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ABSTRACT
Continuous group key agreements (CGKAs) are a class of proto-
cols that can provide strong security guarantees to secure group

messaging protocols such as Signal and MLS. Protection against

device compromise is provided by commit messages: at a regular
rate, each group member may refresh their key material by upload-

ing a commit message, which is then downloaded and processed by

all the other members. In practice, propagating commit messages

dominates the bandwidth consumption of existing CGKAs.
We proposeChained CmPKE, aCGKAwith an asymmetric band-

width cost: in a group of N members, a commit message costsO(N )
to upload andO(1) to download, for a total bandwidth cost ofO(N ).
In contrast, TreeKEM [14, 19, 52] costs Ω(logN ) in both directions,

for a total cost Ω(N logN ). Our protocol relies on generic primi-

tives, and is therefore readily post-quantum.

We go one step further and propose post-quantum primitives

that are tailored to Chained CmPKE, which allows us to cut the

growth rate of uploaded commit messages by two or three orders

of magnitude compared to naive instantiations. Finally, we realize

a software implementation of Chained CmPKE. Our experiments

show that even for groups with a size as large as N = 2
10
, commit

messages can be computed and processed in less than 100 ms.
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1 INTRODUCTION
Secure messaging applications have seen an exponential growth in

use over the last decade. For example, WhatsApp reports a user base

of two billion [21]. From a security point of view, secure (group)

messaging is subject to some specific constraints: end-to-end en-

cryption, asynchrony, long sessions and – in the group setting – a

number of users as large as N ≤ 50000 [52, §2.4].

End-to-end encryption (E2EE) informally requires that no entity

besides the participants in a conversation can access in the clear the

contents of said conversation. The use of E2EE can be concretely

motivated by the documented attempts of government agencies

to access conversations of Lavabit [35] and Signal [55] users by

issuing subpoenas to the providers. A common abstraction for

secure (group) messaging is to model the delivery service as a public

bulletin board, hence minimizing the level of trust and interactivity

that users expect from it. As we will discuss in this paper, making

the server slightly more active in a controlled manner can benefit

efficiency, while maintaining the same level of (dis)trust.

In a secure (group) conversation over e.g., Signal, the session

may last years, there may be hundreds of users, and they may not be

online simultaneously. This stands in stark contrast to a TLS session,

which is bounded in time and deals with two online users (server

and client). It also raises new security issues. For a crude example,

consider a conversation involving N participants over a span of t
units of time. If each participant has an independent probability ϵ of
being compromised over a unit of time, this conversation will have

its contents compromised with probability 1 − (1 − ϵ)Nt
, which

becomes significant as soon as Nt = Ω(1/ϵ). This issue can be

resolved by having each participant refresh their key material at a
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regular pace, thus limiting the scope of a compromise. This practice,

called ratcheting, provides post-compromise security (PCS) and

forward secrecy (FS) [7, 25, 28]. It also forms the basis for more

sophisticated techniques [8, 9, 19] providing various levels of a

stronger notion called post-compromise forward security (PCFS) [8–

10].

Continuous Group Key Agreement. The notions of continuous
(group) key agreement (CKA and CGKA) were put forward [6–

10] to capture the particular setting that secure (group) messaging

contends with, e.g., asynchrony and large groups, and achieve the

security notions it requires, e.g., PCFS. In addition to representing

a clean abstraction, CGKAs also include the complex cryptographic

machinery of secure group messaging, and are therefore convenient

objects to reason on.

The most widely academically discussed CGKA is TreeKEM [19].

It underlies the IETF draft standard for secure messaging, MLS [14,

52]. TreeKEM derives its name from its use of ratchet trees (bot-
tom left of Fig. 1, p. 3), and a significant amount of research and

engineering effort has been undertaken to study the efficiency and

security implications of this signature feature [6, 8–10, 20, 58].

The most recent iterations of TreeKEM (i.e., after version 8 on

MLS) follow a “propose-and-commit” flow, in which members of

a group may propose to add new members, remove existing ones

or update their own keys, by sending proposal messages. These
proposals only take effect when a group member initiates a new

epoch by transmitting a commit message, which simultaneously

validates a list of indicated proposals.

Bandwidth and Commit Messages. In order to realize PCFS,

commit messages in TreeKEM include ⌈logN ⌉ encryption keys and

at least as many ciphertexts
1
(see Fig. 1), where logx denotes the

logarithm in base 2 of x . As group members are arranged as the

leaves of a binary tree, these encryption keys and ciphertexts allow

all recipients to derive a fresh common group secret comSecret
(commit secret), which is the root of the tree.

Let us discuss bandwidth consumption through three metrics:

the cost of an upload and download, and the total cost. We fo-

cus on the bandwidth cost of the commit messages of TreeKEM,

as they are the dominant term. Indeed, commit messages are the

only cryptographically-heavy messages that need to be uploaded

and downloaded at a regular rate, and each of them has a size of

Ω(logN ). This therefore represents both the upload and download
cost. If each member of a group sends a single commit message in a

given time span, then they each must also download (N −1) commit

messages, for a total bandwidth cost of Ω(N logN ) per user.2 For
large groups, this can become significant. Ironically, large groups

are also those that need the PCFS provided by commit messages

the most, since their likelihood of compromise during a time span

is higher.

This tension between security and bandwidth efficiency can

be amplified by two factors: post-quantum cryptography, and the

fact that secure messaging applications target mobile devices. In

1
A documented property [6] of TreeKEM is that the number nc of ciphertexts depends

on the topology of the ratcheting tree, which might contain blank nodes. This number

is ⌈logN ⌉ in the best case, but may degrade to N − 1 for heavily blanked trees.

2
Downloading and processing commit messages is important for security and func-

tionality: a member refusing to download a commit message will be unable to decrypt

subsequent messages.

general, post-quantum cryptographic primitives consume more

bandwidth than their classical counterparts by at least an order of

magnitude, if not more: for example, all parameter sets of Classic

McEliece entail encapsulation keys of at least 255 kibibytes (KiB).

On the other hand, bandwidth can be a scarce resource over mobile

devices, especially for users with limited mobile plans that charge

an extra fee or block access to the network once a data cap has

been reached.
3
To give a concrete example, instantiating TreeKEM

with Classic McEliece in a group of N = 256 members will deplete

a 1 GiB mobile plan once each user has sent two commit messages.

This motivates the need for CGKA protocols and post-quantum

primitives that remain efficient and secure for large groups. We note

that mobile plan providers typically calculate data usage by treating

uploaded and downloaded data as equal, and that being temporarily

blocked from, or asked to pay more to continue to access, the

mobile infrastructure is perhaps the most significant way in which

bandwidth usage affects user experience. Hence our bandwidth

cost model: downloading one byte costs as much as uploading one
byte.

One could argue that assigning different weights to uploaded

and downloaded data would be more appropriate, since uploading

speed may be lower than downloading speed [57]. We believe this

speed-based distinction is not necessary, for two reasons. First, the

bandwidth bottleneck of our CGKA resides in commit messages,

which are uploaded and downloaded in a manner that is invisible

to end users. Second, all our instantiations of our protocol achieve

uploaded commit messages of less than 50KiB for groups of at most

1024 users (see Fig. 6), which, even in countries with low uploading

speed (as of July 2021, the slowest is Afghanistan, with 2.90 Mbps

[57]), can be uploaded in less than 0.2 second. Both facts point to

a minimal impact of uploading and downloading speeds on user

experience.

1.1 Our Contributions
We propose a new CGKA called Chained CmPKE along with a for-

mal security proof (Sec. 4). The main technical tools we leverage are

the existence of very efficient post-quantum multi-recipient PKEs
(mPKE, Sec. 5), and the notion of a committing mPKE (CmPKE,
Sec. 3). We believe these tools may be of independent interest.

1.1.1 The Chained CmPKE Protocol. At a very high level, our pro-

tocol is inspired by the Chained mKEM protocol [18, 20]. One way

of interpreting Chained mKEM is as TreeKEM with a tree of arity

N and depth 1. This makes the size of uploaded commit messages

scale as O(N ), see the bottom right of Fig. 1. The main concep-

tual difference between our Chained CmPKE4 and variations of

TreeKEM (including Chained mKEM) is that we no longer consider

the delivery service as a public bulletin board, and instead allow

it to sanitize commit messages in a straightforward manner by

delivering to each group member the strict amount of data they

need, while maintaining the same level of (dis)trust. In our case,

3
Surveys on mobile data pricing [24] are interesting in that regard. The median cost

of 1 GiB of mobile data is on average (across all countries) $4.07. Mobile plans that

cost more than $20.00 / GiB are reported in 89 countries and, in expensive countries,

“People are often buying data packages of just a tens of megabytes at a time” [24]. This
illustrates that mobile data can be a limited and expensive resource.

4
We consciously use the term Chained CmPKE rather than Chained CmKEM since

we believe PKE better reflects the protocol description.
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this means that a member i may only receive the ciphertext cti that
they can decrypt.

Our first line of research realizes this sanitizability by authen-

ticating all ciphertexts with a single signature. To achieve this we

rely on the notion of a CmPKE, essentially a multi-recipient PKE
augmented with a commitment T. (Sec. 1.1.2). CmPKEs allow us

to reduce the size of downloaded commit messages from O(N ) to
O(1). Effectively, this also reduces the total bandwidth cost of trans-

mitting a commit message to O(N ), instead of O(N 2) for Chained

mKEM and Ω(N logN ) for TreeKEM. Alternatively, one could use

a Merkle tree to authenticate all ciphertexts, as in Certificate Trans-

parency [46]. However, each downloaded commit message would

need to include a membership proof of size O(logN ), in contrast

to our O(1) solution.
In a second line of research, we minimize the concrete cost of up-

loaded commit messages, which is O(N ) and larger than Ω(logN )
as for TreeKEM, by proposing and analyzing new efficient post-

quantum mPKEs. (Sec. 1.1.3). As we show in Sec. 3, we can generi-

cally transform any mPKEs into CmPKEs with minimal overhead,

thus we simply focus on mPKEs.
Compared to a naive instantiation of mPKEs using standard

single-recipientPKEs, ourmPKEsmake the commitmessages asymp-

totically smaller (in N ) by factors of between 16 (Kyber512 vs.

Ilum512) and 71 (Frodo640 vs. Bilbo640). In fact, while our upload-
ing cost scales asymptotically as O(N ), it still compares favorably

initSecret(t−1) joinerSecret(t ) initSecret(t )

confKey(t )appSecret(t ) membKey(t )

comSecret(t )

TreeKEM Chained CmPKE

Welcome message

Figure 1: Initialization of a new epoch t , here with a group of N = 8

members. A dashed arrow from X to Ymeans that Y is computed by
passingX (and possibly other values) to aHKDF, a dashed linemeans
that X = Y .
Here, the leftmost user in the TreeKEM (resp. Chained CmPKE) box
initiates a new epoch by issuing a commit message, which contains
one encryption key for each node, and one PKE (resp. CmPKE)
ciphertext for each node. Each recipient in the current group is
able to compute comSecret(t ), which corresponds to the root .
A commitmessagemay include awelcomemessage, which contains
ciphertexts ( ) encrypting joinerSecret(t ) ( ) under the encryption
key of each newly added member.

to the Ω(logN ) solution of TreeKEM in concrete efficiency, even

for groups with hundreds of users.

Our bandwidth savings are summarized in an asymptotic man-

ner in (Tab. 1, p. 10), and in a concrete manner in (Fig. 6, p. 12)

and (Fig. 7, p. 13). While Fig. 6 illustrates the upload and down-

load cost, Fig. 7 illustrates the total bandwidth cost. Compared to

TreeKEM-based equivalents, our instantiations of Chained CmPKE
have consistently better upload costs for groups of less than 200

users indicating that O(N ) solutions can be practically efficient.

In addition, our download and total costs are better by factors of

Ω(logN ) and performs well for any number of users.

