
Unleashing the Tiger: Inference Attacks on Split Learning
Dario Pasquini

EPFL
Lausanne, Switzerland
dario.pasquini@epfl.ch

Giuseppe Ateniese
George Mason University
Fairfax, Virginia, USA
ateniese@gmu.edu

Massimo Bernaschi
Institute of Applied Computing, CNR

Rome, Italy
massimo.bernaschi@cnr.it

ABSTRACT
We investigate the security of split learning—a novel collaborative
machine learning framework that enables peak performance by
requiring minimal resource consumption. In the present paper, we
expose vulnerabilities of the protocol and demonstrate its inherent
insecurity by introducing general attack strategies targeting the
reconstruction of clients’ private training sets. More prominently,
we show that a malicious server can actively hijack the learning
process of the distributed model and bring it into an insecure state
that enables inference attacks on clients’ data. We implement differ-
ent adaptations of the attack and test them on various datasets as
well as within realistic threat scenarios. We demonstrate that our
attack can overcome recently proposed defensive techniques aimed
at enhancing the security of the split learning protocol. Finally, we
also illustrate the protocol’s insecurity against malicious clients by
extending previously devised attacks for Federated Learning.

1 INTRODUCTION
Once the cattle have been split up, then the tiger strikes.

A Myanma proverb

Deep learning requires massive data sets and computational
power. State-of-the-art neural networks may contain millions or bil-
lions [13] of free parameters and necessitate representative training
sets. Unfortunately, collecting suitable data sets is difficult or some-
times impossible. Entities and organizations may not be willing to
share their internal data for fear of releasing sensitive information.
For instance, telecommunication companies would benefit extraor-
dinarily from deep learning techniques but do not wish to release
customer data to their competitors. Similarly, medical institutions
cannot share information because privacy laws and regulations
shelter patient data.

Secure data sharing and learning can only be achieved via cryp-
tographic techniques, such as homomorphic encryption or secure
multi-party computation. However, the combination of cryptogra-
phy and deep learning algorithms yields expensive protocols. An
alternative approach, with mixed results, is distributed/decentral-
ized machine learning, where different parties cooperate to learn
a shared model. In this paradigm, training sets are never shared
directly. In federated learning [11, 35, 36], for example, users train
a shared neural network on their respective local training sets
and provide only model parameters to others. The expectation is
that by sharing certain model parameters, possibly “scrambled” [3],
the actual training instances remain hidden and inscrutable. Un-
fortunately, in [30], it was shown that an adversary could infer
meaningful information on training instances by observing how
shared model parameters evolve over time.

Split learning is another emerging solution that is gaining sub-
stantial interest in academia and industry. In the last few years, a
growing body of empirical studies [5, 22, 33, 34, 39, 42, 49, 52,
56, 57], model extensions [4, 15, 31, 41, 44, 46, 51, 54, 55], and
events [2, 12] attested to the effectiveness, efficiency, and rel-
evance of the split learning framework.At the same time, split-
learning-based solutions have been implemented and adopted in
commercial as well as open-source applications [1, 6]. Several start-
ups, which are receiving much attention, are currently relying
on the split learning framework to develop efficient collaborative
learning protocols and train deep models on real-world data.

The success of split learning is primarily due to its practical
properties. Indeed, compared with other approaches such as feder-
ated learning, split learning requires consistently fewer resources
from the participating clients, enabling lightweight and scalable
distributed training solutions. However, while the practical proper-
ties of split learning have been exhaustively validated [49, 57], little
effort has been spent investigating the security of this machine
learning framework.

In this paper,we carry out the first, in-depth, security anal-
ysis of split learning and draw attention to its inherent inse-
curity.We demonstrate that the assumptions on which the security
of split learning is based are fundamentally flawed, and a motivated
adversary can easily subvert the defenses of the training framework.
In particular, we implement a general attack strategy that allows a
malicious server to recover private training instances during the
distributed training. In the attack, the server hijacks the model’s
learning processes and drives them to an insecure state that can
be exploited for inference attacks. In the process, the attacker does
not need to know any portion of the client’s private training sets
or the client’s architecture. The attack is domain-independent and
can be seamlessly applied to various split learning variants [51, 54].
We call this general attack: the feature-space hijacking attack
(FSHA) and introduce several adaptations of it. We test the proposed
attacks on different datasets and demonstrate their applicability
under realistic threat scenarios such as data-bounded adversaries.

Furthermore, we show that client-side attacks that have been
previously devised on federated learning settings remain effective
within the split learning framework. In particular, we adapt and
extend the inference attack proposed in [30] to make it work in
split learning. Our attack demonstrates how a malicious client
can recover suitable approximations of private training instances
of other honest clients participating in the distributed training.
Eventually, this result confirms the insecurity of split learning also
against client-side attacks.

The contributions of the present paper can be then summarized
as follows:

1

ar
X

iv
:2

01
2.

02
67

0v
5

 [
cs

.C
R

]
 4

 N
ov

 2
02

1

• We demonstrate the insecurity of split learning against
a malicious server by devising a novel and general at-
tack framework. Such a framework permits an attacker to
(1) recover precise reconstructions of individual clients’
training instances as well as (2) perform property infer-
ence attacks [8] for arbitrary attributes. Additionally, we
show that the proposed attacks can circumvent defensive
techniques devised for split learning [55, 58].

• We demonstrate the insecurity of split learning against a
malicious client by adapting and extending previously
proposed techniques targeting federated learning [30]. The
attack permits a malicious client to recover prototypical
examples of honest clients’ private instances.

To make our results reproducible, we made our code available1.

Overview. The paper starts by surveying distributed machine
learning frameworks in Section 2. Section 3 follows by introducing
and validating our main contribution—the feature-space hijacking
attack framework. Then, Section 4 covers the applicability of exist-
ing defensive mechanisms within the split learning framework. In
Section 5, we analyze the security of split learning against malicious
clients. Section 6 concludes the paper, with Appendices containing
additional material. In the paper, background and analysis of pre-
vious works are provided, when necessary, within the respective
sections.

2 DISTRIBUTED MACHINE LEARNING
Distributed (also collaborative [47]) machine learning allows a set
of remote clients Cs = {𝑐1, . . . , 𝑐𝑛} to train a shared model 𝐹 . Each
client 𝑐𝑖 participates in the training protocol by providing a set
of training instances 𝑋𝑝𝑟𝑖𝑣𝑖 . This set is private and must not be
directly shared among the parties running the protocol. For instance,
hospitals cannot share patients’ data with external entities due to
regulations such as HIPAA [7].

In this section, we focus on distributed machine learning solu-
tions for deep learning models. In particular, we describe: (1) Fed-
erated learning [11, 35, 36] which is a well-established learning
protocol2 and (2) split learning [25, 42, 56] a recently proposed
approach that is gaining momentum due to its attractive practical
properties.

2.1 Federated Learning
Federated learning [11, 35, 36] allows for distributed training of
a deep neural model by aggregating and synchronizing local pa-
rameter adjustments among groups of remote clients. In the most
straightforward setup, the protocol is orchestrated by a central
server that manages clients’ training rounds and maintains a mas-
ter copy of the trained model.

In the initial setup phase, the parties choose a training task and
define a machine learning model. The latter is initialized and hosted
by the server that makes it available to all remote clients. At each
training step, each client downloads the model from the server
and locally applies one or more iterations of standard Stochastic
Gradient Descent (SGD) using its private training set. After the

1https://github.com/pasquini-dario/SplitNN_FSHA
2In the paper, we use the term “federated learning” to refer to the framework

proposed in [11, 35, 36] rather than the “federated learning task” .

local training is done, clients send the accumulated gradients (or
weights) to the server.3 The server aggregates these changes into
a single training signal applied to the hosted model parameters,
completing a global training iteration. Once the server’s network
is updated, the clients download the new state of the model and
repeat the protocol till a stop condition is reached.

At each iteration in federated learning, clients exchange an
amount of data with the server that is linear in the number of
parameters of the network. For large models, this becomes unsus-
tainable and may limit the applicability of the approach. Several
improvements to the framework have been proposed to address
this problem [45, 59].

2.1.1 On the security of Federated Learning. Clients share only
gradients/weights induced by the local training steps. The intuition
behind federated learning is that local data is safe because it is
never directly shared with the server or other clients. Additionally,
gradients collected by the server can be further protected through a
secure aggregation protocol. The aim is to hinder inference attacks
by the server that cannot distinguish clients’ individual gradients.

In federated learning, all the parties have equal access to the
trained network. Thus, the server and the clients know the archi-
tecture of the network as well as its weights during the various
training steps.

Under suitable assumptions, different attacks on federate learn-
ing were shown feasible. The first and most prominent is an active
attack [30] that allows a malicious client to infer relevant infor-
mation on training sets of other honest clients by manipulating
the learning process. Additionally, the gradients received from the
server can be inverted [64]. Other attacks include backdoor injec-
tion and poisoning [9, 10, 17]. Accordingly, variants of federated
learning have been proposed to reduce the effectiveness of those
attacks [19, 20, 27, 32]. They alleviate but do not solve the problems.

