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ABSTRACT
Deep neural network (DNN) has been widely utilized in many areas

due to its increasingly high accuracy. However, DNN models could

also produce wrong outputs due to internal errors, which may lead

to severe security issues. Unlike fixing bugs in traditional computer

software, tracing the errors in DNN models and fixing them are

much more difficult due to the uninterpretability of DNN. In this

paper, we present a novel and systematic approach to trace and

fix the errors in deep learning models. In particular, we locate the

error-inducing neurons that play a leading role in the erroneous

output. With the knowledge of error-inducing neurons, we propose

two methods to fix the errors: the neuron-flip and the neuron-

fine-tuning. We evaluate our approach using five different training

datasets and seven different model architectures. The experimental

results demonstrate its efficacy in different application scenarios,

including backdoor removal and general defects fixing.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation; • Com-
puting methodologies → Neural networks.
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1 INTRODUCTION
Recently, deep neural network (DNN) has been widely applied in

many areas, including computer vision, speech recognition, tar-

geted advertisement, etc., mainly due to its accurate classifica-

tion/prediction results. It also manifests itself in vital applications

like autonomous driving [13] and medical diagnosis [27], as well

as the cybersecurity domain like malware classification [59] and

binary reverse engineering [11]. Despite these amazing advances,

it is still far from dependable. For example, Amazon’s Recognition

software incorrectly matched nearly one-in-six of all athletes to

some mugshots in a database during a test [3]. Besides the misclas-

sification in certain scenarios, DNNmodels are also known to suffer

from Adversarial Examples (AEs) and backdoor attacks [19, 38],

which could lead them to produce wrong results when an adversar-

ial patch or a trigger is applied to the inputs.

Generally, we can consider the wrong results produced by deep

learning models are caused by their internal errors either uninten-

tionally or deliberately. However, the lack of interpretability makes

locating and fixing such errors, even defining such errors, quite

challenging in DNN models. Existing works deal with the model

errors by selecting (or generating) the inputs that cause the incor-

rect outputs, and adding them to the training dataset to fine-tune

the original model [11] or train a new model [18, 39, 66]. However,

the users may have access to only the validation data but not the

original training data, making retraining or fine-tuning the model

less possible. Sometimes, the model is trained using federated learn-

ing or online learning [14], which makes access to the appropriate

training dataset even more difficult, if not impossible. Furthermore,

fine-tuning a model with extra data may cause overfitting or cat-

astrophic forgetting [49], thus downgrading the performance of

the model, while retraining a large model is quite time-consuming

and resource-consuming. Finally, both retraining and fine-tuning

“blindly” repair the model without the knowledge of the actual er-

rors, so the errors are fixed on a best efforts basis. Such practice

is quite different than that in the domain of traditional computer

software, where various debugging tools are used to pinpoint the

coding errors that lead to incorrect outputs, and fix them accord-

ingly. We believe it is highly demanded to have similar debugging

capability for DNN models, thereby precisely locating the errors

that contribute to the misclassification and fixing them accordingly.

Challenges. In deep learning models, given an input, the output

can be attributed to neurons (weight parameters). Therefore, an

error can occur when some neurons are activated, which induces

erroneous features and ultimately lead to the erroneous output. In

this paper, we call such neurons error-inducing neurons, since they
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play a leading role in the erroneous output. Inspired by the idea of

fixing or patching source code in traditional software debugging,

we consider first pinpointing the error-inducing neurons (weight

parameters), and then fixing them accordingly to optimize the per-

formance of deep learning models. However, there are at least two

challenges to be addressed: (C1) Due to the lack of interpretability of

deep learning models, one cannot directly read/analyze neurons to

understand their functionality, thus concluding the error-inducing

neurons, as what we have done to debug source code in traditional

software. Meanwhile, it is nontrivial to accurately and efficiently

locate the error-inducing ones from millions of neurons in modern

deep learning models. (C2) Even with the error-inducing neurons

located, fixing them in a logical way is still difficult, since all the

neurons have been trained based on a large amount of data samples.

Fine-tuning them with new data samples may cause overfitting or

catastrophic forgetting problems, which downgrade the accuracy

of the model.

In this paper, we propose AI-Lancet to address the above two

challenges. To address (C1), we first locate the critical regions of the

original misclassified sample 𝑥 that lead to the misclassification, and

generate the companion sample 𝑥 ′ by removing the regions from 𝑥 .

Then, we perform the differential feature analysis of < 𝑥, 𝑥 ′ > to

reveal the features that contribute to the misclassification. Finally,

we compute all neurons’ contribution to the features and locate

the error-inducing neurons using a progressive-ablation method.

To address (C2), we propose two methods to fix the error-inducing

neurons based on the availability of training samples: the neuron-

flip and the neuron-fine-tuning. The former is to directly reverse

the sign of values of the error-inducing neurons (no need of any

training data), thus eliminating their contribution to the output.

The latter fine-tunes the error-inducing neurons by adjusting their

values accordingly based on the extra training samples. Our neuron-

fine-tuning mitigates the catastrophic forgetting problem compared

with the existing similar approaches that fine-tune the whole model

or a single layer of the model. We validate the neuron-flip method

on the backdoor removal and neuron-wise fine-tuning method on

the general defect fixing respectively.

We evaluate our approach with five different training datasets

and seven different model architectures. For the backdoor removal,

the attack success rate of backdoors is reduced from 100% to 1.1%

on average, with the overall accuracy loss within 1% for all the 34

backdoored models. In contrast, the state-of-the-art method, i.e.,

unlearning used in Neural Cleanse [58], only reduces the attack

success rate of backdoors to 36% on average, but downgrades the

overall accuracy of the model by 2% on average (with the worse

case of 4.1%). Regarding the general defect fixing, after locating

and fine-tuning the error-inducing neurons, the accuracy of the

optimized model increases 42% on average on the testing samples

without reducing the model accuracy, which is 30% higher than

that of fine-tuning the same number of randomly chosen neurons.

Contributions. The contributions are summarized as follows:

•We propose to fix output errors of deep learning models by pin-

pointing the error-inducing neurons, and present a novel and sys-

tematic approach to locate and fix them accordingly.

• We propose the neuron-flip and the neuron-fine-tuning meth-

ods to fix the error-inducing neurons. The former fixes the error

effectively in a non-training way, while the latter mitigates the cat-

astrophic forgetting problem with little loss to the overall accuracy.

• We implement and validate AI-Lancet with two different applica-

tions, including the the backdoor removal and the general defect

fixing. Evaluation results show that our approach locates the error-

inducing neurons precisely in both of the applications and improves

the performance of the error fixing in terms of effectiveness com-

pared with the state-of-the-art solutions.

2 BACKGROUND
Backdoors in neural networks. Backdoor, also known as Tro-

jan Horse, is to inject a hidden and unexpected output into the

model, which behaves normally until a specific trigger is presented

as the input, causing the model to produce the predefined misclas-

sification desired by the attacker. One typical approach to embed

backdoors is to poison the training dataset [10, 19, 47, 68]. For ex-

ample, BadNets [19] injects poisoned samples, which all include a

specific trigger pattern and are tagged with the target label, into

the original clean dataset, and utilizes the poisoned dataset to train

the backdoored model. Another approach is to manipulate a clean

model into a backdoored one [16, 20, 38, 55].

Recently, both backdoor detection [8, 30, 36, 58] and backdoor re-

moval [35, 58] approaches have been proposed. Neural Cleanse [58]

reconstructs the trigger based on its misclassification property, and

distinguishes it from universal AEs (sharing the same misclassi-

fication property as the trigger) by assuming the trigger is much

smaller than any universal AEs. Unlearning [58], also used by Neu-

ral Cleanse, places the reconstructed triggers onto clean training

samples, labels them correctly, and trains the backdoored model

with the revised training dataset. Fine-pruning [35] removes the

backdoors by pruning and fine-tuning the model. Though sem-

inal, existing backdoor removal approaches suffer from various

limitations, i.e., unlearning relies on the clean training dataset and

fine-tuning downgrades the accuracy on the clean data.

Catastrophic forgetting. Incremental learning allows a model to

be updated on extra training data (of new labels), instead of retrain-

ing it from fresh on the whole training dataset (with the extra data

included) [24]. Similar to incremental learning, continual learning

aims to accommodate new knowledge while still retaining previ-

ously learned experiences [41]. However, both of them suffer from

the same severe problem—catastrophic forgetting [49], i.e., a model

fine-tuned with an unbalanced training dataset gets a significant

performance downgrade on the original tasks. Existing approaches

have been proposed to mitigate the catastrophic forgetting problem.

Among them, [7, 44, 63] fine-tune the model by mixing a portion of

the original training data with the new one, hoping to “refresh the

memory” of the model. EWC [29] proposed by DeepMind and other

similar methods [6, 67] identify and preserve significant parame-

ters of the original model, hoping to “keep its memory”. Moreover,

knowledge distillation [23, 34, 44, 57] has also been applied to pre-

serve the knowledge of the original model. So far, however, the

catastrophic forgetting problem is still considered challenging since

most of the existing approaches can only alleviate it [41] rather than

fully eliminating it. Even worse, most approaches only performed

well on MNIST, but poorly on more complicated datasets such as

CUB-200 [61] and ImageNet [15].
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Figure 1: An example of misclassification.

3 OVERVIEW
3.1 Problem Statement
Neural networks are known to suffer from various problems that

lead to erroneous outputs. The lack of interpretability makes iden-

tifying the cause of the errors in neural networks quite difficult, if

not impossible, not to mention fixing them. Inspired by the practice

of debugging in traditional computer software, we believe mak-

ing it possible in the domain of neural networks will be extremely

useful, thus producing more dependable neural network models.

As discussed in Section 1, two fundamental challenges need to be

addressed to achieve the above goal, but neither of them is easy

in neural networks due to the lack of their interpretability. Obvi-

ously, without (C1) being well addressed, no ideal solution would

be possible for (C2). Existing works bypass (C1) by retraining or

fine-tuning the entire model [18, 39, 66] based on the inputs that

cause the erroneous outputs. The fundamental problem of such

works is that the exact errors are unknown, so the corresponding

fixes are typically “blind”, leaving the errors either fixed, partially

fixed, or at large.

There are mainly two reasons that could lead to erroneous output

in deep learning models, i.e., backdoors and general defects. The

backdoor, also known as Trojan Horse, is deliberately embedded

into the model during training, and when presented, will cause the

model to produce the attacker-desired output [37, 60, 70]. There

exist different types of backdoor attacks. In this paper, we focus on

one of the widely used backdoor attack, the patch trigger, which

can have different patterns, shapes, positions, connectivity and

transparency. The backdoor is universal and targeted, i.e., images

from any class attached by the trigger should be classified into the

attacker-desired label. Generally, the backdoor can be injected in

two different ways, poisoning the training dataset [19] or manipu-

lating the connection weights of a clean model [38]. The general

defect refers to a general input sample, rather than an adversarial

input or backdoored input, which gets misclassified by a benign

model incidentally. The defects are likely to be caused by either

over-fitting or under-fitting over some features. For example, the

class of “traffic light” in a pre-trained and open-sourced model by

Facebook [2]
1
may overfit the circle shape, thusmisclassifying other

1
The model is a pre-trained VGG11 based on ImageNet dataset

objects with the circle as “traffic light” as well, e.g., “binoculars”,

“bell”, “cannon”, “Chau Gong”, etc. In this paper, we validate our

error fixing approach against the backdoor attacks and the general

defects in Section 5.

