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ABSTRACT
Generative Adversarial Networks (GAN)-synthesized table publish-
ing lets people privately learn insights without access to the private
table. However, existing studies on Membership Inference (MI) At-
tacks show promising results on disclosing membership of training
datasets of GAN-synthesized tables. Different from those works
focusing on discovering membership of a given data point, in this
paper, we propose a novel Membership Collision Attack against
GANs (TableGAN-MCA), which allows an adversary given only
synthetic entries randomly sampled from a black-box generator
to recover partial GAN training data. Namely, a GAN-synthesized
table immune to state-of-the-art MI attacks is vulnerable to the
TableGAN-MCA. The success of TableGAN-MCA is boosted by an
observation that GAN-synthesized tables potentially collide with
the training data of the generator.

Our experimental evaluations on TableGAN-MCA have five main
findings. First, TableGAN-MCA has a satisfying training data recov-
ery rate on three commonly used real-world datasets against four
generative models. Second, factors, including the size of GAN train-
ing data, GAN training epochs and the number of synthetic samples
available to the adversary, are positively correlated to the success of
TableGAN-MCA. Third, highly frequent data points have high risks
of being recovered by TableGAN-MCA. Fourth, some unique data
are exposed to unexpected high recovery risks in TableGAN-MCA,
which may attribute to GAN’s generalization. Fifth, as expected,
differential privacy, without the consideration of the correlations
between features, does not show commendable mitigation effect
against the TableGAN-MCA. Finally, we propose two mitigation
methods and show promising privacy and utility trade-offs when
protecting against TableGAN-MCA.
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1 INTRODUCTION
Big data have emerged as valuable resources that allow companies,
researchers and governments to enhance decision making, insight
discovery and process optimization. However, sharing sensitive
datasets without violating individual’s privacy is a long-standing
challenge. For example, in 2017, DeepMind was accused of an illegal
acquisition of personal medical records of 1.6 million patients for
developing a kidney injuries diagnosing application [34]. To analyze
those sensitive data in a privacy-preserving manner, ideally, we
need a trusted third party that collects and processes raw data, and
then releases a sanitized version of data trading off privacy and
utility through web queries (see the paradigm shown in Fig. 1).

However, state-of-the-art solutions for releasing the sanitized
data achieving trade-offs between utility and privacy are vulner-
able to privacy inference attacks. For example, de-identification
(removing unique identifiers for all data entries) is susceptible to
linkage attacks [32]. Anonymization [24, 29, 45] suffers from back-
ground information attacks. Other synthetic dataset publishing
mechanisms, such as NetMechanism [4], Iterative Construction [16–
19], are tailored for relatively small datasets [13]. More recently,
Generative Networks, including Generative Adversarial Networks
(GANs) [14] and Variational Autoencoders (VAEs) [23], produce
synthetic data that achieve enhanced privacy and utility trade-offs.
Such synthetic data conceal the detailed (privacy) of the raw data
while keeping statistics similarity [35, 46]. Nevertheless, recent
works [7, 20, 21, 35, 44] show the risk of membership disclosure
(i.e., inferring whether a given data point belongs to the training
dataset) against synthesized data by attacking generator APIs. They
propose various Membership Inference Attacks (MIAs) against pub-
lished generative models to disclose the membership information
of training data.

To further explore the privacy disclosure risks of the GAN-
synthesized tabular data, different from existing MIAs against gen-
erative models [7, 20, 21, 35, 44], we propose a novel attack model,
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Figure 1: The framework of private data publishing. Both
the data owner and service provider who guard resources
are trusted. The data analysts are legal customers as well as
potential adversaries.

named Membership Collision Attack against GAN-synthesized Ta-
bles (TableGAN-MCA). Specifically, we reconstruct a proportion of
actual training data from the published synthetic table with high
confidence by inferring the membership collisions (substantiated in
Section 3.1). Hence, TableGAN-MCA brings a novel privacy problem:
training data exposure when analyzing published synthetic tabular
data. In addition, TableGAN-MCA only queries a black-box gener-
ator (of the GAN) for synthetic data, which is similar to the most
strict threat model introduced in the recent work - GAN-Leaks [7].
We conceptualize the differences among recent works in Table 1.
Motivation. Our work is motivated by two observations in GAN-
synthesized table (low-dimensional data) releasing.

• Observation 1. Generated synthetic tables overlap with GAN’s
training data (as the intersection illustrated in Fig. 2). For in-
stance, in the Adult dataset, a synthetic dataset collides with
the GAN’s training dataset by 16.9% (5350 entries). Clearly, such
an overlap brings severe privacy breaches if adversaries could
locate the intersection. In the remainder of this paper, we call the
overlap/intersection membership collision.
• Observation 2. In the GAN-synthesized tabular data, member-
ship collisions and data frequency are positively correlated (sub-
stantiated in Fig. 3). However, it is rare to trigger sample collisions
in high-dimensional data, such as image synthesis, due to the
curse of dimensionality. Thus, the distribution of tabular data
with relatively small dimension brings additional privacy risks
than that of image synthesis.

To perform the proposed TableGAN-MCA, we leverage shadow
models [43] to learn the patterns behind the collision (Observation 1)
while taking the density of each synthetic data by counting its sam-
ple frequency in synthetic distribution (Observation 2) as additional
feature when training the attack model. TableGAN-MCA shows
promising results on commonly used real-world datasets, includ-
ing Adult, Lawschool and Compas. For instance, TableGAN-MCA
recovers 36.1%, 12.7%, 36.5% of actual members released with
the GAN-synthesized tabular data with approximately 80%
confidence for Adult, Lawschool and Compas, respectively.
Our results show that a well-trained GAN, robust to the MIAs
proposed in [7, 20, 35], is still vulnerable to TableGAN-MCA.

In summary, our main contributions are as follows:

• We propose a novel membership collision attack against GAN-
synthesized tabular data publishing, named TableGAN-MCA,
which can reinstate partial training data with high confidence.

Dt

Data Distrbution

Sensitive Data Synthetic Data

S

X×Y

Dt ∩ S

Figure 2: The training dataset 𝐷𝑡 intersects the synthetic
dataset 𝑆 at 𝐷𝑡 ∩ 𝑆 .

Table 1: Comparison with MIAs against GANs. (■: black-box
access; –: insufficient information provided;

√
: require; ×:

does not require)
Benchmark
Datasets

■ Gen-
erator

■ Dis-
criminator

Extra
Targets

Expose
Trainset

LOGAN [20] Image
√ √ √

False
table-GAN [35] Table

√ √ √
False

MC [21] Image
√ × √

–
GAN-leaks [7] Image/Table

√ × √
False

TableGAN-MCA Table
√ × × True

TableGAN-MCA exploits the weaknesses of GAN synthesis ob-
served on low-dimensional data, i.e., GAN-synthesized data col-
lide with its training data, and members (in the colliding member
set) occur more frequently than non-members.
• We extensively evaluate our proposed attacks on three com-
monly used real-world datasets, including Adult, Lawschool and
Compas against four generative models, including TVAE [46],
CTGAN [46], WGAN-GP [15] and WGAN-WC [2]. Furthermore,
we explore the factors that may impact the attack effectiveness,
such as the size of GAN training data, GAN training epochs, GAN
training data frequencies and the number of synthetic samples
available to the attacker.
• We discover that individuals in the training dataset have various
risks of privacy leakage under TableGAN-MCA. Additionally, we
show that GANs do not memorize those exposed data. Instead,
when generalizing the distribution of the training data, GANs
may increase or decrease the frequency of some individuals, and
hence change their privacy risks.
• We examine the effect of differential privacy (DP) to mitigate
TableGAN-MCA. Our empirical results show that differential
private generative model training achieves sub-optimal trade-
offs against TableGAN-MCA. It is mainly due to the fact that
TableGAN-MCA relies more on the common pattern of a distri-
bution (like attribute correlations) which is not the focus of DP.
In addition to DP, we propose two mitigation methods, naive de-
fense and improved defense, that mitigate the effect of TableGAN-
MCA.

2 BACKGROUND OF GENERATIVE MODELS
Generative Adversarial Networks (GANs) [14] and its variants have
made great achievements in generating high quality artificial data
that mimic the real ones, by modeling the underlying data distribu-
tion. It is composed of two neural networks: a discriminator𝐷 and a
generator𝐺 . It tries to minimize the distance between the real data
distribution P𝑟 and the generated (artificial) data distribution P𝑔 by
iteratively updating parameters of the networks.
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Table 2: Summary of notations.