2.2 Split Learning
Split learning [25, 42, 56] enables distributed learning by partition-
ing a neural network in consecutive chunks of layers among various
parties; typically, a set of clients and a server. In the protocol, the
clients aim at learning a shared deep neural network by securely
combining their private training sets. The server manages this pro-
cess and guides the network’s training, bearing most of the required
computational cost.

In split learning, training is performed through a vertically dis-
tributed back-propagation [38] that requires clients to share only
intermediate network’s outputs (referred to as smashed data); rather
than the raw, private training instances. This mechanism is sketched
in Figure 1. In the minimal setup (i.e., Figure 1a), a client owns the
first 𝑛 layers 𝑓 of the model, whereas the server maintains the
remaining neural network 𝑠 i.e., 𝐹 = 𝑠 (𝑓 (·)). Here, the model’s
architecture and hyper-parameters are decided by the set of clients
before the training phase. In particular, they agree on a suitable
partition of the deep learning model and send the necessary infor-
mation to the server. The server has no decisional power and
ignores the initial split 𝑓 .

3This process may differ in practice as there are several implementations of
federated learning.

2

https://github.com/pasquini-dario/SplitNN_FSHA

Server:

𝑋𝑝𝑟𝑖𝑣 𝑓𝑓 𝑠𝑠 L𝑓 ,𝑠

(a) Split learning.

Server:

𝑋𝑝𝑟𝑖𝑣 𝑓𝑓

𝑓
′

𝑓
′L𝑓 ,𝑓 ′,𝑠

𝑠𝑠
𝑠

(b) Split learning with labels protection.

Figure 1: Two variations of split learning. Black arrows depict the activation propagation of the participating neural networks,
whereas red arrows depict the gradient that follows after the forward pass.

At each training iteration, a client sends the output of the initial
layers for a batch of private data 𝑋𝑝𝑟𝑖𝑣 (i.e., 𝑓 (𝑋𝑝𝑟𝑖𝑣)) to the server.
The server propagates this remote activation through the layers 𝑠
and computes the loss. Then, a gradient-descent-based optimization
is locally applied to 𝑠 . To complete the round, the server sends the
gradient up to the input layer of 𝑠 to the client that continues the
back-propagation locally on 𝑓 .

In the case of supervised loss functions, the protocol requires
the client to share the labels with the server. To avoid that, split
learning can be reformulated to support loss function computation
on the client-side (Figure 1b). Here, the activation of the last layer
of 𝑠 is sent to the client that computes the loss function4, sending
the gradient back to the server that continues the back-propagation
as in the previous protocol.

Split learning supports the training of multiple clients by imple-
menting a sequential turn-based training protocol. Here, clients are
placed in a circular list and interact with the server in a round-robin
fashion. On each turn, a client performs one or more iterations of
the distributed back-propagation (i.e., Figure 1) by locally modi-
fying the weights of 𝑓 . Then, the client sends the new 𝑓 to the
next client that repeats the procedure. As stated in [25], the train-
ing process, for suitable assumptions, is functionally equivalent to
the one induced by the standard, centralized training procedure.
That is, clients converge to the same network that they would have
achieved by training a model on the aggregated training sets.

To overcome the sequential nature of the training process, ex-
tensions of split learning have been proposed [31, 51, 54]. More
prominently, in [51], split learning is combined with federated learn-
ing (i.e., splitfed learning) to yield a more scalable training protocol.
Here, the server handles the forward signal of the clients’ network
in parallel (without aggregating them) and updates the weights
of 𝑠 . The clients receive the gradient signals and update their local
models in parallel. Then, they perform federated learning to con-
verge to a global 𝑓 before the next iteration of split learning. This
process requires an additional server that is different from the one
hosting 𝑠 .5

Split learning gained particular interest due to its efficiency and
simplicity. Namely, it reduces the required bandwidth significantly
when compared with other approaches such as federated learn-
ing [49, 57]. Certainly, for large neural networks, intermediate

4The client can also apply additional layers before the loss computation.
5Otherwise, a single server would access both 𝑓 and 𝑠 , violating the security of

the protocol.

activation for a layer is consistently more compact than the net-
work’s gradients or weights for the full network. Furthermore,
the computational burden for the clients is smaller than the one
caused by federated learning. Indeed, clients perform forward/back-
ward propagation on a small portion of the network rather than
on the whole. This allows split learning to be successfully applied
to the Internet of Things (IoT) and edge-device machine learning
settings [22, 34, 39].

2.2.1 On the security of Split learning. Split learning has been
proposed as a privacy-preserving implementation of collaborative
learning [5, 25, 42, 55, 56]. In split learning, users’ data privacy
relies on the fact that raw training instances are never shared; only
“smashed data” induced from those instances are sent to the server.

The main advantage of split learning in terms of security is
that it can hide information about the model’s architecture and
hyper-parameters. Namely, the server performs its task ignoring
the architecture of 𝑓 or its weights. As assumed in previous
works [5, 25, 42, 56], this split is designed to protect the in-
tellectual property of the shared model and to reduce the
risk of inference attacks perpetrated by a malicious server.
As a matter of fact, in this setup, the server cannot execute a stan-
dard model inversion attack [18, 63] since it does not have access
to the clients’ network and cannot make blackbox queries to it.

We will show that these assumptions are false, and the split
learning framework presents several vulnerabilities that allow an
attacker to subvert the training protocol and recover clients’ train-
ing instances. The most pervasive vulnerability of the framework
is the server’s entrusted ability to control the learning process of
the clients’ network. A malicious server can guide 𝑓 towards func-
tional states that can be easily exploited to recover 𝑋𝑝𝑟𝑖𝑣 data from
𝑓 (𝑋𝑝𝑟𝑖𝑣). The main issue is that a neural network is a differentiable,
smooth function that is naturally predisposed to be functionally
inverted. There is no much that can be achieved by splitting it other
than a form of security through obscurity, which is notoriously
inadequate since it gives only a false sense of security.

In the next section, we empirically demonstrate how a mali-
cious server can exploit the split learning framework’s inherent
shortcomings to disclose clients’ private training sets completely.
Furthermore, in Section 5, we demonstrate that split learning does
not protect honest clients from malicious ones, even when the
server is honest.

3

3 FEATURE-SPACE HIJACKING ATTACK
Here, we introduce our main attack against the split learning train-
ing protocol—the Feature-space hijacking attack (FSHA). We start
in Section 3.1 by detailing the threat model. Then, Section 3.2 intro-
duces the core intuition behind the attack, as well as its formaliza-
tion. Section 3.3 covers the pragmatic aspects of the attack, demon-
strating its effectiveness. Section 3.5 extends the FSHA framework
to property inference attacks.

3.1 Threat model
We assume that the attacker does not have information on the
clients participating in the distributed training, except those re-
quired to run the split learning protocol. The attacker has no in-
formation on the architecture of 𝑓 and its weights. Moreover, the
attacker ignores the task on which the distributed model is trained.
However, the adversary knows a dataset 𝑋𝑝𝑢𝑏 that captures the
same domain of the clients’ training sets (a “shadow dataset” [48]).
For instance, if the model is trained on face images, 𝑋𝑝𝑢𝑏 is also
composed of face images. Nevertheless, no intersection between
private training sets and 𝑋𝑝𝑢𝑏 is required. This assumption is con-
gruent with previous attacks against collaborative inference [29],
and makes our threat model more realistic and less restrictive than
the ones adopted in other related works [55, 58], where the adver-
sary is assumed to have direct access to leaked pairs of smashed
data and private data.

3.2 Attack foundations
As discussed in Section 2.2.1, the main vulnerability of split learning
resides in the fact that the server has control over the learning pro-
cess of the clients’ network. Indeed, even ignoring the architecture
of 𝑓 and its weights, an adversary can forge a suitable gradient and
force 𝑓 to converge to an arbitrary target function chosen by the
attacker. In doing so, the attacker can induce certain properties in
the smashed data generated by the clients, enabling inference or
reconstruction attacks on the underlying private data.

Here, we present a general framework that implements this
attack procedure. In such a framework, the malicious server substi-
tutes the original learning task chosen by the clients with a new
objective that shapes, on purpose, the codomain/feature-space of 𝑓 .6
During the attack, the server exploits its control on the training
process to hijack 𝑓 and steer it towards a specific, target feature
space Z̃ that is appositely crafted. Once 𝑓 maps into Z̃, the attacker
can recover the private training instances by locally inverting the
known feature space.

Such an attack encompasses two phases: (1) a setup phase
where the server hijacks the learning process of 𝑓 , and (2) a sub-
sequent inference phase where the server can freely recover the
smashed data sent from the clients. Hereafter, we refer to this pro-
cedure as Feature-space Hijacking Attack, FSHA for short.