1.1.2 Committing mPKEs. We introduce the notion of a commit-
ting mPKE, or CmPKE. First, a (decomposable) multi-recipient PKE
(mPKE) [43] takes as input a message M and a list of N encryption

keys, and outputs a multi-recipient ciphertext (ct0, (ĉti )i ∈[N ]). Each
recipient i ∈ [N ] is able to recoverM by decrypting (ct0, ĉti ). The
syntax of a CmPKE is mostly similar to that of an mPKE, however
it requires one additional component. The encryption procedure

of a CmPKE outputs (T, (cti )i ∈[N ]), where T is called a commit-
ment. Decryption then works by taking the token-ciphertext pair

(T, cti ). We require T to (a) have a size independent of the num-

ber of recipients N , and (b) be commitment-binding, which means

informally that T is bound to a unique message. This notion resem-

bles committing AEADs [37], however we operate in a different

setting (multi-user vs. single-user) and with a different motivation

(bandwidth efficiency vs. abuse reporting).

We show how to build a CmPKE from an mPKE [43] and a

key-committing SKE [2, 32, 33, 37], which can itself be built using

standard symmetric primitives [2]. Compared to the base mPKE,
the overhead is minimal: cti = ĉti , and T is formed of ct0 and a

term of size 2κ bits, which is no larger than a hash digest.

In our protocol, after computing a CmPKE ciphertext (T, ®ct =
(cti )i ∈[N ]), the sender of a commit message does not authenticate

the whole ciphertext, only T. The server sends (T, cti ) to each recip-

ient i , and the commitment-binding property allows i to indirectly

verify the authenticity of the message encrypted in cti . As a result,
the download cost of a commit message is O(1) for all recipients.

1.1.3 More Efficient mPKEs. An mPKE allows one to encrypt a

common message to N recipients more efficiently than the naive

solution of computing and sending N individual ciphertexts in

parallel. Indeed, as each recipient receives (ct0, ĉti ),mPKEs provide
asymptotic bandwidth savings if ĉti is smaller than a regular, single-

recipient ciphertext ct would be.

While mPKEs based on classical assumptions [15, 45] realize

|ĉti |/|ct| = 1/2, existing PKEs based on the post-quantum problems

LWE, LWR, SIDH and CSIDH were recently adapted to the mPKE
setting in [43]. These mPKEs achieve ratios |ĉti |/|ct| between 1/5

and 1/169, which could potentially translate into inversely propor-

tional bandwidth savings. The work of [43] has two shortcomings;

(a) their mPKEs are direct transpositions of existing PKEs, which
were not necessarily designed to minimize |ĉti |, and (b) it does not

study the concrete impact of the mPKE setting on cryptanalysis.

We address these two shortcomings via a two-pronged approach.

On the constructive side, we note that minimizing the size of

uploaded commit messages gives a different optimization target
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to that of PKEs, specifically we wish to minimize |ĉti |, even at the

expense of some controlled growth of |ct0 |. We therefore attempt

to improve upon the efficiency gains already reported in [43] by

revisiting the designs of the NIST submissions [16, 51, 53] with

our new optimization target in mind. To achieve this we rely on

well known techniques such as coefficient dropping and modulus

rounding. We arrive at three new parametrizations; a variant of

Frodo640 [51] called Bilbo640, a variant of Kyber512 [53] called

Ilum512, and a variant of LPRime653 [16] called LPRime757. Com-

pared to using the NIST submissions as mPKEs we reduce |ĉti | by
60–80%, which translates to an identical asymptotic reduction in

the size of uploaded commit messages. These parametrizations are

close to optimal in the sense that |ĉti | ∈ (κ, 3κ] bits. Since in the

Lindner–Peikert framework, ĉti encodes all the information about

the message (in our case, a κ-bit symmetric key), it seems difficult

to beat the κ-bit threshold without new techniques.

On the cryptanalytic side we must consider the effect of the

mPKE setting on the attack surface. In [43] theoretical, reduction

based, assurances for the security of the mPKE construction are

given. However, the concrete security of the mPKEs dervied from

NIST submissions is assumed to follow from their concrete security

analyses as PKEs. As an example of differences between the two

settings, variants of the Arora–Ge [4, 11] and BKW [22] attacks

are typically irrelevant to lattice-based PKEs, since they require

more ‘samples’ than provided by the single ciphertext of the PKE,
ct. However, in the mPKE setting, the per recipient ĉti ciphertext
components each provide samples for an adversary. Therefore the

Arora–Ge and BKW attacks should be considered in a concrete

security analysis of mPKE parameters. In the full version of this

paper [40], we describe these attacks in more detail, and provide

estimates for the concrete security of our reparametrizations in

a cryptanalytic model tailored to the mPKE setting. This model

targets NIST Security Level I. Schemes satisfying this are conjec-

tured to have comparable security to AES-128 against classical

and quantum adversaries. Interestingly, our attempts to improve

the efficiency of our mPKEs via reparametrizing NIST submissions,

specifically our use of heavy modulus rounding on the ĉti , naturally
hardens our parametrizations against these sample heavy attacks.

To display the importance of an mPKE-focused cryptanalysis, we

provide an artificial ‘Kyber like’ parameter set that is almost secure
as a PKE, but insecure in our mPKE cryptanalytic model.

1.1.4 Security of Chained CmPKE. Finally, we provide a formal

proof establishing that ourChainedCmPKE is as secure as TreeKEM.

We adopt the state-of-the-art UC security model presented by Al-

wen et al. [10] that was used to analyze the TreeKEM version 10

in MLS, which is itself an extension of [9]. In addition to party

corruptions (i.e., compromise party’s secret and group secrets), the

model captures active adversaries who may tamper with or inject

messages and deliver messages in an arbitrary order, and malicious
insiders who may interact with the PKI on behalf of the corrupted

parties. On a technical front, to model the sanitizing of the commit

messages by the delivery service, we extend the ideal functionality

in [10] and modify how the ideal functionality maintains the so-

called history graph. Our security model is a strict generalization

of prior models as it captures them as special cases.

1.2 Related Works

Secure Group Messaging. TreeKEM [19] originates from Asyn-
chronous Ratcheting Trees (ART) introduced by Cohn-Gordon et

al. [27]. To date, the TreeKEM discussed inMLS has gone through 11

versions, some of which have undergone formal security analyses.

For example, Alwen et al. [8] and Bhargavan et al. [20] analyzed

the security of TreeKEM version 7. The former proved its security

based on a game-based security model for CGKA, and the latter

presented a mechanized security proof. Recently, Alwen et al. [10]

analyzed TreeKEM version 10, which adopts the ‘parent hash’ and

‘tree-signing’ mechanisms and showed that it is secure against

active and insider adversaries.

In addition to the standard TreeKEM discussed in MLS, vari-

ants of TreeKEM have been proposed. Tainted TreeKEM [6] enjoys

efficiency advantages for large groups maintained by a small num-

ber of ‘administrators’. Re-randomized TreeKEM [8] and TreeKEM
with active security [9] improve the PCFS property against passive

and active adversaries, respectively, but require relatively heavy

cryptographic primitives. Finally, Causal TreeKEM [58] supports

concurrent changes to the group state but currently has no accom-

panying formal security proof.

Secure Two-Party Messaging. Secure messaging in the simpler

two-party setting has also been an active area of research, moti-

vated by the Signal protocol. The first full security analysis of the

Signal protocol is provided in [25, 26]. The notion of Continuous
Key Agreement (CKA) (that is, CGKA in the two-party setting) is

studied in [7]. This generalizes the public-key ratchet of Signal’s

Double Ratchet protocol [49]. The X3DH protocol [50] of the Signal

protocol, used to establish the initial secret key required for CKA, is

studied in [23, 39]. As these works provide a generic construction of

each building blocks from post-quantum assumptions, this results

in a post-quantum secure messaging for the two-party setting.

Other Real-World Post-Quantum Protocols. In the context of

post-quantum protocols, an ongoing trend is to propose proto-

cols that are tailored to the performance profiles of post-quantum

schemes. For example, KEMTLS [54] posits that post-quantum sig-

natures are generally less efficient than post-quantum KEMs. Simi-

larly, McTiny [17] and Post-Quantum WireGuard [41] exploit the

strengths of Classic McEliece [3] (long security track record, short

ciphertexts) while mitigating its main weakness (large public keys).

Our construction follows the same principles by harnessing the

existence of very efficient post-quantum mPKEs.

2 PRELIMINARIES
2.1 One-Time IND-CCA SKE
We use the standard syntax for SKE. Let K and M denote the

key and message space, respectively. We denote by Encs and Decs
the encryption and decryption algorithms, respectively, and as

standard, we assume perfect correctness. Details are provided in the

full version of this paper [40]. We only require one-time IND-CCA
security for SKEs in this work, formally defined as follows.

Definition 2.1 (One-Time IND-CCA). A SKE is one-time IND-CCA
secure if for all PPT adversary A, we have | Pr[(b, k) ←$ {0, 1} ×

K, (M0,M1) ← A(1
κ ), ct∗ ← Encs(k,Mb ),b

′ ← AC(·)(ct∗) : b =
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b ′] − 1/2| ≤ negl(κ), where C(ct) returns Decs(k, ct) if ct , ct∗ and
⊥ otherwise.

We also define key commitment for a SKE [33] which roughly

states that it is difficult to find two secret keys that correctly de-

crypt the same ciphertext (to possibly different messages). As in

prior works [2, 32, 33, 37], we define this notion by providing the

(non-uniform) adversary oracle access to Encs and Decs, where we
implicitly assume these two algorithms are implemented using an

internal hash function modeled as a random oracle.

Definition 2.2 (Key Commitment). A SKE has key commitment if
for all PPT adversaryA, we have Pr[(k0, k1, ct) ← AEncs,Decs (1κ ),

(Mb ← Decs(kb , ct))b ∈{0,1} : M0 , ⊥ ∧M1 , ⊥] ≤ negl(κ).

Viewing SKE as (a weakened version of) AEAD, we can use [2,

Sec. 5.2.] to generically transform any IND-CCA SKE, regardless
of it being one-time secure or not, to one with key commitment.

The transform only adds an additional κ bits of overhead to the

original ciphertext: to encrypt, the key committing scheme expands

kenc ← Henc(key) and kcom ← Hcom(key), runs Encs(kenc,M)
and outputs the ciphertext as (ct, kcom). Here Henc and Hcom are

modeled as random oracles. Key committing simply follows from

the collision resistance of Hcom.

2.2 Decomposable Multi-Recipient PKE
Decomposable multi-recipient PKE (mPKE) was introduced in [43].

Similarly to a standard mPKE [12, 45, 56], a decomposable mPKE
allows a user to send a message to multiple recipients more ef-

ficiently than naively running a standard PKE to the individual

recipients. The main difference between a decomposable and non-

decomposablemPKE is whether the encryption algorithm can be de-

composed into a recipient dependent and independent part. In [43]

it was shown that many assumptions known to imply PKE (e.g.,

DDH, LWE, SIDH) can naturally be used to construct an IND-CPA
decomposablemPKE. In this work, we introduce a stronger security
notion than those provided in [43] where we allow the adversary

to adaptively corrupt users during the IND-CPA security game.

Looking ahead, this notion will be important when we target an

adaptively secure CGKA.

Definition 2.3 (Decomposable Multi-Recipient Public Key Encryp-
tion). A (single-message) decomposable multi-recipient public key

encryption (mPKE) over a message spaceM consists of the follow-

ing algorithms:

• mSetup(1κ ) → pp : On input the security parameter 1
κ
, it

outputs a public parameter pp.
• mGen(pp) → (ek, dk) : On input a public parameter pp, it
outputs a pair of encryption key and decryption key (ek, dk).
• mEnc(pp, (eki )i ∈[N ],M; r0, (ri )i ∈[N ]) → ®ct = (ct0, (ĉti )i ∈[N ]) :

The (decomposable) encryption algorithm running with ran-

domness (r0, r1, · · · , rN ), splits into a pair of algorithms

(mEnci,mEncd) :

– mEnci(pp; r0) → ct0 : On input a public parameter pp and

randomness r0, it outputs an (encryption key independent)
ciphertext ct0.

– mEncd(pp, eki ,M; r0, ri ) → ĉti : On input a public param-

eter pp, an encryption key eki , a messageM ∈ M, and ran-

domness (r0, ri ), it outputs an (encryption key dependent)
ciphertext ĉti .