3.2 Preliminary
Generally, an artificial neuron is defined as a mathematical function

that consists of several weight-parameters [4]. Although several

works use the neuron to represent the output value of the math-

ematical function [18, 39], in this paper, we use the neuron to

indicate the weight parameters, which will not change once the

model has been trained. Therefore, the proposed error-inducing

neuron locating and fixing approach indicate the corresponding

operations on the weight parameters. Consider an unexpected mis-

classification produced by a model for a given input sample. The

neurons that play a leading role in the erroneous output are called

the error-inducing neurons. The error-inducing neurons falsely ex-

tract a sufficient amount of features critical to the erroneous output

from some regions in the input and finally result in the erroneous

output. We name such features as the error-inducing features, and
such regions in the input as the error-inducing regions in this paper.

Figure 1 illustrates a simplified deep learning model with three

layers misclassifies a “panda” image as a “kite”. The activation val-

ues of the five neurons in the second layer make up the feature

map of this layer. It is obvious that the region with the panda in-

side activates neurons 𝑏1 and 𝑏2, while the region with the star

inside activates neuron 𝑏5 (neither 𝑏3 nor 𝑏4 is activated). Neuron

𝑏5 probably overfits to some of the kite’s features during training,

which causes the misclassification. In this example, the region that

activates 𝑏5 is the error-inducing region; the activation value of 𝑏5

is the error-inducing feature; 𝑏5 is the error-inducing neuron.
Assumptions. On the one hand, the error locating demands a

misclassified input sample 𝑥 with the EI regions, so the error can be

activated. Sometimes, however, such a misclassified input sample is

not available directly, so a dedicated algorithm is desired to restore

the EI regions and generate a sample 𝑥 to trigger the error. For

example, whenwe suspect a model is the victim of a backdoor attack

but have no input samples to trigger the backdoor, we can resort to

exiting backdoor reconstruction solutions [10, 19, 47, 68] to restore

the triggers that cause the misclassification. On the other hand,

given a misclassified sample 𝑥 , we need to know the misclassified

label and also the corresponding correct label (if not misclassified).

The former can be easily obtained by observing the model output

against such a misclassified sample 𝑥 , while the latter can be known

via little manual effort.

3.3 AI-Lancet Approach
The AI-Lancet approach is illustrated in Figure 2 with the error-

inducing (EI) neurons locating and the error fixing.

Error Locating.We start by revealing the EI regions in the input

sample, and then extract the EI features that are activated by the EI

regions of the input. Finally, the EI neurons can be located with the

guidance of the EI features.

• Step 1: Given a specific error, we first generate the image pairs

< 𝑥, 𝑥 ′ >, where 𝑥 is the input sample that got misclassified by

the DNN model and 𝑥 ′ is the companion sample similar to 𝑥 but

Session 1B: Attacks and Robustness  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

143



Figure 2: Overview of AI-Lancet

with the EI regions removed. Intuitively, 𝑥 ′ can preserve most of

the important features of the correct label in 𝑥 and be classified

correctly by the model.

• Step 2: We input both 𝑥 and 𝑥 ′ to the DNN model and extract

the hidden layer features 𝑓 and 𝑓 ′, respectively. 𝑓 extracted from

𝑥 consists of the EI features and features of the correct label. 𝑓 ′

extracted from 𝑥 ′ mainly consists of features that contribute to the

correct label since 𝑥 ′ can be classified correctly. Hence, we perform

the differential feature analysis between 𝑓 and 𝑓 ′ to expose the EI

features.

• Step 3: With the guidance of the EI features, we assign important

values to all neurons and finally locate the EI neurons using a

progressive-ablation method.

Error fixing. With the EI neurons located against a specific error,

we design two methods to fix the error:

• Neuron-flip is to reverse the sign of values of the EI neurons

directly, thus eliminating their contribution to the output. It can

be utilized when we cannot resort to a training-based fixing way.

Neuron-flip works best for the scenarios when the error is caused

by “add-on” to the original model deliberately (e.g., the backdoors

embedded into the original model). In such scenarios, the located EI

neurons should be dedicated to the errors, so flipping their values

should mainly fix the error, without hurting the accuracy of the

original model on other clean inputs.

•Neuron-fine-tuning fine-tunes the EI neurons by adjusting their
values accordingly based on some extra samples, which can be

used in various scenarios like the backdoor, the error caused by

inherent defects of the model, etc. For the inherent defects, the

located EI neurons not only contribute to the error, but may also

play some roles in the classification of other inputs. Hence, neuron-

flip turns out not an ideal solution for such defects. We can rely on

neuron-fine-tuning to fix such defects, which can also mitigate the

catastrophic forgetting problem.

4 DETAILED METHODOLOGY
4.1 Locating Error-inducing Neurons
Generating the image pair. Given a specific error, we first gen-

erate the image pair < 𝑥, 𝑥 ′ >, where 𝑥 is the input sample that got

misclassified by the DNN model and 𝑥 ′ is the companion sample

similar to 𝑥 but with the EI regions removed. Intuitively, 𝑥 ′ can
preserve most of the important features of the correct label in 𝑥

(a) (b) (c) (d)

Figure 3: The image pair generation. (a) The original mis-
classified sample. (b) Heatmap (Grad-CAM). (c) Mask of the
EI regions. (d) The companion sample.

and be classified correctly by the model. We consider two different

situations based on the availability of 𝑥 . When 𝑥 is unavailable, we

rely on a dedicated algorithm to generate it with the EI regions

restored to activate the error. For example, if we suspect a model

the victim of a backdoor attack but have no input samples to trigger

the backdoor, we can resort to exiting backdoor reconstruction

solutions [58], which can produce the backdoored sample (i.e., 𝑥

in our paper) as well as the trigger pattern (i.e., the EI regions in

our paper). Removing the trigger pattern from the sample 𝑥 can

directly obtain the clean sample 𝑥 ′.
When 𝑥 is available, we need to generate 𝑥 ′ by removing the EI

regions from 𝑥 . Hence, we design an optimization scheme to locate

the EI regions from 𝑥 and then generate the companion sample 𝑥 ′

by blurring the EI regions on 𝑥 . We define a companion matrix with

the same dimension as the input sample and all values ranging from

zero to one. Each value in the companion matrix denotes whether

the same position in the input sample belongs to an EI region or not,

with a close-to-one value indicating true and a close-to-zero value

indicating false. Then we optimize the companion matrix iteratively

until the generated companion sample (by blurring the EI regions

according to the matrix) can be classified correctly by the model.

The optimization should be done by enforcing three constraints on

the EI regions of a misclassified sample: (1) The regions should be as

small as possible to ensure the companion sample still keeps most

of the other regions in the original input that contributes to the

correct label. (2) The regions should demonstrate clear boundaries,

i.e., the values of the companionmatrix should be either close to one

or zero, which makes the EI regions more precise. (3) The regions

should be more clustered since too many scattered tiny regions (e.g.,

scattered noise) increase the possibility of making the companion

sample be an adversarial example.
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We address the above three constraints by designing the loss

function and the preprocessing methods. On the one hand, we in-

clude the sum of the companion matrix𝑀𝑎𝑠𝑘 in the loss function of

the optimization, which leads to revising it with fewer values close

to 1, thus limiting the size of the EI regions (Constraint 1). On the

other hand, we design two preprocessing methods for 𝑀𝑎𝑠𝑘 in the

optimization. The first is to apply the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 function to reinforce

the boundary (Constraint 2). 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 is a squashing function that

maps values less than zero to values close to 0 and values more

than 0 to values close to 1 [5]. The second is to apply a blurring

function to 𝑀𝑎𝑠𝑘 to decrease the scattered regions in 𝑀𝑎𝑠𝑘 and

make the EI regions more clustered (Constraint 3). Details of the

optimization is shown in Appendix.

Figure 3 illustrates the image pair generation when 𝑥 is available.

Figure 3 (a) is with the true label of “street sign”, but misclassified

as “crane” with a high probability (i.e., 0.75) by VGG16 model [50].

Figure 3 (c) shows the EI regions generated by our method and

Figure 3 (d) is the corresponding companion sample classified as

the “street sign” correctly. Clear boundaries and small regions play

a significant role in retaining normal features and exposing key EI

features. The four regions highlighted in Figure 3 (c) seem reason-

able, since they look like the geometric structure of the “crane” (the

label of the misclassification). We also consider alternatives to gen-

erate companion samples, e.g., leveraging the generated heatmap

(e.g., CAM [69] or Grad-CAM [48]) to highlight the important re-

gions that cause the input image misclassified. However, heatmap

is not accurate enough to satisfy Constraint 1 or Constraint 2. Fig-
ure 3 (b) shows the heatmap generated based on the misclassified

label “crane”, which highlights a large region without clear bound-

ary. Moreover, the highlighted region by heatmap also overlaps the

critical regions for the input to be correctly classified as the “street

sign”. Hence, heatmap is not an ideal solution to generate the EI

regions as well as the companion sample.

Identifying the EI features. Generally, the above generated im-

age pair < 𝑥, 𝑥 ′ > look quite close to each other. We feed them to

the DNN model and extract their features 𝑓 and 𝑓 ′ at each layer

based on the forward computation processes before each layer in

the model. Afterwards, we calculate the differential features 𝑑 𝑓 be-

tween 𝑓 and 𝑓 ′ at each layer respectively. Since 𝑑 𝑓 do not consider

the effect of computation after each layer to the final layer, it is

possible that not all 𝑑 𝑓 are critical to the final erroneous output.

Hence, we re-weight 𝑑 𝑓 with gradient-based information obtained

via the backward propagation after each layer to the final layer,

since the gradient of the erroneous output score with respect to

𝑑 𝑓 can indicate the contribution of 𝑑 𝑓 to the erroneous output. We

compute the EI Features (𝐸𝐼 𝑓 ) for each hidden layer as follows:

𝑑 𝑓𝑗 = 𝐹 𝑗 (𝑥) − 𝐹 𝑗 (𝑥 ′), 𝑗 ∈ [1, 𝑛]

𝐸𝐼 𝑓𝑗 = (𝛼 + 𝑔( 𝜕𝑦
𝑐

𝜕𝑑 𝑓𝑗
)) · 𝑑 𝑓𝑗

(1)

where 𝑗 denotes the layer index, 𝑛 is the number of all the lay-

ers in a DNN model, 𝐹 𝑗 (·) extracts the features of the input sam-

ple at the layer 𝑗 , 𝑔(·) functions as a normalization method via

𝑔(𝑥) = 𝑥/𝑚𝑎𝑥 (𝑥) and 𝑦𝑐 is the output score (before softmax) of

the erroneous class 𝑐 for 𝑥 . We do not assign the gradient-based

weights to 𝑑 𝑓𝑗 directly, because the backward propagation cannot

assess all the calculations happened in the forward processes. For

models with a RELU function, the calculations that lead to the ac-

tivation values below zero will not be captured by the backward

propagation. Therefore, 𝛼 keeps the impact of the original 𝑑 𝑓𝑗 and

𝑔(·) emphasizes the importance indicated by gradients.

Valuating neurons. For a given misclassified sample 𝑥 and its

𝐸𝐼 𝑓 that leads to the misclassification, we need to examine the

contribution of neurons to 𝐸𝐼 𝑓 to locate the EI neurons (i.e., weight

parameters). In the fully-connected layers, the features and the

neurons are associated in an one-to-one correlation. However, the

parameter sharing scheme [43] is widely used in the convolutional

layers to control the number of free parameters, which makes the

correlation between the features and the neurons quite complicated.

We assign Importance Values (𝐼𝑉 ) to neurons according to the

gradients of 𝐸𝐼 𝑓 against them to denote their contributions to 𝐸𝐼 𝑓 .

In particular, 𝐼𝑉 is calculated as below:

𝐼𝑉𝑗 =
𝜕𝐸𝐼 𝑓𝑗

𝜕𝑤 𝑗
, 𝑗 ∈ [1, 𝑛] (2)

where 𝑗 is the layer index and 𝑛 is the number of all the layers in a

DNN model. We use𝑤 𝑗 to denote all neurons of the layer 𝑗 .