Symbol Description Symbol Description

𝐷𝑡 Private training dataset 𝐷𝑠 Test dataset
𝑆 Released synthetic dataset 𝑆 Shadow dataset
P𝑟 Training data distribution 𝐺 Generator oracle
P𝑧 Prior Gaussian distribution 1 Indicator function
P𝑔 Generated data distribution x A data point
𝐼 colliding member set A Adversary
𝑁𝑠 Number of synthetic copies 𝑓 (·) Attack classifier

The Wasserstein GAN (WGAN) [2] applies Earth Mover (EM)
distance under a K-Lipschitz constraint and achieves good perfor-
mance in generating high fidelity samples. The loss function of the
discriminator and the generator are as follows:

𝐽 (𝐷)
(
𝜽 (𝐷) , 𝜽 (𝐺)

)
= −1

2
E𝒙∼𝑝data𝐷 (𝒙) +

1
2
E𝒛𝐷 (𝐺 (𝑧)), (1)

𝐽 (𝐺) = −1
2
E𝑧𝐷 (𝐺 (𝑧)) . (2)

In this work, we use its weight clipping version (WGAN-WC) [2],
Gradient Penalty version (WGAN-GP) [15] and CTGAN (state-of-
the-art) [46]. We also include TVAE from [46] for its comparable
performance as CTGAN. Following [46], all three GANs uses re-
current networks in the generator. For categorical features, we use
the gumble-softmax activation in the output of the generator. For
numerical features, we use the sigmoid or the tanh activation in
the output of the generator based on value range. The architecture
and parameters of GANs are broken down in Appendix A.

3 PROBLEM FORMULATION
In this section, we formulate our membership collisions problem,
followed by the description of the threat model according to adver-
sary’s goals, capabilities and background knowledge. We introduce
all the notations used throughout the paper in Table 2.

3.1 Membership Collision Problem
We let 𝐷𝑡 = {x} be a training set sampled from an implicit data
distribution P𝑟 . Each private entry takes the form as x = (𝑥,𝑦) ∈ X×
Y, where 𝑥 represents the features and 𝑦 represents the class label.
A data release mechanism GAN trains on the training set 𝐷𝑡 and
outputs a well learned generator 𝐺 . Generator 𝐺 is a deterministic
function that maps a prior distribution, i.e., Gaussian distribution
P𝑧 , to the generated distribution P𝑔 that mimic real distribution
P𝑟 . Then, a synthetic dataset 𝑆 ∼ P𝑔 is published and serves as a
sanitized version of 𝐷𝑡 . We formalize themembership collisions
as : a published synthetic datasets 𝑆 ∼ P𝑔 collide with its training
set 𝐷𝑡 ∼ P𝑟 and result in a colliding member set 𝐼 = 𝑆 ∩ 𝐷𝑡 . Notice
that a data point x ∈ 𝐼 result in x ∈ 𝐷𝑡 . Similarly, a synthetic data
point x ∉ 𝐼 result in x ∉ 𝐷𝑡 .

We aim to study howmuch an adversaryA increases its ability to
assert whether a synthetic data point x ∼ 𝑆 belongs to the colliding
member set 𝐼 by estimating the generated distribution P𝑔 via the
published synthetic dataset 𝑆 . Formally,

Definition 3.1 (Membership Collision Attack). Given a synthetic
dataset 𝑆 produced by a generative model 𝐺 (P𝑧 , 𝐷𝑡 ) that contains
a colliding member set 𝐼 = 𝑆 ∩ 𝐷𝑡 and an attack algorithm A(x)
that outputs 1 if it outputs the synthetic data x ∈ 𝐼 , we say the

Figure 3: Comparisons of sample frequency between mem-
bers and non-members. The x-axis represents all possibili-
ties of {#x𝑖 } in published synthetic datasets and y-axis rep-
resents log of the number of eligible data points.

generative model 𝐺 is subject to membership collision inference
attack if there exists an entry x ∈ 𝑆 such that

Pr[A(x, P𝑔) = 1] − Pr[A(x) = 1] > 𝛼, (3)

where 𝛼 is a non-negligible value.

In this work, we consider that the prior advantage of the attacker
is random guess, that is, Pr[A(x) = 1] = Pr[x ∈ 𝐼 ]. Thus, we
evaluate the posterior advantage of the attacker thereafter.

Note that Def. 3.1 differs from the membership inference defini-
tion [43] by changing the goal of arbitrary membership inference
with membership collision inference of synthetic data. The pro-
posed TableGAN-MIA is an instance of MCA in GAN-synthesized
table releasing.

3.2 Threat Model
In the context of GAN-synthesized data sharing, adversaries are
external parties that wish to learn the statistics of the sensitive
dataset by querying data owners or curators. In existing MIAs
against GANs [7, 20, 21, 35], the adversary’s knowledge is: (1) hav-
ing only limited synthetic data, (2) accessing a black-box generator
API (unlimited synthetic data), (3) accessing a black-box generator
plus a discriminator oracle, (4) accessing a white-box GAN. Our
study focus on the most strict attack model: (1) and (2) (which is
similar to the threat model in MC [21] and “Full Black-box Genera-
tor" assumption in GAN-Leaks [7]). The attacker does not know the
priori of the model’s structure, including meta-parameters, training
data and any target data to infer membership. In TableGAN-MCA,
the adversary’s goal is to recover the value of some members of the
training set from the published synthetic datasets that may unin-
tentionally contain colliding members. In this paper, we evaluate
TableGAN-MCA under two threat models:
Attack model (1): accessible to limited synthetic data. We assume
the adversary has one copy of synthetic dataset 𝑆 following P𝑔 , of
size |𝑆 | = |𝐷𝑡 | = 𝑛.
Attack model (2): accessible to unlimited synthetic data. We as-
sume the adversary has𝑁𝑠 (𝑁𝑠 is a positive integer) synthetic copies
{𝑆1, 𝑆2, . . . , 𝑆𝑁𝑠

}, each of which has size |𝑆𝑖 | = |𝐷𝑡 | = 𝑛.
3



4 MEMBERSHIP RECOVERY FRAMEWORK
AGAINST GAN-SYNTHESIZED TABLES

In this section, we propose a membership indicator for inferring
membership collisions from the statistics of the published table.
Based on the membership indicator, we propose the TableGAN-
MCA to recover the value of the training set of GAN-synthesized
tables in the black-box setting.

4.1 Membership Indicator
The membership indicator is triggered by two observations. First,
the released GAN-synthesized tables often overlap the training
dataset of the GAN model. Second, such synthetic data points ap-
pearing frequently in the published GAN-synthesized data are more
likely to be the colliding member of the training dataset. That is,
Pr[x ∈ 𝐷𝑡 |P𝑔] ∝ Pr[x|P𝑔]. Fig. 3 depicts the observations from
three datasets used in this paper, where we count the numbers of
members and non-members, given numbers of appearance of the
data points in the released synthetic tables. In Fig. 3 (left), approx-
imately 96% of synthetic data with a sampled frequency of more
than three are colliding members. Conversely, almost 91% unique
synthetic data are non-collidingmembers in the Adult dataset. Thus,
sample frequency is highly correlated with membership collisions
and can be treated as an indicator to indicate membership. Formally,
we estimated the membership indicator by the following equation.

Pr
[
x𝑖 | 𝑃𝑔

]
≈ E

x𝑗 ∈𝑆
1
(
x𝑖 = x𝑗

)
=

1
𝑛

𝑛∑︁
𝑗=1

1
(
x𝑖 = x𝑗

)
, (4)

where an indicator function 1(·) outputs 1 if its argument is true,
𝑆 is the synthetic datasets available to the adversary following P𝑔 ,
of size |𝑆 | = 𝑛.

To date, the adversary can launch a data reconstruction attack by
setting a threshold for the value of amembership collisions indicator
of Eq. (4), similar to [7]. The adversary then claims that the synthetic
data, having collisions indicators greater than a given threshold,
are the recovered data. However, choosing an optimal threshold is
a non-trivial task for an adversary without background knowledge
about training data except the published synthetic data. To deal
with it, we additionally leverage shadow model techniques [43]
to enhance the knowledge of adversaries to construct a robust
TableGAN-MCA framework.

4.2 TableGAN-MCA
In a nutshell, TableGAN-MCA combines the membership collisions
indicator and the shadow models [43] to train an attack model
to learn the relation between membership collisions (labels) and
indicator values (features) in releasedGAN-synthesized tables. Fig. 4
depicts the framework of TableGAN-MCA and Alg. 1 shows the
detailed implementation. Each step in Alg. 1 corresponds to the
step index in Fig. 4. In summary, steps 2, 3, 4 and 5 train an attack
classifier by giving synthetic data. Steps 1 and 6 infer membership
collisions to recover training data.