Setup phase. The setup phase occurs over multiple training iter-
ations of split learning and is logically divided into two concurrent
steps, which are depicted in Figures 2a and 2b. In this phase of the

6The client’s network 𝑓 can be seen as a mapping between a data space X
(i.e., where training instances are defined) and a feature space Z (i.e., where smashed
data are defined).

attack, the server trains three different networks; namely, 𝑓 , 𝑓 −1,
and 𝐷 . These serve very distinct roles; more precisely:

• 𝑓 : is a pilot network that dynamically defines the target
feature space Z̃ for the client’s network 𝑓 . As 𝑓 , 𝑓 is a
mapping between the data space and a target feature space
Z̃, where |𝑓 (𝑥) | = |𝑓 (𝑥) | = 𝑘 .

• 𝑓 −1: is an approximation of the inverse function of 𝑓 . Dur-
ing the training, we use it to guarantee the invertibility
of 𝑓 and recover the private data from smashed data during
the inference phase.

• 𝐷 : is a discriminator [23] that indirectly guides 𝑓 to learn
a mapping between the private data and the feature space
defined from 𝑓 . Ultimately, this is the network that substi-
tutes 𝑠 in the protocol (e.g., Figure 1), and that defines the
gradient which is sent to the client during the distributed
training process.

The setup procedure also requires an unlabeled dataset 𝑋𝑝𝑢𝑏 that
is used to train the three attacker’s networks. Observe that this is
the only knowledge of the clients’ setup that the attacker requires.
The effect of 𝑋𝑝𝑢𝑏 on the attack performance will be analyzed in
the next section.

As mentioned before, at every training iteration of split learning
(i.e., when a client sends smashed data to the server), the malicious
server trains the three networks in two concurrent steps, which
are depicted in Figures 2a and 2b. The server starts by sampling
a batch from 𝑋𝑝𝑢𝑏 that uses to jointly train 𝑓 and 𝑓 −1. Here, the
server optimizes the weights of 𝑓 and 𝑓 −1 to make the networks
converge towards an auto-encoding function i.e., 𝑓 −1 (𝑓 (𝑥)) = 𝑥 .
This is achieved by minimizing the loss function:

L
𝑓 ,𝑓 −1 = 𝑑 (𝑓

−1 (𝑓 (𝑋𝑝𝑢𝑏)), 𝑋𝑝𝑢𝑏), (1)

where 𝑑 is a suitable distance function, e.g., the Mean Squared
Error (MSE).

Concurrently, also the network 𝐷 is trained. This is a discrimi-
nator [23] that is trained to distinguish between the feature
space induced from 𝑓 and the one induced from the client’s
network 𝑓 . The network 𝐷 takes as input 𝑓 (𝑋𝑝𝑢𝑏) or 𝑓 (𝑋𝑝𝑟𝑖𝑣)
(i.e., the smashed data) and is trained to assign high probability
to the former and low probability to the latter. More formally, at
each training iteration, the weights of 𝐷 are tuned to minimize the
following loss function:

L𝐷 = log(1 − 𝐷 (𝑓 (𝑋𝑝𝑢𝑏))) + log(𝐷 (𝑓 (𝑋𝑝𝑟𝑖𝑣))) . (2)
After each local training step for 𝐷 , the malicious server can then
train the network 𝑓 by sending a suitable gradient signal to the
remote client performing the training iteration. In particular, this
gradient is forged by using 𝐷 to construct an adversarial loss func-
tion for 𝑓 ; namely:

L𝑓 = log(1 − 𝐷 (𝑓 (𝑋𝑝𝑟𝑖𝑣))) . (3)
That is, 𝑓 is trained to maximize the probability of being miss-
classified from the discriminator𝐷 . In other words,we require the
client’s network to learn amapping to a feature space that is
indistinguishable from the one of 𝑓 . Ideally, this loss serves as a
proxy for the more direct and optimal loss function: 𝑑 (𝑓 (𝑥), 𝑓 (𝑥)).

4

Server

𝑋𝑝𝑟𝑖𝑣

𝑓

𝐷

𝑋𝑝𝑢𝑏𝑓

𝑓 −1

𝑑 (𝑓 −1 (𝑓 (𝑋𝑝𝑢𝑏)), 𝑋𝑝𝑢𝑏)log(1 −𝐷 (𝑓 (𝑋𝑝𝑢𝑏))) + 𝑙𝑜𝑔 (𝐷 (𝑓 (𝑋𝑝𝑟𝑖𝑣)))

(a) Attacker’s training procedure.

Server

𝑋𝑝𝑟𝑖𝑣

𝑓

𝐷

𝑋𝑝𝑢𝑏𝑓

𝑓 −1

𝑙𝑜𝑔 (1 −𝐷 (𝑓 (𝑋𝑝𝑟𝑖𝑣)))

(b) Client’s training procedure.

Server

𝑋𝑝𝑟𝑖𝑣

𝑓

𝑓 −1

𝑋̃𝑝𝑟𝑖𝑣

(c) Inference procedure.

Figure 2: Schematic representation of the setup and inference process of the feature-space hijacking attack. In the scheme,
opaque rectangles depict the neural networks actively taking part to the training. Instead, more transparent rectangles are
networks that may participate to the forward propagation but do not modify their weights.

However, the attacker has no control over the input of 𝑓 and must
overcome the lack of knowledge about 𝑥 by relying upon an ad-
versarial training procedure that promotes a topological matching
between feature spaces rather than a functional equivalence be-
tween networks.

Attack inference phase. After a suitable number of setup iter-
ations, the network 𝑓 reaches a state that allows the attacker to
recover the private training instances from the smashed data. Here,
thanks to the adversarial training, the codomain of 𝑓 overlapswith
the one of 𝑓 . The latter feature space is known to the attacker who
can trivially recover 𝑋𝑝𝑟𝑖𝑣 from the smashed data by applying the
inverse network 𝑓 −1. Indeed, as the network 𝑓 is now mapping the
data space into the feature space Z̃, the network 𝑓 −1 can be used
to map the feature space Z̃ back to the data space, that is:

𝑋̃𝑝𝑟𝑖𝑣 = 𝑓
−1 (𝑓 (𝑋𝑝𝑟𝑖𝑣)),

where 𝑋̃𝑝𝑟𝑖𝑣 is a suitable approximation of the private training
instances𝑋𝑝𝑟𝑖𝑣 . This procedure is depicted in Figure 2c. The quality
of the obtained reconstruction will be assessed later in the paper.

We emphasize that the feature-space hijacking attack performs
identically on the private-label version of the protocol, e.g., Fig-
ure 1b. In this case, at each training step, the server sends arbitrary
forged inputs to the clients’ final layers and ignores the gradient
produced as a response, hijacking the learning process of 𝑓 as in the
previous instance. More generally, in the case of multiple vertical
splits, a malicious party can always perform the attack despite its
position in the stack. Basically, the attacker can just ignore the
received gradient and replace it with the crafted one, leaving the
underlying splits to propagate the injected adversarial task. Ad-
ditionally, the effectiveness of the attack does not depend on the
number of participating clients.

In the same way, the feature-space hijacking attack equally ap-
plies to extensions of split learning such as Splitfed learning [51].
Indeed, in this protocol, the server still maintains control of the
learning process of 𝑓 . The only difference is in how the latter is
updated and synchronized among the clients. Interestingly, the at-
tack can be potentially more effective as the server receives bigger

batches of smashed data that can be used to smooth the learning
process of the discriminator.

In the next section, we implement the feature-space hijacking
attack, and we empirically demonstrate its effectiveness on various
setups.

3.3 Attack implementations
We focus on demonstrating the effectiveness of the attack on the
image domain as this is predominant in split learning studies [25,
25, 42, 51, 54–58]. In our experiments, we rely on different image
datasets to validate the attack; namely,MNIST, Fashion-MNIST [61],
Omniglot [37] and CelebA [40]. We demonstrate the effectiveness
of the attack on additional datasets in Appendix A. In this sec-
tion, we introduce the attack by simulating the clients’ training set
(i.e., 𝑋𝑝𝑟𝑖𝑣) using the training partition of the datasets, whereas we
use their validation sets as 𝑋𝑝𝑢𝑏 . Then, in Section 3.4, we demon-
strate the effectiveness of the attack on subpar setups for the at-
tacker.

Attack setup. We implement the various networks participat-
ing in the attack as deep convolution neural networks. For the
client’s network 𝑓 , we rely on a residual network [28] with a fun-
nel structure—a pervasive architecture widely employed for tasks
defined on the image domain. In our experiments, we test the pro-
posed attack’s effectiveness on increasingly deep splits of 𝑓 . These
are depicted in Figure 3.