Algorithm 1 Progressive Neuron Ablation Algorithm

Input: the original model 𝑀𝑜𝑑𝑒𝑙0, the misclassified sample 𝑥 with the

correct label 𝑙 , all the neurons 𝑁𝑘 of the layer 𝑘 .

Output: EI neuron set 𝐸𝐺

1: function ABLATE(𝑀𝑜𝑑𝑒𝑙0)

2: 𝐸𝐺 = 𝑁𝑈𝐿𝐿;

3: 𝑁𝑠 = 𝑑𝑒𝑐𝑒𝑛𝑡_𝑠𝑜𝑟𝑡 (𝑁𝑘 ) ;
4: for each neuron 𝑖 in 𝑁𝑠 do
5: 𝑀𝑜𝑑𝑒𝑙𝑖+1 = 𝑍𝐸𝑅𝑂𝐼𝑍𝐸 (𝑀𝑜𝑑𝑒𝑙𝑖 , 𝑖) ;
6: 𝑦 = 𝐹𝑀𝑜𝑑𝑒𝑙𝑖+1 (𝑥) ;
7: if 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑦) == 𝑙 then
8: 𝑈𝑃𝐷𝐴𝑇𝐸 (𝐸𝐺) ;
9: break;

return 𝐸𝐺

𝑑𝑒𝑐𝑒𝑛𝑡_𝑠𝑜𝑟𝑡 sorts input neurons in a descending order. 𝑍𝐸𝑅𝑂𝐼𝑍𝐸 sets the

corresponding neuron in the model to zero. 𝐹𝑀𝑜𝑑𝑒𝑙 outputs the prediction based

on the model.𝑈𝑃𝐷𝐴𝑇𝐸 includes the so-far-tested neurons in the EI neuron set.

Progressive neuron ablation. We identify the EI neurons based

on the following criterion: the neurons (as few as possible), when

“ablated”, will cause the model to recognize the originally misclas-

sified input correctly, are the EI neurons. By “ablated”, we mean

setting the weights of the neurons to zero, so they will not con-

tribute to the classification. Overall, for each layer, we sort all

neurons based on their 𝐼𝑉 in descending order, since the neuron

with a larger 𝐼𝑉 is more likely to be an EI neuron. Afterwards, we

start to ablate neurons in order progressively and test whether the

resultant model can recognize the originally misclassified input

correctly.

Algorithm 1 elaborates the progressive neuron ablation approach.

Line 2 initializes the EI neurons set 𝐸𝐺 . For the layer 𝑘 , we first sort

all its neurons in descending order and obtain the sorted set 𝑁𝑠

(Line 3). Then for each neuron 𝑖 in 𝑁𝑠 , we zeorize its value in the

model (Line 5) and test if the originally misclassified input 𝑥 now

can be classified correctly on the resultant model (Line 6-7). If so, we

update the EI neuron set 𝐸𝐺 by including the so-far-tested neurons
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(Line 8) and finish this layer (Line 9). Otherwise, we iterate to the

next neuron in 𝑁𝑠 and repeat the above procedures. We run the

above algorithm at each layer of themodel, and finally harvest the EI

neurons for all layers of the model. It can be quite time-consuming

if we exactly follow the above progressive approach to ablate all the

neurons one by one, considering the number of neurons on each

layer and the number of layers in a model. Therefore, we extend the

progressive neuron ablation approach by integrating an improved

binary search algorithm to accelerate the procedure of locating the

EI neurons at each layer (Refer to Appendix for details).

4.2 Error Fixing
We propose the neuron-flip and the neuron-fine-tuning to fix errors.

The neuron-flip method could be utilized when we cannot resort to

a training-based fixing way. It works best for the scenario when the

error is caused by the “add-on” to the original model deliberately,

as stated in Section 3.3. For instance, the backdoors embedded

into the original model can be viewed as an “add-on” trained into

the original model. Neuron-fine-tuning could be used in various

scenarios, e.g., the error caused by inherent defects of the model, etc.

For the inherent defects, the located EI neurons not only contribute

to the errors, but may also play some roles in the classification of

other inputs. For example, some misclassified samples are caused by

either over-fitting or under-fitting to some features. Simply flipping

the located IE neurons may result in some downgrade of the model

accuracy. Generally, an inherent defect can often be found in the

validation or test process.

Neuron-flip. The EI neurons on one layer should either transfer or

amplify the EI features to the next layer, leading to a misclassifica-

tion. Hence, Neuron-flip prevents such EI features from propagating

to the next layer by reversing the sign of values of the located EI

neurons directly. Since the EI neurons are dedicated to the errors,

flipping their values should mainly fix the error, without hurting

the accuracy of the original model on other clean inputs.

Specifically, we first need to generate 𝐾 input samples with the

same error and get the corresponding companion samples as well.

For instance, with the trigger pattern obtained from a backdoor

detection approach, we can apply it on 𝐾 clean samples 𝑥 ′ to get 𝐾

backdoored samples, i.e., the misclassified samples 𝑥 . For each pair

of images < 𝑥, 𝑥 ′ >, we locate the EI neurons using Algorithm 1.

Each neuron in the model is marked with a value 𝑉 ∈ {0, 1, .., 𝐾},
which is the number of times the neuron being voted as an EI

neuron by all the pairs of images. Then we target at one specific

layer (the paragraph below discusses layer selection) and rank all

neurons in this layer with the descending order based on their 𝑉 .

Finally, we start flipping the neurons based on their rank and stop

when the resultant model no longer misclassifies the backdoored

samples. Assume 𝑖 is the index of each neuron 𝑁𝑖 and 𝑘 is the index

of the last flipped neuron. Then neuron-flip is defined as follows.

𝐹𝑙𝑖𝑝 (𝑁𝑖 ) =
{
−𝑁𝑖 , 𝑖 𝑓 𝑖 ≥ 𝑘
𝑁𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

We target at one specific layer to apply neuron-flip. On the

one hand, no matter at which layer to block the EI features from

propagating to the next layer, the model will no longer misclassify

the input samples, so any layer works to fix the error. On the other

hand, targeting at one layer with fewer neurons involved causes

less impact to the accuracy of the original model. Hence, we choose

the layer at which the largest number of misclassified input samples

can find the EI neurons. For the layers with the same or very close

number of misclassified samples that can locate the EI neurons, we

then select the layer that the percentage of the located EI neurons

to the total neurons on that layer is the smallest, since flipping

fewer neurons means less impact to the original model.

Neuron-fine-tuning. We fine-tune the model by adjusting the

values of the located EI neurons accordingly based on the extra

samples. Fine-tuning a model with an extra dataset may suffer from

the catastrophic forgetting problem, which causes the fine-tuned

model downgrades on the recognition of other samples. To over-

come the catastrophic forgetting problem, we adopt joint training

and knowledge distillation approaches, which are commonly uti-

lized in the incremental learning [24]. The former fine-tunes the

model with a mixed training dataset that contains not only the new

samples but also the old samples. The old samples could be from

the original test dataset, the training data, and even some samples

collected by the model owner since we need only a small number of

old samples. The latter measures the distance of features between

the original model and the fine-tuned model, and adds it into the

loss to preserve the knowledge of the original model.

Overall, our fine-tuning approach is as below:

𝐿1 (𝑥) = | |𝑦 − 𝑦𝑡 | |2
𝐿2 (𝑥) = | |𝑓 ∗ − 𝑓 | |

𝐿(𝑥) =
∑

𝑁𝑒+𝑁𝑜

𝐿1 (𝑥) +
∑
𝑁𝑜

𝐿2 (𝑥)
(4)

where𝑦 is the output of the misclassified sample 𝑥 ,𝑦𝑡 is the the class

embedding of the correct label, 𝑓 ∗ and 𝑓 are features of the last layer
extracted by the original model and the fine-tuned model respec-

tively. Therefore, 𝐿2 (𝑥), based on distillation approach, enforces

the features extracted by the two preceding models to be similar.

𝑁𝑒 is the training set built upon the misclassified samples and 𝑁𝑜
is a small set of samples from the original training dataset. Hence,

𝐿1 (𝑥) defines joint training based on the two preceding datasets to

reduce overfitting. The gradient is defined as 𝐽 (\ ) = 𝜕𝐿 (𝑥)
𝜕\

, where \

includes all the neurons to fine-tune using the Adam optimizer [28]:

\𝑖+1 = \𝑖 − 𝛾\ · 𝐴𝑑𝑎𝑚(𝐽 (\𝑖 )) (5)

We also target EI-neurons of one specific layer to apply neuron-

fine-tuning, and the layer selection follows the same principle as

that when applying neuron-flip.

Neuron-fine-tuning requires a set of misclassified samples 𝑁𝑒 ,

which can be collected in the following two ways. On the one hand,

given a misclassified sample 𝑥 , we can apply different image trans-

formations, e.g., rotation, etc. over 𝑥 to obtain multiple misclassified

samples with the same or similar error. On the other hand, we can

enlarge the misclassified samples 𝑁𝑒 by including those with simi-

lar EI neurons as the existing misclassified samples. In particular,

we first obtain the model 𝑀 ′
by ablating the located EI neurons

from the original model 𝑀 . Then, any sample misclassified by 𝑀

but correctly classified by𝑀 ′
with the class probability larger than
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𝛿2 is more likely to trigger the similar error as the existing misclas-

sified samples, thus should be included. 𝑁𝑜 is simply a small set of

the original training samples, e.g., 0.4%.

5 APPLICATIONS
AI-Lancet is a systematic solution to locate and fix errors in DNN

models. Below, we validate it using two different application sce-

narios, the backdoor removal and the general defect fixing.

5.1 Backdoor Removal
Backdoor attacks can be considered as an error dedicated embed-

ded by the attackers into DNN models, which can also be fixed by

AI-Lancet. As far as we know, the state-of-art backdoor mitigation

method is unlearning [58], which trains DNNmodels to unlearn the

embedded triggers. Though seminal, unlearning requires a certain

amount of training data (10% of the original training dataset in Neu-

ral Cleanse [58]), and its mitigation performance highly depends

on the quality of the reconstructed triggers. Hence, its performance

of removing large triggers drops significantly, since large triggers

are difficult to be reconstructed with high fidelity. Moreover, even

with 10% training data and a high quality reconstructed trigger,

unlearning may downgrade the accuracy of the original model [49].

Using AI-Lancet to remove backdoors in DNN models is quite

straightforward. First, we reconstruct the trigger patterns as well as

the backdoored sample inputs 𝑥 (i.e., the misclassified sample) using

existing backdoor detection approaches, like the one proposed in

Neural Cleanse [58]. The companion sample 𝑥 ′ can be obtained

simply by removing the trigger pattern from 𝑥 . Thus, the image pair

< 𝑥, 𝑥 ′ > can be generated. Note that in this step, we do not need

to know the real trigger. Instead, the generated trigger can work

well. Second, we locate the EI neurons (neurons that contribute to

the backdoor attack in this case) based on the algorithm in Section

4.1. Finally, we apply the neuron-flip to the model to remove the

backdoor, since the backdoor can be considered as “add-on” embed-

ded into the original model as stated in Section 3.3. Our evaluation

in Section 6.2 shows that the backdoor success rates are reduced

from 100% to 0.8% on average, and the accuracy loss on the clean

samples is only 0.7% on average, which outperforms the state-of-art

backdoor mitigation approaches like unlearning [58].

5.2 General Defect Fixing
General defects may exist in DNN models due to the low quality

of the training data or imperfect model architecture. For instance,

Tulio Ribeiro et al. [45] test a model that differentiates wolves from

huskies and find it always recognize the animal with the snow in the

background as a wolf. To fix this kind of defect, one can fine-tune

or retrain the entire model, which is always costly. Fine-tuning

the model with incremental learning could lead to catastrophic

forgetting problem, causing a significant performance downgrade.

Hence, first locating the EI neurons like AI-Lancet makes it possible

to operate on a few neurons to fix the error, with little impact on

the overall accuracy.

