambiguous LL(1) context-free grammar with
some context for handling length restrictions of the DER encoding.
Unlike full attribute grammar, parsing this restricted fragment does
not require backtracking when encountering a rule with different
choices. This is ensured by the unambiguous LL(1) portion of the
grammar (i.e., no left recursion, already left-factored). One can thus
write a recursive descent parser with the support for carrying some
context for checking the constraint imposed by the ℓ field. We de-
veloped a domain-specific language (DSL) for expressing grammars
in this restricted fragment of attribute grammar. We developed this
DSL, and the corresponding parser generator, in addition to the
parser combinator based specification, to demonstrate and validate
that this fragment is sufficient to express X.509 syntactic require-
ments. Such a precise characterization of the syntactic requirements
is currently missing in the literature.
Formalizing semantic requirements. Along with the challenge
of natural language specifications suffering from ambiguity and
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under-specification, an additional challenge of formalizing seman-
tic requirements is to choose a formalization that is sufficiently
expressive enough to capture the requirements and also amenable
to automatic checking of the specification consistency. We observed
that a quantifier-free first-order logic (QFFOL) suffices to capture
the requirements. It not only allows one to automatically check
the consistency of the specification but also allows one to realize
a working, high-assurance implementation with support for rich
diagnostics through the use of an SMT solver.
From executable specification to CERES.We now discuss how
we used the above insights to realize a high-assurance implemen-
tation (step ❸ of the workflow) of the X.509 standard (see Figure
2). CERES takes a certificate chain, the current system time, and
a trust anchor store (aka, CA root store) as input, and returns the
certificate validation result as well as other diagnostic information
as output. It is modularly realized from the following four log-
ical pieces: Parser, Chain-builder, Driver, and Semantic-checker.
The Parser takes as input the certificate chain to be validated as
well as the trust anchor store, and returns the parse trees corre-
sponding to the certificates. The Chain-builder module takes these
parsed input certificates and forms candidate certificate chains.
The Semantic-checker then takes as input the current time, the
semantic rules corresponding to the standard in QFFOL, the ASTs
corresponding to a candidate certificate chain and the certificates
in the trust anchor store, and then communicates with the SMT
solver to check the assertions enforced by the semantic require-
ments as well as collect diagnostic information. TheDriver does the
plumbing needed to combine the Parser and the Semantic-checker.
It has multiple functions: (a) it calls the Parser component with the
right input; (b) it then calls the Chain-builderwith the input parsed
certificates to form candidate chains; (c) it converts the parse trees
organized in a candidate chain returned by the Chain-builder to
the corresponding ASTs; (d) it then normalizes inputs (e.g., canon-
icalizing Unicode strings) and perform auxiliary functionality to
make the ASTs ready to be consumed by the Semantic-checker; (e)
it then calls the Semantic-checker with the right input; (f) finally,

it parses the outputs of the Semantic-checker and returns them as
diagnostic information.

4 ENFORCING SYNTACTIC REQUIREMENTS
Here we discuss the syntactic rules that an X.509 certificate is
supposed to follow, as well as how we formalize and enforce them.

4.1 Syntactic requirements from ASN.1 DER
While RFC 5280 [19] outlines some syntactic and semantic require-
ments that X.509 certificates have to abide by if they are to be used
in the Internet as discussed in previous work [14, 15], we note that
RFC 5280 alone is not the only source of compliance requirements.
In most usage scenarios, including those covered by RFC 5280, an
X.509 certificate is encoded using the X.690 ASN.1 Distinguished
Encoding Rules (DER) [28], and hence the byte stream representing
a certificate has to be compliant to the syntactic rules mandated by
X.690. X.690 specification first outlines the so-called Basic Encoding
Rules (BER), and DER can be seen as a more restrictive form of
BER, which imposes additional limitations on encoding options.
The rules thus outline how one should encode and decode the dif-
ferent data types used in ASN.1, including constructed types like
SEQUENCE and SEQUENCE OF, SET and SET OF (the collection
is allowed to be empty with the OF suffix), as well as primitive
types like OBJECT IDENTIFIER, INTEGER (two’s complement),
BOOLEAN, BIT STRING and OCTET STRING, all of which are fre-
quently used by X.509 to define its certificate fields and extensions.
As a side note, DER requires both to be encoded in the primitive
form, while BER also allows the constructed form at the option of
the sender. We instead follow the ASN.1 DER given in X.690 for
parsing and decoding certificate fields and extensions. For simplic-
ity, we refer the reader to the corresponding documents (e.g., [28])
for the low-level details.

4.2 Syntactic requirements from RFC 5280
On top of the requirements stemmed from ASN.1 DER, for certifi-
cates that are for use in the Internet, RFC 5280 imposes additional
restrictions. As an example, for the certificate validity field, which
is used to denote the time period for which the certificate can be
considered as valid, one can choose to use the ASN.1 Type Gener-
alizedTime (another option being UTCTime). According to DER,
it is possible to include fractional seconds in a representation of
the type GeneralizedTime, however, RFC 5280 requires a more re-
strictive form of GeneralizedTime where fractional seconds are
disallowed. We thus in general take the ASN.1 DER as the baseline
requirements, and then impose further syntactic restrictions based
on RFC 5280 if they exist.

4.3 Complexity of the syntactic requirements
One key challenge of identifying the right formalization worth
highlighting is that the DER encoded byte stream forms a tree of
Tag-Length-Value (TLV) nodes, where explicit lengths are given to
describe the size of the value bytes that needs to be parsed, and the
value bytes can be recursively defined bymore TLV nodes.While on
a first glance this might seem to help the consumer in processing the
input, there are several reasons to why this actually increases the
complexity of the parser. First, blindly trusting the provided length
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value is not an acceptable practice, as the sender could potentially
be malicious, and absurd length values could be abused to trick the
consumer into performing a buffer over-read (akin to the infamous
OpenSSL heartbleed bug, as well as the Denial-of-Service attack
through a malicious RSA signature described in a recent work [16]).
In other words, the length values themselves need to go through
some sanity checks to make sure that they are not going beyond
the size of the input certificate. Second, when dealing with the
tree of TLV, the length of a parent node is obtained by summing
up the size of the tag, length, and value fields of all its immediate
child nodes. As such, in order to make sure the input certificate is
properly encoded, during parsing one needs to keep track of the
lengths of the children node, and then compute and check that the
length values of the children nodes add up to the length given as
input in the parent node. This is one of the contributing factors to
the grammar of X.509 certificates being context-sensitive [32].

One may be tempted to delegate some of the context-sensitive
aspects of the requirements, especially, the one with the length
field, to the semantic requirement. In this approach, the grammar
Γ will be more permissive than the standard permits whereas the
accompanying semantic requirement will rule out the the spurious
certificates accepted by Γ but not by the standard. A certificate has
the form ⟨𝑡, ℓ, 𝑣⟩where ℓ signifies the length (in bytes) of the value in
𝑣 . Even under the simplifying assumption that 𝑡 (not a constructed
type) and ℓ are both single byte values, we can represent a certificate
as the following permissive grammar: Γ ::= ⟨byte⟩⟨byte⟩⟨byte⟩∗.
Such a permissive grammar is ambiguous and may not be able to
parse complex cases where the 𝑣 field contains other ⟨𝑡, ℓ, 𝑣⟩ triples.
For a sequence of TLVs, the first value field in the TLV sequence due
to the presence of the wild card character will end up consuming all
the bytes only to identify the problem at the semantic check level.
To address this, one would need to backtrack to try other possible
derivations, which will be really inefficient.

4.4 Formalizing syntactic requirement
We start our formalization by expressing the syntactic require-
ments in an input language of a parser combinator framework.
This framework allows one to combine multiple small parsers with
some well-defined combinators (e.g., choice, count, many) to mod-
ularly generate complex parsers. As an example, a parser for a
grammar Γ ::= 𝐴 | 𝐵 can be written by combining the parsers for
non-terminals 𝐴 and 𝐵 with a choice combinator. One can keep
decomposing the higher level parser as combinations of lower-level
parsers. A parser written in this framework thus closely follows the
syntactic requirements of a grammar and consequently can also
serve as a formal specification. During this exercise, we realized
that X.509 syntactic requirements do not necessarily need to use
the rich combinators available in this framework. This raised to
two questions: (1) How much expressive power does one need to
express X.509 syntactic requirements? (2) Is it possible to avoid
backtracking during parsing X.509 certificates?