The network 𝑓 (the attacker’s pilot network) is constructed by
leveraging a different architecture from the one used for 𝑓 . In partic-
ular, the network is chosen to be as simple as possible (i.e., shallow
and with a limited number of parameters). Intuitively, this allows
us to define a very smooth target latent-space Z̃ and simplify the
learning process of 𝑓 during the attack. The inverse mapping 𝑓 −1
is also a shallow network composed of transposed convolutional
layers. The discriminator𝐷 is a residual network and is chosen to be
deeper than the other employed networks with the intent of forcing
the feature spaces of 𝑓 and 𝑓 to be as similar as possible until they
become indistinguishable. During the setup phase, we regularize 𝐷
with a gradient penalty and use the Wasserstein loss [24] for the

5

𝑋𝑝𝑟𝑖𝑣

2D
-C

on
v(

64
,

3,
(1

,1
))

Re
LU

ba
tc

h-
no

rm
al

iz
at

io
n

Re
LU

ma
xP

ol
li

ng
((

2,
2)

)

re
sB

lo
ck

(6
4,

1)

split 1

re
sB

lo
ck

(1
28

,2
)

split 2

re
sB

lo
ck

(1
28

,1
)

split 3

re
sB

lo
ck

(2
56

,2
)

split 4

Figure 3: Architecture of the client’s network 𝑓 divided in 4 different depth levels. The internal setup of the adopted residual
blocks is described in Algorithm 2 (Appendix B).

0 5000 10000 15000 20000 25000 30000

Number of setup iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
ve

ra
ge

R
ec

on
st

ru
ct

io
n

er
ro

r
(M

S
E

)

split 1 split 2 split 3 split 4

0 2000 4000 6000 8000 10000

Number of setup iterations

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

R
ec

o
n

st
ru

ct
io

n
er

ro
r

(M
S

E
)

(a) MNIST.

0 2000 4000 6000 8000 10000

Number of setup iterations

0.00

0.05

0.10

0.15

0.20

A
ve

ra
ge

R
ec

o
n

st
ru

ct
io

n
er

ro
r

(M
S

E
)

(b) Fashion-MNIST.

0 2500 5000 7500 10000 12500 15000 17500 20000

Number of setup iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

R
ec

on
st

ru
ct

io
n

er
ro

r
(M

S
E

)

(c) Omniglot.

0 5000 10000 15000 20000 25000 30000

Number of setup iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

A
ve

ra
ge

R
ec

o
n

st
ru

ct
io

n
er

ro
r

(M
S

E
)

(d) CelebA.

Figure 4: Reconstruction error of private training instances during the setup phase for four different splits and four different
datasets. This is measured as the average MSE between the images normalized in the [−1, 1] interval.

(a) MNIST.

(b) Fashion-MNIST.

(c) Omniglot.

(d) CelebA.

Figure 5: Examples of inference of private training instances from smashed data for four datasets for the split 4 of 𝑓 . Within
eachpanel, thefirst row (i.e., gray frame) reports the original data,whereas the second row (i.e., red frame) depicts the attacker’s
reconstruction. The reported examples are chosen randomly from 𝑋𝑝𝑟𝑖𝑣 .

6

adversarial training. This greatly improves the stability of the attack
and speeds up the convergence of 𝑓 . We rely on slightly different
architectures for the attacker’s networks (i.e., 𝑓 , 𝑓 −1 and 𝐷) based
on the depth of the split of 𝑓 . More detailed information about these,
other hyper-parameters, and datasets pre-processing operations
are given in Appendix B.

Attack results. During the attack, we use the MSE as the dis-
tance function 𝑑 (see Eq. 1). In the process, we track the attacker’s
reconstruction error measured as:

𝑀𝑆𝐸 (𝑓 −1 (𝑓 (𝑋𝑝𝑟𝑖𝑣)), 𝑋𝑝𝑟𝑖𝑣) .

This is reported in Figure 4 for the four datasets and four different
splits of 𝑓 . In the experiments, different datasets required differ-
ent numbers of setup iterations to reach adequate reconstructions.
Low-entropy distributions like those in MNIST and Fashion-MNIST
can be accurately reconstructed within the first 103 setup iterations.
On the other hand, natural images and complex distributions, like
CelebA and Omniglot, tend to require more iterations (3 · 103 and
2 · 103 respectively). It is important to note that clients depend en-
tirely on the server and entrust it with the model’s utility measure
(validation error) during the training. The server, therefore, can
directly control the stop-conditions (e.g., early-stopping) by pro-
viding suitable feedback to clients and dynamically requiring them
to perform the number of training iterations needed to converge
towards suitable reconstructions.

As the plots in Figure 4 show, there is only a negligible difference
in the reconstruction error achieved from attacks performed on
the four different splits of 𝑓 . In those experiments, the depth of the
client’s network seems to affect only the convergence speed of the
setup phase with a limited impact on the final performance.

Also, in the case of the deepest split (split 4), the FSHA allows the
attacker to achieve precise reconstructions. These can be observed
in Figure 5, where the attack provides very accurate reconstruc-
tions of the original private data for all the tested datasets. More
interestingly, the Omniglot dataset highlights the generalization ca-
pability of the feature-space hijacking attack. The Omniglot dataset
is often used as a benchmark for one-shot learning and contains
1623 different classes with a limited number of examples each. The
attack’s performance on this dataset suggests that the proposed
technique can reach a good generalization level over private data

Figure 6: Average reconstruction error during the FSHA for
three different setups (zoomed in).

distributions. We will investigate this property more thoroughly in
the next section.

Hereafter, we will report results only for the split 4 as this rep-
resents the worst-case scenario for our attack. Moreover, it also
captures the best practices of split learning. Indeed, deeper architec-
tures for 𝑓 are assumed to make it harder for an attacker to recover
information from the smashed data as this has been produced using
more complex transformations [5, 58].

3.4 On the effect of the public dataset
It should be apparent that the training set 𝑋𝑝𝑢𝑏 employed by the
server can critically impact the attack’s effectiveness. This is used to
train the attacker’s models and indirectly defines the target feature
space imposed on 𝑓 . Ideally, to reach high-quality reconstruction,
this should be distributed as similarly as possible to the private train-
ing sets owned by the clients. However, under strict assumptions,
the attacker may collect data instances that are not sufficiently
representative. We show that the Feature-space Hijacking Attack
can be successfully applied even when the attacker employs inade-
quate/inaccurate choices of 𝑋𝑝𝑢𝑏 .

3.4.1 Public dataset coming from a different distribution. Next,
we analyze the effect of choices of 𝑋𝑝𝑢𝑏 following a different dis-
tribution with respect to the private one. We start by attacking
the dataset CelebA (𝑋𝑝𝑟𝑖𝑣) relying on a different face dataset (UTK-
Face [62]) as public dataset 𝑋𝑝𝑢𝑏 .

The UTKFace dataset aggregates pictures of heterogeneous indi-
viduals. It portraits people within a wide age range (between 0 to
116 years) and covers several ethnicities (White, Black, Asian, In-
dian, and Others). The distribution ofCelebA is, instead, consistently
more homogeneous and strongly skewed towards the Caucasian
race with a stricter age range.7

We report the average reconstruction error of the attack together
with the best-case scenario for the attacker (CelebA train/validation
partitions as 𝑋𝑝𝑟𝑖𝑣 and 𝑋𝑝𝑢𝑏) in Figure 6. As can be observed, the
discrepancy between private and public distributions affects the
attack performance negligibly, and the FSHA can converge towards
accurate reconstructions of private data. Figure 7a depicts examples
of such reconstructions.

For the sake of completeness, we report the results also for the
opposite scenario: attacking UTKFace with CelebA as a public set.
We obtained almost identical performance as shown in Figures 6
and 7b. Interestingly, in this case, the attack has also successfully
reconstructed images of infants and gray-scale pictures that are
missing in the CelebA distribution.

In Appendix A.1, we repeat similar tests for the natural-image
datasets TinyImageNet [60] and STL-10 [16], and dermatoscopic
images datasets HAM10000 [53] and ISIC-2016 [26], obtaining con-
sistent results.

3.4.2 Public dataset with missing modalities. Another interest-
ing scenario is when the attacker’s public set misses some modali-
ties / semantic-classes of the private distribution. To simulate this
scenario, we create artificially mangled training sets 𝑋𝑝𝑢𝑏 for the
MNIST dataset and test the attack’s effectiveness accordingly. In the
experiment, the mangling operation removes all the instances of a

7The dataset is composed of images of celebrities.
7

(a) Attacking CelebA with 𝑋𝑝𝑢𝑏 =UTKFace.

(b) Attacking UTKFace with 𝑋𝑝𝑢𝑏 =CelebA.

Figure 7: Random examples of reconstruction attacks for two setups. Panel (a) reports the result for the case𝑋𝑝𝑟𝑖𝑣=CelebA and
𝑋𝑝𝑢𝑏 =UTKFace. Panel (b) reports the result for the case 𝑋𝑝𝑟𝑖𝑣=UTKFace and 𝑋𝑝𝑢𝑏 =CelebA.