• mDec(dk, cti ) → M or ⊥ : On input a decryption key dk
and a ciphertext cti = (ct0, ĉti ), it outputs either M ∈ M or

⊥ <M.

Observe that any standard PKE can be used to construct a decom-

posablemPKE in the obvious way wheremEnci is the null-function
andmEncd is the encryption algorithm of the PKE. So naturally, the
main motivation for mPKE will be to reuse a large portion of the

encryption randomness r0 for all recipients and to obtain a more

efficient scheme compared to the obvious solution. The asymptotic

behavior will be the same as the obvious solution (i.e., the total

ciphertext size is O(N )) but the concrete size can be drastically

reduced (see Sec. 5 for more details). We require the standard no-

tion of correctness and ciphertext-spreadness [36], where the latter

informally states that the ciphertext has high min-entropy. Due to

space constraints, definitions are given in the full version of this

paper [40]. We also define indistinguishability of chosen plaintext

attacks (IND-CPA) with adaptive corruption for a decomposable

mPKE.

Definition 2.4 (IND-CPA). The security notion is defined by the

game in Fig. 2, where we say the adversaryA wins if the game out-

puts 1. A decomposablemPKE is IND-CPA secure with adaptive cor-
ruption if for all PPT adversaries A, we have |Pr[A wins] − 1/2| ≤

negl(κ). If A is not given access to the corruption oracle C, this

game corresponds to standard IND-CPA security.

We show in Sec. 3.3 that any IND-CPA secure decomposable

mPKE can be generically bootstrapped into one that is additionally

secure against adaptive corruption with a minimal overhead.

3 COMMITTING MULTI-RECIPIENT PKE
We consider a strengthening of a standard mPKE which we coin

a committing mPKE (CmPKE). The motivation for this is similar

in spirit to those of key committing SKEs or AEADs [2, 32, 33, 37],
where we ask a ciphertext to be bound to a unique key and message

pair. Although it may sound like an obscure property at first glance,

this property has been shown to be vital for establishing security in

several practical applications such as Facebook Messenger [32], (see

[2] for more examples). In a CmPKE, we extend this to the multi-

user setting, which requires that if any of the recipients decrypt to

a messageM, then the other recipients should also decrypt either

toM or to ⊥. Informally, and unlike in the single-user setting, we

allow a ciphertext to be decryptable by many recipients (i.e., many

different keys) but enforce that their decryption values remain

consistent if not ⊥. Looking ahead, this is a natural property to

desire when guaranteeing the weak robustness of a CGKA protocol

(i.e., if a user receives a message then it should be consistent with

all the other group members, provided that they can process the

message).
5

5
Since weak robustness of the CGKA protocol is implicitly taken care of by the

confirmation tag, the committing nature ofmPKE is not explicitly required. However,

considering the practical relevance of the “committing”-ness of SKE and AEAD, we
believe this notion is worth formalizing as it may have values in other contexts.
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3.1 Definition
Definition 3.1 (Committing Multi-Recipient Public-Key Encryp-

tion). A (single-message) committing multi-recipient public-key

encryption (CmPKE) over a message spaceM consists of the fol-

lowing four algorithms:

• CmSetup(1κ ) → pp : On input the security parameter 1
κ
, it

outputs a public parameter pp.
• CmGen(pp) → (ek, dk) : On input a public parameter pp, it
outputs a pair of encryption key and decryption key (ek, dk).
• CmEnc(pp, (eki )i ∈[N ],M) → (T, ®ct = (cti )i ∈[N ]) : On in-

put a public parameter pp, N encryption keys (eki )i ∈[N ],
and a message M ∈ M, it outputs a commitment T and N
ciphertexts ®ct = (cti )i ∈[N ].
• CmDec(dk, T, cti ) → M or ⊥ : On input a decryption key

dk, a commitment T, and a ciphertext cti , it outputs either
M ∈ M or ⊥ <M.

Definition 3.2 (Correctness). ACmPKE is correct if Pr[∀i ∈ [N ],M =
CmDec(dki , T, cti )] ≥ 1 − negl(κ) holds for all N ∈ poly(κ) and
M ∈ M, where the probability is taken over pp← CmSetup(1κ ),
((eki , dki ) ← CmGen(pp))i ∈[N ], and (T, ®ct = (cti )i ∈[N ]) ← CmEnc(
pp, (eki )i ∈[N ],M).

6

Definition 3.3 (Succinctness). We say a CmPKE is succinct if in
the above Def. 3.2, the commitment T (and all ciphertext cti ) have
size independent of the number of recipients N .

In this work, we only consider a succinct CmPKE so we omit it

for simplicity. We define indistinguishability of chosen ciphertext

attacks (IND-CCA) with adaptive corruption for CmPKE.

Definition 3.4 (IND-CCAwith Adaptive Corruption). The security
notion is defined by a game illustrated in Fig. 2, where we say the

adversary A wins if the game outputs 1. A CmPKE is IND-CCA
secure with adaptive corruption if for all PPT adversaries A, we

have |Pr[A wins] − 1/2| ≤ negl(κ). If A is not given access to the

corruption oracle C, this game corresponds to standard IND-CCA
security.

Finally, we define commitment-binding which roughly says that

the token T is implicitly bound to a unique message. The notion

we consider is strong in the sense that the adversary can use an

arbitrary decryption key rather a correctly generated one to break

commitment-binding.

Definition 3.5 (Commitment-Binding). The security notion is de-

fined by a game illustrated in Fig. 2, where we say the adversaryA

wins if the game outputs 1. A CmPKE is commitment-binding if for

all PPT adversaries A, we have Pr[A wins] ≤ negl(κ).

Note that independently satisfying succinctness and commitment-

binding is trivial. If we run a standard PKE in parallel for all N
users and set T := ⊥, then we obtain a succinct scheme but this is

clearly not commitment-binding. On the other hand, if we add a

non-interactive zero-knowledge (NIZK) proof π to further prove

that all the PKE ciphertexts encrypt the same message and set

6
In the proof of our CGKA protocol, we require that the adversary cannot find a “bad”

randomness that leads to a decryption error. Since we use a PRG modeled as a random

oracle to expand the randomness, standard correctness immediately implies that no

PPT adversary can find such bad randomness.

T := (π , ct1, · · · , ctN ) (as in the strongly robust TreeKEM variant

of [9]), then we obtain a commitment-binding scheme but the com-

mitment is no longer succinct. Therefore, the main non-triviality

is making the commitment size |T| independent of the number of

users, while simultaneously allowing the users to be convinced that

if (T, cti ) decrypts to a valid message, then any other users’ (T, ctj )
will also decrypt to the same message (or to ⊥).

3.2 Construction of CmPKE: IND-CCA without
Adaptive Corruption

Weprovide a simple and efficient generic construction of an IND-CCA
secure CmPKE (without adaptive corruption) from a decomposable

IND-CPA secure mPKE and an one-time IND-CCA secure SKE fol-

lowing the Fujisaki–Okamoto transform generalized to the multi-

recipient setting. This is illustrated in Fig. 3, where G1,G2,H are

hash functions modeled as random oracles in the security proof.

These oracles can be simulated by a single random oracle by using

appropriate domain separation. Here, we assume the output space

of H is identical to the secret key space K of the SKE. The correct-
ness of this CmPKE follows immediately from the correctness of

the decomposable mPKE and SKE. The following theorems assert

the IND-CCA security and commitment-binding of the CmPKE.
The proof for Thm. 3.6 is a standard adaptation of the KEM/DEM

framework to the multi-user setting. The proof for Thm. 3.7 follows

naturally from the key committing property of the underlying SKE.
Both proofs are provided in the full version of this paper [40].

Theorem 3.6. TheCmPKE in Fig. 3 is IND-CCA secure (resp. with
adaptive corruption) assuming the SKE is one-time IND-CCA secure
and the decomposable mPKE is IND-CPA secure (resp. with adaptive
corruption) and ciphertext-spread.

Theorem 3.7. The CmPKE in Fig. 3 is commitment-binding as-
suming the SKE has key commitment.

3.3 Construction of CmPKE: IND-CCA with
Adaptive Corruption

The construction in Fig. 3 can be shown to be IND-CCA secure

against adaptive corruption by allowing the reduction algorithm

to guess the random choices made by the adversary. However,

this results in a reduction loss as large as 2
N logN

, where N is the

number of recipients. This exponential reduction loss will then be

inherited to the CGKA protocol. Although we are unaware of any

concrete attacks that take advantage of this large reduction loss, it is

natural to ask if there is an efficient and provably adaptively secure

CmPKE (and hence CGKA) without incurring such a reduction loss.

Due to Thm. 3.6, we only need to focus on an IND-CPA secure

with adaptive corruption decomposable mPKE. Below, we provide a
simple generic transformation from any IND-CPA secure decom-

posable mPKE that is not secure against adaptive corruptions into
one that is. The overhead is simply doubling the encryption key

and ciphertext size, where the transform is a natural adaptation

of the Katz–Wang technique [44]. Due to space constraints, the

detailed construction and its associated proofs of correctness and

security are given in the full version of this paper [40].
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GAME IND-CPA
1: C := ∅

2: pp← mSetup(1κ )
3: foreach i ∈ [N ] do
4: (eki , dki ) ← mGen(pp)

5: (M0,M1, S ⊆ [N ])
← AC(·)(pp, (eki )i ∈[N ])

6: b ←$ {0, 1}

7: ®ct
∗
← mEnc(pp, (eki )i ∈S ,Mb )

8: b ′ ← AC(·)(pp, (eki )i ∈[N ], ®ct
∗
)

9: if [C ∩ S = ∅] then
10: return b
11: return [b = b ′]

Decapsulation Oracle D(i, T, ct)

1: req (T, ct) , (T∗, ct∗i )
2: M← CmDec(dki , T, ct)
3: return M

GAME IND-CCA
1: C := ∅

2: pp← CmSetup(1κ )
3: foreach i ∈ [N ] do
4: (eki , dki ) ← CmGen(pp)

5: (M0,M1, S ⊆ [N ])
← AC(·),D(·)(pp, (eki )i ∈[N ])

6: b ←$ {0, 1}

7: (T∗, ®ct
∗

:= (ct∗i )i ∈S )
← CmEnc(pp, (eki )i ∈S ,Mb )

8: b ′ ← AC(·),D(·)(pp, (eki )i ∈[N ], ®ct
∗
)

9: if [C ∩ S = ∅] then
10: return b
11: return [b = b ′]

Corruption Oracle C(i)

1: C ← C ∪ { i }
2: return dki

GAME Commitment-Bind
1: pp← CmSetup(1κ )
2: (T∗, (dkb , ctb )b ∈{0,1}) ← A(pp)
3: foreach b ∈ {0, 1} do
4: Mb ← CmDec(dkb , T

∗, ctb )
5: if dk0 = dk1 then
6: return [ct0 , ct1] ∧ [M0 , ⊥] ∧ [M1 , ⊥]
7: else
8: return [M0 , M1] ∧ [M0 , ⊥] ∧ [M1 , ⊥]

Figure 2: IND-CPA with adaptive corruption of mPKE, and IND-CCA with adaptive corruption and commitment-binding of
CmPKE. If the condition following req does not hold, the game terminates by returning a random bit.

CmSetup(1κ )

1: pp← mSetup(1κ )
2: return pp

CmGen(pp)

1: (ek, dk) ← mGen(pp)
2: return (ek, dk)

CmEnc(pp, (eki )i ∈[N ],M)

1: M←$M

2: ct0 := mEnci(pp;G1(M))
3: foreach i ∈ [N ] do
4: ĉti :=

mEncd(pp, eki ,M;G1(M),G2(eki ,M))

5: k := H(M)
6: cts ← Encs(k,M)
7: return (T := (ct0, cts ), ®ct := (ĉti )i ∈[N ])

CmDec(dk, T, ct)

1: (ct0, cts ) ← T
2: M := mDec(dk, (ct0, ct))
3: if M = ⊥ then
4: return ⊥
5: ct′

0
:= mEnci(pp;G1(M))

6: ĉt′ := mEncd(pp, ek,M;G1(M),G2(ek,M))
7: if (ct0, ct) , (ct′

0
, ĉt′) then

8: return ⊥
9: return Decs(H(M), cts )

Figure 3: An IND-CCA secure CmPKE from an IND-CPA secure decomposable mPKE and a one-time IND-CCA secure SKE.