Our investigation revealed that a restricted fragment of attribute
grammar [8, 33] is sufficient to formalize our syntactic requirements.
The fragment can be viewed as an extension of unambiguous LL(1)
context-free grammar with some limited context. Roughly, this
is similar to enhancing the Backus-Normal Form (BNF) notation

for context-free grammar to allow production rules of the form:
𝐴, ®𝑐 ::= 𝛼1𝛽1𝛾1 : ®𝑟1 [𝜓1, . . . ,𝜓𝑛] | 𝛼2𝛽2𝛾2 : ®𝑟2 [𝜋1, . . . , 𝜋𝑛] in which
𝐴 is a non-terminal, ®𝑐 is a sequence of parameters representing the
input context to be used by the sequence of terminals/non-terminals
denoted with 𝛼𝑖𝛽𝑖𝛾𝑖 , ®𝑟𝑖 represents the sequence of computed con-
text to be passed to any non-terminal production rules that are
used to define 𝐴, and, 𝜓1, . . . ,𝜓𝑛 and 𝜋1, . . . , 𝜋𝑛 are constraints
that must be maintained for a string to be accepted. Note that, we
require 𝐴 to be an unambiguous LL(1) grammar (i.e., no left recur-
sion, already left-factored) without the context. We have defined a
domain-specific language (DSL) in which one can write the above
restricted context-sensitive grammars (see Appendix A). Our DSL
supports both predefined synthesized and inherited attributes for
handling the length constraints in a TLV construct.

4.5 Syntactic requirements to parsing
Realizing a parser from our parser combinator description is straight-
forward. However, for our parser obtained from the custom parser
generator for our DSL uses a recursive descent parser with lim-
ited context for handling the length constraints. Our recursive
descent parser is very similar to a parser for any unambiguous
LL(1) grammar, additionally enhanced with contexts regarding the
length constraints. Our parser does not require backtracking due
to the requirement that without the context and restrictions the re-
sulting LL(1) grammar is unambiguous. Given a production 𝐴, ®𝑐 ::=
𝐵 : ®𝑟1 [𝜓1

1 , . . . ,𝜓
1
𝑝 ] | 𝐶 : ®𝑟2 [𝜓2

1 , . . . ,𝜓
2
𝑞 ] | 𝐷 : ®𝑟3 [𝜓3

1 , . . . ,𝜓
3
𝑟 ],

one needs to backtrack if one cannot unambiguously decide which
choice (i.e., 𝐵,𝐶, 𝐷) to explore for a successful parsing. Our LL(1)
base ensures that this is not the case. Just by looking ahead one
token one can unambiguously decide which branch to consider.

5 ENFORCING SEMANTIC REQUIREMENTS
For semantic requirements, we mainly consult RFC 5280, which
profiles X.509 version 3 certificates for use in the Internet, and is
taken as the basis of identifying non-compliant behaviors in previ-
ous work [14, 15]. Since RFC 5280 is written in natural language, it
is prone to inconsistency, ambiguity, and misinterpretation. How-
ever, we make our best effort in understanding and interpreting its
requirements. We give a few examples of inconsistency, ambiguity,
and under-specification from RFC 5280 in Appendix B.

5.1 Certificate extensions to support
RFC 5280 [19] defines 15 standard extensions and 2 private exten-
sions. An X.509 certificate may contain other private extensions
not included in RFC 5280. Thus, the number of possible extensions
to parse and interpret is unbounded. To make this manageable, we
perform an analysis on 1.2 billion certificates from a static snapshot
of the Censys dataset [23], which reveals that only 10 extensions
appear frequently across different certificates (blue-colored exten-
sions in Table 2). Thus, we focus on the requirements of these 10
extensions, and for other extensions, we only consume correspond-
ing bytes to continue parsing other fields but do not enforce their
associated semantic rules.
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Table 2: Frequencies of extensions in Censys dataset
Extension Freq. Perc. Extension Freq. Perc.
Basic Constraints 1,182,963,794 95.85% Issuer Alternative Names 1,577,915 0.12%
Authority Key Identifier 1,179,639,634 95.57% Subject Directory Attributes 14,881 0%
Subject Alternative Name 1,172,888,944 95.03% Name Constraints 7,600 0%
Subject Key Identifier 1,170,590,756 94.85% Freshest CRL 6,587 0%
Key Usage 1,155,599,607 93.63% Policy Constraints 451 0%
Extended Key Usage 1,151,884,357 93.33% Policy Mapping 347 0%
Authority Information Access 1,141,133,734 92.46% Subject Information Access 337 0%
Certificate Policy 1,138,776,440 92.27% Inhibit Policy 253 0%
CRL Distribution Points 278,689,659 22.58%

5.2 Insight of executable X.509 specification
Generally speaking, a formal specification can come in two fla-
vors: non-operational and operational/executable. An example of
a non-operational specification could be of a sorting algorithm,
which states that given a non-empty array of integers, the output
of the sorting algorithm is a permutation of the original input array
which is sorted. Such a non-operational specification expresses
the requirements of a sorting algorithm without saying how to
sort an array. On the contrary, an executable specification not only
expresses the requirements but also (explicitly) say how to attain
the desired requirement. Let us take the example of the max(𝑎, 𝑏)
function where 𝑎, 𝑏 ∈ Z. An operational specification of a correct
max function can be ∀𝑎, 𝑏. max(𝑎, 𝑏) = ITE(𝑎 > 𝑏, 𝑎, 𝑏) where ITE
is the if-then-else construct. While a correct implementation di-
rectly follows from the operational specification of the max(𝑎, 𝑏)
function, this is not the case for the sort algorithm specification.

When supporting the most widely used features of X.509 stan-
dard (shown in Section 5.1), we observed that the imposed semantic
requirements are essentially assertions on individual certificate
field values as well as relationships that multiple fields from differ-
ent certificates should maintain. Such assertions essentially form
an operational/executable specification. We use QFFOL to repre-
sent X.509’s semantic requirements, which has the following two
benefits. (B1) One can check the consistency of the specification
by posing a query to the SMT solver to check whether the for-
mal specification is satisfiable (fulfilling the obligation of step ❷).
Being able to check formal specification’s consistency allows one
to identify conflicts due to ambiguous or under-specification in
the standard akin to ones discussed in Appendix B. (B2) One can
reduce the checking of compliance with the semantic rules to a
satisfiability query to the SMT solver whose unsatisfiability entails
noncompliance with the specification. In addition, when a certifi-
cate chain violates the semantic requirements, one can identify the
cause of violation (i.e., the violated RFC clause) and also get a proof
of noncompliance for free using a proof-producing SMT solver [12].

5.3 Formalizing X.509 semantic rules
We start this section by providing the interface of an implementa-
tion enforcing X.509 certificate chain validation. We recognize that
existing libraries do not always share a common interface but we
present this interface for the sake of the following discussion. We
assume an implementation 𝐼HA takes the following inputs: (1) A
certificate chain to be validated; (2) A list of X.509 certificates in its
trust-anchor store; (3) The current system time. It then returns a
quadruple of the form ⟨d, pk, cause, proof⟩ in which d denotes the
certificate chain validation result (i.e., valid or invalid), pk is the

public key corresponding to the leaf certificate, and when d is in-
valid, cause denotes the cause of noncompliance (e.g., violated RFC
clause) and proof contains the proof of noncompliance when d is
invalid. The formal specification of the partial-correctness (without
termination) of an implementation 𝐼HA thus should have the follow-
ing form: ∀ ®𝑐𝑐, ®𝑟𝑡, 𝑡 . 𝐼HA ( ®𝑐𝑐, ®𝑟𝑡, 𝑡) = ⟨valid, _, _, _⟩ ⇔ Φ[ ®𝑐𝑐, ®𝑟𝑡, 𝑡] in
which ®𝑐𝑐 is the certificate chain to be validated, ®𝑟𝑡 is the list of the
trust anchor certificates, 𝑡 is the current system time, and ‘_’ denotes
an ignore value. The formula Φ[ ®𝑐𝑐, ®𝑟𝑡, 𝑡] entails the semantic rules
captured as a QFFOL formula in our context. We use the notation
Φ[𝑥,𝑦] to denote a formula Φ in which variables 𝑥 and 𝑦 are free.
QFFOL theories used in our specification.When capturing the
semantic rules of X.509 specification, instead of declaring a structure
(e.g., algebraic data type or record type) for a certificate comprising
of different fields, we end up flattening the certificate and modeling
each field of a certificate separately. This choice is essentially to
make the form of the constraints simpler and human-readable.
In addition, we do not model all the fields of the certificate, and
instead capture the fields which appear in at least one semantic
rule. Among the many different logic (i.e., a consequence of the
theories supported by an SMT solver) in an SMT solver, we use the
following theories: array, uninterpreted function, fix-width bit-vector,
and linear integer array. The exhaustive list of semantic rules that
we capture can be found in the Appendix C. In our formalization,
we use fixed-width bit-vector to represent fixed-size bit-strings
whose sizes are known at static time, integer arrays with length
constraints to represent sets and sequences in the ASN.1 domain,
and for the rest we use logical integers supported by SMT solvers.