In Steps 1 and 4, {#x} represents estimated sample frequency
following from Eq. 4. They are concatenated (“⊲⊳”) to 𝑆𝑖 (Step 1) and
𝑆𝑖 (Step 4) as an extra feature.
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Figure 4: The overview of the procedures of TableGAN-MCA
against the black-box generator in data synthesis.

ALGORITHM 1: TableGAN-MCA.
Input: {𝑆1, 𝑆2, ..., 𝑆𝑁𝑠 }: Released synthetic datasets; |𝐷𝑡 |: Size of the

training dataset;
Output: 𝑅: Recovered data from 𝐷𝑡

while 𝑖 : 1→ 𝑁𝑠 do
Step 1:
Frequency {#x𝑖 } ← Estimate frequency for each x𝑖 ∈ 𝑆𝑖 by
Eq. (4);

𝑆𝑖 ← 𝑆𝑖 ⊲⊳ {#x𝑖 };
Step 2: Shadow GAN generator𝐺𝑖 ← Train on 𝑆𝑖 ;
Step 3: Shadow set 𝑆𝑖 ← Sample from𝐺𝑖 , |𝑆𝑖 | = 𝑁𝑠 × |𝐷𝑡 |.
Step 4:
Frequency {#x′

𝑖
} ← Count the frequency for each x′

𝑖
∈ 𝑆𝑖 by

Eq. (4);
𝑆𝑖 ← 𝑆𝑖 ⊲⊳ {#x′𝑖 };
Ground truth label 𝑦′

𝑖
← 1

(
x′
𝑖
∈ 𝐼̃𝑖

)
;

end
Step 5: TableGAN-MCA attack model 𝑓 ( ·) ← Train on



𝑁𝑠

𝑖=1𝑆𝑖 with
member/non-member labels



𝑁𝑠

𝑖=1 {𝑦
′
𝑖
}, where



𝑁𝑠

𝑖=1𝑆𝑖 = 𝑆1 ∥ . . . ∥𝑆𝑁𝑠 ;

𝑁𝑠

𝑖=1 {𝑦
′
𝑖
} = {𝑦′1 } ∥ . . . ∥ {𝑦′𝑁𝑠

} ;
Step 6: 𝑅A ← 𝑓 ( {𝑆𝑖 }) ;
return 𝑅A

In Step 4, a label function is required to claim membership
collisions in shadow datasets. For a shadow dataset 𝑆𝑖 such that
𝑆𝑖 ∩ 𝑆𝑖 = 𝐼̃𝑖 , a membership collisions label for each data x′

𝑖
will be

𝑦′
𝑖
= 1

(
x′
𝑖
∈ 𝐼̃𝑖

)
.

In Step 6, attack model 𝑓 (·) outputs the predicted probability
about whether a synthetic data is colliding member. Adversaries
then expose a data set 𝑅A that with high prediction scores.

For attack model (2) (unlimited synthetic data) such that 𝑁𝑠 > 1,
the adversary repeat the Step1 to Step 4𝑁𝑠 times and gets𝑁𝑠 labeled
shadow datasets {𝑆1, 𝑆2, ..., 𝑆𝑁𝑠

} such that each of them with size
𝑁𝑠 × |𝐷𝑡 |. Then the adversary concat (“∥”) all shadow datasets
together to train the attack model.

Note that in the worst-case (to the adversary), where the inter-
section between the training set and the synthetic dataset could be
empty, the adversary of TableGAN-MCA cannot recover anything
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from the private training data. To avoid such a case, we would dis-
cretize the synthetic dataset to generalize the range of each feature
such that there is a non-empty intersection. In this way, we could (at
least) recover coarse-grained information regarding the members
within the training data. We show the details of the discretization
operation in Section 5.1.

5 EVALUATION
In this section, we first introduce the methods of tabular data syn-
thesis, then introduce the evaluation metrics. Next we show the
attack performance of TableGAN-MCA as well as the comparisons
with recent works.

5.1 Dataset Synthesis
We perform experimental evaluations on three commonly used [3,
8, 35, 40, 46] real-world tables, Adult [39], Lawschool [38] and
Compas [22].
Adult: The US Adult Census dataset is a repository of 48842 entries
extracted from 1994 US Census dataset, where 45222 entries have
complete information. After pre-processing, it remains 1 numerical
feature, 12 categorical features and 1 binary label.
Lawschool: This dataset comes from the Law School Admission
Council’s National Longitudinal Bar Passage Study. It contains ap-
plication records for 25 different law schools with 86022 individuals.
It has 2 numerical features, 5 categorical features and 1 binary label.
Compas: COMPAS recidivism risk score and criminal history data
is collected by ProPublica in 2016. After pre-processing, it remains
5278 entries with 4 numerical features, 6 categorical features and 1
binary labels.

Note that unlike MIAs attacking classifiers that produce pre-
dicted labels with probability, generative models only output syn-
thetic samples. The labels in generated datasets serve as an ordinary
feature like other features when training attack models. Therefore,
for simplicity, we use the three binary-labeled datasets in our ex-
periments.
Tabular data synthesis. For training generative models, we apply
Tabular Variational Autoencoder (TVAE) [46], CTGAN [46],WGAN-
GP [15] and WGAN-WC [2] for their superior modeling quality in
tabular synthesis. To facilitate data synthesis, we have the following
additional data pre-processing. (1) We discretize imbalanced and
sparse numerical values in given columns to categorical values.
(2) We normalize numerical columns into (0, 1) or (−1, 1). (3) We
one-hot encode all categorical features (4) We split the dataset into
the training set (𝐷𝑡 , 70% records) and test set (𝐷𝑠 , 30% records) (see
row 1 and row 2 in Table 3). The training set is used for dataset
synthesis and the test set is used for examining the utility of the
synthetic data.
Discretization in pre-processing. Features in tabular dataset are
either categorical or numerical variables. Unlike pictures, some nu-
merical columns are non-Gaussian distribution, that is, it either has
long tails, sparse distribution or multiple modes. Generative models
cannot model them well without appropriate pre-processing. To
address this issue, we discretize the imbalanced and sparse numer-
ical values to categorical values. In the experiments, such simple
discretization in pre-processing exhibits decent performance in
generating complex features while keeping original statistics. Note

Table 3: Dataset Statistics for GAN synthesis. Pr[#x = 1]:
unique training data proportion; Pr[#x ≤ 3]: Proportion of
training data with frequency less than 3.

Adult Lawsch Compas

# of Train 𝐷𝑡 (70%) 31655 60215 3694
# of Test 𝐷𝑠 (30%) 13567 25807 1584

Pr[#x = 1] 79.39% 71.28% 63.72%
Pr[#x ≤ 3] 86.07% 81.85% 74.28%

that discretization definitely makes some records of the original
dataset share the same values (similar to 𝑘-anonymity [45]). We
show the uniqueness of the records after pre-processing in Table 3
(row three and four), where a large proportion of sensitive data
points can still be uniquely identified before feeding into generative
models.

5.2 Metrics
5.2.1 Data Utility Metrics. For data utility evaluation, we consider
two measurements: machine learning efficacy (models trained on a
synthetic dataset and the original dataset provide similar predic-
tions) and distribution fitness (a synthetic dataset is statistically
similar to its original dataset in all attributes).

For distribution fitness, we present 1-way marginals that are
approximated by the Empirical Cumulative Distribution Function
(ECDF) for each attribute. Having ECDFs of real and synthetic data,
we compute attribute-wise Wasserstein distance, i.e., 𝑙1 (𝑥𝑖 , 𝑥 ′𝑖 ) =∫ +∞
−∞ |𝑈𝑖 −𝑉𝑖 |, where𝑈𝑖 and𝑉𝑖 are respective CDFs of real attribute
𝑥𝑖 and synthetic attribute 𝑥 ′

𝑖
[37]. We compare the expected value

of ECDFs by E𝑖 (𝑙1) = 1
𝑛

∑𝑛
𝑖=1{𝑙1 (𝑥𝑖 , 𝑥 ′𝑖 )}.

5.2.2 Attack Performance Metrics. To evaluate the privacy of the
released synthetic table, we consider membership collisions pri-
vacy, i.e., the TableGAN-MCA effect. We use precision and recall
to evaluate the attack performance (following Shokri et al. [43]),
since the synthetic dataset that is used to inference has a skewed
label distribution. Specifically, precision measures the probability
of an entry inferred as a member is indeed the member of the train-
ing dataset, denoted as Pr(𝑦 = 1|𝑦 = 1). Intuitively, it implies the
confidence of the attacker in guessing positive membership. Recall
measures the probability of a member is correctly inferred as a
member by the attacker, denoted as Pr(𝑦 = 1|𝑦 = 1). It reflects
the percentage of positives exposed in the attack. In evaluation,
we report precision and recall by Precision-Recall (PR) curve since
it is more informative than ROC-curve under the case of skewed
label distribution [10]. A higher Area under the PR-curve (AUPRC)
implies both higher precision and recall, and thus they are used to
compare the attack efficacy.