4 OUR PROTOCOL: CHAINED CMPKE
We now present our protocol. At a conceptual level, there are two

core differences with TreeKEM:

(1) Instead of being arranged as the leaves of a (binary) tree,

group members are arranged in a set. This is similar to

Chained mKEM [20]. Alternatively, it can be interpreted

as TreeKEM using a tree of arity N and depth 1.

(2) Instead of being a passive bulletin board, the delivery service

may edit a commit message uploaded by a member before

forwarding it to any of the (N − 1) other group members.

The impact of the first change on uploading commit messages

is illustrated in Fig. 1. A member may initiate a new epoch t by

encrypting a commit secret comSecret(t ) directly to the (N − 1)

encryption keys of the other group members using aCmPKE. There
is no tree structure anymore and, as an immediate consequence,

removing a user no longer leads to “blanking” a node.

The second change is implemented via the use of a CmPKE.
Instead of signing the whole CmPKE ciphertext (T, ®ct = (cti )i ∈[N ])
embedded in a commit message, the uploader of the message only

signs T. The delivery service is expected to forward (T, cti ) to the

recipient i . Any tampering on T by the server can be detected by a

recipient by checking the signature, and any tampering on cti can
be detected during the CmPKE decryption procedure. In particular,

it achieves the same level of security as provided by TreeKEM.

4.1 Description of Our Protocol
We reuse most of the terminology and function names used by

[9, 10]. Due to space constraints, we only provide a high-level

description of our protocol in Fig. 4, and highlight the major algo-

rithmic changes below. A complete description is given in App. A.

Low-Level Primitives. The main changes relate to two classes of

low-level primitives.

The first class captures procedures related to (left-balanced bi-

nary) trees: simple ones such as computing the parent or children

of a node, determining whether it is the root, an internal node or a

leaf, etc., or more complex ones such as computing its path, co-path

or resolution. A list of 27 such procedures is given in [10, Tab. 1 and

3]. Removing binary trees trivializes or removes these procedures.

The second class relates to public-key encryption. Aswe replace a

standard PKE by a CmPKE, the main effects are that the encryption
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Create

(Propose,
‘upd’-svk)

(Propose,
‘rem’-idt )

(Propose,
‘add’-idt )

Commit

Process

Join

*frame-prop

*rekey

*unframe-commit

*apply-rekey

*sign-commit

*apply-props

*frame-commit

*set-conf-trans-hash

*set-interim-trans-hash

*init-epoch

*(vrf-) conf-tag

*derive-keys

*vrf-group-state

*fetch-ssk-if-nec

genKp

*validate-kp

*assign-kp

*welcome-msg

*unframe-prop

*derive-epoch-keys

*set-member-hash

*initialize-group

CmPKE

SIG

MAC

HKDF

Figure 4: Call graph of Chained CmPKE. We use the notations function , function and function to denote functions that
undergo respectively minimal, moderate and strong changes compared to [9, 10].

procedure now takes as input a list of encryption keys (eki )i instead
of a single key, and the presence of a commitment T as an additional

output (resp. input) of the encryption (resp. decryption) procedure.

Ripple Effects onMid-Level Procedures.More notions and pro-

cedures related to trees are heavily simplified. For example, tree-
Hash becomesmemberHash, and its computation now entails hash-

ing a set in lexicographical order, instead of a binary tree (*set-
tree-hash becomes *set-member-hash). As there is no longer an

internal node to authenticate, parentHash and its computation

(*set-parent-hash and *parent-hash) are no longer necessary.

Impact at the Top Level. Since the group is no longer arranged in
a binary tree structure but in a set, each user now possess a single

encryption keypair instead of ⌈logN ⌉. This simplifies top level

procedures (Commit, Process, Join), which refresh these keypairs.

In TreeKEM, commit messages may contain encryptions of path
secrets (to the resolution of the sibling of each concerned node,

via *rekey-path) or a path secret on the least common ancestor

node of the sender and each new group member (a common joiner

secret is also sent to new group members, via *welcome-msg). En-
cryption of path secrets produces Ω(logN ) ciphertexts, see Fig. 1
and Footnote 1.

In Chained CmPKE, there is no path secret; instead, a common

comSecret is encrypted to all recipients via a single call to CmEnc,
producing one multi-recipient ciphertext (T, ®ct = (ĉtid′)id′∈receivers),
see Fig. 1. Similarly, a common joinerSecret may be encrypted to

newly added members. In each case, the sender of the commit

message signs data that includes T, but not ®ct.
As input to Process and Join, receivers of a commit message

will not receive the full package. Precisely, instead of including a

full CmPKE ciphertext (T, ®ct = (ĉtid′)id′∈receivers), the recipient id
only downloads (T, ĉtid) from the server. We call this selective (or
designated) downloading as the recipient only needs to download

a part of the commit message it requires. Since the data signed

by the sender includes T but not ®ct, each recipient can verify the

signature. Intuitively, the commitment-binding property (Def. 3.5)

then guarantees the authenticity of ĉtid despite it not being directly
signed.
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4.2 Asymptotic Bandwidth Efficiency
We now discuss the bandwidth efficiency of our protocols. We

leave out elements that reflect logical group operations (e.g., a

bitstring encoding “id has been added to G”) or symmetric key

cryptography (e.g., hashes or MAC tags), as they add negligible

overheads (compared to public key cryptography) to all solutions.

The bottleneck of both TreeKEM and our solution resides in com-

mit messages, as these are processed on a daily basis (as the output

of Commit, and the input of Process) and contain a significant

amount of public key material. We recall that we note ek an encryp-

tion key, ct0 the (ek-independent) part of an mPKE ciphertext, ĉti
the part of a ciphertext dependent of eki and sig a signature, and
note |x | the bytesize of x . We consider a group of N members, in a

epoch with no new member.

TreeKEM. The size of an uploaded commit message is dominated

by 2 · |sig| + ⌈logN ⌉ · |ek| + Ω(logN ) · (|ct0 | + |ĉti |).7 Since all

ciphertexts in the commit message are signed jointly by a single

signature, recipients need to download all ciphertexts to verify the

signature.

Chained CmPKE. The size of an uploaded commit message is

dominated by 2 · |sig|+ |ek|+ |ct0 |+N · |ĉti |+2κ. The term 2κ stems

from our construction of a CmPKE instead of a mPKE (Thm. 3.6).

This is no larger than a hash digest, and we henceforth ignore it.

Since each user performs a selective downloading, the size of a

downloaded commit message is reduced by a factor O(N ), as it is
now dominated by 2 · |sig| + |ek| + |ct0 | + |ĉti |.

New Members. In both TreeKEM and our protocol, newly added

members use the Join procedure to process welcome messages.
These contain all encryption keys ekid: N in our case (included in

memberPublicInfo), and at most (2N − 1) in TreeKEM due to the

use of a binary tree. In both cases, the size of a welcome message is

dominated by these keys and isO(N ). Overall, it seems unlikely that

joining a group will be a bandwidth bottleneck, as each member of a

group typically performs this operation once, whereas the number

of commit messages may be unbounded.

We note that welcome messages encrypt-then-sign a common

joinerSecret to the (public) encryption keys of all new members.

If an epoch contains k new members, this entails an overhead

|sig|+k · (|ct0 |+ |ĉti |) for TreeKEM. In our protocol, this is done via

a CmPKE, which entails a smaller overhead |sig| + |ct0 | + k · |ĉti |.

TwoAlternative Protocols.We briefly present two protocols that

also achieve a bandwidth complexity O(N ) and O(1) for uploading
and downloading commit messages, using only generic primitives.

The first protocol, that we refer to as a Parallel KEM, encrypts

the same comSecret to all group members using (N − 1) parallel

(non-committing, single-recipient) PKEs. A distinct signature sigid
is computed for each distinct ctid. The cost of an upload is |ek| +
N (|ct| + 2 · |sig|) = O(N ) and, since each ciphertext is individually

authenticated, the cost of a download is |ek| + |ct| + 2 · |sig| = O(1).
See P. KEMs in Tab. 1.

7
In both TreeKEM and Chained CmPKE, a commit message contains two signatures:
one authenticates ciphertexts, and one signs the committer’s new encryption key(s)

(“tree signing” in [10]). A commit message may contain an optional welcome message,

which is then signed by a third signature. Our improvements target the first signature

(ciphertexts), and are orthogonal to the other two.

Since any PKE is also a decomposable mPKE for ct0 = ⊥, a
slightly more involved solution is to build aCmPKE from any single-

recipient PKE as a special case of Thm. 3.6. Once we have a CmPKE,
the construction, which we refer to as Committing PKEs, is identical
to ours. The cost of an upload is now |ek|+N · |ct|+2 · |sig| = O(N ),
and the cost of a download remains |ek| + |ct| + 2 · |sig| = O(1), see
C. PKE in Tab. 1.

Applying Our Techniques to TreeKEM. We can apply to the

TreeKEM protocol the two techniques leveraged here: selective

downloading and mPKEs.
Thanks to the tree-based structure of TreeKEM, each user can

perform selective downloading to retrieve only one ciphertext per

commit message. Indeed a similar idea to selective downloading

was proposed for TreeKEM [13], but to the best of our knowledge

it has never been implemented or formally analyzed. One possible

reason for this is because unlike in Chained CmPKE, TreeKEM has

the added complexity of maintaining the public keys associated

to the internal nodes of the tree. Specifically, a user only needs to

know the public keys associated to the internal nodes along its path

to the root in order to process commit message, however, it may

need to know more if it wants to upload commit messages. Notice

the nodes that the user needs to know is not fixed in advance since

add/remove/update proposals may adaptively change the topology

of the tree. Consequently, a user may need to download additional

key materials when performing a commit (which we call on-the-fly
downloading). Hence, although we believe it is possible to further

lower the download cost for TreeKEM using similar ideas, this

would entail more server-side bookkeeping of the tree structure and

the associating public keys for each internal nodes, which would

likely add complexity to the protocol description and security proof.

We leave it as an interesting future research to assess the full benefit

of such an approach.

Combining TreeKEM with mPKEs/mKEMs was done in [43],

which considered a variant of TreeKEM with trees of aritym. This

reduces the number of encryption keys per commit message to

⌈logm N ⌉ in the best case (unblanked tree), which is still Ω(logN )
for any constant value ofm. Note that settingm = N results in a

flat tree, which yields a protocol similar to Chained CmPKE. So
while it is possible to apply our techniques to TreeKEM, we found

that doing so with the goal of minimizing the total bandwidth cost

leads to a protocol very similar to ours, which a posteriori validates

our design choices.

Why Efficient mPKEs Matter. It may not be obvious that our

solution represents an improvement upon Parallel KEMs and Com-

mitting PKEs, since all three achieve the same asymptotic band-

width efficiency: O(N ) in upload, O(1) in download. However, a

perk of post-quantum cryptography is its ability to provide mPKEs
for which the eki -dependent part ĉti of ciphertexts are extremely

compact, as illustrated in Tab. 4. Our protocol directly benefits from

this fact, since the size of uploaded commit messages is ∼ |ĉti | · N .

In Sec. 5, we propose lattice-based mPKEs inspired by the (possibly

alternative) finalists to standardization by NIST Kyber [53], NTRU
LPRime [16] and FrodoKEM [51]. Our mPKEs make ĉti as small as

{48, 32, 24} bytes. Concretely, this allows our protocol to reduce

the upload bandwidth cost by two to three orders of magnitude

compared to Parallel KEMs and Committing PKEs.
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Table 1: Bandwidth cost of a commit message to a group of N members (with no newly added member) in terms of public key
cryptography. For schemes that use single-recipient PKEs/KEMs, we assume |ct| = |ct0 | + |cti |. All logarithms are in base 2. The
notation ⌈logN ⌉ expresses that for the row labelled [10] the best-case complexity is ⌈logN ⌉, and the worst-case is N .