One of the unique aspects of our formalization is that we heavily
rely on the integer data-type in an SMT solver. Unlike machine
integers (32-bit and 64-bit), integers in SMT are logical integers,
which have infinite precision. This allows us to represent many
variable-length data-types that are perceivable as a sequence of
bytes with logical integers. As an example, a canonicalized (certifi-
cate issuer/subject) name can be viewed as an array of bits/bytes
and hence can be encoded as a pair of integers ⟨val, len⟩ in which
val represents the integer value corresponding to the binary string
whereas len represents the length of the array. Although it may
be tempting to encode names as strings (a theory supported by
major SMT solvers), the semantic requirement essentially warrant
checking whether two names are equal, which does not require
any theory-of-strings-specific operations. In addition, modern SMT
solvers cannot generate proofs of unsatisfiability when the theory
of strings and algebraic data types are used in an SMT query. Thus,
to check the equality of two names 𝑠1 (encoded as ⟨𝑣1, ℓ1⟩) and 𝑠2 (en-
coded as ⟨𝑣2, ℓ2⟩) in our formalization we essentially check whether
𝑣1 = 𝑣2 ∧ ℓ1 = ℓ2. Checking just the values here is not sufficient
because (bit-)strings of two different lengths may have the same
integer value. Finally, during our formalization, we delegate con-
straints that require computation such as modular exponentiation
necessary for signature verification, and canonicalizing Unicode
strings appearing in subject/issuer name fields to dedicated helper
modules that perform the actual computations.
Example. As an example (see Table 1), suppose a certificate has
a mandatory field (i.e., Version of type integer) and an optional
field called KeyUsageExtension. Also, the KeyUsageExtension
field has the type Bool × BV9 in which the first element of the
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pair (denoted with Boolean variable KUE_isPresent) represents
whether the extension is present, and the second element of the
pair (denoted with BV9 type variable KUE_data) is a bit-vector
of size 9. One can formalize the semantic rules in Table 1 as for-
mula Π[Version,KUE_isPresent,KUE_data] in the following way:
(Version = 0 ∨ Version = 1 ∨ Version = 2) ∧ (KUE_isPresent →
(Version = 2 ∧ KUE_data ≠ #𝑏000000000)). Note that, a certificate
Version field containing the value 2 suggests a version 3 certificate.
Consistency of our specification. After encoding the semantic
rules as a QFFOL formula, we can use an SMT solver to check
whether the formula is satisfiable. If the formula is satisfiable, then
it suggests that there are no contradictory requirements in the spec-
ification; that is, there is at least one certificate chain that satisfies
all the constraints. However, there is a challenge to achieving it. Our
specification Φ[ ®𝑐𝑐, ®𝑟𝑡, 𝑡] is parametric to the certificate chain length
(i.e., | ®𝑐𝑐 |) and also the number of certificates in the trust anchor
store (i.e., | ®𝑟𝑡 |). For checking consistency, we thus have to instantiate
these two parameters before we can query an SMT solver. We vary
the certificate chain length from 1 to 10, and consider one symbolic
certificate in the trust anchor store. We observed that the specifica-
tion is consistent for chain lengths 1 . . . 10. Although theoretically
this leaves the possibility that a conflict may exist when chains of
longer lengths are encountered, in practice, however, certificate
chain lengths that are longer than 5 are rare.

5.4 Executable specification to implementation
Due to the nature of our executable specification, it is possible to
use an SMT solver as a high-assurance interpreter to enforce the
semantic requirements. Without loss of generality, suppose a certifi-
cate only has two fields and two semantic requirements as shown in
Table 1. Recall that, we formalized these two semantic requirements
as a QFFOL formula Π[Version,KUE_isPresent,KUE_data]. Now,
given a certificate 𝑐 to check for compliance after we finish parsing
𝑐 , we obtained the following: 𝑐.Version ↦→ 2, 𝑐.KUE_isPresent ↦→
true, and 𝑐.KUE_data ↦→ #𝑏000000001. To check whether 𝑐 is com-
pliantwith the specificationΠ[Version,KUE_isPresent,KUE_data],
we just have to consult the SMT solver to check whether the follow-
ing formula is satisfiable: Π[Version,KUE_isPresent,KUE_data] ∧
Version = 2 ∧ KUE_isPresent = true ∧ KUE_data = #𝑏000000001.
If the formula is satisfiable, then we can conclude that 𝑐 satisfies
the semantic requirements; otherwise, it is non-compliant.

Generalizing from the example, to check whether a parsed cer-
tificate chain ®𝐶 is compliant with our formalization of the semantic
rules Φ[ ®𝑐𝑐, ®𝑟𝑡, 𝑡] at time 𝑡cur with respect to the root store ®𝑟𝑠 , we
assert that the following formula is satisfiable: Φ[ ®𝑐𝑐, ®𝑟𝑡, 𝑡] ∧ ®𝑐𝑐 =

®𝐶 ∧ 𝑡 = 𝑡cur ∧ ®𝑟𝑡 = ®𝑟𝑠 . If the formula is satisfiable, we conclude
that ®𝐶 is compliant; otherwise, it is non-compliant. Note that, our
original specification is parametric to the lengths of ®𝑐𝑐 and ®𝑟𝑡 . After
parsing as we know the length of the certificate chain and the size
of the trusted root certificate store, we can essentially instantiate
our specification for those values, allowing us to avoid issuing the
costly query of checking the satisfiability of a quantified formula.

5.5 Diagnostic information
Using an SMT solver to interpret the specification has the advantage
that we can essentially obtain the cause of noncompliance in the

form of a violated RFC clause for free. For this, we use the unsatisfi-
able core [18] returned by the SMT solver when the queriedQFFOL
formula turns out to be unsatisfiable. The unsatisfiable core is a
subformula of the original queried formula which is unsatisfiable.
Before issuing the satisfiability query to the SMT solver, we label
each assertion (i.e., semantic rule) of the formula with a semanti-
cally meaningful name. The SMT solver returns the unsatisfiable
core based on these labels which in turn can be mapped back to a
meaningful error message indicating the violated RFC clauses.

Note that, for faithfully checking the compliance of a certificate
chain, we make the assumption that the SMT solver is correct. This
is, however, not necessarily a valid assumption [46, 47]. For higher
assurance, we rely on a proof-producing SMT solver [12] which
can generate a proof of unsatisfiability. However, these SMT solvers
cannot generate proofs for arbitrary theories. We thus choose only
those theories in our formalization for which the SMT solver can
generate proofs, as discussed in Section 5.3. One can also use this
generated proof as a given certificate’s proof of noncompliance.

6 IMPLEMENTATION
Our implementation of CERES consists of four modules: Driver,
Parser,Chain-builder, and Semantic-checker, which contains around
9K lines of Python (v3) code in total. In this section, we discuss im-
plementation details of these modules as well as their relationships.

6.1 Driver module
The Driver module requires a PEM or CRT format X.509 certifi-
cate chain as input and also allows users to pass additional inputs
through command line arguments. The list of supported command
line arguments are shown in Table 3. At a high level, this mod-
ule initially performs some pre-processing on the input certifi-
cate chain and trusted CA certificates; particularly, each certificate
is converted to DER format. Then, it calls the Parser module to
parse each DER certificate of the input chain, and upon success-
ful parsing, it attempts to build candidate certificate chains using
the Chain-builder module. Finally, each candidate certificate chain
is sent to the Semantic-checker module for semantic consistency
(compliance) check. If at least one of these candidate chains pass
this check, the Driver module returns validation success message to
user; otherwise, it returns the reason for validation failure.

Table 3: List of supported inputs
Short Description Argument Default Value
Input chain location input None
Trusted CA store location ca-store Linux’s CA store
Check certificate purpose check-purpose Any Purpose
Check UNSAT proof check-proof False
Check specification SAT check-spec False
Enable PG-based parser dsl-parser False
Show certificates show-chain False
Show current CERES version show-version False

6.2 Parser module
As we have discussed earlier, we follow two different approaches to
implement the X.509 certificate Parser: Parser-Generator based (PG-
based) approach and Parser-Combinator based (PC-based) approach,
where both provide functionally equivalent parsers. In PG-based ap-
proach, we utilize a widely used parser-generator ANTLR (v4) [39]
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to generate the parser for our DSL. We then parse the X.509 cer-
tificate grammar encoded in our DSL leveraging this DSL parser,
which outputs an X.509 certificate parse tree. Finally, we use our
parse tree visitor code to visit the certificate parse tree and carefully
generate certificate parser code from each node of that parse tree.
In contrast, we use the Parsec (v3.8) [6] parser-combinator for PC-
based approach. The Parsermodule written in this approach is more
concise and faster; therefore, the Driver module, by default, selects
the PC-based parser and leaves the selection of PG-based parser to
user’s choice via a command line argument (e.g., dsl-parser).