Using AI-Lancet to fix the general defects in DNN models is as

straightforward as backdoor removal, except the construction of

2
In our evaluation, 𝛿 is set as 0.5. A smaller value of 𝛿 can help to collect more

misclassified samples.

Table 1: Dataset Statistics

Dataset Labels Input size Taining data Test data

MNIST 10 28*28 55000 10000

GTSRB 43 32*32 96750 32250

CIFAR-10 10 32*32 50000 10000

YouTube-Face 1595 224*224 1595000 159500

ImageNet 1000 224*224 1281167 50000

the image pair < 𝑥, 𝑥 ′ >. Typically, a defect can be identified during

model development or testing, which can be considered as the

misclassified sample 𝑥 . However, it is not straightforward to identify

the EI regions in 𝑥 that cause the misclassification, thus obtaining

the companion 𝑥 ′ is also nontrivial. Hence, we first use the proposed
counterpart sample generation to obtain 𝑥 ′, thus the image pair <

𝑥, 𝑥 ′ > can be built. Second, we locate the EI neurons (neurons that

cause 𝑥 misclassified in this case) based on the algorithm in Section

4.1. Finally, we apply the neuron-fine-tuning to fix the general

defects, since the located EI neurons may not only contribute to

the misclassification, but also play some roles in the classification

of other inputs. Our evaluation in Section 6.3 shows the accuracy

of the optimized model increases 42% on average on the testing

dataset with originally-misclassified samples without reducing the

model accuracy, which is 30% higher than that of fine-tuning the

same number of randomly-chosen neurons.

6 EVALUATION
6.1 Experimental Setup
Datasets and models. We utilize five popular datasets, including

Hand-written Digit Recognition (MNIST) [32], Traffic Sign Recog-

nition (GTSRB) [52], Canadian Institute For Advanced Research

(CIFAR-10) [31], Face Recognition (YouTube-Face) [62] and Im-

ageNet (ILSVRC2012) [46] in our experiment. Details of the five

datasets are shown in Table 1, and themodel architectures ofMNIST,

GTSRB, CIFAR-10 and Youtube-Face are shown in Table 11∼10 in
Appendix. They mainly consist of convolutional (Conv) layers and

fully-connected (FC) layers. For the large dataset ImageNet, we

evaluate it on four different popular models, i.e., VGG11 as well

as VGG16 [50], ResNet18 [22] and GoogleNet [54]. In particular,

VGG11 and VGG16 consist of three FC layers, as well as eight and

thirteen Conv layers respectively. ResNet18 is designed based on

the residual learning framework, which has one Conv layer, one

FC layer, nine basic shortcut blocks. GoogleNet is characterized by

inception architecture, which has three Conv layers, one FC layer,

and nine inception blocks.

Configuration for backdoor attacks. As we mentioned in Sec-

tion 2, backdoors can be embedded via two methods: manipulating

the weights of a pre-trained model [16, 38] and poisoning the train-

ing dataset [10, 19]. Regarding the former, we adopt two released

Face Recognition backdoored models: Trojan Watermark and Trojan
Square, which are trained on the VGG-Face dataset provided by [38].
Regarding the latter, we follow BadNets [19] to inject the backdoors

by poisoning the five datasets mentioned above. For each of the

five datasets, we modify the training dataset by injecting a portion

(10%) of adversarial input labeled as the target label. The adversarial
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inputs are generated by applying a backdoor trigger to the clean

images.

Backdoor triggers. We design two different kinds of backdoor

triggers: the regular trigger and the scattered transparent trigger.

The former is a square pattern placed at the corners of the original

input, without covering any important region of the original input,

e.g., faces of people or letters of traffic signs. They are designed

with five different sizes, ranging from 2% ∼ 31.6% of the origi-

nal input. The shapes and positions of the triggers are similar to

Neural Cleanse [58]. The latter is evenly scattered over the entire

input with 50% transparency
3
and is likely to cover some impor-

tant regions of the original input. They are designed with three

different sizes, ranging from 3.4% ∼ 16.1% of the original input.

The shapes, transparency, and positions of triggers are similar to

ABS [36]. Examples of triggers are shown in Figure 8 and Figure 6

in Appendix.

Configuration for general defects. We evaluate the general de-

fects fixing using the ImageNet (ILSVRC2012) [46] dataset. We

select misclassified samples from the test dataset. Firstly, we di-

vide the test dataset into two equal sub-datasets 𝑇𝑒𝑠𝑡1 and 𝑇𝑒𝑠𝑡2,

each containing 25,000 samples. Secondly, we test 𝑇𝑒𝑠𝑡1 and 𝑇𝑒𝑠𝑡2
on the given model to select the misclassified samples and form

𝑀_𝑇𝑒𝑠𝑡1 and𝑀_𝑇𝑒𝑠𝑡2 respectively. As described in Section 4.2, we

select samples that are misclassified by𝑀 (the original model) but

correctly classified by 𝑀 ′
(model pruned located EI neurons) as

samples with similar errors. Then we select 5,000 samples (0.4%)
4
, and add the joint training samples to𝑀_𝑇𝑒𝑠𝑡1 to form the aug-

mented𝑀_𝑇𝑒𝑠𝑡1
5
. Finally, the original model is fine-tuned with the

augmented𝑀_𝑇𝑒𝑠𝑡1 and evaluated on 𝑇𝑒𝑠𝑡2 and𝑀_𝑡𝑒𝑠𝑡2.

Platform. All our experiments are conducted on a 64-bit Ubuntu

18.04 system with an Intel(R) Xeon(R) E5-2620 v4@2.20GHz proces-

sor and 2 Nvidia Titan X (Pascal) GPUs (each with 12 GB memory).

6.2 Effectiveness of Backdoor Removal

We evaluate the success rate of backdoor attacks and the accuracy

of the clean sample classification before and after the backdoor

removal. For each dataset, we test the success rate of the backdoor

attacks with all samples in the test dataset (not used in the backdoor

removal) by attaching the original trigger on them. Below, we first

present the performance of our AI-Lancet, and then compare it with

unlearning, the state-of-art backdoor mitigation approach used in

Neural Cleanse [58].

AI-Lancet Performance. Overall, AI-Lancet performs well to mit-

igate the backdoor attacks on different models with different types

3
We define 50% transparency as: 𝐼𝑀𝐺𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 = 𝐼𝑀𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ (1−𝑚𝑎𝑠𝑘) + 0.5 ∗
(𝑇𝑟𝑖𝑔𝑔𝑒𝑟 + 𝐼𝑀𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ) ∗𝑚𝑎𝑠𝑘 , where 𝐼𝑀𝐺𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the original clean input,

𝐼𝑀𝐺𝑏𝑎𝑐𝑘𝑑𝑜𝑜𝑟 is the backdoored input and𝑚𝑎𝑠𝑘 is a matrix composed of 0 or 1, with

1 indicating the corresponding position is occupied by the trigger.

4
The samples are not limited to be training samples. For example, they could be selected

from the test samples or some collected samples by the owner since they are a quite

small number of samples. Less than 5,000 samples will lead to significant performance

degrade for the fine-tuning models based on our experience.

5
As mentioned in Section 4.2, we use the joint training to fine-tune the model using a

mixed training dataset that contains the selected new samples and the old samples

from the original training dataset.

of backdoor triggers. The backdoor mitigation results for the regu-

lar triggers and Trojan Square/Watermark [38] are shown in Table 2.

The attack success rate of backdoor attacks drops from 99.8% to

0.8% on average, with the classification accuracy increasing 0.8% on

average. The results of the scattered transparent triggers are shown

in Table 3. The attack success rate of backdoor attacks drops from

100% to 1.5% on average, with the classification accuracy only reduc-

ing 0.6% on average. The above results demonstrate that AI-Lancet

can effectively mitigate the backdoor attacks with little impact on

the classification accuracy. We also notice that AI-Lance performs

extremely well on Trojan Square and Trojan Watermark, with the

backdoor attack success rates down to 0% for both of them after its

fixing. Furthermore, AI-Lancet even increases the overall accuracy

for both of the models by 12.1% and 9.9% after the fixing, probably

because the backdoored (i.e., EI) neurons in those Trojan attack

models have a negative impact on the overall accuracy.

We also verify whether existing backdoor detection approaches

can detect all the backdoored models accurately, since the backdoor

removal of AI-Lancet depends on their backdoor detection. We

utilize the anomaly index proposed in Neural Cleanse to detect the

backdoored models, and the results are shown in the fifth column

in Table 2 and Table 3. Neural Cleanse considers the anomaly in-

dex value larger than two indicates the model was injected with

backdoors without false alarms. Based on the results in Table 2 and

Table 3, we can see that most backdoored models (32 out of 34) can

be detected.

Comparison with unlearning. We adopt the same unlearning

configuration as Neural Cleanse
6
. The unlearning reduces the back-

door attack success rate to 25.6% and 38.2% on average for the

regular triggers and scattered transparent triggers, respectively,

compared to 0.8% and 1.5% of our AI-Lancet. The results indicate

that some models are still vulnerable to the original triggers after

unlearning, e.g., CIFAR10 and Youtube Face. Furthermore, unlearn-

ing gets 2.2% (the largest is 3.7%) and 2.3% (the largest is 4.1%)

downgrade of the overall accuracy on average for the regular trig-

gers and the scattered transparent triggers, respectively, compared

to 0.4% and 0.1% of our AI-Lancet.

The reason that our AI-Lancet outperforms unlearning can be

that unlearning highly depends on the fidelity of the reconstructed

triggers to remove them. However, large triggers typically are more

difficult to be reconstructed with high fidelity. As shown in Table 2

and Table 3, unlearning performs poorly on middle and large trig-

gers, and can hardly remove the backdoors from the backdoored

models trained based on YouTube Face (with the backdoor attack

success rate still over 70% after its removal). In contrast, even if

the reconstructed triggers do not completely match the originally

embedded triggers, as long as they can help locate part of the back-

doored (i.e., error-inducing) neurons, AI-Lancet can still eliminate

their contribution to the activation of backdoored features, thus

effectively remove them. Meanwhile, flipping those EI neurons only

does not incur too much classification accuracy downgrade to the

original model.