Upload Download (per recipient) Total (1 upload, then (N − 1) downloads)

Scheme |ek| |ct0 | |ĉti | |sig| |ek| |ct0 | |ĉti | |sig| |ek| |ct0 | |ĉti | |sig|

[10] ⌈logN ⌉ ⌈logN ⌉ ⌈logN ⌉ 2 ⌈logN ⌉ ⌈logN ⌉ ⌈logN ⌉ 2 N ⌈logN ⌉ N ⌈logN ⌉ N ⌈logN ⌉ 2N
Ours 1 1 (N − 1) 2 1 1 1 2 N N 2(N − 1) 2N
P. KEMs 1 (N − 1) (N − 1) N 1 1 1 2 N 2(N − 1) 2(N − 1) 3N − 2
C. PKEs 1 (N − 1) (N − 1) 2 1 1 1 2 N 2(N − 1) 2(N − 1) 2N

4.3 Provable Security
We prove our Chained CmPKE to be secure in an extended vari-

ant of the UC security model that was recently used to analyze

TreeKEM version 10 in MLS by Alwen et al. [10]. The security

model presented by [10] is an extension of [9] that further consid-

ers insider security, allowing the adversary to maliciously inject

messages, deliver messages in an arbitrary order, and interact mali-

ciously with the PKI. In addition, it formalizes the PCFS guarantee

using the safe predicate, which decides whether the epoch key is

secure. In our work, since the uploaded and downloaded commits

are in different forms, we modify the ideal functionality in [10]

accordingly. Effectively, this creates a subtle difference in how the

history graph is maintained by the ideal functionality. We note that

prior constructions can be handled within our new extended model,

thus our model is a strict generalization of prior models. The secu-

rity of Chained CmPKE is established by Thm. 4.1. Our detailed

security model and the proof of Thm. 4.1 are provided in the full

version of this paper [40].

Theorem 4.1. Assuming that CmPKE is IND-CCA secure (resp.
with adaptive corruption) and SIG is sEUF-CMA secure, the Chained
CmPKE protocol selectively (resp. adaptively) securely realizes the
ideal functionality FCGKA, where FCGKA uses the predicate safe that
decides whether the epoch key is secure, in the (FAS, FKS,GRO)-hybrid
model, where calls to the hash function H, HKDF, and MAC are
replaced by calls to the global random oracle GRO.

5 MORE EFFICIENT LATTICE-BASED mPKES
To maximize the bandwidth savings of Chained CmPKE we must

reduce |ĉti | as much as possible. Indeed, see Tab. 1, where the “Ours”

row is only less performant than another in one column, namely

Upload |ĉti |. Therefore, in this section we outline the methods em-

ployed to achieve this. We adapt several PKEs from the literature

to mPKEs, specifically PKEs which underly KEMs that are either

finalists or alternative finalists of the final round of the NIST PQC

process [1]. Throughout this section we only consider IND-CPA
mPKEs, and use the notation of Def. 2.3. For the needs of the proto-

col in Sec. 4, these can be converted into IND-CCA CmPKEs with
a small overhead using Thm. 3.6.

We start from the construction of [43], reproduced in Fig. 5,

which adapts the Lindner–Peikert framework [47] to the mPKE
setting. As observed by [43], Fig. 5 can be readily applied to the

(possibly alternative) finalists FrodoKEM [51], Kyber [53], NTRU
LPRime [16] and Saber [30]. We take this one step further and

Table 2: Bandwidth costs of mPKEs derived from existing
parametrizations ( gray background ) and new ones (white
background), for κ = 128 bits of classical security. Standard
(single-recipient) PKE instantiations of existing schemes
may include a seed in the encryption key or a confirmation
hash in the ciphertext (in parentheses).

Scheme Reference |ek| |ct0 | |ĉti |

Kyber512 [53] 768 (+32) 640 128

Ilum512 Sec. 5 768 704 48

LPRime653 [16] 865 (+32) 865 (+32) 128

LPRime757 Sec. 5 1076 1076 32

Frodo640 [51] 9600 (+16) 9600 120

Bilbo640 Sec. 5 10240 10240 24

SIKEp434 [42] 330 330 16

propose new parametrizations of [16, 51, 53] that are tailored to the

mPKE setting. At the cost of less than a 20% increase in |ek| + |ct0 |,
we reduce

��ĉti �� by 60–80%. Since the size of an uploaded package is

asymptotically ∼
��ĉti �� · N , we view this trade-off as favorable.

This section is arranged as follows. In Sec. 5.1, we review the

techniques that one can leverage to minimize

��ĉti ��. Then in Sec. 5.2

we provide new parametrizations of [16, 51, 53]. Finally, the full

version of this paper [40] contains an additional section that details

our cryptanalytic model, and provides security estimates for our

parameter sets in this model.

5.1 Our Toolkit for Improving Efficiency
We review the known techniques at our disposal to minimize the

size of the (ĉti )i while increasing as little as possible the sizes

of ek and ct0, and maintaining security against known attacks.

The coefficient dropping and modulus rounding techniques are

already present in [16] and [53] respectively. Concretely, for mod-

ulus rounding we will focus on the Compress and Decompress
functions of [53]. By more or less rounding, we mean a smaller or
larger d in the definition of those functions, respectively. We note

that modulus rounding techniques can be applied to the original

parametrizations of [51], but save little in the |ek| + |ct0 | + |ĉti | (i.e.,
single recipient) metric. We revisit these techniques in light of the

new constraints imposed by the mPKE setting, which in turn leads

to new parameter sets. Throughout we reference Fig. 5.
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Algorithm 1 mSetup(1κ )

1: A←$Rn×nq
2: return pp := A

Algorithm 2 mGen(pp)

1: S←$Dn×n̄
s

2: E←$Dn×n̄
e

3: B← AS + E
4: return ek := B, dk := S

Algorithm 3 mEnc(pp, (eki )i ∈[N ],M)

1: r0 := (R, E′) ←$Dm̄×n
s × Dm̄×n

e ′

2: ct0 := mEnci(pp; r0)
3: foreach i ∈ [N ] do
4: ri := E′′i ←$Dm̄×n̄

e ′′

5: ĉti := mEncd(pp, eki ,M; r0, ri )

6: return ®ct := (ct0, ĉt1, . . . , ĉtN )

Algorithm 4 mEnci(pp; r0)

1: U← RA + E′

2: return ct0 := U

Algorithm 5
mEncd(pp, eki ,M; r0, ri )

1: Vi ← RBi + E′′i + Encode(M)
2: return ĉti := Vi

Algorithm 6 mDec(sk, ct)

1: return M := Decode(V − US)

Figure 5: Lattice-based mPKE construction of [43]. R is the base ring, Ds ,De ,De ′,De ′′ are distributions over R.

We note that the ciphertexts of some PKEs and mPKEs based on

lattices have a small probability of decrypting to a different message

than was initially encrypted. The probability of this occuring is

called the decryption failure rate, or DFR. Keeping the DFR low,

specifically O(2−κ ), is important for both correctness and security.

Coefficient Dropping.When trying to decode a messageM from

(U,Vi ) using S, not all of Vi may be necessary. Indeed let R =
Z[x]/(f ), d = deg(f ), I < d , and n̄ = m̄ = 1. If Encode(M) =
αI−1x

I−1 + · · · + α0 then only the I lower order coefficients of Vi
are useful for decoding. In general, if f is any degree d polynomial

and one requires I < d coefficients to encode any M, then Vi may

consist of only low degree coefficients of a single v ∈ Rq . This
technique does not affect the DFR, improves efficiency, and cannot

be worse for security.

Modulus Rounding. Rounding away the least significant bits of

B,U, and Vi provides more compact ek, ct0 and ĉti (respectively),
but mechanically raises the DFR. Our goal is to minimize the size of

ĉti , so we will maximize the rounding on Vi , while upper bounding
the DFR. To do so we may round fewer bits from B or U to give us

more DFR headroom. Thankfully, all else being equal, rounding Vi
incurs a milder increase in the DFR than on B or U. It also makes

the numerous samples introduced by the (Vi )i noisy enough to

nullify Arora–Ge and BKW attacks.

Increasing theModulus.All else being equal, increasing the mod-

ulus q reduces the DFR and therefore allows one to perform more

rounding. If this extra rounding is concentrated on the (Vi )i , the
net effect on the size of each ĉti is to decrease it. On the other hand,

it slightly increases the size of ct0 and ek and, more importantly,

decreases the error rate, making lattice attacks more efficient.

Error-Correcting Codes (ECCs). Whenever in Fig. 5 we want to

encrypt κ bits, for κ < |M|, we can use an ECC, i.e. Encode(M) =
Encode(ECC(κ)), and lower the DFR. However, this method can

lead to attacks when improperly implemented [29] or analyzed [31,

38]. In addition, if the goal is to minimize |ĉti |, then coefficient

dropping seems to always be a safer and more efficient alternative.

Hence we will not employ ECCs.

5.2 New Parametrizations
Given the methods outlined in Sec. 5.1, we make a number of

alterations to the NIST Level I parameters of FrodoKEM, Kyber, and
NTRU LPRime. In each case we maintain the spirit of the original
design by e.g. keeping unique features. The cryptanalytic model,

known attacks and concrete security estimates of our schemes

against them are provided in the full version of this paper [40].

Note that the number of bits of shared secret encoded in V differs

in these KEMs; Frodo640 encodes 128, whereas all parameter sets

of Kyber and NTRU LPRime encode 256. For the purpose of fair
comparison, in all cases we encode 128 bits. We note that in the

case of Ilum512 and LPRime757, encoding 128 bits rather than 256

automatically reduces |ĉti | from 128 bytes to 64. Reductions below

this size are a result of the techniques outlined in Sec. 5.1.

For each scheme we give a table comparing (in the notation

of the original scheme) the old and new parameter sets. We also

give a dictionary of the form {Figure: value}, where Figure is
a parameter from Fig. 5 and value either comes from the relevant

table or is defined in prose. The tables and descriptions of De ′

and De ′′ in this section do not reflect wider error distributions

implied by modulus rounding. The savings achieved by our new

parametrizations are given in Tab. 2.

Kyber. We introduce a new parameter set, Ilum512. We apply one

less bit of rounding to U, and one more to V. We also drop co-

efficients from V, see Tab. 3. Although altering q allowed other

parametrizations, ring arithmetic over Rq consistently represents

a significant fraction of the effort involved in providing embed-

ded implementations of Kyber [5, 59]. Keeping the same ring Rq
as Kyber helps make Ilum512 fast and easy to deploy. Letting

Bη be the binomial distribution over R defined in [53], we have

{R : Z[x]/(x256 + 1),n : k,q : q, n̄ = m̄ : 1,Ds = De : Bη1
,De ′ =

De ′′ : Bη2
}.

FrodoKEM. We introduce a new parameter set, Bilbo640. Com-

pared to Frodo640, Bilbo640 introduces aggressive rounding on V,
which has a positive effect on both the bandwidth cost and the

security. To mitigate the effect on the DFR, we increase q to 2
16
.

We use a slightly larger new error distribution, χBilbo640, which
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Table 3: Parameter sets of Kyber512 and Ilum512, using the
notation of [53], we drop n − I coefficients.

Scheme n k q η1 η2 du dv I

Kyber512 256 2 3329 3 2 10 4 256

Ilum512 256 2 3329 3 2 11 3 128

requires 32 bits of randomness per sample, see Tab. 4. We have {R :

Z,n : n,q : 2
16, n̄ : n̄,m̄ : m̄,Ds = De = De ′ = De ′′ = χBilbo640}.

Table 4: Parameter sets of Frodo640 and Bilbo640, using the
notation of [51], plusb/s to denote the randombits needed to
sample an integer coefficient, and {DB,DU,DV} to denote the
bits/coefficient in {B,U,V} (instead of a common D in [51]).

Scheme n DB DU DV σ B I m̄ n̄ b/s

Frodo640 640 15 15 15 2.8 2 128 8 8 16

Bilbo640 640 16 16 3 2.9 2 128 8 8 32

NTRU LPRime. We introduce a new parameter set, LPRime757.
We reduce the number of bits per entry of V from 4 to 2, and must

increase the modulus, and decrease the weight, to account for this,

see Tab. 5. The authors of NTRU LPRime [16] place a great emphasis

on having (xp − x − 1) irreducible in Zq and a DFR equal to zero.