6.3 Chain-builder module
An X.509 certificate chain contains a leaf certificate and may op-
tionally contain one or more auxiliary certificates (e.g., from inter-
mediate and root CAs). Unfortunately, certificates in an input chain
can be organized out-of-order. A chain may also lack the necessary
CA certificates, or contain unnecessary certificates. We thus use the
Chain-buildermodule to build candidate chains that can potentially
be validated after parsing. Our Chain-builder module handles both
out-of-order and superfluous certificates based on the KeyIdenti-
fier (keyid) field of the Authority Key Identifier (AKI) and Subject
Key Identifier (SKI) extensions. RFC 5280 Sections 4.2.1.1–4.2.1.2
mandate the presence of AKI.keyid on conforming certificates and
SKI.keyid on conforming CA certificates. Unsurprisingly, our mea-
surement on 1.2 billions certificates from Censys dataset found
95.58% and 94.85% certificates contain the AKI and SKI extensions
respectively, and in 99.99% cases AKI contains the keyid field.

We follow two rules to order out-of-order auxiliary certificates:
(1) AKI.keyid of a certificate is identical to SKI.keyid of its issuer CA
certificate, and (2) AKI.keyid is identical to SKI.keyid in a self-signed
CA certificate. To handle the absence of a root CA certificate, after
ordering existing certificates with rule (1), we find out the root CA
certificate from the trusted CA store with a SKI.keyid, matching
the AKI.keyid of the last intermediate CA certificate. Following
this approach, Chain-builder module may end up building more
than one candidate chain if multiple certificates contain the same
SKI.keyid. In cases where ordering failed due to missing keyid
or intermediate CA certificates, the Chain-builder module simply
returns the parsed input certificate chain following the input order.

6.4 Semantic-checker module
The Semantic-checker module performs three tasks: (1) formalizes
semantic constraints for a symbolic certificate chain, (2) builds for-
mal model of the parsed certificate chain, and (3) calls CVC4 SMT
solver [12] to check compliance of the semantic constraints. The
complete list of these semantic constraints are in Tables 12 and
13 in Appendix C. We use PySMT [26] library to perform the for-
malization, and later translate this formalization to SMT-LIB [11]
language. We finally send this SMT-LIB formalization as an input to
the CVC4 SMT solver for checking compliance. In case of noncom-
pliance, the SMT solver produces unsatisfiability core in a readable
format. Additionally, when user passes the check-proof command
line argument, the SMT solver generates a proof of unsatisfiability
and checks the proof with the LFSC [37] proof-checker. Note that,
PySMT itself does not provide any interface to generate unsatisfi-
ability core or proof of unsatisfiability for the CVC4 SMT solver.

Therefore, we rely on PySMT library only for the translation of the
Python-based formalization to SMT-LIB syntax. Before invoking
the external CVC4 solver, we append the required meta-code to en-
able generation of unsatisfiability core and proof of unsatisfiability.

6.4.1 Challenge – String comparison. To check the semantic con-
straint related to name chaining, we match the issuer distinguished
name in one certificate with the subject name in its issuer CA cer-
tificate. The algorithm to match two names are defined in Section
7.1 of RFC 5280. This algorithm requires all the Strings to be pre-
processed with LDAP StringPrep profile described in RFC 4518 [48].
Extending Haskell stringprep library. RFC 5280 instructs to
use the six-step (e.g., Transcode, Map, Normalize, Prohibit, Check
Bidi, Insignificant Character Handling) String preparation algo-
rithm from RFC 4518. Instead of implementing this algorithm from
scratch, we start with aHaskell library stringprep [1], which already
implemented the older version of StringPrep algorithm described in
RFC 3454 [27]. However, this older algorithm does not perform two
steps: Transcode and Insignificant Character Handling. Hence, we
extend the stringprep library with these two additional steps and
other improvements needed for the newer algorithm. This modified
library is called by the Semantic-checker to pre-process Strings.

6.4.2 Challenge – Signature verification. We require to verify cer-
tificate Signature to obtain trust on its Public key. This verification
process requires some complex cryptographic calculations.
Verifying only RSA signature. Our measurement on 1.2 billions
certificates from the Censys dataset shows 95.15% certificates have
RSA signatures, and only 4.83% have ECDSA signatures. Thus, we
only support RSA signature verification in CERES at the moment.
In case of other signature schemes, we abstract away signature ver-
ification with a stub function which always returns True to indicate
verification is successful. For the RSA signature verification, first
of all, we compute 𝑋 = 𝑆𝑒 mod 𝑛, where S represents the Signature
of a certificate, and 𝑒 , 𝑛 represent public exponent and modulus
of its issuer’s public key. Next, we parse signature digest 𝐻𝑋 out
of 𝑋 and then match whether 𝐻𝑋 = 𝐻𝑎𝑠ℎ(𝑇𝑏𝑠𝐶𝑒𝑟𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑒). We
perform cryptographic calculations such as modular exponentiation
and hash using Python’s hashlib library. However, we implemented
the parser that parses 𝑋 to extract the 𝐻𝑋 . If 𝑋 is syntactically mal-
formed, it may lead to signature forgery attacks [34]. Therefore,
our parser strictly checks the format of 𝑋 [30] before extracting
signature digest 𝐻𝑋 .

7 EVALUATION AND RESULTS
In this section, we demonstrate the effectiveness of CERES in
the context of X.509 certificate chain validation by comparing it
against 3 widely used open-source TLS libraries (e.g., mbedTLS [4],
GnuTLS [3], and OpenSSL [5]).

7.1 Certificate chain dataset
Our test certificate dataset consists of 4 millions X.509 certificate
chains. To build this dataset, we randomly sampled 2 millions cer-
tificates from theCensys [23] dataset. We then used an existing tool
named cert-chain-resolver [2] to download the corresponding CA
certificates of the sampled certificates.We also used the Frankencert
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fuzzing tool [14] to auto-generate another 2 millions synthetic cer-
tificate chains. These chains are specially crafted certificate chains
for testing certificate validation codes. First, we used OpenSSL to
generate a custom root CA certificate. We then sent this custom
root CA certificate, 1K real seed certificates, and a configuration file
as inputs to the Frankencert tool. The configuration file is required
to guide certificate generation process of Frankencert. For instance,
we used the configuration file to bound the maximum number of
certificate extensions to 15 and chain length to 5.

7.2 Experimental setup
Wehosted our experimental setup in aUbuntu 20.04machine (Linux
kernel 5.8.0-48) built with Intel Core i7 3.6 GHz CPU, and 32 GB
of RAM. We compiled the latest versions (till January 2021) of
mbedTLS, GnuTLS, and OpenSSL in this machine. Then, we ran
an experimental script which validated each test certificate chain
against CERES,mbedTLS, GnuTLS, and OpenSSL. During this run,
we kept track of the time and chain validation outcome (with expla-
nation) of each library for further analysis. ForCERES, we validated
each certificate chain twice to incorporate both PG-based parser
and PC-based parser in our analysis. For mbedTLS, GnuTLS, and
OpenSSL, we utilized their terminal-based certificate chain valida-
tion tools (e.g., 𝑐𝑒𝑟𝑡_𝑎𝑝𝑝 , 𝑐𝑒𝑟𝑡𝑡𝑜𝑜𝑙 , and 𝑜𝑝𝑒𝑛𝑠𝑠𝑙 respectively). For
all 4 of these implementations, we relied on Linux’s default trusted
CA store located at “/etc/ssl/certs/ca-certificates.crt”. Before testing
the Frankencert generated chains, we installed the custom root CA
certificate that we previously used for generating chains inside this
trusted CA store. Otherwise, all the Frankencert generated chains
would be rejected due to having untrusted root CA issuers, and we
may fail to capture any other types of semantic errors.

7.3 Findings
We noticed that the chain validation outcomes of CERES were
exactly same for both PG-based and PC-based parsers, giving strong
empirical evidence of their functional equivalence. We now present
the rest of our findings comparing CERES with the other 3 libraries.

7.3.1 CERES is more restrictive. We found CERES is more restric-
tive than mbedTLS, GnuTLS, and OpenSSL in terms of certificate
chain validation. As shown in Table 4, CERES rejected 46.69% of
Censys dataset chains and 100% of Frankencert generated chains.
Overall, we observed GnuTLS and OpenSSL are more lenient than
CERES and mbedTLS. The cases where CERES is more restrictive
than others are thoroughly discussed in Sections 7.3.5 and 7.3.6.