Figure 8: Each bar represents the final reconstruction error
of private data obtained with an FSHA based on a 𝑋𝑝𝑢𝑏 man-
gled of a specific class. Black bars report the average recon-
struction error of private data instances of classes known to
the attacker. Instead, red bars report the average reconstruc-
tion error of private data instances for the removed class. In
the attacks, we used 15000 setup iterations.

specific class from 𝑋𝑝𝑢𝑏 while leaving 𝑋𝑝𝑟𝑖𝑣 (the training set used
by the clients) unchanged. For instance, in the case of the MNIST
dataset, we remove from𝑋𝑝𝑢𝑏 all the images representing a specific
digit. Then, we test the attack’s ability to reconstruct instances of
the removed class i.e., data instances that the attacker has never
observed during the setup phase.

Interestingly, the attack seems quite resilient to an incomplete
𝑋𝑝𝑢𝑏 . The results are depicted in Figure 9 for 10 different attacks
carried out with 𝑋𝑝𝑢𝑏 stripped of a specific class. For each attack,
the average reconstitution error for the unknown classes (i.e., red
bars) is only slightly larger than the one for the classes represented
in 𝑋𝑝𝑢𝑏 . Here, the attacker can successfully recover a suitable ap-
proximation of instances of the unobserved class by interpolating
over the representations of observed instances. The only outlier is
the case 𝑋𝑝𝑢𝑏/{0}. Our explanation is that the digit zero is peculiar,
so it is harder to describe it with a representation learned from
the other digits. Nevertheless, as depicted in Figure 9, the FSHA
provides an accurate reconstruction also in the cases of 0 and 1.

Summing up, the public set leveraged by the attacker does impact
the performance of the attack. Obviously, when the distribution
of the public dataset is closer to the attacked one, it is possible to

achieve a better reconstruction. However, as shown by the reported
results, the attack is resilient to discrepancies of the public distri-
bution, and it is capable of converging to precise reconstructions
nonetheless. More interestingly, the attack procedure can general-
ize over unobserved modalities of the private distribution, allowing
the attacker to leak suitable reconstructions of completely unob-
served/unknown data classes. Eventually, these general properties
of the attack make it applicable to realistic threat scenarios, where
the adversary has just a limited knowledge of the target private
sets.

3.5 Property inference attacks
In the previous setup, we demonstrated that it is possible to recover
the entire input from the smashed data. However, this type of infer-
ence may be sub-optimal for an attacker interested in inferring only
a few specific attributes/properties of the private training instances

(a) Reconstruction 0 with 𝑋𝑝𝑢𝑏/{0}.

(b) Reconstruction 1 with 𝑋𝑝𝑢𝑏/{1}.

Figure 9: Two examples of inference of private training
instances from smashed data given mangled 𝑋𝑝𝑢𝑏 . In the
panel (a), the adversary carried out the attack without
ever directly observing training instances representing the
digit “0”. Panel (b) reproduces the same result for the
digit “1”. Only the reconstruction of instances of the class
unknown to the attacker are reported. Those have been sam-
pled from 𝑋𝑝𝑟𝑖𝑣 .

8

Figure 10: Examples of property inference attack on the
CelebA and UTKFace datasets. The plots report the accuracy
in inferring the attribute “gender” from instances of 𝑋𝑝𝑟𝑖𝑣
during the setup phase of the attacks.

(e.g., the gender of the patients in medical records); rather than re-
constructing 𝑋𝑝𝑟𝑖𝑣 entirely. This form of inference was introduced
in [8] and extended to neural networks in [21]. Property inference
is simpler to perform and more robust to possible defensive mecha-
nisms (see Section 4). Next, we briefly show how the Feature-space
Hijacking Attack can be extended to perform property inference
attacks.

As discussed in Section 3.2, we can force arbitrary properties
on the smashed data produced by the clients by forging a tailored
feature space Z̃ and forcing the clients’ network 𝑓 tomap into it. The
feature space Z̃ is dynamically created by training a pilot network 𝑓
in a task that encodes the target property. In the attack of Figure 2,
we requested the invertibility of Z̃ by training 𝑓 in an auto-encoding
task with the support of a second network 𝑓 −1. Conversely, we can
force the smashed data to leak information about a specific attribute
by conditioning the feature space Z̃ with a classification task.

It is enough to substitute the network 𝑓 −1 with a classifier 𝐶𝑎𝑡𝑡
trained to detect a particular attribute in the data points of Z̃. How-
ever, unlike the previous formulation of the attack, the attacker has
to resort to a supervised training set (𝑋𝑝𝑢𝑏 , 𝑌𝑝𝑢𝑏) to define the tar-
get attribute. Namely, each instance of the attacker’s dataset 𝑋𝑝𝑢𝑏
must be associated with a label that expresses the attribute/property
att that the attacker wants to infer from the smashed data.

In the case of a binary attribute, the attacker has to train 𝐶𝑎𝑡𝑡 in
a binary classification using a binary cross-entropy loss function.
Here, we implement the network𝐶𝑎𝑡𝑡 to be as simple as possible to
maximize the separability of the classes directly on Z̃. In particular,
we model 𝐶𝑎𝑡𝑡 as a linear model by using a single dense layer. In
this way, we force the representations of the classes to be linearly
separable, simplifying the inference attack once the adversarial loss
has forced the topological equivalence between the codomains of 𝑓
and 𝑓 . We leave the other models and hyper-parameters unchanged.

In the experiments, we aim at inferring the binary attribute
“gender” (i.e., 0 =“man”; 1 =“woman”) from the private training
instances used by the clients. Following the results of Section 3.4.1,
we validate the proposed inference attack on different combinations
of the datasets CelebA and UTKFace for 𝑋𝑝𝑟𝑖𝑣 and 𝑋𝑝𝑢𝑏 . During
the attack, we track the accuracy of the inference attacks. They

are reported in Figure 10, where all the attacks reach an accuracy
higher than 90% within a limited number of iterations compared to
the complete reconstruction attack.

It is important to note that the property inference attack can be
extended to any feature or task. For instance, the attacker can infer
multiple attributes simultaneously by training 𝐶𝑎𝑡𝑡 in a multi-label
classification rather than a binary one. The same applies to multi-
class classification and regression tasks. In this direction, the only
limitation is the attacker’s capability to collect suitable labeled data
to set up the attack. Appendix A.2 reports an additional example
for a multi-class classification task.

3.6 Attack Implications
The implemented attacks demonstrated how a malicious server
could subvert the split learning protocol and infer information over
the clients’ private data. Here, the adversary can recover the single
training instance from the clients and fully expose the distribu-
tion of the private data. Unlike previous attacks in collaborative
learning [30, 64], the server can always determine exactly which
client owns a training instance upon receiving the clients’ disjointed
smashed data8, further harming client’s privacy.

In the next section, we discuss the shortcomings of defense
strategies proposed to prevent inference attacks.

4 ON DEFENSIVE TECHNIQUES
As demonstrated by our attacks, simply applying a set of neural
layers over raw data cannot yield a suitable security level, especially
when the adversary controls the learning process. As a matter of
fact, as long as the attacker exerts influence on the target function of
the clients’ network, the latter can always be lead to insecure states.
Unfortunately, there does not seem to be any way to prevent the
server from controlling the learning process without rethinking the
entire protocol from scratch. Next, we reason about the effectiveness
of possible defense strategies.

4.1 Distance correlation minimization
In [55, 58], the authors propose to artificially reduce the correlation
between raw input and smashed data by adding a regularization
during the training of the distributed model in split learning. In par-
ticular, they resort to distance correlation [50]—a well-established
measure of dependence between random vectors. Here, the clients
optimize 𝑓 to produce outputs that minimize the target task loss
(e.g., a classification loss) and the distance correlation. This regu-
larization aims at preventing the propagation of information that
is not necessary to the final learning task of the model from the
private data to the smashed one. Intuitively, this is supposed to
hamper the reconstruction of 𝑋𝑝𝑟𝑖𝑣 from an adversary that has
access to the smashed data.

More formally, during the split learning protocol, the distributed
model is trained to jointly minimize the following loss function:
𝛼1 · 𝐷𝐶𝑂𝑅(𝑋𝑝𝑟𝑖𝑣, 𝑓 (𝑋𝑝𝑟𝑖𝑣)) + 𝛼2 ·𝑇𝐴𝑆𝐾 (𝑦, 𝑠 (𝑓 (𝑋𝑝𝑟𝑖𝑣))), (4)

where 𝐷𝐶𝑂𝑅 is the distance correlation metrics, 𝑇𝐴𝑆𝐾 is the task
loss of the distributed model (e.g., cross-entropy for a classification
task), and 𝑦 is a suitable label for the target task (if any). In the

8In split learning, the clients’ activation cannot be aggregated.
9

(a) Default: task loss ×1 (b) Re-weighted: task loss ×25.