In addition to the attack precision and recall, we also consider
a recovery rate because it reflects what the proportion of training
data 𝐷𝑡 are being exposed to TableGAN-MCA. Let 𝑅A be recovered
training data sets of the attack algorithm A. The recovery rate 𝜌A
of A is defined as below:

𝜌A = |𝑅A |/|𝐷𝑡 |. (5)

Note that the recovery rate shares the same numerator as the recall
of the attack model 𝑓 (·) but the different denominator (|𝐷𝑡 | vs |𝐼 |).
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Table 4: Model prediction accuracy (%) trained on real train-
ing 𝐷𝑡 (“Base”) and GAN-synthesized datasets 𝑆 . E𝑖 (𝑙1) de-
notes the average of all attribute-wise Wasserstein distance.

Methods DT MLPC Ada LR E𝑖 (𝑙1)

A
du

lt

Base 85.39 84.11 86.28 84.74 0
TVAE 79.24 77.53 78.72 80.2 0.0207
CTGAN 81.53 81.76 82.3 82.41 0.0266

WGANWC 82.74 83.62 84.16 83.96 0.0075
WGANGP 83.16 83.95 84.24 83.93 0.0039

La
w
sc
ho

ol Base 81.90 89.54 87.23 87.68 0
TVAE 79.53 85.38 85.17 85.26 0.0120
CTGAN 76.35 80.91 81.02 81.37 0.0283

WGANWC 77.54 80.76 80.56 80.93 0.0073
WGANGP 80.14 86.10 86.02 86.79 0.0047

Co
m
pa
s

Base 69.89 70.58 71.65 71.46 0
TVAE 64.42 68.07 64.33 68.33 0.0159
CTGAN 58.14 60.21 59.5 58.12 0.0373

WGANWC 65.34 66.5 65.06 68.46 0.0095
WGANGP 64.12 66.91 65.20 68.34 0.0179

5.3 Synthetic Data Utility
We evaluate machine learning efficacy of synthetic data generated
by four generativemodels, CTGAN [46], TVAE [46],WGAN-GP and
WGAN-WCvary four binary classifiers: DecisionTreeClassifier,
MLPClassifier, AdaBoostClassifier, and LogisticRegression
(Standard scikit-learn machine learning library, see middle columns
in Table 4).We also compare ECDFs using the average of all attribute-
wise Wasserstein distance E𝑖 (𝑙1) (see the last column in Table 4).
All numerical features are min-max scaled to (0, 1) and categorical
features are one-hot encoded before feeding into the classifier. For
“base”, we trained on the sensitive dataset 𝐷𝑡 that is used for data
synthesis and test on the real test set 𝐷𝑠 (see Table 3). For synthetic
data, we trained on a synthetic dataset 𝑆 of the same size as the
sensitive dataset and test on the same real test set 𝐷𝑠 . To imple-
ment CTGAN and TVAE, we directly feed our pre-processed data
into the module CTGANSynthesizer and TVAESynthesizer of the
SDGym [5] (published code for [46]).

According to Table 4, the synthetic dataset generated by WGAN-
GP, WGAN-WC, CTGAN and TVAE can greatly restore the predic-
tion ability of the model trained on original dataset. TVAE is least
ideal than the others in the Adult dataset. CTGAN is least ideal
than the others in the Compas dataset. We will use these learned
generative models to perform TableGAN-MCA experiments later.

For marginal fitness, we depict an additional ECDF comparison
between real and synthetic Adult, Lawschool and Compas datasets
generated by WGAN-GP in Fig. 5. In our experiments, we depict
ECDFs of continuous variables (i.e., age, isat) and more complex
categorical variables (i.e., hours per week, priors count) since they
are more difficult to fit. As can be seen in Fig. 5, the marginals of
the synthetic dataset are almost indistinguishable from the original
one, thus supporting any statistical queries.

5.4 Attack Performance
5.4.1 Performance Evaluation on TableGAN-MCA. In this section,
we evaluate TableGAN-MCA of Alg. 1 on the Adult, Lawschool
and Compas datasets. The training and inference data statistics of
TableGAN-MCA are presented in Table 5, where positive percentage
implies the membership collisions proportion. Both target models
and shadow models are WGAN-GP. The attack model is trained on
the shadow dataset 𝑆 and tested on the synthetic dataset 𝑆 .

(a) Adult

(b) Compas

(c) Lawschool

Figure 5: The Empirical Cumulative Distribution of each at-
tribute in the Adult, Compas and Lawschool datasets (Or-
ange line for real and blue line for synthetic).

Table 5: Training and inference statistics for the Adult, Com-
pas and Lawschool datasets in TableGAN-MCA.

Adult Lawsch Compas

|𝑆 | (Train) 31655 43011 3694
|𝑆 | (Inference) 31655 43011 3694
Pr

𝑆
[𝑦𝑖 = 1] 15.99% 22.68% 40.49%

Pr𝑆 [𝑦𝑖 = 1] 16.90% 23.89% 34.00%

TableGAN-MCA provides a promising attack against the
GAN-synthesized tables. We report the PR-curve of the attack
model in Fig. 6 when 𝑁𝑠 = 1, i.e., |𝑆 | = |𝐷𝑡 |. In Fig. 6, PR-curve
reflects the trade-off between precision and recall for different
probability thresholds T. Particularly, after providing the inference
data (the released GAN-synthesized tables) to the TableGAN-MCA
attack model, we receive a set of probabilities for each record of
the test data that predicts whether a record is a member.

As illustrated in Fig. 6, we find that by setting a suitable thresh-
old T, the adversary can expose approximate 30% colliding mem-
bers with confidence over 83.91%, 69.40% and 81.24% for the Adult,
Lawschool and Compas datasets, respectively. This means that the
adversary significantly increases its ability to assert that these en-
tities are members. Furthermore, when setting confidence to 80%,
we have 36.1%, 12.7%, 36.5% positive percentages being exposed,
which correspond to 1931, 1304 and 458 individual’s sensitive en-
tries in the Adult, Lawschool and Compas datasets, respectively.
According to Fig. 6, we list TableGAN-MCA’s recovery rates (Eq.(5))
with different precision configurations in Table 6.

Adversary’s knowledge enhances the attack performance
of TableGAN-MCA. Fig. 7 reports the PR-curve and AUPRC of
TableGAN-MCA when 𝑁𝑠 = 10. That is, the adversary has multiple
copies of the released synthetic data. In particular, when 𝑁𝑠 = 10,
the adversary trains 10 independent shadow GAN for each one of
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Figure 6: Attack effect ofTableGAN-MCA. The dash-dot lines
imply randomguess baselines (0.1690, 0.2389, 0.3400 for Adult,
Lawschool and Compas datasets, respectively.)

Table 6: TableGAN-MCA’s recovery rate 𝜌A . (|𝑅A |: # of recov-
ered data points under attack algorithm A)

Datasets 𝜌A (%) |𝑅A | |𝐷𝑡 | Precision Recall

Adult 3.04 962 31655 0.9 0.16
6.10 1931 31655 0.8 0.36

Lawsch 3.03 1305 43011 0.8 0.13
4.66 2003 43011 0.75 0.18

Compas 12.41 458 3694 0.8 0.37
17.17 634 3694 0.75 0.43

𝑆𝑖 and finally obtains a shadow dataset 𝑁 2
𝑠 times the size of |𝐷𝑡 |. In

Fig. 7, the performance of TableGAN-MCA is greatly improved by
increasing the number of synthetic copies 𝑁𝑠 . We also show the PR-
curve comparison for the three datasets in Fig. 7. That is, given 30%
recall, 10 copies boost the precision from 86.81% (𝑁𝑠 = 1) to 90.70%
(𝑁𝑠 = 10). Given 90% precision, the recall is boosted from 22.25%
(𝑁𝑠 = 1) to 33.01% (𝑁𝑠 = 10). We conclude that more copies of the
synthetic data allow the adversary to make better approximation
to generated distribution P𝑔 , and thus generate more informative
labeled shadow samples to train the attack model.

TableGAN-MCAachieves commendable attackperformance
even with fewer synthetic queries.When 𝑁𝑠 = 0.25 (an adver-
sary queries the target Generator 0.25∗ |𝐷𝑡 | times), TableGAN-MCA
achieves 0.6674 AUPRC (𝑁𝑠 = 1 is 0.6697), and recovers 1,409 data
points (𝑁𝑠 = 1 is 1565) under 75% precision in the Adult dataset.
More details are shown in Appendix B.