Table 4: Comparison on certificate chain validation

Library Censys (2 millions) Frankencert (2 millions)
Accept Reject Reject % Accept Reject Reject %

CERES 1,066,211 933,789 46.69% 0 2,000,000 100%
mbedTLS
v2.25.0

1,079,342 920,658 46.03% 0 2,000,000 100%

GnuTLS
v3.6.15

1,078,827 921,173 46.06% 513 1,999,487 99.97%

OpenSSL
v1.1.1i

1,084,401 915,599 45.78% 648 1,999,352 99.97%

7.3.2 CERES uniquely rejects some certificates. We breakdown our
comparison shown in Table 5 in 6 cases to obtain more insights on
CERES’s behavior. In the first four cases, we compared CERESwith

mbedTLS, GnuTLS, and OpenSSL based on the similarity of the
chain validation outcomes. As an example, in case 1, we wanted to
determine the number of instances when bothCERES andmbedTLS
rejected or accepted a particular certificate chain. In case 4, we
checked whether all of these 4 implementations output the same
decision for a particular chain. We learned CERES outputs the same
final decision for more than 99% test certificate chains. Moreover,
in the last two cases, we checked whether CERES uniquely vali-
dates any certificate chain. We found 12613 Censys dataset chains
which were rejected by only CERES but were accepted by all other
libraries. In contrast, there was no such instance where only CERES
accepted a particular certificate chain but all others rejected that.
This statistics again backs up our Finding 1.

Table 5: Comparison on similarity of outcome (accept/reject)

Comparison Case Censys (2 millions) Frankencert (2 millions)
Count Similarity % Count Similarity %

CERES ∧mbedTLS 1,986,869 99.34% 2,000,000 100%
CERES ∧ GnuTLS 1,987,384 99.37% 1,999,487 99.97%
CERES ∧ OpenSSL 1,981,792 99.09% 1,999,352 99.97%
CERES ∧mbedTLS
∧ GnuTLS ∧ OpenSSL

1,981,789 99.09% 1,999,221 99.96%

CERES = Reject ∧
Others = Accept

12,613 0.63% 0 0%

CERES = Accept ∧
Others = Reject

0 0% 0 0%

7.3.3 Real certificates have more semantic errors than parsing errors.
Based on CERES’s chain validation outcomes and explanations,
we analyzed why CERES rejected 46.69% of Censys dataset chains
and 100% of Frankencert generated chains. We then found Censys
dataset chains mostly had semantic errors whereas Frankencert
generated chains mostly had parsing errors. As shown in Table 6,
in 96.88% cases, CERES rejected Censys dataset chains due to dif-
ferent semantic constraint failures. This is unsurprising since these
chains are real certificate chains which are expected to follow the
correct X.509 certificate syntax in most cases, thus, leading to very
low parsing errors. On the other hand, Frankencert certificates are
generated by random mutations of 1K real certificates. Therefore,
they are highly likely to contain malformed fields, and it justifies
the 95.25% parsing errors for these chains.

Table 6: Categorization of errors for CERES rejected chains

Error Censys (2 millions) Frankencert (2 millions)
Count Reject % Details Count Reject % Details

Parsing error 29,108 3.12% Table 7 1,904,992 95.25% Table 8
Semantic error 904,681 96.88% Table 9 95,008 4.75% Table 10

Total 933,789 100% Total 2,000,000 100%

◦ We now discuss some parsing errors listed in Table 7 and 8.

7.3.4 Missing length restriction checks. Whenever the minimum
length of a particular field is explicitly mentioned in the specifica-
tion (RFC 5280), CERES’s Parser module strictly enforces that. For
instance, the following specification quote presents the length re-
striction on Extensions: “If present, Extensions is a SEQUENCE of one
or more certificate extensions”. Therefore,CERES’s parser rejected 30
Censys dataset chains which had certificates with no Extension in
their Extensions sequence. Similarly, length restrictions are also ap-
plicable to the DirectoryString choice used in Relative Distinguished
Name; see Listing 1. Based of line 3, we rejected few certificates
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which had empty (e.g., "") PrintableString in its Issuer or Subject
field. We observedmbedTLS, GnuTLS, and OpenSSL do not enforce
such explicitly mentioned length restrictions.

1 DirectoryString ::= CHOICE {
2 teletexString TeletexString (SIZE (1.. MAX)),
3 printableString PrintableString (SIZE (1.. MAX)),
4 universalString UniversalString (SIZE (1.. MAX)),
5 utf8String UTF8String (SIZE (1.. MAX)),
6 bmpString BMPString (SIZE (1.. MAX)) }

Listing 1: Structure of DirectoryString

7.3.5 Usage of deprecated IA5String in DirectoryString. Listing 1
defines the allowed string types for a DirectoryString structure.
However, we found 28378 Censys dataset certificates still support
the deprecated IA5String type to include “email address” in Issuer
or Subject field. However, RFC 5280 restricts such identity to be
included only inside Issuer Alternative Name or Subject Alternative
Name extensions. We found mbedTLS, GnuTLS, and OpenSSL do
not prohibit usage of IA5String in DirectoryString.

7.3.6 Incorrect encoding of UTCTime. We found 65 instances in
Censys dataset chains whereUTCTime inValidity field was encoded
incorrectly. According to RFC 5280 specification, UTCTime must
include year, month, day, hour, minute and second. However, we
found those 65 certificates did not include second in the UTCTime.

7.3.7 Extra bytes in KeyUsage extension. Our analysis showed us-
age of extra bytes in Key Usage extension. Key Usage extension
contains a bit-string to represent certificate purposes. According
to ASN.1 encoding rules from section 8.6.2 of ITU-X690 [28], the
encoding of a bit-string shall contain an initial octet (8 bits) fol-
lowed by zero or more subsequent octets. In addition, the last of the
subsequent octets must be padded with zero to seven trailing 0s,
and the initial octet must encode the number of required padding
bits. Now, RFC 5280 defines 9 KeyUsage purposes (bits). Hence, we
require 3 octets at most to encode all 9 KeyUsage bits; that means,
1 octet for initial padding, and 2 octets to hold 9 bits where the last
octet should contain 7 bits padding. However, we found 343 Censys
dataset certificates which encoded KeyUsage bit-string with more
than 3 octets, where the initial octet defines 0 padding, and one
or more last few octets contain only 0s. CERES’s parser does not
allow such loose bit-string encoding. Interestingly, we found that
mbedTLS, GnuTLS, and OpenSSL allow these unnecessary bytes.

7.3.8 Extensions with random octet strings. Listing 2 shows the
structure of an Extension sequence. Typically, the extnValue field
is an octet string which contains some nested fields in ASN.1 en-
coding. Our analysis revealed more than 90% of the Frankencert
certificates were generated with one or more Extensions which
were holding just some random bytes (i.e., not further parseable)
in extnValue field. These test certificates allowed us to figure out a
leniency in GnuTLS. According to RFC 5280, a certificate must be
rejected if it contains a critical Extension that the implementation
cannot recognize. Now, CERES recognizes the top 10 most frequent
extensions in Table 2, and if any of those extensions do not hold
correct extnValue octet string structure, we report parsing errors.
Our analysis on discrepancies showed OpenSSL accepts random
octet strings for at least Certificate Policies extension and Authority

Information Access extension. Moreover, we found GnuTLS accepts
random octet string for any Extension, even for the critical ones.

1 Extension ::= SEQUENCE {
2 extnID OBJECT IDENTIFIER ,
3 critical BOOLEAN DEFAULT FALSE ,
4 extnValue OCTET STRING
5 -- contains the DER encoding of
6 an ASN.1 value corresponding to the
7 extension type identified by extnID }

Listing 2: Structure of an Extension

Table 7: Parsing errors detected in Censys chains
Field Reason Count Perc.

Subject
𝐿𝑒𝑛𝑔𝑡ℎ (𝑠𝑡𝑟𝑖𝑛𝑔) = 0 6 0.02%
Deprecated IA5String type 2,296 7.89%

Issuer
𝐿𝑒𝑛𝑔𝑡ℎ (𝑠𝑡𝑟𝑖𝑛𝑔) = 0 22 0.08%
Deprecated IA5String type 26,082 89.60%

Validity Incorrect UTCTime encoding 65 0.22%
Extensions 𝐿𝑒𝑛𝑔𝑡ℎ (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) = 0 30 0.10%
Subject Alternative Name 𝐿𝑒𝑛𝑔𝑡ℎ (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) = 0 146 0.50%
Issuer Alternative Name 𝐿𝑒𝑛𝑔𝑡ℎ (𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) = 0 14 0.05%
Key Usage Extension Loose bit-string encoding 343 1.18%
Authority Key Identifier Extension 𝐿𝑒𝑛𝑔𝑡ℎ (𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 ) = 0 103 0.36%
RSA Signature Missing block type 1 ≈ 0%

Total 29,108 100%

Table 8: Parsing errors detected in Frankencert chains
Field Reason Count Perc.