This is also the case for LPRime757.
We slightly alter the rounding function Top to Top′ which main-

tains perfect correctness while allowing us a larger weight than

otherwise. We keep the original Right. As NTRU LPRime uses

rounding for its errors the syntax of Fig. 5 is not strictly correct,

and we will report the errors induced by rounding. Let Short de-
fine the distribution that samples uniformly from the set Short
of [16], let X assign probability (q − 1)/3q to ±1 and (q + 2)/3q
to 0, and let Y denote the probability mass function for a partic-

ular error value Right(Top′(C)) − C over all C ∈ Zq . We have

{R : Z[x]/(xp − x − 1),n = n̄ = m̄ : 1,q : q,Ds : Short,De = De ′ :

X ,De ′′ : Y }.

Table 5: Parameter sets of LPRime653 and LPRime757, using
the notation of [16]. We drop p − I coefficients from V.

Scheme p q w δ τ I

LPRime653 653 4621 252 289 16 256

LPRime757 757 7879 242 2001 4 128

A Note on Isogeny-Based mPKEs. One of our instantiations of
Chained CmPKE uses a mPKE variant of SIKE proposed in [43].

Bandwidth-wise, it seems asymptotically optimal, as ĉti is κ bits.

Security-wise, [43] provides a security reduction to the SSDDH

problem [34], with a loss of 1/N in the advantage. This security

loss is minimal: concretely, it means that using mPKE-SIKE with

N recipient loses at most ⌈logN ⌉ bits of security compared to one

recipient, which is small even for large groups. A downside of using

SIKE is its slower running time, see Fig. 8.
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Figure 6: The graphs “X vs Y ” give the bandwidth over-
head (in term of encryption keys and ciphertexts) of com-
mit messages when using Chained CmPKE with the CmPKE
X ( when uploaded, when downloaded), compared
to TreeKEM with the KEM Y ( both when uploaded and
downloaded). The x-axis is the group size N , they-axis is the
overhead in KiB.

6 INSTANTIATION AND IMPLEMENTATION
We instantiate Chained CmPKE as follows:

• One-time IND-CCA SKE. Since the message to be encrypted

has κ = 128 bits, we may take plain AES-128 without a

need for a mode. If we model plain AES as a pseudorandom

permutation (PRP), then it satisfies Def. 2.1. We then obtain

key-commitment by applying [2, Sec. 5.2.].

• Signature scheme.We choose Dilithium for two reasons: (a)

its performances are well-balanced, (b) it claims sEUF-CMA
security from standard lattice assumptions [48].

• mPKE. If we choose to rely on isogeny-based assumptions,

we may use the SIKE mPKE from [43]. If we rely on lattice-

based assumptions, wemay use one of our three lattice-based

mPKEs from Sec. 5: Bilbo640, Ilum512, LPRime757.

ThemKEMs which are at the core of themPKEs are implemented

in C, starting from the optimized public platform-independent im-

plementations of [16, 42, 51, 53]. For Ilum512 and SIKEp434, the
changes are straightforward. The modifications for Bilbo640 are
only slightly more involved due to the new distribution and the Ky-
ber-style compression. Finally, LPRime757 required most work: all

encoding/decoding routines, rounding, Top and Barrett reduction

had to bemodified.We also improved polynomialmultiplication per-

formance, by computing them in the larger ring GF (q′)[x]/⟨2p′+1⟩ ,

with q′ = 1907713 > w(q − 1) and p′ = 1536 = 3 · 29
, which admits

fast NTT-based multiplication as 3 · 28 | q′ − 1. We do not use

a full NTT, but leave out the layer corresponding to the factor 3

and multiply degree 2 polynomials in the NTT-domain, which is

slightly more efficient than a full NTT. Chained CmPKE and the

mPKEs are implemented in Go, using C bindings for the mKEMs.
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Figure 7: The graphs “Xvs. Y ” (Figs. 7a to 7d) give thenormal-
ized total bandwidth overhead (in term of encryption keys
and ciphertexts) of a commitmessage withChained CmPKE
using the CmPKE X ( ), compared to TreeKEM using the
KEM Y ( ). The x-axis is the group size N , the y-axis is the
total bandwidth cost in KiB normalized by N . Graphs are
computed using Tabs. 1 and 2.

Bandwidth Consumption. In Fig. 7, we compare the total band-

width overheads of TreeKEM and Chained CmPKE in terms of

ciphertexts and encryption keys. For a better comparison, terms

that are identical between both protocols, such as signatures,MACs,
etc, are ignored. For readability, the bandwidth cost of each graph

is normalized by the group size N . As predicted by the theory, our

protocol performs better than TreeKEM by factors Ω(logN ) for
similar instantiations. In addition, while the size of our uploaded
commit messages is asymptotically worse compared to TreeKEM
(O(N ) vs Ω(logN )), in practice we compare favourably against com-

parable post-quantum instantiations of TreeKEM, even for groups

of hundreds of users, see Fig. 6.
8

Computational Efficiency. In Fig. 8, we provide timings for what

we expect to be the two computational bottlenecks of our protocol:

Commit (Fig. 8b) and Process (Fig. 8c). We also provide timings for

CmEnc (Fig. 8a).
Even for group of 2

10
members, lattice-based CmPKEs perform

a multi-recipient encryption in less than 100 ms. This operation

– and by extension, Commit– may take significantly longer when

instantiating Chained CmPKE with SIKEp434 (about 7.5 s for 2
10

recipients). Note however that Commit is a transparent operation
for end users, and can be performed even when the end device is

locked.We conclude from ourmeasurements that the computational

efficiency of Chained CmPKE is likely to have a minimal impact

on the user experience.

Note that large groups also provide an amortization effect on

the computational efficiency of CmPKEs. For example, encrypting a

8
In the absence of post-quantum parameter sets for TreeKEM in MLS, we came up

with our own parameter sets relying on NIST PQC KEMs (finalists or alternate).
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Figure 8: Running time in nanoseconds of some proce-
dures as functions of the group size N , for Ilum512 ( ),
Bilbo640 ( ), LPRime757 ( ) and SIKEp434 ( ).
All measurements were obtained on an Apple M1 CPU
@3.2 GHz (single-threaded).

message to 2
10

recipients with Bilbo640 (resp. Ilum512, LPRime757,
SIKEp434) is about 29 (resp. 4, 3, 2) times faster than to perform 2

10

encryptions. Finally, even though Process only entails a constant

number of public-key operations, its running time eventually gets

linear in N (Fig. 8c), due to the hashing of N encryption keys when

verifying the group state. This is also the case in TreeKEM, and can

be mitigated to some extent by storing the hashes of the encryption

keys.

Code. Our code is available at the following repository:
https://github.com/PQShield/chained-cmpke
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A THE CHAINED CMPKE PROTOCOL
In this section, we provide amore in-depth exposition of ourChained
CmPKE protocol.

As already explained in Sec. 4, unlike TreeKEM, we no longer re-

quire to maintain a tree structure since the structure we maintain is

a depth-1 tree (which is much like a comb). This makes the descrip-

tion of our protocol much simpler relative to TreeKEM and relieves

us from “blanking” nodes when updating and removing users from

the group. Effectively, the security analysis is also simpler since

we no longer need to keep track of the exposed/unexposed secrets

assigned to the internal nodes of the tree.

Moreover, during a commit protocol, the committer does not

sign the whole ciphertext but only the part that binds the message,

i.e., the commitment T in CmPKE. The delivery server is expected

to parse the uploaded commit message and forward the relevant

parts to the receivers.

Below we describe our Chained CmPKE protocol and provide

details on the differences between TreeKEM version 10 of MLS

formalized by [10].

A.1 Protocol States
Each user holds a group state G. It consists of the variables listed
in Tab. 6. The G.member array stores the information of the group

members. The index of G.member is specified by the party identi-

ties and each entry consists of the variables listed in Tab. 7. The

member hash G.memberHash is the hash of all key packages stored

in G.member.
The group state contains three hashes: confirmation transcript

hash (confTransHash), confirmation transcript hash without com-
mitter identifier (confTransHash-w.o-‘idc’) and interim transcript
hash (interimTransHash). Roughly, these hashes maintain the con-

sistency between the previous and current epoch and are used to

enforce a consistent view within the group members.

If a group member issues an update proposal or commit message

that did not get confirmed by the server, the corresponding secrets

are stored in G.pendUpd and G.pendCom, respectively. When a

member receives a message which has been created by itself, it re-

trieves the corresponding secrets from G.pendUpd or G.pendCom
(rather than processing it from scratch).

For readability, we define the useful helper methods correspond-

ing to the group state, listed in Tab. 8. In the security proof, G
additionally stores the variables listed in Tab. 9

Differences from TreeKEM. All variables except for G.member,
G.memberHash and G.confTransHash-w.o-‘idc’ are defined iden-

tically to TreeKEM. G.member corresponds to the left-balanced

binary tree τ considered in [10], restricted to arity N and depth 1.

Namely, G.member only maintains a simply array rather than a

tree. G.memberHash is a replacement of treeHash in TreeKEM. We

newly define the hash value G.confTransHash-w.o-‘idc’, which is

used in the join protocol to confirm the sender of the welcome

message.

A.2 Protocol Algorithms
The main protocol is depicted in Figs. 9 and 10. The associated

helper functions are depicted in Figs. 12 to 16. In these figures, the

differences from TreeKEM version 10 in MLS considered by [10]

are highlighted in yellow.

(1) Group Creation. The group is created (by the designated party
idcreator in our model) using the input (Create, svk). This input
initializes the group state and creates a new group with the sin-

gle member idcreator. The group creator fetches the corresponding

signing key ssk from FAS using the helper function *fetch-ssk-
if-nec.

Differences from TreeKEM. The group creation protocol is defined

identically to TreeKEM except that party idcreator maintains a sim-

pler group protocol state G compared to TreeKEM. Note that, unlike

TreeKEM, our protocol initializes a random joiner secret and derive

the epoch secrets from it. Then, it computes the confirmation tag

confTag for the initial group. This is because confTag is necessary

to discuss the security of the protocol.

(2) Proposals. The protocol first prepares a preliminary proposal

message P .

• To create an update proposal, the protocol generates a fresh

key package together with the corresponding decryption

key dk. The key package kp is included in the proposal and
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G.groupid The identifier of the group.

G.epoch The current epoch number.

G.confTransHash The confirmed transcript hash.

G.confTransHash-w.o-‘idc’ The confirmed transcript hash without the committer identity.

G.interimTransHash The interim transcript hash for the next epoch.

G.member[∗] A mapping associating party id with its state.

G.memberHash A hash of the public part of G.member[∗].
G.certSvks[∗] A mapping associating the set of validated signature verification keys to each party.

G.pendUpd[∗] A mapping associating the secret keys for each pending update proposal issued by id.
G.pendCom[∗] A mapping associating the new group state for each pending commit issued by id.

G.id The identity of the party.

G.ssk The current signing key.

G.appSecret The current epoch’s shared key.

G.membKey The key used to MAC proposal packages.

G.initSecret The next epoch’s init secret.

Table 6: The protocol state.

id The identity of the party.

ek The encryption key of a CmPKE scheme.

dk The corresponding decryption key.

svk The signature verification key of a signature scheme.

sig The signature for (id, ek, svk) under the signature singing key corresponding to svk.

kp() Returns (id, ek, svk, sig) (if G.member[id] , ⊥).
Table 7: The party id’s state stored in G.member[id] and helper method.

G.clone() Returns (independent) copy of G.
G.memberIDs() Returns the list of party ids sorted by dictionary order.

G.memberIDsvks() Returns the list of party ids and its associating svk sorted by dictionary order in the ids.

G.memberPublicInfo() Returns the public part of G.member[∗].
G.groupCont() Returns (G.groupid,G.epoch,G.memberHash,G.confTransHash).

Table 8: The helper methods on the protocol state.