The generation quality of the target/victim model posi-
tively impacts attack performance. Fig. 8 depicts TableGAN-
MCA’s performance on four different target/victim models: WGAN-
GP, WGAN-WC, CTGAN and TVAE. The shadow model in use
is exactly the same as target models. Combining the results of
Fig. 8 and Table 4, we conclude that target/victim generators with
high generation quality often attain high attack performance. For
instance, TVAE with the lowest prediction accuracy score in predic-
tion accuracy (see Table 4) also achieves unsatisfactory performance
in TableGAN-MCA on the adult dataset. This echoes what CTGAN
performs in the Compas dataset. Additionally, we observe that

attack performance of TVAE is more sensitive to its generation
quality.

The type of shadow models has limited impact on attack
performance. Note that the adversary may have no knowledge
about the structures and parameters of target/victim generative
models. Fig. 8(b) compares the attack performance by using four
different shadow models (WGAN-GP, WGAN-WC, CTGAN and
TVAE) to attack target WGAN-GP. As can be seen, various shadow
model attacks (“wganwc”, “ctgan”, “tvae”) work as well as the identi-
cal shadowmodel attack (“wgangp”). TVAE shadowmodels perform
worst, in large part due to its poor learning ability in the Adult
dataset.

The success of TableGAN-MCA is mainly due to the ob-
served collision, themembership collisions indicator and the shadow
model in use. In particular, the collision between synthetic data and
training set provides the opportunity for recovering training data.
The membership collisions indicator, which captures the statistical
patterns behind colliding members, guarantees more accurate and
informative features for training the attack model. The shadow
model in use provides enough labeled data to train the attack model
so as to learn from the statistical patterns of the colliding members.

Attack scalability. The key to the success of the TableGAN-
MCA is the possibility of collisions between raw training datasets
and synthetic datasets. For real-world tabular data, attributes usu-
ally have a finite domain range. Hence, the dataset dimension in-
dicates its overall domain range. Namely, low-dimensional tables
are more likely to incur sample collisions when the generator cre-
ates those synthetic tables. Therefore, TableGAN-MCA discovers
additional privacy risks – membership disclosure via collision at-
tacks – for low-dimensional data. TableGAN-MCA potentially fits
high-dimensional data if adversaries reduce the data granularity
by generalizing attributes. The TableGAN-MCA works since the
synthetic data would have a higher chance to collide with the
training datasets. In our experiments, TableGAN-MCA achieves
0.871 AUPRC by bucketizing the "age" attribute in synthetic Adult
datasets into 10 bins (no-bucketization baseline: 0.668).

5.4.2 Comparisons between TableGAN-MCA and existing MIAs.
Firstly, TableGAN-MCA recovers member data points from
theGAN-synthesized tables previously assumed to be resilient
to table-GAN [35]. We evaluate the performance of table-GAN
against the same WGAN-GP that used in TableGAN-MCA evalu-
ation. Notice that we test their MIAs directly on the target dis-
criminator instead of the shadow discriminator due to the fact that
if the target discriminator fails, the shadow model will perform
even worse. We report the accuracy of membership prediction
(member/non-member) of table-GAN, which are 50.17%, 50.80%
and 50.67% for Adult, Lawschool and Compas datasets, respectively
(50% is the baseline of random guess). Taken altogether the experi-
ment results in Fig. 6, we conclude that GAN APIs with a black-box
access assumed to be resilient to table-GAN (targeting on a dis-
criminative model) [35] may still disclose partial sensitive training
information under TableGAN-MCA.

Secondly, the MIAs proposed in GAN-Leaks and LOGAN
cannot disclose membership collisions. Note that the existing
MIAs against GANs may work in the MCA scenario. Thus, we per-
form additional experiments to infer membership collisions of each
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(a) Adult PR-curve (b) Lawsch PR-curve (c) Compas PR-curve (d) AUPRC

Figure 7: Attack performance comparisons between one synthetic copy (𝑁𝑠 = 1) and ten synthetic copies (𝑁𝑠 = 10) in TableGAN-
MCA. (a), (b), (c): PR-curve comparison for three datasets; (d): AUPRC comparisons for three benchmarks.

(a) Different Target/Victim Models (b) Different Shadow Models

Figure 8: Attack effect of TableGAN-MCA under different
target/victim-shadow model settings. In (a), shadow models
are the same as target/victim models.

synthetic data point using their methods. In particular, we evalu-
ate LOGAN (black-box attack with no auxiliary knowledge) and
GAN-Leaks (full black-box generator attacks) under threat model
(1) (given one copy synthetic data, see details in Section 3.2) and
report the result in Table 7. MC and table-GAN are not included in
this experiment. The reason is two-fold. First, the distance function
of MC is not directly applicable to non-image datasets. Second,
table-GAN requires predicted probability vectors of the target dis-
criminator, which is not permitted in our threat model. Note that
the synthetic dataset 𝑆 has imbalanced membership collisions labels
(Row 1 in Table 7) that are different from Shokri’s shadow model
MIA [43] (random observation with 50% real members) since the
number of colliding data points (members) is usually unequal to
non-colliding ones (non-members).

We observed that the results in GAN-Leaks are close to the ran-
dom guess baseline. This is due to the reconstruction loss 𝐿(𝑥, 𝑥∗) =
0 for all synthetic data regardless of membership collisions (the
optimal reconstruction of a synthetic data x is itself). Furthermore,
LOGAN did not show convincing inference results since it never
learns the intersection between the synthetic data and the private
training data. In comparison, TableGAN-MCA learns such an in-
tersection (by which we recover partial training data) through the
intersections of the published synthetic data (by mimicking the
private training data) and shadow (synthetic) data (by mimicking
the original synthetic data).

Table 7: The attack AUPRC comparison (mean ± SD). Base
implies random guess baseline. We use WGAN-GP as tar-
get/victim as well as shadow models.

Adult Lawschool Compas

Base 0.1690 ± 0.0038 0.2389 ± 0.0067 0.3400 ± 0.0233
LOGAN 0.2237 ± 0.0194 0.2512 ± 0.0172 0.3154 ± 0.0343

GAN-Leaks 0.1667 ± 0.0063 0.2514 ± 0.0061 0.3256 ± 0.0301
Proposed 0.6681 ± 0.0348 0.5805 ± 0.0144 0.7228 ± 0.0556

In summary, the MIA classifiers that identify membership fail to
identify those membership collisions since the decision boundaries
of our attack classifier is different from those of MIAs against GANs.

6 TABLEGAN-MCA ANALYSIS
In this section, we discuss the factors that may impact the attack
performance of TableGAN-MCA from the following aspects, such as
GAN training set size, GAN training epochs and GAN training data
frequencies. We choose WGAN-GP as targets as well as shadow
model for its superior modeling quality and stability in TableGAN-
MCA experiments.

6.1 GAN Training Set Size
The size of the training dataset for a GAN model positively
impacts the attack performance. Fig. 9 depicts the positive im-
pact of training dataset size on prediction accuracy and AUPRC of
TableGAN-MCA, where 1.0 in x-axis indicates the full size of a given
dataset, 𝑁𝑠 = 1. Especially, when the size of the training dataset
is less than 0.5 of the full dataset, increasing the size has a signifi-
cant impact on the attack performance. The intuition behind the
experimental results is two-fold. First, less training data decrease
the number of colliding members (positives) in fixed amount of
synthetic datasets thus decreases the attack effect. Second, GAN
learns a less accurate data distribution if trained on a smaller dataset.
Synthetic data generated by such a distribution contain less infor-
mation than the original training data hence hard for the adversary
to learn the statistical patterns of the members/non-members. Note
that our results do not conflict with [7, 20, 27] since we use differ-
ent measurements (PR space vs ROC space) that focus on different
domains [10]. Additionally, our attack target (test data) is also differ-
ent. We aim to recover the colliding member data from the released
synthetic dataset whereas they aim to infer the membership of
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(a) Adult (b) Lawschool (c) Compas
Figure 9: The impact of GAN training data size on synthetic data utility (left) and TableGAN-MCA effect (right). The x-axis
indicates the amount of GAN training data

(a) Adult (b) Lawschool (c) Compas
Figure 10: The impact of GAN training epochs on Synthetic data utility (left) and TableGAN-MCA effect (right).

a random target data point, and thus we learn different decision
boundaries.

6.2 GAN Training Epochs
Epochs impact the attack performance of TableGAN-MCA
by impacting the knowledge learned by GAN models. We
study the attack performance on different training stages by setting
different epochs in Fig. 10, where we report the attack prediction
accuracy and attack AUPRC.