6
We fine-tune the model for one epoch using an updated training dataset. The up-

dated dataset includes 10% clean samples from the original training dataset, and the

reconstructed trigger is added to 20% of the clean samples without modifying their

correct labels.
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Table 2: Results of Backdoor Removal on Different Datasets (Regular Trigger)

Datasets Trigger size Before removing After removing
Unlearning Neuron-prune Neuron-flip

Back_succ Clean_succ Anomaly Back_succ Clean_succ Back_succ Clean_succ Back_succ Clean_succ

MNIST

4*4*1 (2%) 100.0% 99% 11.4 0.3% 97.3% 10% 98.5% 0% 97%

6*6*1 (4.6%) 100.0% 99% 8 0.8% 96.8% 48% 98.6% 2.1% 98.3%

8*8*1 (8.2%) 100.0% 99% 6.4 1% 96% 98% 99% 0% 98.4%

10*10*1 (12.8%) 100.0% 98.9% 2.6 2.2% 96.1% 77% 98.8% 0% 98%

12*12*1 (18.4%) 100.0% 98.8% 1.1 - - - - - -

CIFAR10

6*6*1 (3.5%) 99% 82.3% 9.8 19.3% 81.5% 98% 82.3% 0% 81.9%

8*8*1 (6.3%) 100.0% 82.3% 9.1 46.2% 81.4% 48% 81.6% 4.4% 80.2%

10*10*1 (9.8%) 99% 81.5% 2.6 32% 81.4% 100% 81.3% 3.6% 80%

12*12*1 (14%) 100.0% 82.4% 1.5 41.2% 81.1% 99% 81.8% 0% 81.7%

14*14*1 (19.1%) 100% 82.8% 0.78 - - - - - -

GTSRB

6*6*1 (3.5%) 100% 97.1% 6.2 0% 94.7% 76.9% 97.2% 0.5% 97.1%

8*8*1 (6.3%) 100.0% 96.7% 3.1 0% 94% 80% 96.7% 0% 96.6%

10*10*1 (9.8%) 100.0% 97% 2.7 24% 94.1% 92% 96.5% 0.7% 96.5%

12*12*1 (14%) 100.0% 97.3% 2.6 7% 94% 100% 97% 0% 97%

14*14*1 (19.1%) 100.0% 96.4% 1.6 21.3% 93% 100% 96% 0.1% 96.1%

Youtube

8*8*1 (0.13%) 100.0% 99.8% 20.8 0.1% 96.5% 100% 99.7% 0.5% 98.7%

63*63*1 (7.9%) 100.0% 99.7% 4.1 80.1% 96.6% 100% 99.7% 0.1% 99.4%

63*63*2 (15.8%) 100.0% 99.7% 3.5 82% 96.1% 100% 99.7% 0.2% 99%

63*63*3 (23.7%) 100.0% 99.7% 2.9 69% 96% 100% 99.7% 4.1% 99.1%

63*63*4 (31.6%) 100.0% 99.8% 1.5 81% 96.1% 100% 99.7% 0.2% 99.2%

Square 60*60*1 (7%) 99.9% 85.1% 5.8 3.6% 93.6% 18.8% 97.2% 0% 97.2%

Watermark - (7%) 97.6% 87.3% 3.7 1.3% 93.3% 8.5% 97.2% 0% 97.2%

Average - (11.1%) 99.8% 93.7% 5.5 25.6% 92.4% 77.7% 95% 0.8% 94.5%

Back_succ*: The attack success rate of backdoored samples. Clean_succ*: The accuracy of clean samples. Anomaly: The anomaly index of the infected models.

Table 3: Results of Backdoor Removal on Different Datasets (Scattered Transparent Trigger)

Datasets Trigger size Before removing After removing
Unlearning Neuron-prune Neuron-flip

Back_succ Clean_succ Anomaly Back_succ Clean_succ Back_succ Clean_succ Back_succ Clean_succ

MNIST

3*3*3 (3.4%) 100.0% 98.5% 2.9 0.5% 96.1% 41.3% 98.7% 0% 98.3%

3*3*6 (6.8%) 100.0% 98.9% 1.9 0.4% 96.7% 72% 98.9% 0% 98.8%

3*3*9 (10.3%) 100.0% 98.7% 2.5 0.5% 96.2% 94% 98.7% 0.3% 98.3%

CIFAR10

4*4*3 (4.7%) 100% 82.1% 10.4 76% 80.4% 99% 81.7% 9.6% 80%

4*4*6 (9.4%) 100.0% 81.6% 3.1 65% 80.7% 100% 80.9% 5.6% 80%X

4*4*9 (14%) 100% 81.5% 2.2 27% 81% 99% 81.1% 0.5% 79.1%

GTSRB

4*4*3 (4.7%) 100% 96.7% 5.2 0% 94.2% 99% 96.9% 0.7% 96.7%

4*4*6 (9.4%) 100.0% 98.5% 5.3 15% 94.4% 100% 98.5% 0.2% 98.5%

4*4*9 (14%) 100.0% 95.1% 3 18.5% 94.8% 100% 95% 0% 95%

Youtube

30*30*3 (5.3%) 100.0% 99.7% 8.3 81% 96.2% 100% 99.7% 0.2% 99.6%

30*30*3 (10.7%) 100.0% 99.7% 7.5 87% 96.1% 100% 99.7% 0% 99.4%

30*30*9 (16.1%) 100.0% 99.7% 7.3 88% 96.4% 100% 99.7% 0.4% 99.3%

Average - (9%) 100% 94.2% 5 38.2% 91.9% 92% 94.1% 1.5% 93.6%

Back_succ*: The attack success rate of backdoored samples. Clean_succ*: The accuracy of clean samples. Anomaly: The anomaly index of the infected models.

Table 4: Flipping Baseline Neurons VS Flipping EI Neurons

Datasets
Regular Trigger Scattered & Transparency Trigger

Baseline Flip EI neurons Baseline Flip EI neurons
Back_succ Clean_succ Back_succ Clean_succ Back_succ Clean_succ Back_succ Clean_succ

MNIST 1.3% 98.5% 0.5 97.9% 35.3% 95.8% 0.1% 98.5%

CIFAR10 52.4% 81.5% 2% 81% 99% 81.3% 5.2% 79.7%

GTRSB 16.3% 96.3% 0.3% 96.7% 100% 96.6% 0.3% 96.7%

Youtube Face 98.2% 99.7% 1% 99.1% 97% 99.7% 0.2% 99.4%

Average 42.1% 94% 1% 93.7% 58.1% 93.4% 1.5% 93.6%

Back_succ*: The attack success rate of backdoored samples. Clean_succ*: The accuracy of clean samples.

Comparison with pruning. We also compare the neuron-flip

(used to remove backdoors in AI-Lancet) with neuron-prune (ze-

roizing the corresponding neuron parameters). Specifically, for

each backdoored model, we prune the same EI neurons with the

neuron-flip to evaluate the backdoor attack success rate as well as

the clean sample classification accuracy. Table 2 and Table 3 show

that neuron-prune can reduce the backdoor attack success rate to

77.7% and 92% on average for the regular triggers and scattered

transparency triggers respectively, which indicate that pruning

the located EI-neurons could work to some extend, but is not as
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effective as flipping them to mitigate the backdoors. Actually, only

when most of the backdoored neurons are pruned, the backdoors

can be mitigated effectively. In Neural Cleanse, pruning 30% of neu-

rons for GTSRB reduces the backdoor attack success rate to nearly

0%, but the classification accuracy drops by 5.06%. In contrast, we

find that flipping a small number of neurons usually is enough to

mitigate the backdoors. The average ratios of the flipped neurons to

the number of all the neurons of the layer are 0.04 (MNIST), 0.008

(CIFAR10), 0.01 (GTSRB) and 0.007 (Youtube Face) for the regular

triggers. Detailed ratios for all the backdoored models and their

corresponding layers are shown in Table 14 in Appendix.

Comparison with NAD. We compare AI-Lancet with one of the

existing state-of-art approaches, Neural AttentionDistillation (NAD)

[33]. Firstly, NAD needs to access 5% of the clean training data,

but our method does not. Secondly, following the same configura-

tion as NAD, we implement our approach using CIFAR-10 dataset

(consistent with NAD), and adopt the same backdoor embedding

method and backdoor triggers as NAD. The results indicate AI-

Lancet achieves better performance in general. For the BadNets [19]

attack, our approach reduces the backdoor attack success rate to

1.7% with only 3.2% downgrade of the overall accuracy, compared

to 4.77% and 4.48% of NAD respectively. Regarding the Trojan at-

tack [38], our approach reduces the backdoor attack success rate to

2.1% with 3.3% accuracy decline, compared to 19.63% and 2.08% of

NAD respectively.

The effectiveness of the EI neurons. We also compare the EI

neurons flipping with the baseline neurons flipping, which is to flip

those neurons with the most different behavior between the clean

inputs and the backdoored inputs, i.e., the largest activation value

difference. Consider that EI neurons flipping chooses 𝐾 neurons at

the layer 𝑙 of the backdoored model based on the algorithm in Sec-

tion 4.1. For the baseline neurons flipping, we target the same layer

𝑙 , rank all neurons of this layer in a descending order based on their

activation differences between the clean inputs and the backdoored

inputs, and set the top 𝐾 neurons as the baseline neurons. We flip

such baseline neurons and measure the backdoor attack success

rate as well as the clean sample classification accuracy. The results

are shown in Table 4, with the backdoor success rates averaged over

all different trigger sizes for each dataset due to the space limitation

(refer to Table 12 in Appendix for details). According to Table 4, flip-

ping baseline neurons in the model can reduce the backdoor attack

success rate to 42.1% and 58.1% on average for the regular triggers

and the scattered transparent triggers respectively, compared with

1% and 1.5% of flipping the same number of EI neurons. Hence, we

conclude that flipping the same number of baseline neurons cannot

mitigate the backdoors as effectively as flipping the EI neurons.

Impact of triggers’ properties. We consider the impact of differ-

ent properties of backdoor triggers in our experiments, including

the size, the transparency, the pattern, the connectivity (one piece

or scattered pieces), the position (covering the important regions

of the original input or not) and the shape (square pattern or non-

square pattern). The trigger pattern used in Table 2 is one piece

pattern, without transparency and does not cover the important

regions. The trigger patterns in Table 3 are scattered pieces with

50% transparency and may cover part of the important regions.

Examples of trigger patterns are shown in Figure 8 and Figure 9 in

Appendix. The results in Table 2 and Table 3 show that the proper-

ties, including the transparency, the pattern, the connectivity and

the position, do not pose significant impact on the performance of

AI-Lancet, with the backdoor success rate dropping from 99.8% to

0.8% on average after removal. In contrast, the backdoor success

rate of unlearning is still up to 81% as the trigger size increases

to 5.3% for Youtube Face after its backdoor removal. We also test

triggers of different shapes, either consisting of several thin lines or

several individual pixels (as shown in Figure 7 in Appendix) using

GTRSB dataset. For each shape of trigger, we use three different

sizes, i.e., 3.1%, 6.2%, and 9.3% of the entire input image, respec-

tively. The results indicate that our approach is effective on such

non-square patterns as well. For the trigger of thin lines, we reduce

the backdoor attack success rate from 100% to 4% on average with-

out the overall accuracy decline. Regarding the trigger of individual

pixels, the backdoor attack success rate drops from 100% to 3.1%

on average without the overall accuracy decline.

Scalability of AI-Lancet. To demonstrate the scalability of AI-

Lancet approach, we extend it beyond the vision domain to the

speech domain, and also evaluate it on other model architectures.

We evaluate AI-Lancet using two speech recognition backdoor mod-

els released by authors of [38], used to recognize spoken numbers

in English. The Trojan trigger is some background noise, causing

the model to recognize any speech integrated with the trigger as the

target number. For one model, AI-Lancet can reduce the backdoor

attack success rate from 97% to 0% with only 3% degrade on the

overall accuracy. For the other model, AI-Lancet reduces the back-

door attack success rate to 0%, with the overall accuracy increased

from 78% to 86%. The evaluation results indicate that AI-Lancet is

also effective in mitigating the backdoors embedded into speech

recognition models. Furthermore, to demonstrate the scalability

of AI-Lancet on other model architectures, we implement it using

a Feedforward model with four fully-connected layers using the

same speech recognition dataset as [38]. The results indicate that

AI-Lancet reduces the backdoor attack success rate to 2.2% with

only 1% accuracy degradation.