G.joinerSecret The current epoch’s joiner secret.

G.comSecret The current epoch’s commit secret.

G.confKey The key used to MAC for commit and welcome messages.

G.confTag The MAC tag included either in the commit or welcome message.

G.membTags The set of MAC tags included in the proposal messages.

Table 9: The protocol state maintained only during the security proof.

dk is stored in G.pendUpd. When a new verification key svk
is used, the protocol fetches the corresponding signing key

ssk from FAS. (ssk is also stored in G.pendUpd.)
• To create an add proposal, the protocol fetches the key pack-

age for the added party from FKS. The proposal consists of

the key package which includes the added party’s identity.

• The remove proposal consists of the identity of a removed

party.

All proposals are framed using *frame-prop. It first signs the pro-
posal P together with the string ‘proposal’, the group context in-

cluding confTransHash, and the sender’s identity. This signature

prevents impersonation by another group member. In addition, to

ensure the PCS security and group membership of the sender, ev-

erything including the signature is MACed using the membership

key. The MAC tag ties the proposal to a specific group/epoch since

the signature key may be shared across groups and is long-lived.

In summary, to inject or modify messages, the adversary must cor-

rupt both the sender’s signing key and the current epoch secrets.

The actual proposal message p consists of everything except the
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G.memberHash and G.confTransHash since the other components

can be retrieved from the protocol state of the recipients.

Differences from TreeKEM. The propose issue protocol is defined

identically to TreeKEM.

(3) Commits. To create a new commit message, a party id runs

the protocol on input (Commit, ®p, svk). The protocol first initializes
the next epoch’s group state by copying the current one. It then

applies the proposals ®p using *apply-props. It verifies the validity
of the MAC tag and signature in each proposal. The protocol then

derives id’s new CmPKE key pair and a new commit secret using
the helper function *rekey. It outputs a fresh commit secret, a fresh

key package kp for the committer, and a CmPKE ciphertext (T, ®ct)
encrypting the commit secret. Note that the commit secret will

be shared among existing users who are not removed in the next

epoch.

The commit message consists of two parts: a party independent

message c0 and a party dependent message ĉ. The protocol first
prepares a preliminary commit message C0 including the list of

the hash of all the applied proposals propIDs, the key package kp,
and the commitment T. This commit message is signed alongside

the group context using *sign-commit. Afterwards, the protocol
derives the epoch secrets using *derive-keys and computes the

confirmation tag (see *gen-conf-tag). c0 is constructed from C0,

the signature, and the confirmation tag. Then, the protocol prepares

the party dependent message ĉ. It is set as (id, ĉtid), or (id,⊥) if the
party id is removed in the next epoch. (Here, ®c is the list of ĉ.)

If new members are added, the protocol creates a welcome

message using the function *welcome-msg. The welcome message

also consists of two parts: a party independent message w0 and

a party dependent message ŵ . It first encrypts the joiner secret

(which will be used to derive epoch secrets) with the added mem-

bers’ encryption keys, and obtains a CmPKE ciphertext (T, ®ct =
(ĉtidt )idt ∈addedMem). Then the protocol composes a group infor-

mation groupInfo which contains the public part of the group

state, the confirmation tag, and the sender’s identity. groupInfo
and T are signed by the sender’s signing key and w0 is set as

(groupInfo, T, sig). Then, the protocol prepares the party depen-

dent message ŵ . It is set as (id, kphash, ĉtid) where kphash is the

hash of the used key package. (Here, ®w is the list of ŵ .)

Finally, the protocol computes the interim transcript hash for

the next epoch by hashing the current confirmation hash and the

newly generated confirmation tag. The next epoch’s state is stored

in G.pendCom.

Differences from TreeKEM. The following summarizes the differ-

ences between Chained CmPKE and TreeKEM.

(1) Our *apply-props simply rewrites entries in G.member:
if id is deleted, it sets G.member[id] to ⊥; if id is added, it

stores its key package in a new entry; if id is updated, it

replaces the old key package with the new one. In contrast,

TreeKEM additionally runs the ‘blank node’ operation after

updating the leaf nodes. That is, the committer blanks the

nodes on the path from the updated or removed leaf to the

root.

(2) Our *rekey operation simply encrypts a new comSecret
with the recipients’ CmPKE encryption keys. In contrast,

TreeKEM runs a ‘path update’ operation to derive comSecret.

It refreshes all PKE keys along the path from the committer’s

leaf to the root. Each path secret is then encrypted to the

resolution of the sibling of the concerned node. Here, the

secret on the root is used as comSecret.
(3) ChainedCmPKE signs only T, rather than T and (ĉtid)id∈receivers.

This allows the delivery server to send only the message

needed for each user, and effectively lowers the downloaded

package size fromO(N ) toO(1). In contrast, in TreeKEM, all

the ciphertexts (each encrypting a path secret) is signed. The

size of the downloaded package is therefore O(logN ) in the

best case (i.e., full non-blanked tree) and O(N ) in the worst

case (i.e., heavily blanked tree).

(4) Our commit message consists of two parts: c0 is a party

independent message and will be sent to all the recipients.

ĉid is a party dependent message that contains the identity

of a single recipient id and the ciphertext its corresponding

ĉtid. This is only sent to the specific party id. In contrast,

in TreeKEM, a commit message is viewed as a monolithic

bloc and the commit message is sent to all the recipients

without anymodification. This corresponds to setting c0 = ⊥

and ĉtid = ĉtid′ for all id, id
′ ∈ receivers in our new ideal

functionality.

(5) Our welcomemessage only encrypts a new joinerSecretwith
the added members’ CmPKE encryption keys. There is no

need to send the secrets assigned to the internal nodes of a

tree as in TreeKEM. Analogous to the commit message, the

welcome message also consists of two parts.

The other process (e.g., generating hash values, re-keying) are

identical.

(4) Process. Consider the input (Process, c0, ĉ, ®p). If the party id
is the creator of the received commit message c0, then the protocol

simply retrieves the new epoch state from G.pendCom; otherwise,

it proceeds as follows.

First, the protocol unframes the message, i.e., verifies the signa-

ture and checks that it belongs to the correct group and epoch (cf.

*unframe-commit in Fig. 16). Next, it verifies whether ®p matches

the committed proposals in c0. If so, it applies them using *apply-
props.

If id is not removed, the protocol derives a new epoch secret.

It decrypts the ciphertext using *apply-rekey (it also applies the

committer’s new key package) and computes the epoch secret using

*derive-keys. Finally, it verifies the confirmation tag in c0 and

derives a new interim transcript hash.

Differences from TreeKEM. There are two differences. First is input

message. Chained CmPKE allows the sever to sanitize commit

messages by delivering to each group member the strict amount

of data they need. Namely, the server only sends (c0, ĉid) to the

party id, and hence, party id only receives the ciphertext it needs

to update its protocol state. This reduces the party’s download cost

and the server’s bandwidth.

Second is the *apply-rekey function. To obtain comSecret,Chained
CmPKE simply decrypts the ciphertext. In contrast, TreeKEM de-

crypts the ciphertext, which contains the secret on the least com-

mon ancestor of the committer and the recipient, and then runs the

‘path update’ operation to recover comSecret (i.e., root secret).
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(5) Join. Upon receiving an input (w0, ŵ), the protocol initializes a
new group state and copies the public group information fromw0.

Then it checks the validity of the confirmation hash and interim

transcript hash by recomputing these hashes from the received

information. It also verifies the signature and the validity of the

member list and each group member’s key package. If the informa-

tion is valid, the protocol decrypts the joiner secret. To this end, it

fetches all its key package and decryption key pairs from FKS and

determines the one that has been used for the welcome message by

checking the hash of the key package.

Finally, it derives the epoch secrets from the joiner secret and

verifies the confirmation tag.

Differences from TreeKEM. As for the commit message, new mem-

ber receives the sanitized message (w0, ŵid). Chained CmPKE sim-

ply decrypts the ciphertext and derives the epoch secret from the

decrypted joinerSecret. In contrast, in TreeKEM, the welcome mes-

sage contains the secret on the least common ancestor of the com-

mitter and the recipient. The receiver then runs the ‘path update’

operation in order to derive the decryption keys of its parents. This

process does not appear in Chained CmPKE.
Chained CmPKE checks the validity of the confirmation hash in

the welcome message by using confTransHash-w.o-‘idc’ and idc .
This allows the recipient of the welcome message to verify that idc
has computed the confirmation hash.

(6) Key. Upon input (Key), the protocol outputs the application

secret of the current epoch and deletes it form the local state.

Differences from TreeKEM.This key protocol is the same as TreeKEM.
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Input (Create, svk)

1: req G = ⊥ ∧ id = idcreator
2: G.groupid←$ {0, 1}κ ; G.joinerSecret ←$ {0, 1}κ

3: G.epoch← 0

4: G.member[∗] ← ⊥; G.memberHash← ⊥
▷memberHash is equivalent to the treehash used in

TreeKEM

5: G.confTransHash-w.o-‘idc’← ⊥
6: G.confTransHash← ⊥
7: G.certSvks[∗] ← ∅
8: G.pendUpd[∗] ← ⊥;G.pendCom[∗] ← ⊥
9: G.id← id
10: try ssk← *fetch-ssk-if-nec(G, svk)
11: (kp, dk) ← genKp(id, svk, ssk)
12: G ← *assign-kp(G, id, kp)
13: G.ssk← ssk
14: G.member[id].dk← dk
15: G.memberHash← *derive-member-hash(G)

16: (G, confKey)

← *derive-epoch-keys(G,G.joinerSecret)

17: confTag← *gen-conf-tag(G, confKey)

18: G ← *set-interim-trans-hash(G, confTag)

Input (Propose, ‘upd’-svk)

1: req G , ⊥
2: try ssk← *fetch-ssk-if-nec(G, svk)
3: (kp, dk) ← genKp(id, svk, ssk)
4: P ← (‘upd’, kp)
5: p← *frame-prop(G, P)
6: G.pendUpd[p] ← (ssk, dk)
7: return p

Input (Propose, ‘add’-idt )

1: req G , ⊥ ∧ idt < G.memberIDs()
2: Send (get-kp, idt ) to FKS and receive kpt
3: req kpt , ⊥
4: try G ← *validate-kp(G, kpt , idt )
5: P ← (‘add’, kpt )
6: p← *frame-prop(G, P)
7: return p

Input (Propose, ‘rem’-idt )

1: req G , ⊥ ∧ idt ∈ G.memberIDs()
2: P ← (‘rem’, idt )
3: p← *frame-prop(G, P)
4: return p

Input (Commit, ®p, svk)
1: req G , ⊥
2: G′ ← *init-epoch(G)
3: try (G′, upd, rem, add) ← *apply-props(G,G′, ®p)
4: req (∗, ‘rem’-id) < rem ∧ (id, ∗) < upd
5: addedMem← { idt | (∗, ‘add’-idt -∗) ∈ add }
▷ Recipients of the welcome message

6: receivers← G′.memberIDs() \ addedMem
▷ Recipients of the new commit secret (including the committer)

7: try (G′, comSecret, kp, T, ®ct = (ĉtid)id∈receivers)

← *rekey(G′, receivers, id, svk)

8: G′ ← *set-member-hash(G′)
9: propIDs← ()
10: foreach p ∈ ®p do propIDs ++← H(p)
11: C0 ← (propIDs, kp, T)
12: sig← *sign-commit(G,C0)

13: G′ ← *set-conf-trans-hash(G,G′, id,C0, sig)
14: (G′, confKey, joinerSecret)

← *derive-keys(G,G′, comSecret)
15: confTag← *gen-conf-tag(G′, confKey)
16: c0 ← *frame-commit(G,C0, sig, confTag)
17: G′ ← *set-interim-trans-hash(G′, confTag)
18: ®c ← ∅
19: foreach id ∈ G.memberIDs() do
20: if id ∈ receivers then
21: ®c +← ĉid = (id, ĉtid)
22: else
23: ®c +← ĉid = (id,⊥)

24: if add , () then
25: (G′,w0, ®w) ← *welcome-msg(G′, addedMem, joinerSecret, confTag)
26: else
27: w0 ← ⊥; ®w ← ∅