Subject
𝐿𝑒𝑛𝑔𝑡ℎ (𝑠𝑡𝑟𝑖𝑛𝑔) = 0 11,222 0.59%
Deprecated IA5String type 89,666 4.71%

Issuer
𝐿𝑒𝑛𝑔𝑡ℎ (𝑠𝑡𝑟𝑖𝑛𝑔) = 0 12,180 0.64%
Deprecated IA5String type 89,323 4.69%

Subject Alternative Name Random Octet String 81,548 4.28%
Issuer Alternative Name Random Octet String 301,929 15.85%
Basic Constraints Random Octet String 255,579 13.42%
Extended Key Usage Random Octet String 254,940 13.38%
Key Usage Random Octet String 253,186 13.29%
Authority Key Identifier Random Octet String 109,686 5.76%
Subject Key Identifier Random Octet String 81,761 4.29%
Certificate Policies Random Octet String 128,778 6.75%
Authority Info. Access Random Octet String 132,311 6.95%
CRL Distribution Points Random Octet String 101,575 5.33%

RSA Signature
Missing block type 1,299 0.07%
Incorrect padding bytes 9 ≈ 0%

Total 1,904,992 100%

◦We now discuss few violations of semantic constraint based on
Tables 9 and 10.

7.3.9 Supporting unknown certificate version (SCP2 + SCP3). RFC
5280 specification allows only Version 1, 2, and 3 certificates (SCP3).
Additionally, it restricts usage of Extensions only to Version 3 cer-
tificates (SCP2). Although CERES implements these checks, our
analysis on validation outcomes of Frankencert generated chains
revealed thatGnuTLS andOpenSSL do not enforce these checks prop-
erly. For example, we surprisingly found a few instances where both
these libraries allowed unsupportedVersion 4 certificates which also
had Extensions. These certificates simultaneously violate SCP2 and
SCP3 constraints. In addition, OpenSSL allowed Version 1 certifi-
cates with Extensions, which GnuTLS, however, correctly rejected.
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7.3.10 Allowing zero (0) as serial number (SCP4). As discussed
in Appendix B, there is an inconsistency in RFC 5280 regarding
the values allowed for Serial number. Our interpretation is that
“Conforming CAs must issue certificate with Serial > 0”. We found
11162 Censys dataset certificates which had 0 as Serial number;
hence, we rejected those. However, we noticed mbedTLS, GnuTLS,
and OpenSSL did not reject 0 as certificate Serial number.

7.3.11 Rejecting unknown critical extension (SCP15). We noticed
a significant number of Censys dataset certificates had Certificate
Transparency Poison extension as a critical extension. Since this
extension is not a standard extension, CERES processed this as an
unknown extension and eventually rejected the certificates.

7.3.12 Incorrect usage of certificate purposes (SCP13 + CCP1). We
found few non-CA certificates which violated the constraint SCP13
due to havingKeyCertSign key usage bit on. In addition, we checked
whether combinations of Extended Key Usage and Key Usage pur-
poses are RFC 5280 compliant. For instance, ServerAuth Extended
Key Usage purpose is consistent only with DigitalSignature, or
KeyAgreement Key Usage purposes.

7.3.13 Incorrect name chaining (CCP6). For certificate chain path
validation, name chaining is performed by matching the Issuer
name in one certificate with the Subject name in its issuer CA
certificate. Rules for this name matching is described in Section
7.1 of RFC 5280. We found 11 Censys dataset chains which did not
follow the name matching rules.

7.3.14 Allowing insecure RSA signature (CCP8). CERES supports
only RSA signature verification and prohibits any weak or dep-
recated signature hash algorithms (e.g., MD5, SHA1), or any RSA
public key shorter than 2048 bits. We observed the presence of
1024 bits RSA public keys in 77094 Frankencert generated chains;
hence, those chains were rejected byCERES. In contrast, we noticed
GnuTLS and OpenSSL allowed 1024 bits RSA public keys.

Table 9: Semantic errors detected in Censys chains
SCP = Single Certificate Property CCP = Chain Certificate Property

Constraint Reason Count Perc.
SCP1 Signature algorithm mismatch 1 ≈ 0%
SCP2 Extensions present, but Version ≠ 3 41 ≈ 0%
SCP3 Unsupported certificate Version 4 (value 3) 23 ≈ 0%
SCP4 Serial = 0 11,162 1.23%
SCP13 KeyCertSign = True in non-CA certificate 12 ≈ 0%
SCP14 Repeated Extension 1 ≈ 0%
SCP15 Unknown critical Extension 737,984 81.57%
SCP18 Expired certificate 631 0.07%
CCP1 Inconsistent certificate purpose 3 ≈ 0%
CCP4 DistributionPoint has CRLIssuer though issuer is CRL issuer 6 ≈ 0%
CCP6 Incorrect name chaining 11 ≈ 0%
CCP7 Untrusted root CA issuer 149,418 16.52%

CCP8
RSA signature verification failure 1 ≈ 0%
Insecure RSA signature hash algorithm (SHA1) 5,385 0.61%
Short RSA public key (1024 bits) 2 ≈ 0%

Total 904,681 100%

7.4 Runtime analysis
For Censys dataset chains, we tracked runtime for all four libraries.
We also measured runtime for the Parser, and Semantic-checker
modules of CERES to breakdown its overall chain validation times.
The upper half of Table 11 shows comparison of CERES with other

Table 10: Semantic errors detected in Frankencert chains
SCP = Single Certificate Property CCP = Chain Certificate Property

Constraint Reason Count Perc.
SCP2 Extensions present, but Version ≠ 3 3,260 3.43%
SCP13 KeyCertSign = True in non-CA certificate 82 0.09%
SCP15 Unknown critical Extension 14,562 15.33%
CCP1 Inconsistent certificate purpose 10 0.01%
CCP8 Short RSA public key (1024 bits) 77,094 81.14%

Total 95,008 100%

Table 11: Chain verification runtime (second) analysis

Library Min Max Mean Median Standard
Deviation

mbedTLS 0.036 0.084 0.042 0.041 0.003
GnuTLS 0.057 0.084 0.064 0.064 0.002
OpenSSL 0.042 0.064 0.047 0.046 0.002
CERES (PC-based) 0.105 0.696 0.462 0.467 0.074
CERES (PG-based) 0.105 0.890 0.583 0.582 0.106

Detailed Time Complexity of CERES

Module Min Max Mean Median Standard
Deviation

PC-based Parser 0.001 0.099 0.028 0.026 0.009
PG-based Parser 0.001 0.363 0.163 0.156 0.051
Semantic-checker 0.000 0.672 0.389 0.395 0.080

libraries. We found CERES requires 0.462s and 0.583s on average
when PC-based and PG-based parsers are used, respectively. The
lower half of Table 11 shows breakdown of CERES’s runtime. We
noticed that the Semantic-checker module takes 0.389s on average
due to the use of expensive SMT solver. Though CERES requires
comparatively longer times than other libraries, it is still reasonably
fast in real time. Note that, the runtime of Semantic-checkermostly
depends on maximum chain length and maximum number of Ex-
tensions that we considered to encode the semantic constraints. In
our evaluation, we set maximum chain length to 5, and number of
Extensions to 15, which are reasonable parameters in reality.

8 DISCUSSION
8.1 Takeaway for application developers
Use case. CERES is envisioned to be used as an oracle for checking
noncompliance of a given library implementation. One can also use
CERES to validate a chain to be used for configuring a TLS-enabled
webserver. Although not one of its envisioned use case, application
developers can directly use CERES in their applications to delegate
the task of X.509 certificate chain validation.
Modular decomposition. Our decomposition of CERES in differ-
ent modules has several advantages. (1) the overall source code is
relatively cleaner and easy to follow. (2) It also allows us to inde-
pendently debug and extend any module.
Parser selection. PG-based parser is comparatively slower due to
more complex source code. According to Table 11, the PC-based
parser spends 0.028 sec on average for parsing, whereas the PG-
based parser takes 0.163 sec on average. Therefore, CERES by de-
fault selects the PC-based parser.

8.2 Threat to validity
We follow a best-effort approach to manually interpret the standard
and translate it into a QFFOL formula. Although our empirical
evaluation gives confidence about our interpretation’s correctness,
we do not claim our interpretation to be faithful to designers’ intent.
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Hence, our interpretation should not be considered as the official
interpretation intended by the RFC authors.