6.3 Effectiveness of General Defects Fixing
We evaluate the general defects fixing with four different models

based on the ImageNet dataset. We measure the overall accuracy

𝐴 based on 𝑇𝑒𝑠𝑡2 and the accuracy 𝐴′
of the samples with similar

errors from𝑀_𝑇𝑒𝑠𝑡2 to demonstrate the performance of fixing. The

samples with similar errors are those misclassified by the origi-

nal model but recognized correctly by the fixed model with the

EI neurons ablated. We also compare our AI-Lancet with other

fine-tuning methods, including fine-tuning the same number of

randomly-chosen neurons on the same layer or the last layer and

fine-tuning all the neurons of a whole layer. We choose the last

layer of each model to fine-tune all the neurons due to the following

two reasons. On the one hand, most of the existing incremental

learning works [24, 25, 34] fine-tune the last layer with satisfactory

performance, so we follow the common practice. On the other hand,

we tried to fine-tune the last six layers of VGG16 with the same

joint training samples and the same hyper-parameters. The results

(refer to Figure 5 in Appendix) show that fine-tuning the last layer

better addresses the catastrophic forgetting problem. We adopt
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Table 5: Performance of General Defect Fixing

Layers AI-Lancet *Random
Neurons

*Last
Layer

*Last&
Random R* S*

A A’ A A’ A A’ A A’
*ResNet18 69.4% 0%
Conv1 69.4% 39% 69.4% 2% 68.3% 34% 69.5% 0% 0.0002 369

Basic2 69.6% 34% 69.4% 5% 69.2% 34% 69.5% 0% 0.0008 321

Basic3 69.4% 43% 69.4% 32% 68% 41% 69.5% 3% 0.0077 558

Basic4 69.5% 28% 69.5% 21% 69% 29% 69.4% 1% 0.0006 454

Basic5 69.4% 39% 69.4% 27% 68.4% 39% 69.5% 0% 0.001 386

Basic6 69.4% 48% 69.4% 6% 68% 41% 69.4% 0% 0.0004 284

Basic7 69.6% 75% 69.5% 67% 68.2% 40%% 69.5% 1% 0.0004 139

Basic8 69.4% 35% 69.4% 12% 69.1% 35% 69.4% 2% 0.0077 310

Basic9 69.7% 35% 69.5% 20% 68% 40% 69.5% 11% 0.0038 272

Fc10 69.5% 37% 69.5% 5% 68.9% 41% – – 0.0024 162

*VGG16 71.3% 0%
Conv1 71.4% 40% 71.4% 3% 71.2% 43% 71.4% 3% 0.0006 73

Conv2 71.4% 35% 71.3% 9% 70.2% 35% 71.3% 3% 0.0033 92

Conv3 71.3% 42% 71.3% 3% 70.5% 43% 71.3% 2% 0.0009 118

Conv4 71.3% 45% 71.3% 12% 69.8% 44% 71.4% 3% 0.0006 451

Conv5 71.4% 59% 71.3% 5% 70.2% 50% 71.4% 3% 0.0002 130

Conv6 71.3% 36% 71.4% 4% 70.8% 38% 71.4% 3% 0.0002 210

Conv7 71.3% 50% 71.3% 2% 70.7% 51% 71.4% 2% 0.001 137

Conv8 71.5% 55% 71.4% 9% 70.2% 45% 71.3% 2% 0.0009 198

Conv9 71.3% 46% 71.3% 2% 71.1% 37% 71.4% 3% 0.0009 155

Conv10 71.3% 39% 71.3% 16% 70.5% 39% 71.3% 2% 0.0018 180

Conv11 71.3% 33% 71.3% 4% 71.1% 41% 71.3% 2% 0.0016 163

Conv12 71.4% 40% 71.3% 8% 70.7% 44% 71.4% 6% 0.003 357

Conv13 71.4% 41% 71.4% 4% 70.6% 45% 71.3% 5% 0.0027 349

FC14 71.5% 45% 71.3% 9% 71.1% 47% 71.4% 7% 0.0082 162

FC15 71.4% 28% 71.3% 26% 70.7% 46% 71.4% 16% 0.0229 250

FC16 71.3% 37% 71.3% 13% 70% 51% – – 0.0078 317

*VGG11 68.7% 0%

Conv2 68.7% 42% 68.7% 7% 66% 38% 68.7% 2% 0.0005 329

Conv4 68.7% 40% 68.7% 12% 67.9% 46% 68.7% 3% 0.0006 225

Conv8 68.7% 43% 68.7% 8% 68.4% 48% 68.7% 5% 0.0008 166

Conv9 68.7% 38% 68.7% 32% 68.6% 43% 68.8% 19% 0.0081 167

FC11 68.7% 35% 68.7% 0% 68.8% 36% – – 0.0017 125

*GoogleNet 67.5% 0%
Conv1 67.5% 36% 67.5% 5% 66.8% 34% 67.5% 2% 0.037 363

Conv2 67.5% 45% 67.5% 20% 67% 46% 67.5% 4% 0.0004 142

Inception4c 67.6% 41% 67.5% 15% 67.1% 44% 67.5% 5% 0.0013 281

Inception4e 67.5% 46% 67.5% 21% 67% 50% 67.5% 15% 0.0005 127

FC 67.6% 40% 67.5% 30% 67.2% 44% 67.6% 8% 0.0009 201

R*: The ratio of EI neurons. S*: The number of training samples.

*ResNet18, *VGG16, *VGG11 and *GoogleNet: The baseline accuracy (𝐴 and𝐴′
) of the four

original models.

*Random Neurons: Results of fine-tuning the randomly-chosen neurons of the same layer as

that of the EI neurons. *Last& Random: Results of fine-tuning the randomly-chosen neurons

of the last layer. *Last Layers: Results of fine-tuning all the neurons of the last layer.

two popular catastrophic forgetting mitigation methods, including

feature-distillation and joint training in our experiment.

For different misclassified samples, different layers might be cho-

sen to fine-tune the located EI neurons based on Section 4. Hence,

for each model, we intend to choose multiple misclassified samples

with each of them relying on different layers to fix, i.e., misclassi-

fied samples for all the layers for ResNet18 and VGG16, and five

layers for VGG11 and GoogleNet. The corresponding misclassified

samples for each layer are listed in Table 13 in Appendix. Table 5

shows the experimental results. “AI-Lancet” represents our method,

“Random Neurons” represents fine-tuning the randomly-chosen

neurons at the same layer, “Last Layer” represents fine-tuning all

the neurons at the last layer, and “Last & Random” represents fine-

tuning randomly-chosen neurons at the last layer. The number

of the randomly-chosen neurons is the same as the number of EI

neurons.

Table 5 shows that fine-tuning the EI neurons achieves the best

performance on the overall accuracy 𝐴 and the accuracy 𝐴′
on the

samples with similar errors. In contrast, fine-tuning the randomly

chosen neurons has little impact on 𝐴, but causes 𝐴′
to be 28%

lower than fine-tuning the EI neurons on average. Fine-tuning all

the neurons on the last layer achieves a good performance on 𝐴′
,

but the overall accuracy 𝐴 drops up to 2.7%. The reason that fine-

tuning the EI neurons outperforms is due to its targeted fixing. We

also observe that even the best performance of 𝐴′
can hardly reach

50%, probably because not all the selected samples for testing are

with similar errors. For example, some samples near the decision

boundaries may also easily be affected by variations in the feature

maps, making them be classified correctly by the fixed model. To

measure the ratio of such samples, we ablate the same number of

randomly-chosen neurons at the same layer and select samples

misclassified by the original model but correctly classified by the

randomly-ablated model. We find that even the random neurons

could select a small number of misclassified samples (53 on average).

Detailed numbers for each of the four models are shown in the

fourth row and fifth row in Table 7. The result indicates that𝑀_𝑡𝑒𝑠𝑡1
and𝑀_𝑡𝑒𝑠𝑡2 may include some irrelevant samples, which limits the

improvement of 𝐴′
.

Furthermore, we also measure the percentage of samples that

can locate EI neurons. On average, 67% of misclassified samples can

locate EI neurons. Detailed numbers for each of the four models are

shown in Table 7. It is possible when the EI features and the benign

features tangle in the same region tightly (unable to separate them

in the two-dimension space), locating the EI regions becomes quite

challenging, thus the EI neurons.

Efficiency. The last row in Table 7 shows the time to locate the EI

neurons for one misclassified sample (averaged on 500 misclassified

samples). The first addend in each cell is the time consumption

of generating the companion sample for the misclassified sample,

and the second one is the time of locating the EI neurons for it.

The training samples and test samples selection for each model

takes less than 300 seconds. The time used for model fine-tuning

(20 epochs) for VGG11, VGG16, ResNet18, and GoogleNet is 540

seconds, 360 seconds, 480 seconds, and 420 seconds, respectively.

6.4 Accuracy of EI Neurons Locating
Since the performance of error fixing highly depends on the EI

neurons locating, below we evaluate the accuracy of EI neurons

locating. Since it is impossible to know the ground truth EI neurons

in the case of general defects, our evaluation focuses on the back-

door removal. Some backdoor attack approaches [37, 60, 70] can

embed the backdoors leveraging several specific neurons of a pre-

trained model, so the backdoored neurons are known and unique,

which can be the ground truth to test the accuracy of our EI neu-

rons locating. Our backdoor injection follows Trojan Attack [38] to

select the backdoored neurons, but uses different model retraining

method when embedding the backdoor. Trojan Attack retrains all

the layers between the residence layer of the selected neurons and

the output layer. However, we concern that retraining any more

neurons besides the selected neurons could introduce uncertainty

to the ground truth neurons. Therefore, instead of retraining the

following layers after the layer where the selected backdoored neu-

rons reside in, we only retrain the selected neurons, making them

the only neurons that implant the backdoors.
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Table 6: Results of Locating EI-neurons

GTRSB Configuration Reconstructed trigger Neuron-prune Neuron-flip
Ratio_f*Layer Back_succ Clean_succ Ratio* TPR FNR Back_succ Clean_succ Back_succ Clean_succ

FC7 99.5% 96.2% 0.002 93% 4.8% 78% 94.8% 0% 94.3% 0.0003

FC6 100% 96.4% 0.0002 82.4% 4.9% 0.2% 96.4% 0% 96.4% 0.0005

Conv5 98.4% 93% 0.001 80.4% 4.7% 0.7% 95% 0% 95% 0.0006

Conv4 90% 89% 0.002 61% 4.8% 0% 94% 0% 94% 0.004

Conv3 61% 87.5% 0.004 66% 4.6% 26% 86% 4% 89% 0.0002

Conv2 75% 64% 0.002 76% 4.8% 12.3% 71% 8% 72% 0.0002

Ratio*: 𝑅𝑎𝑡𝑖𝑜 = 𝑁𝑏/𝑁 where 𝑁𝑏 is the number of the neurons that are trained to embed the backdoor and 𝑁 is the number of all the neurons of the layer. Ratio_f*: 𝑅𝑎𝑡𝑖𝑜 𝑓 = 𝑁𝑓 /𝑁 where 𝑁𝑓 is

the number of the flipped/pruned neurons and 𝑁 is the number of all the neurons of the layer.

Table 7: Summary of Locating EI Neurons

VGG11 VGG16 ResNet18 GoogleNet
Parameters 132,863,336 138,357,544 33,161,024 6,624,904

*FIR ratio 80% 79.1% 81.4% 60%

*FBN ratio 76.4% 76% 67.7% 48.8%

Selected 203 209 326 271

Random 39 28 76 71

Time 4+2.5 sec 4.3+4.3 sec 5.3+1.8 sec 3.6+2.1 sec

*FIR ratio: The ratio of samples that can locate the EI regions.

*FBN ratio: The ratio of samples that can locate the EI neurons.

In the experiments, we target each layer of the GTRSB model

and take a square-shaped, with the size of 14 ∗ 14, placed on the

top-left corner of the input, as the Trojan trigger mask, and generate

triggers accordingly (Examples of the generated triggers are shown

in Figure 6 in Appendix). Then we locate the EI neurons based

on the reconstructed trigger. Finally, we evaluate the neuron-flip

and neuron-prune based on the reconstructed trigger to verify

the mitigation performance against such attack. Table 6 shows

the results of EI neurons locating when choosing different layers

of GTRSB model
7
We use TPR (true positive rate) and FPR (false

positive rate) as the evaluation metrics. 𝑇𝑃𝑅 = 𝑛𝑏/𝑁𝑏 , where 𝑛𝑏
is the number of the located EI neurons and 𝑁𝑏 is the number

of total backdoored neurons of the layer. 𝐹𝑃𝑅 = 𝑛𝑎/𝑁𝑎 , where

𝑛𝑎 is the number of normal neurons but mis-located as the EI

neurons and 𝑁𝑎 is the number of total normal neurons of the layer.