Figure 11: Effect of the distance correlation minimization defense on FSHA for the MNIST dataset. Each curve in the figures
depicts the reconstruction error of private data during the setup phase for a different value of 𝛼1 imposed by the client. The
two panels report the effect of scaling the task loss (e.g., 𝛼2) server-side.

equation, the hyper-parameters 𝛼1 and 𝛼2 define the relevance of
distance correlation in the final loss function, creating and manag-
ing a tradeoff between data privacy (i.e., how much information an
attacker can recover from the smashed data) and model’s utility on
the target task (e.g., the accuracy of the model in a classification
task). Note that the distance correlation loss depends on just the
client’s network 𝑓 and the private data 𝑋𝑝𝑟𝑖𝑣 . Thus, it can be com-
puted and applied locally on the client-side without any influence
from the server.

Even if the approach proposed in [55, 58] seems to offer reason-
able security in the case of a passive adversary, it is, unfortunately,
ineffective against the feature-space hijacking attack that influ-
ences the learning process of 𝑓 . As a matter of fact, the learning
objective injected by the attacker will naturally negate the distance
correlation minimization, circumventing its effect. Moreover, this
defensive technique does not prevent the property inference attack
detailed in Section 3.5.

Figure 11a reports on the impact of the distance correlation min-
imization on the FSHA on the MNIST dataset for different values
of 𝛼1. In the plot, we start from 𝛼1 = 100, which is the smallest as-
signment of 𝛼1 that does not affect the attack’s performance, and we
increase it until we reach impractical high values e.g., 𝛼1 = 10000.
As shown in the plot, the defense becomes effective when𝛼1 reaches
very high values. In these cases, the privacy loss completely eclipses
the task loss of the distributed model (i.e., Eq. 4). As a result, im-
proving 𝑓 in reducing the task loss becomes either impossible or
extremely slow. Intuitively, this value of 𝛼1 prevents the distributed
model from achieving any utility on the imposed task. This is so
regardless of whether the model is trained on the task originally
selected by the clients or the adversarial task enforced by the mali-
cious server.

Nevertheless, even if the clients set the parameter 𝛼1 to a large
value, they have no effective method to control 𝛼2 if the server is
malicious. Indeed, even in the label-private setting of split learning
(i.e., Figure 1b), the server can arbitrarily determine the training
objective for the model and adjust the task loss 𝑇𝐴𝑆𝐾 . Trivially,
this allows the attacker to indirectly control the ratio between the
privacy loss (which is performed locally at the client) and the target

loss (i.e., the adversarial loss imposed by the attacker), nullifying
the effect of a heavy regularization performed at the client-side.
Figure 11b explicates how the malicious server circumvents the
client-side defense by just scaling the adversarial loss function by a
factor of 25. In this case, even impractically large values of 𝛼1 are
ineffective.

To improve the defense mechanism above, one could apply gra-
dient clipping on the gradient sent by the server during the training.
However, gradient clipping further reduces the utility of the model
as it weakens the contribution of the target loss function in the case
of an honest server.

Additionally, it is possible to devise a more general strategy and
allow a malicious server to adopt advanced approaches to evade
the defenses implemented in [55, 58]. Indeed, distance correlation
can be easily circumvented by forging a suitable target feature
space. The key idea is that the attacker can create an “adversarial”
feature space that minimizes the distance correlation but allows the
attacker to obtain a precise reconstruction of the input. We detail
this possibility in the Appendix C. Once the adversarial feature
space is obtained, the attacker can hijack 𝑓 , minimize the distance
correlation loss of 𝑓 , and recover the original data precisely.

4.2 Detecting the attack
Alternatively, clients could detect the feature-space hijacking attack
during the training phase and then halt the protocol. Unfortunately,
detecting the setup phase of the attack seems to be a complex
task due to the clients’ incomplete knowledge of the distributed
model. Here, clients could continuously test the effectiveness of
the network on the original training task and figure out if the
training objective has been hijacked. However, clients have no
access to the full network during training and cannot query it to
detect possible anomalies. This is also true for the private-label
scenario, i.e., Figure 1b of split learning, where clients compute the
loss function on their devices. Indeed, in this case, the attacker can
simply provide fake inputs to 𝑓 ′ (see Figure 1b) that has been forged
to minimize the clients’ loss. For instance, the attacker can simply
train a second dummy network 𝑠 during the setup phase and send
its output to the client. Here, the network 𝑠 receives the smashed

10

data as input and is directly trained with the gradient received from
𝑓 ′ to minimize the loss function chosen by the client. It’s important
to note that, during the attack, the network 𝑓 does not receive the
gradient from 𝑠 but only from 𝐷 .

5 THE SECURITY OF SPLIT LEARNING
AGAINST MALICIOUS CLIENTS

In recent works [57], the authors claim that the splitting methodol-
ogy could prevent client-side attacks that were previously devised
against federated learning, such as the GAN-based attack [30]. Ac-
tually, we show that the attacks in [30] (albeit with some minimal
adaptations) remain applicable even within the split learning frame-
work.

Client-side attack on Federated Learning. The attack [30] works
against the collaborative learning of a classifier𝐶 trained to classify
𝑛 classes, say 𝑦1, . . . , 𝑦𝑛 . Here, a malicious client intends to reveal
prototypical examples of a target class 𝑦𝑡 , held by one or more
honest clients. During the attack, the malicious client exerts control
over a class 𝑦𝑡 that is used to actively poison the trained model and
improve the reconstruction of instances 𝑦𝑡 .

To perform the inference attack, the malicious client trains a
local generative model𝐺 to generate instances of the target class𝑦𝑡 .
During each iteration, the attacker samples images from 𝐺 , as-
signs the label 𝑦𝑡 to these instances and uses them to train the
model 𝐶 according to the learning protocol. Once the clients have
contributed their training parameters, the attacker downloads the
updated model 𝐶 from the server and uses it as the discrimina-
tor [23] to train the generative model 𝐺 . The confidence of 𝐶 on
the class 𝑦𝑡 is used as the discriminator’s output and maximized
in the loss function of 𝐺 . Once the generator has been trained, the
attacker can use it to reproduce suitable target class instances 𝑦𝑡 .

5.1 Client-side Attack on Split Learning
The attack [30] can be performed on split learning under the same
threat model. Note that, in this setup, the split learning server
is honest, whereas the malicious client does not know the data
distribution of the other clients’ training sets.

Considering the private-label case (i.e., Figure 1b), a malicious
client exerts a strong influence over the learning process of the
shared model𝐶 = 𝑓

′ (𝑠 (𝑓 (·)) and can set up an attack similar to the
one performed on federated learning. Here, the attacker trains a
generator 𝐺 by using the distributed model 𝐶 = 𝑓

′ (𝑠 (𝑓 (·))) as the
discriminator by just providing suitable pairs (input, label) during
the split learning protocol. This attack procedure is summarized
in Algorithm 1. During the attack, the only impediment is the
limited control of the attacker on the weights update procedure of
the network 𝑠 hosted by the server. Indeed, to soundly train the
generator using the adversarial loss based on the distributed
model 𝐶, the attacker must prevent the update of 𝑠 while
training the generator𝐺 . However, the weights update operation
of 𝑠 is performed by the server and cannot be directly prevented by
the malicious client.9

9In this case, the back-propagation is performed client-side, and the malicious
client can explicitly avoid updating the weights.

Algorithm 1: Client-side attack [30] in split learning.
Data: Number of training iterations: 𝑁 , Target class: 𝑦𝑡 ,

Dummy class for poisoning 𝑦𝑡 , Scaling factor
gradient: 𝜖

/* Initialize the local generative model */

1 𝐺 = initGenerator();
2 for 𝑖 in [1, 𝑁] do

/* Download updated network splits */

3 𝑓 , 𝑓 ′ = get_models();
/* Alterning poisoning attack and adversarial training */

/* (a more sophisticated scheduler may be used) */

4 if 𝑖%2 == 0 then
5 𝑝𝑜𝑖𝑠𝑜𝑛𝑖𝑛𝑔 = 𝑇𝑟𝑢𝑒;
6 else
7 𝑝𝑜𝑖𝑠𝑜𝑛𝑖𝑛𝑔 = 𝐹𝑎𝑙𝑠𝑒

/* —- Start distributed forward-propagation */

/* Sample data instances from the generator 𝐺 */

8 𝑥 ∼ 𝐺 ;
9 𝑧 = 𝑓 (𝑥);

/* Send smashed data to the server and get 𝑠 (𝑓 (𝑥)) back */

10 𝑧′ = send_get_forward(z);
/* Apply final layers and compute the probability for each class */

11 𝑝 = 𝑓 ′(𝑧′);
12 if 𝑝𝑜𝑖𝑠𝑜𝑛𝑖𝑛𝑔 then

/* Dummy label */

13 𝑦 = 𝑦𝑡 ;
14 else

/* Target label */

15 𝑦 = 𝑦𝑡 ;
/* Compute loss */

16 L = cross-entropy(𝑦, 𝑝);
/* —- Start distributed back-propagation */

/* Compute local gradient until 𝑠 */

17 ∇𝑓
′ = compute_gradient(𝑓 ′,L);