Our measurement of extensions are performed on a Censys
dataset snapshot from 2019. Theoretically, the frequencies of the
extensions from a current snapshot may vary but we do not expect
the difference to be significant.

8.3 Limitations
We want to emphasize that CERES has not been formally proven to
be functionally correct with respect to the standard. This is why we
refrain from referring to CERES as the reference implementation
and instead refer to it as a high-assurance implementation. The
main contribution of this paper is the discipline of separating the
requirements into syntactic and semantic ones, and developing an
executable specification for them. As such, we do not claim our
formalization to be complete (i.e., containing all the applicable syn-
tactic and semantic rules). Our specification is, however, modular
enough so that newer constraints can be easily added.

As discussed in Section 6.4.2, we currently only support RSA
signature verification. For RSA signature verification, we rely on
Python to compute hash digests (via its hashlib library) andmodular
exponentiation. Currently, we also do not check certificate revoca-
tion status and do not match hostnames. There is no clear direction
whether to include these checks in X.509 implementations, or to
leave these tasks for application developers [14]. The task of vali-
dating certificate chain can be separated from hostname checking,
as assumed by previous work [15, 42]. Leaving these out simplifies
the theories used in SMT and enables proof-generation. Note that,
the proofs generated by the SMT solver [12] to demonstrate the
noncompliance can have holes in them, especially, lacking proofs
for arithmetic lemmas and rewrite steps. An upcoming version of
the CVC4 SMT solver [12], however, addresses these holes.

8.4 From Specification to Implementation
CERES on average incurs an 11𝑥 runtime overhead compared to
tested implementations, making it difficult to be used as a drop-in
replacement. This slowdown can be mainly attributed to the call
to the SMT solver. One may naturally ask whether it is possible to
avoid this SMT-related runtime overhead by developing an imple-
mentation completely in a language like C or Rust. The answer to
this question is yes. However, one should ask what kind of guaran-
tees (i.e., formally proven correct or not) would one expect from
such an implementation. Based on this answer, one can envision
moving from the formal specification developed in this paper to an
implementation in C/Rust in the following two ways.

Unverified C/Rust implementation. Recall that, an X.509 im-
plementation has the following four components: (1) a parser; (2) an
input transformer (e.g., chain building, string canonicalization, cryp-
tographic operations for verifying digital signatures); (3) a semantic
checker; (4) a driver that connects the three aforementioned com-
ponents. For generating a not-formally-verified implementation in
C/Rust from CERES’ specification, one has to do the following: (1)
modify CERES’ DSL parser generator to spit a parser in C/Rust; (2)
rewrite the input transformer in C/Rust; (2) convert each QFFOL
assertion in the semantic restrictions into one or more if-then-else
statements in C/Rust; (4) rewrite the driver in C/Rust.

Verified C/Rust implementation. Achieving a formally ver-
ified X.509 implementation from CERES’ specification, however,
would require formally proving the correctness (i.e., soundness,
completeness, and termination) and possibly, other properties (e.g.,
memory safety) of all the four CERES components. One can use de-
ductive verifiers such as FramaC [20] (for C) or Electrolysis [45] (for
Rust) for formally proving the desired correctness guarantees. Such
verification, however, requires nontrivial human efforts of (1) de-
composing the specification into individual function contracts, and
(2) coming up with auxiliary lemmas for the proofs to go through.

Our grand vision is having a fully verified C/Rust implementation
eventually. This paper’s formalization and re-engineering efforts
are foundational steps towards that goal. The main point we want
to convey with CERES is that it is indeed possible to enforce a
useful portion of the X.509 specification with an SMT solver. Due
to the huge manual effort that is required to develop a formally
verified X.509 implementation and also to limit this paper’s scope,
we leave the grand vision as future work.

8.5 Responsible disclosure
We initially disclosed our findings to the corresponding library
developers in private. GnuTLS developers positively acknowledged
our findings, and promised to fix the reported noncompliance in
their later releases. In contrast, OpenSSL and mbedTLS developers
did not acknowledge our findings claiming the reported noncompli-
ance instances are not security sensitive. This reflects the reluctance
of the library developers on developing RFC compliant X.509 im-
plementations. However, we still submitted public bug reports to
OpenSSL and mbedTLS developers with some expectations on re-
moving those noncompliance instances in their future releases.

9 CONCLUSION
In this paper, we re-engineer and formalize the X.509 standard spec-
ification alleviating its design complexity, ambiguities, or under-
specifications, and then use it to develop a high-assurance imple-
mentation CERES. After separating the syntactic and semantic
requirements from the X.509 specification, we formalize the syn-
tactic requirements based on a restricted-fragment of attribute
grammar. In contrast, we encode the semantic requirements us-
ing QFFOL formula, which results in an executable specification
that can be efficiently enforced by an SMT solver. We compared
CERES with 3 mainstream libraries based on 4 million real and
synthetic certificate chains, and observed that CERES rightfully
rejects malformed and invalid certificates. We also observed some
cases where other libraries do not reject non-compliant certificates.
We have responsibly disclosed our findings to the corresponding
library developers and received positive acknowledgment from the
maintainer of GnuTLS.
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A SYNTACTIC REQUIREMENTS IN OUR DSL
1 { # exchange context from children to parent
2 attribute -of -parent <- # Arithmetic expression of

attributes -of-Children
3 .
4 .
5 .
6
7 # pre -condition to handle choices
8 PRECONDENT : # boolean expression
9
10 # pre -condition to handle the base case of a
11 # recursive grammar rule
12 PRECONDRET : # boolean expression
13
14 # post -condition to check after parsing all child

fields
15 POSTCOND : # boolean expression
16 }

Listing 3: Representation of computation-block

1 <Parent >( context) ::= <Child -1>( context) <Child -2>
2 { ... } # computation -block

Listing 4: Context passing from parent to child

1 <Parent > ::= <Child -1> <Child -2>(context -from -Child -1)
2 { ... }

Listing 5: Context passing among children (left to right)

1 <Parent > ::= <Child -1> <Child -2>
2 { Attrbt1.Parent <- Attrbt1.Child -1 + Attrbt2.Child -2
3 .
4 .
5 .
6 Attrbtn.Parent <- Attrbtn.Child -1 - Attrbtn.Child -2
7 }

Listing 6: Context passing from children to parent

Listings 3, 4, 5, 6, 7, and 8 show how to use our DSL for cap-
turing the syntactic requirements. We then show some examples
of how to capture the requirements of an X.509 certificate. Each
grammar rule starts with the pattern 𝐴 ::= 𝐵1 𝐵2 ... 𝐵𝑛 followed
by a computation-block {...}, where 𝐴 is the head of the current
production rule (referred to as the parent field), and 𝐵1 𝐵2 ... 𝐵𝑛 are
non-terminals used to define 𝐴 (referred to as the children fields).
The computation-block (see Listing 3) is intended to provide ways to
exchange contextual information (semantic information) from the
children to their parent (i.e., computation of synthesized attribute)
as well as to check certain pre-condition and/or post-condition over
some context. The pre-condition is useful to decide whether the
child fields should be parsed based on the given context, and the
post-condition can be used to check certain semantic requirements
of the already parsed child fields. Listings 3, 4, 5, and 6 show how to
exchange contextual information among parent and/or child fields.
1 <Parent > ::= <Child -1>_? <Child -2>
2 { ... }

Listing 7: Representation of Optional child node

1 <Parent > ::= <Child -1> <Child -2> # choice1
2 { ... } # computation -block for choice1
3 | <Child -A> <Child -B>
4 { ... }
5 .
6 .
7 .
8 | <Child -X> <Child -Y>
9 { ... }

Listing 8: Representation of Choice

Listings 7 and 8 show representation of optional field (using _?)
and choices (using |), respectively.
1 Certificate ::= Type Length FCert
2 { SIZE_Cert <- SIZE_Type + SIZE_Length + SIZE_FCert
3 POSTCOND : SIZE_FCert = VAL_Length && VAL_Type = 48 }
4
5 Serial ::= Type Length Value(VAL_Length)
6 { SIZE_Serial <- SIZE_Type + SIZE_Length + SIZE_Value
7 POSTCOND : SIZE_Value = VAL_Length }
8
9 Value(VAL_Length) ::= Byte Value(VAL_Length - 1)
10 { SIZE_Value <- SIZE_Byte + SIZE_Value
11 PRECONDRET : VAL_Length > 0 }
12
13 Extnsopts(VAL_Extnid) ::= Fieldsaki(VAL_Extnid)
14 { .
15 .
16 PRECONDENT : VAL_Extnid = 5578019 }
17 | Fieldsski(VAL_Extnid)
18 { .
19 .
20 PRECONDENT : VAL_Extnid = 5577998 }

Listing 9: Example on X.509 grammar

In listing 9, we present a few examples of the X.509 grammar ex-
pressed in our DSL, where 𝑆𝐼𝑍𝐸 is a synthesized attribute which cal-
culates length of the parent field based on the length of its children;
see lines 2, 6, and 10. Lines 3 and 7 show how to use 𝑃𝑂𝑆𝑇𝐶𝑂𝑁𝐷

(i.e., post-condition) to check length constraints of ASN.1 ⟨𝑡, ℓ, 𝑣⟩
form. Line 11 shows the usage of 𝑃𝑅𝐸𝐶𝑂𝑁𝐷𝑅𝐸𝑇 to express the base
condition of the recursively defined Value field. The pre-condition
defined in 𝑃𝑅𝐸𝐶𝑂𝑁𝐷𝑅𝐸𝑇 is checked before parsing the first child
field Byte. This construct enables us to specify when to stop parsing
a recursive field. That means, we ensure that the number of bytes
parsed under the Value field is bounded by the value of 𝐿𝑒𝑛𝑔𝑡ℎ field
(line 5).