As seen from Fig. 10, we find that the membership leakage starts
at the very beginning of the training epoch, even before the GAN
reaches the Nash equilibrium. Interestingly, in Adult and Compas,
the attack effect seems to slightly decrease when we set a larger
epochs for training GAN models. Since TableGAN-MCA tends to
recover the data with high appearance frequency (recall Fig. 3),
we conclude that with increasing epochs, GAN models learn more
about the training data distribution; hence, the released synthetic
data contain more information, which enhances the attack perfor-
mance. However, once the GAN models learn the details of the
data distribution, such details about the distribution would dilute
the frequency of those data supposed to have high frequency. The
attack performance of TableGAN-MCA is then potentially dropped.

6.3 Training Data Frequencies
Training data frequencies are positively correlatedwith train-
ing data recovery probabilities by TableGAN-MCA. We first
compute the recovery possibility and appearance frequency for
each data point. We then plot the recovery possibility over the
values of data points frequency in Fig. 11. For each dataset, we set
two precision-scores of TableGAN-MCA and plot the training data
frequency-recovery rate curves. Overall, highly frequent training
data are more susceptible to TableGAN-MCA. For instance, when
attacking Adult datasets with 80% precision, 41.5%(784/1892) train-
ing data with appearance more than three times are recovered by
TableGAN-MCA whereas only 0.6%(510/25130) of unique training
data (#x = 1) are recovered by TableGAN-MCA.

Figure 11: The impact of training data frequencies on
TableGAN-MCA effectiveness. The attack precision is set to
be one of {75%, 80%, 90%}.

For highly frequent training data, GANs inevitably learn and
output these common representations frequently; thus it is easy
to recover such highly frequent data by TableGAN-MCA. The re-
identification threats of these data caused by TableGAN-MCA are
limited since each of them correspond to several individuals and
lack of uniqueness.

Unique training data, on the other hand, have more risks for
being linked to specific people once recovered by TableGAN-MCA.
Therefore, it deserves further exploration for the reason of being
exposed.

Generalization of GANmodels may accidentally increase
the appearance of some unique data points in the synthetic
data, therefore increasing their probability to be recovered
by TableGAN-MCA. Since the TableGAN-MCA is based on data
density in modeled distribution P𝑔 , for a recovered unique training
data point x𝑖 , we study how TableGAN-MCA is impacted by the
difference between data density of x𝑖 in the training distribution P𝑟
and that of the modeled distribution P𝑔 .

According to our experiments, we discover that some unique
training data (∀x ∈ P𝑟 , #x𝑖 = 1) have unexpected high exposure
in modeled distribution P𝑔 . For example, in Fig. 12, we illustrate
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(a) Adult (b) Lawschool (c) Compas
Figure 12: Five synthetic samples’ count estimation in generated distribution (left) and statistics of data points that increase
the frequencies in P𝑔 across three datasets (right).

the average counts (from 100 synthetic datasets following mod-
eled distribution P𝑔) of five data points that appear in the training
dataset only once. As we can see, these five data points have higher
counts than what they have in the training dataset (= 1). Such an
observation indicates that the generator of GAN models unfairly
increases the probability of exposure of some data points under
TableGAN-MCA. We also find that such an observation is not rare.
For instance, according to the statistics in Fig. 12 (Adult), roughly
470 (1.5% of the training dataset) unique entries at least double their
exposure; roughly 150 (0.47% of the training dataset) unique entries
at least triple their exposure.

Next, we explore the factors that potentially trigger our obser-
vations by a set of experiments inspired by unintended memoriza-
tion [6]. Specifically, unintendedmemorization identifies the impact
of the presence of one training input on the modeled distribution P𝑔
learned by GAN. Note that this experiment resembles the definition
of differential privacy (DP) [12]. DP is more generic and rigorous
as it measures that the probability difference varies all possible
functions and all data points, which is computationally infeasible
in our measurements. In this case, we narrow down the design by
observing the difference between a sample density in two generated
distributions Pg trained on neighboring training sets.

Let𝐷𝑡 be the sensitive training set, x𝑖 ∈ 𝐷𝑡 be a target data point
and 𝐷 ′𝑡 = 𝐷

\x𝑖
𝑡 be the neighboring dataset such that the Hamming

distance dH (𝐷𝑡 , 𝐷
′
𝑡 ) = 1. Let 𝐺 be a learned generator trained on

𝐷𝑡 and𝐺 ′ be a generator trained on 𝐷 ′𝑡 . We measure the difference
between the probability of producing a synthetic data point x𝑖 with
(prior) and without (posterior) the input data point x𝑖 .

Pr(𝐺 (𝑧) = x𝑖 | 𝐷𝑡 )
Pr(𝐺 ′(𝑧) = x𝑖 | 𝐷 ′𝑡 )

(6)

Following a recent work [6], GAN models do not memorize a data
point if it does not exist in the training dataset 𝐷𝑡 . Thus, if Eq. (6)
approaches 1, we say that the target data x𝑖 is unlikely to be memo-
rized by the GAN. The pseudo-code of the experiment is presented
in Alg. 2. In the experiment, we use 20 different GANs (𝑁𝑘 = 20) and
some of target data to estimate Eq. (6). We report the experimental
results of five target data (𝑁𝑐 = 5) in Fig. 13.

From Fig. 13, we choose the same samples (data points) as in
Fig. 12 to compare how prior (with a target x𝑖 ) and posterior den-
sities (without target x𝑖 ) differ in modeled distribution. We find
that the presence of the target entry x𝑖 has limited influence on its
frequency in modeled distribution P𝑔 . Even if some data point x𝑖 is
absent in the training set, its probability density in synthetic distri-
bution P𝑔 is still high, e.g., x4, x5 in the Adult dataset. This is perhaps

ALGORITHM 2: Memorization Experiment.
Input: {x1, . . . , x𝑁𝑐 }: sample data points; 𝐷𝑡 : private training dataset.
Output: {Pr[x𝑘 |𝐺𝑖 (𝑧) ] }: prior frequency; {Pr[x𝑘 |𝐺′𝑖 (𝑧) ] }: posterior

frequency.
while 𝑘 : 1→ 𝑁𝑐 do

while 𝑖 : 1→ 𝑁𝑘 do
Generative model𝐺𝑖 ← Train on 𝐷𝑡 ;
Pr[x𝑘 |𝐺𝑖 (𝑧) ] ← Estimate by Eq. (4);
𝐷′𝑡 ← 𝐷𝑡 \ {x𝑘 };
Generative model𝐺′

𝑖
← Train on 𝐷′𝑡 ;

Pr[x𝑘 |𝐺′𝑖 (𝑧) ] ← Estimate by Eq. (4);
end

end
return {Pr[x𝑘 |𝐺𝑖 (𝑧) ] }, {Pr[x𝑘 |𝐺′𝑖 (𝑧) ] }

Figure 13: Memorization experiments on three datasets. The
blue-color boxplot depicts the frequencies when the target
entry is in the training set while the orange one depicts the
frequencies when the target entry is deleted from the train-
ing set.

because GAN’s generalization smooths the sudden change that hap-
pened in the probability space of the training set. For instance, the
density of the a target point x𝑖 in P𝑟 may be lower than the sur-
rounding points, whereas the GAN smooths such sudden changes
in the probability space, and thus it is unintended to increase its
probability of exposure. In another aspect, such a rough probability
space in real distribution may be attributed to insufficient sampling
or unbalanced sampling. As such, cautious data collection may have
positive impact in mitigating such influence. Understanding this
complicated phenomenon with more explicit proof is our future
work. Currently, we summarize that the unique training data recov-
ered by TableGAN-MCA is mainly due to the GAN’s generalization
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rather than the unintended memorization. This result implies that
mitigating the attack effect of TableGAN-MCA may inevitably com-
promise the availability of released synthetic datasets, since GAN
generalization is closely related to its generation ability, which
potentially impacts the quality of generated data.

7 MITIGATION
In this section, we evaluate the mitigation effects of differential
privacy and two customized defense methods against TableGAN-
MCA.

7.1 Differentially Private WGAN-WC
Differentially PrivateWGAN (DP-GAN) only has acceptable
trade-offs for larger privacy budgets, and may hardly elim-
inates TableGAN-MCA without compromise synthetic data
utility. Differential privacy [12] provides a quantified solution to
output randomized answers. In this work, we apply a standard
approach of differentially private iterative training procedure (DP-
SGD, short for DP stochastic gradient descent) [1, 30] to the GAN
to train a (𝜖, 𝛿)-differentially private generator oracle. Otherwise,
since DP-SGD perturbs the training process of discriminative mod-
els, such mitigation may achieve sub-optimal trade-offs between
membership collision privacy and synthetic data utility. In the ex-
periments, we implement the DP framework according to [30] and
account the privacy budget (𝜖, 𝛿) using RDP accountant released
in Tensorflow/Privacy project. Note that WGAN-GP, TVAE and
CTGAN do not have DP versions, and thus we study the DP version
of WGAN-WC. The generation quality and TableGAN-MCA effect
of non-private baseline are shown in Fig. 14 followed by Table 4
and Fig. 8.