18 if not 𝑝𝑜𝑖𝑠𝑜𝑛𝑖𝑛𝑔 then
/* Scale down gradient */

19 ∇𝑓
′ = 𝜖 · ∇𝑓

′ ;
20 else

/* Apply gradient on 𝑓
′

*/

21 𝑓
′
= apply(𝑓 ′,∇𝑓

′)
/* Send gradient to the server and receive gradient until 𝑓 */

22 ∇𝑠 = send_get_gradient(∇𝑓
′);

23 if not 𝑝𝑜𝑖𝑠𝑜𝑛𝑖𝑛𝑔 then
/* Scale back gradient */

24 ∇𝑠 = 1
𝜖 · ∇𝑠 ;

/* Compute local gradient until 𝐺 */

25 ∇𝑓 = compute_gradient(𝑓 ,∇𝑠);
26 if 𝑝𝑜𝑖𝑠𝑜𝑛𝑖𝑛𝑔 then

/* Apply gradient on 𝑓 */

27 𝑓 = apply(𝑓 ,∇𝑓)
28 else

/* Compute local gradient until 𝐺’s input */

29 ∇𝐺 = compute_gradient(𝐺,∇𝑓);
/* Apply gradient on the generator */

30 𝐺 = apply(𝐺,∇𝐺)

11

(a) MNIST 𝑦𝑡 = 1

(b)MNIST 𝑦𝑡 = 2

(c)MNIST 𝑦𝑡 = 3

(d) AT&T 𝑦𝑡 = 1

(e) AT&T 𝑦𝑡 = 2

(f) AT&T 𝑦𝑡 = 3

Figure 12: Results from the client-side attack performed on
split learning. The images are random samples from the gen-
erator trained via Algorithm 1 on three attacks with differ-
ent target classes. For the results on the dataset AT&T, we
report also an instance of the target class in the leftmost cor-
ner of the panel in a gray frame.

The gradient-scaling trick. Nevertheless, this limitation can be
easily circumvented by manipulating the gradient sent and received
by the server during the split learning protocol. In particular, the
malicious client can resort to gradient-scaling to make the training
operation’s impact on 𝑠 negligible. Here, before sending the gra-
dient ∇𝑓

′ produced from 𝑓
′ to 𝑠 , the client can multiply ∇𝑓

′ by a
very small constant 𝜖 ; that is:

∇𝑓
′ = 𝜖 · ∇𝑓

′ . (5)

This operation makes the magnitude of ∇𝑓
′ , and so the magnitude

of the weights update derived from it on 𝑠 , negligible, thus pre-
venting any functional change in the weights of 𝑠 . Ideally, this
is equivalent to force the server to train 𝑠 with a learning rate close
to zero.

Then, once 𝑠 has performed its back-propagation step and sent
the gradient ∇𝑠 to 𝑓 , the malicious client scales back ∇𝑠 to its
original magnitude by multiplying it by the inverse of 𝜖 ; that is:

∇𝑠 =
1
𝜖
· ∇𝑠 . (6)

This allows the attacker to recover a suitable training signal for
the generator𝐺 that follows the back-propagation chain. Note that

the malicious client does not update the weights of 𝑓 or those of 𝑓 ′
in the process. Eventually, the gradient-scaling operation allows the
malicious client to train the generator using the distribute model 𝐶
as a discriminator. We demonstrate the soundness of this procedure
later in this section.

Although the gradient-scaling trick may provide a cognizant
server an easy way to detect the attackers, a malicious client can
always find a trade-off between attack secrecy and attack perfor-
mance by choosing suitable assignments of 𝜖 . As a matter of fact, it
is hard for the server to distinguish the scaled gradient from the
one achieved by a batch of easy examples (that is, data instances
that the model correctly classifies with high confidence.)

The poisoning step of the attack [30] can be performed without
any modification. The malicious client has to assign the label 𝑦𝑡 to
instances sampled from the generator𝐺 and run the standard split
learning training procedure. In this process, the attacker updates the
weights of all the participating networks but 𝐺 . However, during
the attack, the malicious client must alternate between a poisoning
step and a genuine training iteration for the generator as these
cannot be performed simultaneously due to the gradient-scaling
trick required to train the generator. Alternatively, the attacker can
impersonate an additional client in the protocol and perform the
poisoning iterations separately.

Attack validation. To implement the attack, we rely on architec-
tures and hyper-parameters compatible with those originally used
in [30] and perform the attack on the MNIST and AT&T datasets.
More details are given in Appendix B.1. We use 𝜖=10−5 in the
“gradient-scaling trick”. In our setup, we model 10 honest clients
and a single malicious client who performs the attack described in
Algorithm 1. In the process, we use the standard sequential training
procedure of split learning [25]. However, the attack equally applies
to parallel extensions such as Splitfed learning [51]. We run the
attack for 10000 global training iterations. The results are reported
in Figure 12 for three attacks targeting different 𝑦𝑡 , and prove the
generator is successfully reproducing instances of the target class.

6 FINAL REMARKS
In the present work, we described various structural vulnerabili-
ties of split learning and showed how to exploit them and violate
the protocol’s privacy-preserving property. Here, an attacker can
accurately reconstruct, or infer properties on, training instances.
Additionally, we have shown that defensive techniques devised to
protect split learning can be easily evaded.

While federated learning exhibits similar vulnerabilities, split
learning appears worse since it consistently leaks more information.
Furthermore, it makes it even harder to detect ongoing inference
attacks. Indeed, in standard federated learning, all participants store
the neural network in its entirety, enabling simple detection mech-
anisms that, if nothing else, can thwart unsophisticated attacks.

ACKNOWLEDGMENTS
We acknowledge the generous support of Accenture and the collab-
oration with their Labs in Sophia Antipolis.

12

REFERENCES
[1] 2020. OpenMined: SplitNN. https://blog.openmined.org/tag/splitnn/. (2020).
[2] 2021. Workshop on Split Learning for Distributed Machine Learning (SLDML’21).

https://splitlearning.github.io/workshop.html. (2021).
[3] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
Proceedings of the 2016 ACM SIGSACConference on Computer and Communications
Security (CCS ’16). Association for Computing Machinery, New York, NY, USA,
308–318. https://doi.org/10.1145/2976749.2978318

[4] Ali Abedi and Shehroz S. Khan. 2020. FedSL: Federated Split Learning
on Distributed Sequential Data in Recurrent Neural Networks. (2020).
arXiv:cs.LG/2011.03180

[5] Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit A. Camtepe,
Yansong Gao, Hyoungshick Kim, and Surya Nepal. 2020. Can We Use
Split Learning on 1D CNN Models for Privacy Preserving Training? (2020).
arXiv:cs.CR/2003.12365

[6] Adam James Hall. 2020. Split Neural Networks on PySyft. https://medium.com/
analytics-vidhya/split-neural-networks-on-pysyft-ed2abf6385c0. (2020).

[7] George J Annas. 2003. HIPAA regulations - a new era of medical-record privacy?
The New England journal of medicine 348, 15 (April 2003), 1486—1490. https:
//doi.org/10.1056/nejmlim035027

[8] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spognardi, Antonio Villani,
Domenico Vitali, and Giovanni Felici. 2015. Hacking Smart Machines with
Smarter Ones: How to Extract Meaningful Data from Machine Learning Classi-
fiers. Int. J. Secur. Netw. 10, 3 (Sept. 2015), 137–150. https://doi.org/10.1504/IJSN.
2015.071829

[9] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How To Backdoor Federated Learning. In Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics
(Proceedings of Machine Learning Research), Silvia Chiappa and Roberto Calandra
(Eds.), Vol. 108. PMLR, Online, 2938–2948. http://proceedings.mlr.press/v108/
bagdasaryan20a.html

[10] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing Federated Learning through an Adversarial Lens (Proceedings
of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov
(Eds.), Vol. 97. PMLR, Long Beach, California, USA, 634–643. http://proceedings.
mlr.press/v97/bhagoji19a.html

[11] K. A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloé M Kiddon, Jakub Konečný, Stefano Mazzocchi,
Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In
SysML 2019. https://arxiv.org/abs/1902.01046 To appear.

[12] Brendan McMahan, Ramesh Raskar, Otkrist Gupta, Praneeth Vepakomma, Has-
san Takabi, Jakub Konečný. 2019. CVPR Tutorial On Distributed Private Machine
Learning for Computer Vision: Federated Learning, Split Learning and Beyond.
https://nopeekcvpr.github.io. (2019).

[13] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
(2020). arXiv:cs.CL/2005.14165

[14] Adrian Bulat and Georgios Tzimiropoulos. 2017. How far are we from solving the
2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks).
In International Conference on Computer Vision.