In our experiments, we intend to always keep an acceptable FPR

(less than 5%) and calculate the TPR. We can see that the TPR

of the reconstructed trigger is 76% on average (up to 93%) of the

reconstructed trigger, which indicates AI-Lancet can locate the

EI-neurons accurately.

We observe that neuron-flip mitigates such backdoor attack suc-

cessfully with 2% attack success rate on average after removal.

Interestingly, the overall accuracy of some flipped models even gets

improved (up to 8%), rather than downgraded. This is consistent

with the findings of Neural Cleanse that the models infected by

the Trojan attack also get improved on the overall accuracy after

unlearning from the training samples, with the difference that the

improvement of neuron-flip does not come from the training sam-

ples. We infer that the backdoored neurons (i.e., EI neurons) may

interfere with the models’ recognition on other clean input samples.

Therefore, flipping them means removing the interference factors,

7
We did not evaluate the accuracy of EI neurons locating for the first layer (Conv0)

and the second layer (Conv1), because the backdoored model obtained by selecting

backdoored neurons in those two layers got only about 20% attack success rate and

about 50% clean data classification accuracy

(a) (b) (c) (d)

Figure 4: Error Explanation

which mitigates the degradation of the classification accuracy. We

also notice that the performance of neuron-prune for such back-

door attack is better than that for the BadNets attack. The reason

may be that such backdoor attack implants the backdoor into fewer

neurons, thus a small number of EI neurons would be enough to

cover most backdoored neurons. In Table 6, the performance of

neuron-prune on the layer of “FC6”, “Conv5” and “Conv4” is almost

the same as that of Neuron-flip. The ratio of flipped/pruned neurons

of these the models (the last column in Table 6 is close to the ratio

for the ground truth (the fourth column in Table 6).

7 DISCUSSION
Error explanation.We adopt the feature visualization method [1]

to visualize the EI neurons, and use one example to discuss the

root cause analysis for misclassified samples with the help of the

EI neurons. Figure 4 (a) is the sample with the true label of “street

sign” but misclassified as a “shopping basket" by VGG16. The red

circles in Figure 4 (a) are the located EI regions. Hence, we infer

the reason of the misclassification could be either the rectangular

border of the “street sign” is very similar to the shape of a “basket”

or the barbed wire behind the street sign is quite similar to the

mesh structure of the “basket”. Figure 4 (b) visualizes the class

of the “shopping basket” using the feature visualization method.

Although quite informative about the “shopping basket”, it still

cannot help determine the root cause of the misclassification, since

it contains both of the above-mentioned features (the rectangular

shape and the mesh structure). Figure 4 (c) is the visualization result

of the located EI neurons of the class “shopping basket”, which

highlights the characteristics of the mesh structure. Therefore, the

misclassification might be caused by the barbed wire behind the

street sign in Figure 4 (a). To verify the hypothesis, we blur the

barbed wire with a different intensity and generate a sample image

as in Figure 4 (d). The experimental results show that most of the

similarly-blurred images are recognized correctly as the street sign.

We also blur the rectangular border of the “street sign”, but most of

the blurred images are still misclassified as the “shopping basket”
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with the confidence value increased from 0.45 to 0.6. Therefore, we

conclude that the barbed wire is a more important factor for the

misrecognition than the rectangular border.

Security analysis. Aware of our AI-Lancet approach, the attack-
ers can design adaptive attacks. Firstly, the attackers can embed a

backdoor activating the neurons that also contributes significantly

to the classification of the benign samples. We implement a similar

backdoor on the GTSRB model and evaluate whether AI-Lancet can

remove this kind of backdoor effectively. Specifically, we generate a

trigger based on the clean model, making it highly activated at one

layer (the last but two layer in our experiment). Then we retrain

the last two layers of the model to embed the backdoor using the

generated trigger. In the loss function design, the trigger should also

highly activate the important neurons of the last two layers, which

are the top 30% activated neurons for the clean samples. Finally, we

evaluate AI-Lancet using the backdoored model. The evaluation

results show that AI-Lancet successfully reduces the backdoor at-

tack success rate from 100% to 0% with only 0.8% degradation of

the overall accuracy. The reason is that although the trigger can

activate benign neurons, some of the backdoored neurons are still

revealed by AI-Lancet. Furthermore, it can be seen that a small

number of neurons (even all of them are benign) typically has little

impact on the overall accuracy of a model. Secondly, the attackers

can mislead the companion samples construction. Specifically, they

can generate adversarial examples to mislead the EI region’s locat-

ing. For this kind of adaptive attack, we can detect it by integrating

existing adversarial examples detectionmethods [12, 51, 65]. Finally,

the attackers can induce AI-Lancet to flip/fine-tune more neurons

by embedding backdoors that affect as many neurons as possible,

but embedding such backdoors inevitably downgrades the overall

accuracy.

Meanwhile, generating an adaptive attack is nontrivial. First,

the backdoor should activate enough benign neurons at each layer,

not only one layer, because we remove the backdoor by selecting

the layer with the fewest EI neurons. Second, the benign neurons

should be activated heavier than the backdoored neurons. Finally,

the reconstructed trigger (not only the original trigger) should also

satisfy the above two constraints. All the above constraints make

this adaptive attack challenging, and such attack is more likely to

downgrade the overall accuracy.

Dependency. For the application of backdoor removal, AI-Lancet

relies on existing backdoor reconstruction approaches, including

Neural Cleanse [58], TABOR [21] and ABS [36]. Although ABS can

handle feature space backdoor as well, Neural Cleanse is used in

our experiment since AI-Lancet targets the patch-trigger only.

8 RELATEDWORK

Model debugging. Although the lack of interpretability and the

complexity (e.g., millions of parameters) of DNN models make it a

difficult task to debug them, there exist several seminal works ex-

ploring the topic. Anurag et al. [17] identifies implementation bugs

in machine learning based image classifiers using metamorphic test-

ing. It focuses on machine learning software applications, which

is similar to debugging traditional software programs. SEQ2SEQ-

VIS [53] is a visual debugging tool for sequence-to-sequence models,

which describes the origin of decisions made by the seq2seq model

by relating internal states to relevant training samples. It helps

engineers to analyze the model interactively, but the debugging

still highly relies on manual effort.

Roozbeh et al. [66] generates flip points that lie on decision

boundaries to mitigate undesirable behaviors of the model. A flip

point is any point (sample) that lies on the boundary between two

output classes, e.g. MODE [39] debugs models via state differential

analysis, i.e., locating faulty features with heatmap differentials

between correctly classified inputs and misclassified inputs. The

differential heatmap is used as guidance to select existing or new

inputs to form a new training dataset, which is then used to re-

train the model. However, MODE mainly focuses on the overall

over-fitting and under-fitting bugs for one class. It cannot provide

support to identify plausible and distinct root cause leading tomodel

classification errors. To overcome such limitation, HUDD [18] ap-

plies clustering on the heatmap of misclassified inputs to provide

more information to help researches analyze the root cause. All the

above three works need to adjust the training dataset based on the

misclassified inputs and then retrain the model.

Model testing. Other works explore model testing via fuzzing

or assertion approaches. For instance, Tian et al. [56] applies the

neuron coverage metric to DNNs by performing natural image

transformation and find the errors based on the idea ofmetamorphic

testing [9]. Neuron coveragemetric is introduced by Pei et al. in [42],

and then used by DeepHunter [64] and TensorFuzz [40] to test and

verify neural networks with coverage-guided fuzzing. Compared

to random test samples, these approaches could find more errors.

Besides fuzzing, Daniel et al. [26] propose a method to prevent

machine learning models from more errors via assertions.

9 CONCLUSIONS
In this paper, we proposed AI-Lancet to optimize the deep learning

models by locating the error-inducing neurons and fixing them

using either neuron-flip or neuron-fine-tuning methods. The first

one is neuron-flip, which is a non-training method with no need for

training data. The second one is neuron-fine-tuning, which fixes

errors by fine-tuning error-inducing neurons. The results show that

AI-Lancet could get good performance on different applications,

including the backdoor removal and general defects fixing.
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10 APPENDICES
Accelerating neuron ablation. The binary search algorithm nar-

rows the target scope start from a larger scope (about half of all

neurons of one layer). Half of all neurons of one layer is a too

large scope, which not only includes EI neurons (if existed) but also

probably contains the neurons that are important for the sample

to be classified correctly. Ablating such a large scope of neurons

decreases the probability of making the sample classified correctly

by ablating some neurons, which hinders revealing EI neurons. So

for each layer, we first normalize the number of weight parameters

as its percentage in all parameters of the layer. Then we search for

a proper order of magnitudes and finally apply the binary search

algorithm within this limited range. We start from the smallest

order of magnitude and stop until one order of magnitudes 1× 10
−𝑟

satisfies the criteria. Then we apply the binary search algorithm

within (1 × 10
−(𝑟−1) , 1 × 10

−𝑟 ) to find a more accurate percentage.

Finally, we can obtain the minimal number of neurons, which when

zeroized, cause the original misclassified sample to be labelled cor-

rectly on the resultant model. Such neurons are EI neurons in this

particular layer.

The companion sample generation. We present the optimiza-

tion details of the companion sample generation, which removes the

EI regions from the misclassified sample 𝑥 to generate 𝑥 ′. In Section

4.1, we discussed three constraints for the EI regions optimization

as they should (1) be as small as possible, (2) demonstrate clear

boundaries, and (3) be more clustered. Therefore, the companion

sample generation is formally designed as below:

1 𝑋 ′ = 𝑀𝑎𝑠𝑘
′
𝑖 ∗ 𝑋𝑏𝑙𝑢𝑟 + (1 −𝑀𝑎𝑠𝑘

′
𝑖 ) ∗ 𝑋

2 𝑙𝑜𝑠𝑠 = 𝛽 ∗ 𝑠𝑢𝑚(𝑀𝑎𝑠𝑘
′
𝑖 ) +

∑
|𝑓 (𝑋 ′) − 𝑦′ |2

3 𝑀𝑎𝑠𝑘𝑖+1 = 𝑀𝑎𝑠𝑘𝑖 + Y𝑠𝑖𝑔𝑛(
𝜕𝑙𝑜𝑠𝑠

𝜕𝑀𝑎𝑠𝑘𝑖
)

(6)

where 𝑋 is the originally misclassified sample and 𝑋𝑏𝑙𝑢𝑟 is the

blurred image of 𝑋 .𝑀𝑎𝑠𝑘 is the companion matrix that determines

the EI regions in 𝑋 and 𝑀𝑎𝑠𝑘 ′ = 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (𝑀𝑎𝑠𝑘). Then the

companion sample 𝑋 ′
is obtained in Formula 1 based on the pre-

processed companion matrix𝑀𝑎𝑠𝑘
′
𝑖
. Values close to 1 in𝑀𝑎𝑠𝑘

′
𝑖
re-

tains the corresponding pixels of blurred image 𝑋𝑏𝑙𝑢𝑟 , while values

close to 0 retains the corresponding pixels of 𝑋 .𝑀𝑎𝑠𝑘 is iteratively

optimized in Formula 3 based on the loss function defined in

Formula 2 . The loss function is defined with two items, where

𝑓 (¤) is the model and 𝑦′ is the true label of 𝑋 . The first item is the

sum of the companion matrix, which leads to revising it with fewer

values close to 1, thus limiting the size of EI regions (Constraint 1).

The second item tends to optimize𝑀𝑎𝑠𝑘 to make 𝑋 ′
be classified

correctly by the model. Then the preprocessing method is defined

as:

𝑀𝑎𝑠𝑘
′
𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑎 ∗ (𝐵𝑙𝑢𝑟 (𝑀𝑎𝑠𝑘𝑖 ) − 0.5)) (7)

where 𝑀𝑎𝑠𝑘 is processed by applying 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑚) = 1

1+𝑒−𝑚 to

reinforce the boundary (Constraint 2). 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 is a mathematical

function with “S”-shaped curve [5]. It is defined as a squashing

function that maps values less than zero to close to 0 and values

more than 0 close to 1. Therefore, we generalize𝑀𝑎𝑠𝑘
′
to the range

of (−0.5, 0.5) by subtracting 0.5. 𝑎 is a squashing parameter and a

larger 𝑎 indicate a stronger squashing8. Furthermore, we blur𝑀𝑎𝑠𝑘

to make the EI regions more clustered (Constraint 3). Such blurring

will decrease scattered regions in𝑀𝑎𝑠𝑘 .