To implement DP-WGAN, we train a differentially private dis-
criminator. The generator is differentially private because of the
post-processing [13]. We add calibrated noise into each gradient
of the discriminator during training. The accumulation of mul-
tiple Gaussian noise addition [11] relies on privacy accountant
techniques [1] and Rényi differential privacy [31]. We provide DP-
related hyper-parameters in Table 8, Appendix C.1.

We provide the experimental results of the machine learning
utility and TableGAN-MCA effect when sharing differentially pri-
vate synthetic data in Fig. 14. The shadow GANs in use are non
private WGAN-WC. The privacy budget 𝜖 measures the amount of
privacy leakage and a smaller value means more privacy-preserved.
𝛿 denotes the probability of violating 𝜖-DP, which is set to 1

𝑂 ( |𝐷𝑡 |) .
As can be seen from Fig. 14, the DP method has some positive effect
in defending against the TableGAN-MCA. For Adult datasets, when
privacy budget 𝜖 ≈ 2.0, the attack AUPRC decreases by 16.01%
and model’s predicted accuracy decreases by 1.18% in comparison
to the no-DP baseline (see dash dots in Fig. 14). For the Compas
dataset, when privacy budget 𝜖 ≈ 8.0, the attack AUPRC decreases
by 48.33% and model’s predicted accuracy decreases by 5.13% in
comparison to the no-DP baseline. We also depict the ECDF com-
parison between the original training data and differentially private
synthetic data for each marginal to show marginal fitness compro-
mise in Fig. 18 (Appendix C.1). It is not surprising that DP-WGAN
achieves sub-optimal trade-offs when protecting against TableGAN-
MCA, since the memorization experiment shows that the presence

ALGORITHM 3: GAN-constrained Training (Improved defense)
Input: 𝐷𝑡 : private training data; 𝑁𝑔 : number of discriminator

iterations per generator iteration;𝑚: batch size
Output: A Synthetic dataset 𝑆
for each iteration do

while 𝑖 : 1→ 𝑁𝑔 do
Sample

{
x(𝑖 )

}𝑚
𝑖=1 ∼ P𝑟 ;

Sample
{
z(𝑖 )

}𝑛
𝑖=1 ∼ Pz, 𝑛 >𝑚; Choose𝑚 of 𝑛 priors{

z(𝑖 )
}𝑚
𝑖=1 s.t.,𝐺 (z) ∉ 𝐷𝑡

Compute loss, backward, update gradients;
end
Sample

{
z(𝑖 )

}𝑛
𝑖=1 ∼ Pz; Choose𝑚 of 𝑛 priors

{
z(𝑖 )

}𝑚
𝑖=1 s.t.,

𝐺 (z) ∉ 𝐷𝑡 ;
Compute loss, backward, update gradients;

end
𝑆 ← 𝐺 (z), 𝑠 .𝑡 .,𝐺 (z) ∉ 𝐷𝑡 ; ⊲ Naive defense
return 𝑆

of individuals does not significantly affect the generated distri-
bution. The membership collisions information that we intend to
infer is perhaps highly correlated to population statistics (attributes
correlation), which will be preserved even under DP training.

7.2 Customized Defense
7.2.1 Remove CollidingMembers. Removing collidingmembers
protects against TableGAN-MCA but it reduces the distribu-
tion fitness. The straightforward solution against TableGAN-MCA
is to manually remove colliding members from the sampled syn-
thetic dataset and share a cleaned version to the analysts (cus-
tomers). The whole process is denoted as the “naive defense” (last
steps in Alg. 3). We acknowledge the cleaned version can decrease
the utility of original synthetic data, especially for distribution fit-
ness. For example, we present the ECDF comparison of synthetic
datasets generated by the naive defense (Fig. 15(b)) and no-defense
(Fig. 15(a)). We show that the naive defense exhibits decreased mar-
ginal fitness compared with no-defense baseline. More ECDFs can
be found in Figs. 19(a), 20(a), and 21(a) (Appendix C.2).

7.2.2 GAN-constrained Training. Wepropose aGAN-constrained
training technique, to further improve synthetic data utility while
protecting against TableGAN-MCA. This strategy is denoted as an
“improved defense”. Simply put, we motivate GANs to generate a
synthetic dataset 𝑆 ∼ P𝑔 that is disjoint with the training set 𝐷𝑡

while minimizing the distance between training data and generated
data L(𝐷𝑡 , 𝑆), which is

𝑆 = argmin
𝑆𝑖
L(𝑆𝑖 , 𝐷𝑡 ) |𝑆𝑖∩𝐷𝑡=∅, (7)

where L denotes a distance metric. Since the discriminator of
the WGAN minimizes the Wasserstein distance, we additionally
add a constraint during training to force each sampled batch of
the generator to be disjoint with 𝐷𝑡 . To do so, we remove the
intersection between the sampled batch and the training set every
iteration before computing the loss function (see Alg. 3). Thus,
WGAN automatically searches for the best substitution for such
colliding samples at training.
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(a) Adult (b) Lawschool (c) Compas
Figure 14: Differential private GAN-synthesized data utility (left) and TableGAN-MCA effect (right) for Adult, Lawschool and
Compas benchmarks. Dash dot line denotes non-private WGAN with weight clipping baseline.

(a) No Defense (b) Naive Defense (c) Improved Defense
Figure 15: ECDF comparisons for synthetic datasets gener-
ated by three methods. We choose “priors count” attribute
in the Compas dataset.

7.2.3 Naive and Improved Defenses Evaluation. The improved
defense in large part achieves superior trade-offs than the
naive defense, and is almost comparable to the no-defense
baseline.We evaluate synthetic data utility of the naive defense,
the improved defense and the no-defense (baseline) on WGAN-GP.
Note that the baseline is vulnerable to TableGAN-MCA while naive
and improved defenses protect against it. We evaluate machine
learning efficacy in Fig. 16(a) and marginal fitness in Fig. 16(b).

In Fig. 16(a), we train machine learning models (Logistic Regres-
sion Classifier) on synthetic data sampled from the naive defense,
the improved defense and the no-defense generator and predict on
the real test data. Fig. 16(a) shows that synthetic data generated by
naive and improved defenses achieve satisfying prediction accu-
racy on the Adult and Lawschool datasets. In the Compas dataset,
mitigation methods decrease the prediction accuracy compared to
the no-defense baseline.

In Fig. 16(b), we compare ECDFs usingE𝑖 (𝑙1) (recall Section 5.2.1).
The lower score implies better marginal fitness. The experimental
result shows that the improved defense outperforms the naive
defense, and is on par with the no-defense baseline. The improved
defense succeeds in compensating the statistical deviation caused
by the naive defense (see Fig. 15(c)). More ECDFs of the naive
defense and the improved defense are shown in Figs. 19, 20, and 21.

In summary, both naive and improved defenses protect against
TableGAN-MCA and in part preserve learning ability of released
synthetic data. Moreover, the improved defense achieves better
marginal fitness than the naive defense. Despite the potentially
effective mitigation, TableGAN-MCA still remains a threat since
the proposed defenses achieve sub-optimal privacy-utility trade-
offs, eg, reduced synthetic data diversity, under-performance for
tiny-domain datasets (see Compas datasets for details).

(a) ML Prediction (b) Marginal Likelihood

Figure 16: Defenses comparisons on three datasets.Marginal
Likelihood: compute E𝑖 (𝑙1).

8 RELATEDWORK
Membership privacy is the existence of individuals [25, 36]. Existing
studies show membership disclosure on discriminative machine
learning models, e.g., classifiers [28, 33, 41–43, 47] and genera-
tive machine learning models, e.g., Generative Adversarial Net-
works [7, 20, 21, 35]. In the discriminative settings, an adversary
infers whether a specific data point is used to train a target model
by querying classifier APIs and using predicted probability vec-
tors, labels, logits, etc., to train attack models. For instance, Shokri’s
shadowmodel [43] infers membership against overfittedmulti-class
classifiers by training an attack model with labeled synthetic data,
which mimic the private training data. Subsequent works further
relax the adversary’s background knowledge [42] by extending
attacks to the white-box [33] and the label-only settings [9, 26].