The pre-conditions defined using 𝑃𝑅𝐸𝐶𝑂𝑁𝐷𝐸𝑁𝑇 are useful for
selecting the appropriate expansion rule in case of choices in the
grammar rule (see lines 13–20). Similar to 𝑃𝑅𝐸𝐶𝑂𝑁𝐷𝑅𝐸𝑇 , it also
checks the pre-condition before parsing the first child (e.g., Fieldsaki,
Fieldsski). This is analogous to having access to the lookahead to
decide which choice to pursue and thus avoiding the need for
backtracking.

B EXAMPLES OF INCONSISTENCY,
AMBIGUITY, AND UNDER-SPECIFICATION

Perhaps unsurprisingly, the specification documents considered
are all written in English, which is a natural language that is prone
to inconsistency, ambiguity and misinterpretation, and we have
indeed observed several instances of problematic clauses in the RFC
5280. Here we give a few illustrative examples.
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Regarding the requirements on serial number, in Section 4.1.2.2,
RFC 5280 says:

“The serial number MUST be a positive integer assigned by the CA to each cer-

tificate...CAs MUST force the serial Number to be a non-negative integer...Non-

conforming CAs may issue certificates with serial numbers that are negative or

zero. Certificate users SHOULD be prepared to gracefully handle such certificates.”

The first sentence is inconsistent with the last sentence: one
excludes zero, while the other allows it. An errata on this has been
filed 1 back in 2012 but at the time of writing it this does not seem
to be included in any RFC updates or clarifications.

We now give an example of requirements that we consider to be
ambiguous. Regarding the contents of the CRL distribution points
extension, in Section 4.2.1.13, RFC 5280 says:

“ A DistributionPoint consists of three fields, each of which is optional: distribu-

tionPoint, reasons, and cRLIssuer. While each of these fields is optional, a Distri-

butionPoint MUST NOT consist of only the reasons field; either distributionPoint

or cRLIssuer MUST be present. If the certificate issuer is not the CRL issuer, then

the cRLIssuer field MUST be present and contain the Name of the CRL issuer. If

the certificate issuer is also the CRL issuer, then conforming CAs MUST omit the

cRLIssuer field and MUST include the distributionPoint field. ”

However, it is not immediately clear whether the either ... or ...

clause should be interpreted as an exclusive or (⊕), or should it be
represented with a logical or (∨). If one assumes the exclusive or
interpretation, then the MUST omit clause in the last sentence of the
quote seems to be somewhat redundant, as it is already implied by

the later MUST include clause of the same sentence. However, if logical
or is indeed the correct interpretation, that is, it is acceptable for
both distributionPoint and cRLIssuer to be present, then the
either ... or ... could have been written as at least one of ... and ... to make
it less confusing. Such interpretation matters because it outlines
the correct combinations of the fields that constitute the CRL dis-
tribution points extension, and affects what should be deemed as
syntactically correct by the parser.

Additional, we argue that RFC 5280 also suffers from the prob-
lem of under-specification. Many clauses concerning the choice of
values and options are stipulated as producer rules (e.g., conforming

CAs must ...), but it is not immediately apparent whether some or all
of these should also be enforced by the consumer. In some cases,
RFC 5280 mentioned that certificate user should gracefully handle cer-
tain non-conforming inputs, without really defining what needs to
happen. Does that mean the validation should not crash? Should
the non-conforming inputs be rejected or processed as normal?
RFC 5280 is not explicit on those questions. Similarly, it also did not
make clear on what should the certificate user do in cases where
the certificate itself violates the DER.

C LIST OF SEMANTIC REQUIREMENTS
The list of semantic rules considered by CERES are presented in
Tables 12 and 13.
1https://www.rfc-editor.org/errata/eid3200
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Table 12: Semantic properties for a single X.509 certificate.
SCP = Single Certificate Property

Constraint Description
SCP1 SignatureAlgorithm field MUST contain the same algorithm identifier as the Signature field in the sequence TbsCertificate.
SCP2 Extension field MUST only appear if the Version is 3 .
SCP3 At a minimum, conforming implementations MUST recognize Version 3 certificates. Generation of Version 2 certificates is not expected by implementations based on

this profile.
SCP4 The Serial number MUST be a positive integer assigned by the CA to each certificate. Certificate users MUST be able to handle Serial number values up to 20 octets.
SCP5 The Issuer field MUST contain a non-empty distinguished name (DN).
SCP6 If the Subject is a CA (e.g., the Basic Constraints extension, is present and the value of CA is TRUE), then the Subject field MUST be populated with a non-empty

distinguished name.
SCP7 Unique Identifiers fields MUST only appear if the Version is 2 or 3. These fields MUST NOT appear if the Version is 1.
SCP8 Where it appears, the PathLenConstraint field MUST be greater than or equal to zero.
SCP9 If the Subject is a CRL issuer (e.g., the Key Usage extension, is present and the value of CRLSign is TRUE), then the Subject field MUST be populated with a non-empty

distinguished name.
SCP10 When the Key Usage extension appears in a certificate, at least one of the bits MUST be set to 1.
SCP11 If subject naming information is present only in the Subject Alternative Name extension , then the Subject name MUST be an empty sequence and the Subject

Alternative Name extension MUST be critical.
SCP12 If the Subject Alternative Name extension is present, the sequence MUST contain at least one entry.
SCP13 If the KeyCertSign bit is asserted, then the CA bit in the Basic Constraints extension MUST also be asserted. If the CA boolean is not asserted, then the KeyCertSign bit

in the Key Usage extension MUST NOT be asserted.
SCP14 A certificate MUST NOT include more than one instance of a particular Extension.
SCP15 A certificate-using system MUST reject the certificate if it encounters a critical Extension it does not recognize or a critical Extension that contains information that it

cannot process.
SCP16 A certificate policy OID MUST NOT appear more than once in a Certificate Policies extension.
SCP17 While each of these fields is optional, a DistributionPointMUST NOT consist of only the Reasons field; either distributionPoint or CRLIssuerMUST be present.
SCP18 The certificate Validity period includes the current time.

Table 13: Semantic properties for a chain of X.509 certificates
CCP = Certificate Chain Property

Constraint Description
CCP1 If a certificate contains both a Key Usage extension and an Extended Key Usage extension, then both extensions MUST be processed independently and the certificate

MUST only be used for a purpose consistent with both extensions. If there is no purpose consistent with both extensions, then the certificate MUST NOT be used for any
purpose.

CCP2 Conforming implementations may choose to reject all Version 1 and Version 2 intermediate CA certificates .
CCP3 The PathLenConstraint field is meaningful only if the CA boolean is asserted and the Key Usage extension, if present, asserts the KeyCertSign bit. In this case, it gives

the maximum number of non-self-issued intermediate certificates that may follow this certificate in a valid certification path.
CCP4 For DistributionPoint field, if the certificate issuer is not the CRL issuer, then the CRLIssuer field MUST be present and contain the Name of the CRL issuer. If the

certificate issuer is also the CRL issuer, then conforming CAs MUST omit the CRLIssuer field and MUST include the distributionPoint field.
CCP5 A certificate MUST NOT appear more than once in a prospective certification path.
CCP6 Certificate users MUST be prepared to process the Issuer distinguished name and Subject distinguished name fields to perform name chaining for certification path

validation.
CCP7 Validate whether root CA certificate is trusted by system.
CCP8 Validate RSA signatures.
CCP9 Validate leaf certificate purpose against user’s expected certificate purpose.
CCP10 Every non-leaf certificate in a chain must be a CA certificate.
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