8
In this paper, the squashing parameter 𝑎 is set as 20
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Companion samples vs Adversarial examples. We concerned

whether the companion samples are adversarial examples or not, al-

thoughwe provide designs including clustering restriction, heatmap

restriction, and the squashing function in Section 4.1 to reduce the

possibility of making the companion sample being an adversarial

example. We select 500 misclassified samples randomly for each

model and then find EI regions for them based on random labels

except the correct label and the misclassified label. Then the per-

centages of samples that could find EI regions for the four models

(ResNet18, VGG16, VGG11 and GoogleNet) are 1%, 3%, 0%, and 5%,

respectively. The results indicate it is hard to make the original

sample to be misclassified as a random label with our method. So

we can say that our method is less likely to generate AEs.

Figure 5: The accuracy of fine-tuning different layers.

Table 8: Model Architecture of MNIST

Layer type Filter size Channels Stride Activations

Conv 3 × 3 32 1 ReLU

Conv 3 × 3 32 1 ReLU

MaxPool 2 × 2 32 2 -

Conv 3 × 3 64 1 ReLU

Conv 3 × 3 64 1 ReLU

MaxPool 2 × 2 64 2 -

FC - 512 - ReLU

FC - 10 - Softmax

Table 9: Model Architecture of GTSRB

Layer type Filter size Channels Stride Activations

Conv 3 × 3 32 1 ReLU

Conv 3 × 3 32 1 ReLU

MaxPool 2 × 2 32 2 -

Conv 3 × 3 64 1 ReLU

Conv 3 × 3 64 1 ReLU

MaxPool 2 × 2 64 2 -

Conv 3 × 3 128 1 ReLU

Conv 3 × 3 128 1 ReLU

MaxPool 2 × 2 128 2 -

FC - 512 - ReLU

FC - 43 - Softmax

Table 10: Model Architecture of CIFAR10

Layer type Filter size Channels Stride Activations

Conv 3 × 3 32 1 ReLU

Conv 3 × 3 32 1 ReLU

MaxPool 2 × 2 32 2 -

Conv 3 × 3 64 1 ReLU

Conv 3 × 3 64 1 ReLU

MaxPool 2 × 2 64 2 -

Conv 3 × 3 128 1 ReLU

Conv 3 × 3 128 1 ReLU

MaxPool 2 × 2 128 2 -

FC - 512 - ReLU

FC - 10 - Softmax

Table 11: Model Architecture of YouTube-Face

Layer type Filter size Channels Stride Activations

Conv 4 × 4 20 2 ReLU

MaxPool 2 × 2 20 2 -

Conv 3 × 3 40 2 ReLU

MaxPool 2 × 2 40 2 -

Conv 3 × 3 60 2 ReLU

MaxPool 2 × 2 60 2 -

FC - 1024 - ReLU

FC - 4096 - ReLU

FC - 1595 - Softmax

(a) Conv2 (b) Conv3 (c) Conv4

(d) Conv5 (e) FC6 (f) FC7

Figure 6: Generated triggers to evaluate the accuracy of the
EI neurons locating.

(a) Examples of triggers with lines

(b) Examples of triggers with pixels

Figure 7: The non-square triggers.
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Table 12: Details of Flipping Baseline Neurons VS Flipping EI Neurons

Datasets
Regular Trigger Scattered & Transparency Trigger

Trigger Size Baseline Flip EI neurons Trigger Size Baseline Flip EI neurons
Back_succ Clean_succ Back_succ Clean_succ Back_succ Clean_succ Back_succ Clean_succ

MNIST

4*4*1 0% 98.7% 0% 97% 3*3*3 0% 90% 0% 98.3%

6*6*1 0% 98.5% 2.1% 98.3% 3*3*6 20.9% 98.8% 0% 98.8%

8*8*1 4.3% 98.6% 0% 98.4% 3*3*9 84.9% 98.7% 0.3% 98.3%

10*10*1 0.8% 98.3% 0% 98% – – – – –

12*12*1 – – – – – – – – –

CIFAR10

6*6*1 82% 82% 0% 81.9% 4*4*3 99% 82.1% 9.6% 80%

8*8*1 10% 80.9% 4.4% 80.2% 4*4*6 99% 81% 5.6% 80%

10*10*1 99% 81.1% 3.6% 80% 4*4*9 99% 80.9% 0.5% 79.1%

12*12*1 18.7% 81.9% 0% 81.7% – – – – –

14*14*1 – – – – – – – – –

GTRSB

6*6*1 0% 97.2% 0.5% 97.1% 4*4*3 100% 96.3% 0.7% 96.7%

8*8*1 0% 96.6% 0% 96.6% 4*4*6 100% 98.3% 0.2% 98.5%

10*10*1 0% 96.9% 0.7% 96.5% 4*4*9 100% 95.2% 0% 95%

12*12*1 0% 97% 0% 97% – – – – –

14*14*1 81.3% 93.7% 0.1% 96.1% – – – – –

Youtube Face

8*8*1 91.2% 99.6% 0.5% 98.7% 30*30*3 91% 99.7% 0.2% 99.6%

63*63*1 100% 99.7% 0.1% 99.4% 30*30*6 100% 99.6% 0% 99.4%

63*63*2 100% 99.7% 0.2% 99% 30*30*9 100% 99.7% 0.4% 99.3%

63*63*3 100% 99.8% 4.1% 99.1% – – – – –

63*63*4 100% 99.6% 0.2% 99.2% – – – – –

Back_succ*: The attack success rate of backdoored samples. Clean_succ*: The accuracy of clean samples.

(a) MNIST_1 (b) MNIST_2 (c) MNIST_3 (d) CIFAR10_1 (e) CIFAR10_2 (f) CIFAR10_3 (g) Trojan Square

(h) GTSRB_1 (i) GTSRB_2 (j) GTSRB_3 (k) YouTube_1 (l) YouTube_2 (m) YouTube_3 (n) Trojan Water-

mark

Figure 8: The scattered transparent triggers. (a) MNIST_1(3*3*3). (b) MNIST_2(3*3*6). (c) MNIST_3(3*3*9). (d) CIFAR10_1(4*4*3).
(e) CIFAR10_2(4*4*6). (f) CIFAR10_3(4*4*9). (g) Trojan Square. (h) GTSRB_1(4*4*3) (i) GTSRB_2(4*4*6) (j) GTSRB_3(4*4*9) (k)
YouTube_1(30*30*3) (l) YouTube_2(30*30*6) (m) YouTube_3(30*30*3) (n) Trojan Watermark

(a) MNIST (b) CIFAR10 (c) GTSRB (d) YouTube_1 (e) YouTube_2 (f) YouTube_3 (g) YouTube_4

Figure 9: The regular triggers. (a) MNIST(10*10*1). (b) CIFAR10(6*6*1). (c) GTSRB(8*8*1). (d) Youtube_1(63*63*1). (e)
Youtube_2(63*63*2). (f) Youtube_3(63*63*3). (g) Youtube_4(63*63*4).
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Table 13: Misclassified Sample List

ResNet18 IMG ID True Label Misclassified Label
Conv1 ILSVRC2012_val_00000103 Tripod King crab

Basic2 ILSVRC2012_val_00001529 Longicorn Leaf beetle

Basic3 ILSVRC2012_val_00000212 Violin Christmas stocking

Basic4 ILSVRC2012_val_00001159 Hay Conch

Basic5 ILSVRC2012_val_00002178 Analog clock Magnetic compass

Basic6 ILSVRC2012_val_00001365 Plectrum Christmas stocking

Basic7 ILSVRC2012_val_00000624 Face powder Bottlecap

Basic8 ILSVRC2012_val_00002221 Plate Meat loaf

Basic9 ILSVRC2012_val_00001268 Snail Earthstar

Fc10 ILSVRC2012_val_00000425,1448 Toy poodle Miniature poodle

VGG16 IMG ID True Label Misclassified Label
Conv1 ILSVRC2012_val_00000644 Hare Ram, tup

Conv2 ILSVRC2012_val_00002264 Table lamp Throne

Conv3 ILSVRC2012_val_00001547 Tripod Syringe

Conv4 ILSVRC2012_val_00001966 Carpenter’s plane Broom

Conv5 ILSVRC2012_val_00002341 Oil filter Strainer

Conv6 ILSVRC2012_val_00001272 Trilobite Manhole cover

Conv7 ILSVRC2012_val_00000743 Fire screen Park bench

Conv8 ILSVRC2012_val_00002273 Ox Plough

Conv9 ILSVRC2012_val_00003262 Corkscrew Necklace

Conv10 ILSVRC2012_val_00000958 Loggerhead Marmot

Conv11 ILSVRC2012_val_00001320 Seashore Crane

Conv12 ILSVRC2012_val_00002394 Shower cap Bonnet

Conv13 ILSVRC2012_val_00002526 Butcher shop Corn

FC14 ILSVRC2012_val_00002782 Punching bag Balloon

FC15 ILSVRC2012_val_00001669 Sturgeon Slug

FC16 ILSVRC2012_val_00001819 Sidewinder Knot

VGG11 IMG ID True Label Misclassified Label
Conv2 ILSVRC2012_val_00000032 Go-kart Amphibian

Conv4 ILSVRC2012_val_00000615 Sarong King crab

Conv8 ILSVRC2012_val_00000876 Hand blower Pencil box

Conv9 ILSVRC2012_val_00002440 Pineapple Teddy bear

FC11 ILSVRC2012_val_00001027 Ram, tup Llama

GoogleNet IMG ID True Label Misclassified Label
Conv1 ILSVRC2012_val_00001819 Sidewinder Banded gecko

Conv2 ILSVRC2012_val_00001615 Cucumber Vine snake

Inception4c ILSVRC2012_val_00000129 Hotdog Guacamole

Inception4e ILSVRC2012_val_00000655 Wallaby Dingo

Fc12 ILSVRC2012_val_00000275 Remote control Crossword puzzle

Table 14: The Layers and Ratios of Parameters of Neuron-flip

Datasets Regular Trigger Scattered & Transparent Trigger
Trigger Size Layer Ratio Trigger Size Layer Ratio

MNIST

4*4*1 FC5 0.056 3*3*3 FC6 0.014

6*6*1 FC5 0.038 3*3*6 FC6 0.01

8*8*1 FC5 0.04 3*3*9 FC6 0.007

10*10*1 FC5 0.05 – – –

12*12*1 – – – – –

CIFAR10

6*6*1 FC8 0.009 4*4*3 FC8 0.01

8*8*1 FC7 0.01 4*4*6 FC8 0.0047

10*10*1 FC7 0.01 4*4*9 FC8 0.0051

12*12*1 FC7 0.004 – – –

14*14*1 – – – – –

GTRSB

6*6*1 FC7 0.013 4*4*3 FC8 0.006

8*8*1 FC7 0.01 4*4*6 FC8 0.006

10*10*1 FC7 0.009 4*4*9 FC8 0.008

12*12*1 FC7 0.01 – – –

14*14*1 FC7 0.01 – – –

Youtube Face

8*8*1 FC5 0.009 30*30*3 FC6 0.0058

63*63*1 FC5 0.004 30*30*6 FC6 0.0055

63*63*2 FC5 0.006 30*30*9 FC6 0.0025

63*63*3 FC5 0.009 – – –

63*63*4 FC5 0.007 – – –
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