In the track of inferring membership against the generative
models, there are several successful approaches, such as, table-
GAN [35], LOGAN [20], MC [21] and GAN-leaks [7]. Note that
some of these approaches is originally proposed against image data;
however, they are possibly extendable to attack tabular data. That is,
they are all related to this study. Hence, we briefly summarize these
methods in this section. The conceptual comparisons are shown in
Table 1. LOGAN [20] and table-GAN [35] leverage the output of the
overfitting discriminator to train an attack model, which is a variant
of Shokri et al. [43] in the context of GAN synthesis. However,
their attacks require the predicted probability vector of the target
discriminator at the inference phase (see column 3 in Table 1). In our
experiment, we have already shown that a GAN resilient to their
attacks may still expose training data to TableGAN-MCA. MC [21]
and GAN-leaks [7] extract a customized membership indicator of
an overfitting generator to train an attack model. We share a similar
theoretical bases with theirs, that is, the modeled distribution of
the generator behaves differently on training input versus the non-
training one. However, our attack further recovers partial training
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data by inferring membership of published synthetic data, which is
out of their scope (see Columns 4 and 5 in Table 7). In this work, we
empirically show that the membership inference classifier cannot
be directly used to identify membership collisions in our attack
model (see Table 7). Compared to those works, we propose a novel
attack model, TableGAN-MCA, that exposes partial training data by
exploiting the weakness of tabular data synthesis. Even though we
share similar ideas withMIAs in generative setting, the attackmodel
of TableGAN-MCA learns different decision boundaries. According
to the experimental results, the success of the proposed attack relies
more on population knowledge than individual presence, which is
different from MIAs.

9 CONCLUSION
GAN-synthesized table releasing provides unprecedented oppor-
tunities for private data sharing that aims to study the regular
pattern of population. In this work, we propose a novel member-
ship collision attack, TableGAN-MCA, against the GAN-synthesized
table. Our comprehensive experiments over the real-world datasets
conclude some important findings. TableGAN-MCA achieves high
recovering rate against the private training data from the published
GAN-synthesized tables. Our in-depth studies suggest that the tar-
get model, training data size, training epochs and training data
frequencies impact the attack performance of TableGAN-MCA. We
further conclude that the training data leakage is mainly related to
the published population statistics (attributes correlations), rather
than the model memorization. To mitigate the effect of TableGAN-
MCA, we find that differential privacy (applying DP-WGAN) does
not show a satisfying result mainly due to the correlations between
training data features. Based on our understanding on TableGAN-
MCA, we propose two mitigation approaches, which substitute the
published colliding members with similar non-private data entries.
We hope that the concept of membership collisions defined and
the attack methodology developed in this paper could inform the
privacy community of such new potential leakage of data synthesis.
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APPENDIX
A NETWORK STRUCTURE AND

PARAMETERS
WGAN-GP, WGAN-WC shares the same network architecture. We
set the Generator as Recurrent Neural Networks (RNNs). According
to our experiments, the RNN has a positive effect on stabilizing the
generator’s outputs. Eq. (8) represents the Generator networks and
Eq. (9) represents the Discriminator networks.


ℎ1 = ReLU(BN(FC |𝑧 |→256 (𝑧)))
ℎ2 = ReLU(BN(FC |𝑧 |+256→256 (𝑧 ⊕ ℎ1)))
𝐺 (·)𝑐𝑜𝑛 = gumbel0.2 (FC |𝑧 |+512→|𝑟 | (ℎ2))
𝐺 (·)𝑐𝑎𝑡 = tanh(FC |𝑧 |+512→1 (ℎ2))

(8)


ℎ1 = dropout0.5 (leakyReLU0.2 (FC |𝑟 |→256 (𝑟 )))
ℎ2 = dropout0.5 (leakyReLU0.2 (FC256→256 (ℎ1)))
𝐷 (·) = FC256→1 (ℎ2))

(9)

Figure 17: TableGAN-MCA performance when 𝑁𝑠 ≤ 1.

For TVAE andCTGAN,we applies themodule CTGANSynthesizer
and TVAESynthesizer of the SDGym [5]. Thus, the structures and
hyper-parameters are exactly same as the originals’ [46].
Hyper-parameters. For Adult and Lawschool datasets, we train
300 epochs and set batch size to 500. For Compas dataset, we train
600 epochs and set batch size to 100. Since the Compas dataset
is much smaller than others, we find that less iterations could
incur under-fitting. Additionally, balancing the number of D and G
training sessions also helps to converge faster.

B NUMBER OF SYNTHETIC QUERIES
We thoroughly discuss how the number of synthetic queries influ-
ences the attack performance and corresponding attack tricks.

B.1 Limited Synthetic Queries
Many target model prediction APIs (MLaaS) implement a pay-per-
query business model. Hence, reducing the number of synthetic
queries saves the cost of performing TableGAN-MCA. However, a
smaller synthetic dataset, having less membership collisions with
the training dataset, decays the attack performance. To tackle this
problem, we propose an approach that uses shadow data to fill
up the synthetic data to match the size of the training set. That
is, the adversaries obtain a synthetic dataset 𝑆 of size 0.25 ∗ 𝑁 by
querying the target Generator. The adversaries then generate the
shadow dataset of size |𝑆 | = 0.75∗𝑁 . After that, the TableGAN-MCA
adversaries attack 𝑆 ∥𝑆 instead of the original 𝑆 .

We show the impact of a small 𝑁𝑠 on TableGAN-MCA in Fig. 17.
We find that few synthetic queries also yield decent attack per-
formance. This resonates with the memorization experiment that
the success of TableGAN-MCA is contingent more on basic data
patterns.

B.2 Unlimited Synthetic Queries
The TableGAN-MCA adversary continues to expose more training
data when increasing the number of synthetic queries. In Fig. 7, we
evaluate the TableGAN-MCA up to 𝑁𝑠 = 10, which is not the ceiling
of TableGAN-MCA capabilities. Due to computational constraints,
we are limited to performing the attack up to 𝑁𝑠 = 20 and observe
that the number of exposed training data of TableGAN-MCA is still
increasing. This leaves open an interesting problem of whether
the adversary could reconstruct the whole training dataset with
unlimited queries.
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(a) Adult, 𝜖 = 0.5, 𝛿 = 10−5

(b) Lawschool, 𝜖 = 0.5, 𝛿 = 10−5

(c) Compas, 𝜖 = 2.0, 𝛿 = 10−4

Figure 18: ECDF comparison between training data and differentially private GAN-synthesized data.

Table 8: Hyper-parameters in DP-WGAN. (𝜖,𝛿) : privacy bud-
get; 𝑆 : clip threshold; 𝜎 : standard deviation of the noise
added in each step.

Datasets (𝜖, 𝛿) (𝑆, 𝜎) Sampling rate

Adult

(0.5, 10−5) (0.1, 0.5) 500/31655
(1.0, 10−5) (0.1, 0.45) 500/31655
(2.0, 10−5) (0.1, 0.4) 500/31655
(4.0, 10−5) (0.1, 0.3) 500/31655
(8.0, 10−5) (0.1, 0.17) 500/31655
(16.0, 10−5) (0.1, 0.11) 500/31655

Lawschool

(0.5, 10−5) (0.1, 0.4) 500/43011
(1.0, 10−5) (0.1, 0.45) 500/43011
(2.0, 10−5) (0.1, 0.48) 500/43011
(4.0, 10−5) (0.1, 0.25) 500/43011
(8.0, 10−5) (0.1, 0.15) 500/43011
(16.0, 10−5) (0.1, 0.11) 500/43011

Compas

(2.0, 10−4) (0.1, 0.9) 100/3694
(4.0, 10−4) (0.1, 0.48) 100/3694
(8.0, 10−4) (0.1, 0.27) 100/3694
(16.0, 10−4) (0.1, 0.16) 100/3694
(32.0, 10−4) (0.1, 0.11) 100/3694

C MITIGATION
C.1 DP-WGAN
We show the ECDFs of marginals for (𝜖, 𝛿)-DP synthesized data in
Fig. 18. Smaller training data usually gains less satisfactory genera-
tion quality under DP training with a similar privacy budget.

C.2 Naive and Improved Defenses
We show additional ECDFs of marginals for “Remove Colliding
Members” mitigation and “GAN-constrained Training” mitigation
in Figs. 19, 20, and 21.

15



(a) Adult ECDF, Remove Overlapping

(b) Adult ECDF, GAN-constrained Training
Figure 19: ECDF comparisons for “Remove Overlapping" mitigation and “GAN-constrained Training” mitigation.

(a) Lawschool ECDF, Remove Overlapping

(b) Lawschool ECDF, GAN-constrained Training
Figure 20: ECDF comparisons for “Remove Overlapping” mitigation and “GAN-constrained Training” mitigation.

(a) Compas ECDF, Remove Overlapping

(b) Compas ECDF, GAN-constrained Training
Figure 21: ECDF comparisons for “Remove Overlapping” mitigation and “GAN-constrained Training” mitigation.
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