28: G.pendCom[c0] ← (G′, ®p, upd, rem, add)
29: return (c0, ®c,w0, ®w)

Input Key

1: req G , ⊥
2: k← G.appSecret
3: G.appSecret← ⊥
4: return k

Figure 9: Main protocol: Create, Propose, and Commit. The major changes from [10] are highlighted in yellow .
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Input (Process, c0, ĉ, ®p)
1: req G , ⊥
2: (idc ,C0, sig, confTag) ← *unframe-commit(G, c0)

3: if thenidc = id
4: parse(G′, ®p′, upd, rem, add) ← G.pendCom[c0]

5: req ®p = ®p′

6: return (idc , upd∥rem∥add)
7: parse(propIDs, kpc , T) ← C0

8: parse(id′, ĉtid′) ← ĉ
9: req id = id′

10: for i ∈ 1, . . . ,
��®p�� do

11: req H(®p[i]) = propIDs[i]

12: G′ ← *init-epoch(G)
13: try (G′, upd, rem, add) ← *apply-props(G,G′, ®p)
14: req (∗, idc ) < rem ∧ (idc , ∗) < upd
15: if (∗, ‘rem’-id) ∈ rem then
16: G′ ← ⊥
17: else
18: G′ ← *set-conf-trans-hash(G,G′, idc ,C0, sig)

19: (G′, comSecret) ← *apply-rekey(G′, idc , kpc , T, ĉtid)

20: G′ ← *set-member-hash(G′)
21: (G′, confKey, joinerSecret)

← *derive-keys(G,G′, comSecret)
22: req *vrf-conf-tag(G′, confKey, confTag)
23: G′ ← *set-interim-trans-hash(G′, confTag)
24: return (idc , upd∥rem∥add)

Input (Join,w0, ŵ)

1: req G = ⊥
2: parse(groupInfo, T, sig) ← w0

3: parse(id′, kphash, ĉtid′) ← ŵ
4: req id = id′

5: try (G, confTag, idc ) ← *initialize-group(G, id, groupInfo)

6: req G.confTransHash = H(G.confTransHash-w.o-‘idc’, idc )

7: req G.interimTransHash = H(G.confTransHash, confTag)
8: req SIG.Verify(G.member[idc ].svk, sig, (groupInfo, ct0))
9: try G ← *vrf-group-state(G)
10: svk← G.member[id].svk
11: try G.ssk← *fetch-ssk-if-nec(G, svk)
12: Send get-dks to FKS and receive kbs
13: joinerSecret← ⊥
14: foreach (kp, dk) ∈ kbs do
15: if H(kp) = kphash then
16: req G.member[id].kp() = kp
17: G.member[id].dk← dk
18: joinerSecret← CmDec(dk, T, ĉtid)
19: req joinerSecret , ⊥
20: (G, confKey) ← *derive-epoch-keys(G, joinerSecret)
21: req *vrf-conf-tag(G, confKey, confTag)
22: return (idc ,G.memberIDsvks())

Figure 10: Main protocol: Process and Join. The major changes from [10] are highlighted in yellow .

*fetch-ssk-if-nec(G, svk)
1: if G.member[G.id].svk , svk then
2: Send (get-ssk, svk) to FAS

and receive ssk
3: else
4: ssk← G.ssk
5: return ssk

*validate-kp(G, kp, id)

1: parse(id′, ek, svk, sig) ← kp
2: req id = id′

3: if svk < G.certSvks[id] then
4: Send (verify-cert, id′, svk) to FAS

and receive succ
5: req succ
6: G.certSvks[id] +← svk
7: req SIG.Verify(ppSIG, svk, sig, (id, ek, svk))
8: return G

*assign-kp(G, kp)

1: parse(id, ek, svk, sig) ← kp
2: G.member[id].ek← ek
3: G.member[id].svk← svk
4: G.member[id].sig← sig
5: return G

Figure 11: Helper functions: key material related.
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*init-epoch(G)

1: G′ ← G.clone()
2: G′.epoch← G.epoch + 1

3: G′.pendUpd[∗] ← ⊥;G′.pendCom[∗] ← ⊥
4: return G′

*rekey (G’, receivers, id, svk)

1: try ssk← *fetch-ssk-if-nec(G′, svk)
2: (kp, dk) ← genKp(id, svk, ssk)
3: G′ ← *assign-kp(G′, kp)
4: G′.ssk← ssk;G′.member[id].dk← dk
5: comSecret←$ {0, 1}κ

6:
®ek← (G.member[id′].ek)id′∈receivers
▷ receivers always is non-empty because it is sure to

contain the committer

7: (T, ®ct = (ĉtid′)id′∈receivers)
← CmEnc(ppCmPKE,

®ek, comSecret)
8: return (G′, comSecret, kp, T, ®ct)

*apply-rekey(G′, idc , kpc , T, ct)

1: dk← G′.member[G′.id].dk
2: comSecret← CmDec(dk, T, ct)
3: try G′ ← *validate-kp(G′, kpc , idc )
4: G′ ← *assign-kp(G′, kpc )
5: return (G′, comSecret)

*welcome-msg(G′, addedMem, joinerSecret, confTag)

1:
®ek← (G′.member[idt ].ek)idt ∈addedMem

2: (T, ®ct = (ĉtidt )idt ∈addedMem)

← CmEnc(ppCmPKE,
®ek, joinerSecret)

3: groupInfo← (G′.groupid,G′.epoch,
G′.memberPublicInfo(),G′.memberHash,

G′.confTransHash-w.o-‘idc’ ,G′.confTransHash,
G′.interimTransHash, confTag,G′.id)

4: sig← SIG.Sign(ppSIG,G
′.ssk, (groupInfo, T))

5: w0 ← (groupInfo, T, sig)
6: ®w ← ∅
7: foreach idt ∈ addedMem do
8: kphasht ← H(G′.member[idt ].kp())
9: ®w +← ŵidt = (idt , kphasht , ĉtidt )

10: return (G′,w0, ®w)

*vrf-group-state(G)

1: req G.memberHash = *derive-member-hash(G)
2: mem← G.memberIDs()
3: foreach id ∈ mem do
4: kp← G.member[id].kp()
5: try G ← *validate-kp(G, kp, id)
6: return G

*apply-props (G, G’, ®p)

1: upd, rem, add ← ()
2: foreach p ∈ ®p do
3: try (ids , P) ← *unframe-prop(G, p)
4: parse(type, val) ← P
5: if type = ‘upd’ then
6: req ids ∈ G.memberIDs()
7: req (ids , ∗) < upd ∧ rem = () ∧ add = ()
8: try G′ ← *validate-kp(G′, val, ids )
9: G′ ← *assign-kp(G′, val)
10: if ids = G.id then
11: parse(ssk, dk) ← G.pendUpd[p]
12: G′.ssk← ssk
13: G′.member[G.id].dk← dk
14: svk← G′.member[ids ].svk
15: upd ++← (ids , ‘upd’-svk)
16: else if type = ‘rem’ then
17: parseidt ← val
18: req idt , ids ∧ idt ∈ G′.memberIDs()
19: req (idt , ∗) < upd ∧ add = ()
20: G′.member[idt ] ← ⊥
21: rem ++← (ids , ‘rem’-idt )
22: else if type = ‘add’ then
23: parse(idt , ∗, svkt , ∗, ∗) ← val
24: req idt < G′.memberIDs()
25: try G′ ← *validate-kp(G′, val, idt )
26: G′ ← *assign-kp(G′, val)
27: add ++← (ids , ‘add’-idt -svkt )
28: else
29: return ⊥
30: return (G′, upd, rem, add)

*initialize-group(G, id, groupInfo)

1: parse(groupid, epoch,member,memberHash, confTransHash-w.o-‘idc’ ,
confTransHash, interimTransHash, confTag, idc )
← groupInfo

2: (G.groupid,G.epoch,G.member,G.memberHash,

G.confTransHash-w.o-‘idc’ ,G.confTransHash,G.interimTransHash)
← (groupid, epoch,member,memberHash,

confTransHash-w.o-‘idc’ , confTransHash, interimTransHash)
3: G.certSvks[∗] ← ∅
4: G.pendUpd[∗] ← ⊥;G.pendCom[∗] ← ⊥
5: G.id← id
6: return (G, confTag, idc )

Figure 12: Helper functions: Commit, Process and Join. The major changes from [10] are highlighted in yellow .
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*gen-conf-tag(G, confKey)

1: return MAC.TagGen(confKey,G.confTransHash)

*vrf-conf-tag(G, confKey, confTag)

1: return MAC.TagVerify(confKey, confTag,G.confTransHash)

Figure 13: Helper function: Confirmation tag.

*set-member-hash (G)

1: G.memberHash← *derive-member-hash(G)
2: return G

*derive-member-hash (G)

1: KP← (); mem← G.memberIDs()
▷ mem is sorted by dictionary order

2: foreach id ∈ mem do
3: KP ++← G.member[id].kp()

4: return H(KP)

*set-conf-trans-hash(G,G′, idc ,C0, sig)

1: comCont← (G.groupid,G.epoch, ‘commit’,C0, sig)

2: G′.confTransHash-w.o-‘idc’

← H(G.interimTransHash, comCont)

3: G′.confTransHash← H(G′.confTransHash-w.o-‘idc’, idc )
4: return G′

*set-interim-trans-hash(G′, confTag)

1: G′.interimTransHash← H(G′.confTransHash, confTag)
2: return G′

Figure 14: Helper function: Member hash and Tran-
script hash. The major changes from [10] are highlighted
in yellow .

*derive-keys(G,G′, comSecret)

1: s ← HKDF.Extract(G.initSecret, comSecret)
2: joinerSecret← HKDF.Expand(s, ‘joi’)
3: (G′, confKey) ← *derive-epoch-keys(G′, joinerSecret)
4: return (G′, confKey, joinerSecret)

*derive-epoch-keys(G′, joinerSecret)

1: confKey← HKDF.Expand(joinerSecret,G′.groupCont()∥‘conf’)
2: G′.appSecret← HKDF.Expand(joinerSecret,G′.groupCont()∥‘app’)
3: G′.membKey← HKDF.Expand(joinerSecret,G′.groupCont()∥‘memb’)
4: G′.initSecret← HKDF.Expand(joinerSecret,G′.groupCont()∥‘init’)
5: return (G′, confKey)

Figure 15: Helper function: Key scheduling.

*frame-prop(G, P)

1: propCont← (G.groupCont(),G.id, ‘proposal’, P)
2: sig← SIG.Sign(ppSIG,G.ssk, propCont)
3: membTag← MAC.TagGen(G.membKey, (propCont, sig))
4: return (G.groupid,G.epoch,G.id, ‘proposal’, P, sig,membTag)

*unframe-prop(G, p)

1: parse(groupid, epoch, ids , contType, P, sig,membTag) ← p
2: req contType = ‘proposal’ ∧ groupid = G.groupid

∧epoch = G.epoch
3: propCont← (G.groupCont(), ids , ‘proposal’, P)
4: req G.member[ids ] , ⊥

∧SIG.Verify(ppSIG,G.member[ids ].svk, sig, propCont)
∧MAC.TagVerify(G.membKey,membTag, (propCont, sig))

5: return (ids , P)

*sign-commit(G,C0)

1: comCont← (G.groupCont(),G.id, ‘commit’,C0)

2: sig← SIG.Sign(ppSIG,G.ssk, comCont)
3: return sig

*frame-commit(G,C0, sig, confTag)

1: return (G.groupid,G.epoch,G.id, ‘commit’,C0, sig, confTag)

*unframe-commit(G, c0)

1: parse(groupid, epoch, idc , contType,C0, sig, confTag) ← c0

2: req contType = ‘commit’ ∧ groupid = G.groupid
∧epoch = G.epoch

3: comCont← (G.groupCont-wInterim(), idc , ‘commit’,C0)

4: svkc ← G.member[idc ].svk
5: req G.member[idc ] , ⊥

∧SIG.Verify(ppSIG, svkc , sig, comCont)
6: return (idc ,C0, sig, confTag)

Figure 16: Helper function: Frame and unframe packets.
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