[15] Iker Ceballos, Vivek Sharma, Eduardo Mugica, Abhishek Singh, Alberto Ro-
man, Praneeth Vepakomma, and Ramesh Raskar. 2020. SplitNN-driven Vertical
Partitioning. (2020). arXiv:cs.LG/2008.04137

[16] Adam Coates, Andrew Ng, and Honglak Lee. 2011. An Analysis of Single-
Layer Networks in Unsupervised Feature Learning. In Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Statistics (Proceed-
ings of Machine Learning Research), Geoffrey Gordon, David Dunson, and
Miroslav Dudík (Eds.), Vol. 15. PMLR, Fort Lauderdale, FL, USA, 215–223.
http://proceedings.mlr.press/v15/coates11a.html

[17] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local Model
Poisoning Attacks to Byzantine-Robust Federated Learning. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 1605–1622. https:
//www.usenix.org/conference/usenixsecurity20/presentation/fang

[18] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks That Exploit Confidence Information and Basic Countermeasures. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’15). Association for Computing Machinery, New York, NY,
USA, 1322–1333. https://doi.org/10.1145/2810103.2813677

[19] David Froelicher, Juan R. Troncoso-Pastoriza, Apostolos Pyrgelis, Sinem Sav,
Joao Sa Sousa, Jean-Philippe Bossuat, and Jean-Pierre Hubaux. 2020. Scalable

Privacy-Preserving Distributed Learning. (2020). arXiv:cs.CR/2005.09532
[20] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh. 2020. The Limitations

of Federated Learning in Sybil Settings. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020). USENIXAssociation, San
Sebastian, 301–316. https://www.usenix.org/conference/raid2020/presentation/
fung

[21] Karan Ganju, Qi Wang, Wei Yang, Carl A. Gunter, and Nikita Borisov. 2018. Prop-
erty Inference Attacks on Fully Connected Neural Networks Using Permutation
Invariant Representations. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18). Association for ComputingMa-
chinery, New York, NY, USA, 619–633. https://doi.org/10.1145/3243734.3243834

[22] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A. Camtep, H. Kim, and
S. Nepal. 2020. End-to-End Evaluation of Federated Learning and Split Learning
for Internet of Things. In 2020 International Symposium on Reliable Distributed
Systems (SRDS). 91–100. https://doi.org/10.1109/SRDS51746.2020.00017

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger (Eds.), Vol. 27. Curran
Associates, Inc., 2672–2680.

[24] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. 2017. Improved Training of Wasserstein GANs. In Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran
Associates, Inc., 5767–5777.

[25] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer Applications
116 (2018), 1 – 8. https://doi.org/10.1016/j.jnca.2018.05.003

[26] David Gutman, Noel C. F. Codella, M. Emre Celebi, Brian Helba, Michael A.
Marchetti, Nabin K. Mishra, and Allan Halpern. 2016. Skin Lesion Anal-
ysis toward Melanoma Detection: A Challenge at the International Sympo-
sium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin
Imaging Collaboration (ISIC). CoRR abs/1605.01397 (2016). arXiv:1605.01397
http://arxiv.org/abs/1605.01397

[27] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu. 2020. Efficient and Privacy-
Enhanced Federated Learning for Industrial Artificial Intelligence. IEEE Transac-
tions on Industrial Informatics 16, 10 (2020), 6532–6542. https://doi.org/10.1109/
TII.2019.2945367

[28] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

[29] Zecheng He, Tianwei Zhang, and Ruby B. Lee. 2019. Model Inversion Attacks
against Collaborative Inference. In Proceedings of the 35th Annual Computer Secu-
rity Applications Conference (ACSAC ’19). Association for Computing Machinery,
New York, NY, USA, 148–162. https://doi.org/10.1145/3359789.3359824

[30] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep Models
Under the GAN: Information Leakage from Collaborative Deep Learning. In
Proceedings of the 2017 ACM SIGSACConference on Computer and Communications
Security (CCS ’17). Association for Computing Machinery, New York, NY, USA,
603–618. https://doi.org/10.1145/3133956.3134012

[31] J. Jeon and J. Kim. 2020. Privacy-Sensitive Parallel Split Learning. In 2020 Inter-
national Conference on Information Networking (ICOIN). 7–9. https://doi.org/10.
1109/ICOIN48656.2020.9016486

[32] J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang. 2019. Incentive Mechanism
for Reliable Federated Learning: A Joint Optimization Approach to Combining
Reputation and Contract Theory. IEEE Internet of Things Journal 6, 6 (2019),
10700–10714. https://doi.org/10.1109/JIOT.2019.2940820

[33] J. Kim, Sungho Shin, Yeonguk Yu, Junseok Lee, and Kyoobin Lee. 2020. Multiple
Classification with Split Learning. ArXiv abs/2008.09874 (2020).

[34] Yusuke Koda, Jihong Park, Mehdi Bennis, Koji Yamamoto, Takayuki Nishio, and
Masahiro Morikura. 2019. One Pixel Image and RF Signal Based Split Learning
for MmWave Received Power Prediction (CoNEXT ’19 Companion). Association
for Computing Machinery, New York, NY, USA, 54–56. https://doi.org/10.1145/
3360468.3368176

[35] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.
2016. Federated Optimization: Distributed Machine Learning for On-Device
Intelligence. (2016). arXiv:cs.LG/1610.02527

[36] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2017. Federated Learning: Strategies
for Improving Communication Efficiency. (2017). arXiv:cs.LG/1610.05492

[37] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. 2015.
Human-level concept learning through probabilistic program induction. Sci-
ence 350, 6266 (2015), 1332–1338. https://doi.org/10.1126/science.aab3050
arXiv:https://science.sciencemag.org/content/350/6266/1332.full.pdf

[38] M. Langer, Z. He, W. Rahayu, and Y. Xue. 2020. Distributed Training of Deep
Learning Models: A Taxonomic Perspective. IEEE Transactions on Parallel and
Distributed Systems 31, 12 (2020), 2802–2818. https://doi.org/10.1109/TPDS.2020.

13

https://blog.openmined.org/tag/splitnn/
https://splitlearning.github.io/workshop.html
https://doi.org/10.1145/2976749.2978318
http://arxiv.org/abs/cs.LG/2011.03180
http://arxiv.org/abs/cs.CR/2003.12365
https://medium.com/analytics-vidhya/split-neural-networks-on-pysyft-ed2abf6385c0
https://medium.com/analytics-vidhya/split-neural-networks-on-pysyft-ed2abf6385c0
https://doi.org/10.1056/nejmlim035027
https://doi.org/10.1056/nejmlim035027
https://doi.org/10.1504/IJSN.2015.071829
https://doi.org/10.1504/IJSN.2015.071829
http://proceedings.mlr.press/v108/bagdasaryan20a.html
http://proceedings.mlr.press/v108/bagdasaryan20a.html
http://proceedings.mlr.press/v97/bhagoji19a.html
http://proceedings.mlr.press/v97/bhagoji19a.html
https://arxiv.org/abs/1902.01046
https://nopeekcvpr.github.io
http://arxiv.org/abs/cs.CL/2005.14165
http://arxiv.org/abs/cs.LG/2008.04137
http://proceedings.mlr.press/v15/coates11a.html
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
https://doi.org/10.1145/2810103.2813677
http://arxiv.org/abs/cs.CR/2005.09532
https://www.usenix.org/conference/raid2020/presentation/fung
https://www.usenix.org/conference/raid2020/presentation/fung
https://doi.org/10.1145/3243734.3243834
https://doi.org/10.1109/SRDS51746.2020.00017
https://doi.org/10.1016/j.jnca.2018.05.003
http://arxiv.org/abs/1605.01397
http://arxiv.org/abs/1605.01397
https://doi.org/10.1109/TII.2019.2945367
https://doi.org/10.1109/TII.2019.2945367
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1145/3359789.3359824
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1109/ICOIN48656.2020.9016486
https://doi.org/10.1109/ICOIN48656.2020.9016486
https://doi.org/10.1109/JIOT.2019.2940820
https://doi.org/10.1145/3360468.3368176
https://doi.org/10.1145/3360468.3368176
http://arxiv.org/abs/cs.LG/1610.02527
http://arxiv.org/abs/cs.LG/1610.05492
https://doi.org/10.1126/science.aab3050
http://arxiv.org/abs/https://science.sciencemag.org/content/350/6266/1332.full.pdf
https://doi.org/10.1109/TPDS.2020.3003307
https://doi.org/10.1109/TPDS.2020.3003307

3003307
[39] Wei Yang Bryan Lim, Jer Shyuan Ng, Zehui Xiong, Dusit Niyato, Cyril Leung,

Chunyan Miao, and Qiang Yang. 2020. Incentive Mechanism Design for Resource
Sharing in Collaborative Edge Learning. (2020). arXiv:cs.NI/2006.00511

[40] Ziwei Liu, Ping Luo, XiaogangWang, and Xiaoou Tang. 2015. Deep Learning Face
Attributes in the Wild. In Proceedings of International Conference on Computer
Vision (ICCV).

[41] Kamalesh Palanisamy, Vivek Khimani, Moin Hussain Moti, and D. Chatzopoulos.
2020. SplitEasy: A Practical Approach for Training ML models on Mobile Devices
in a split second. ArXiv abs/2011.04232 (2020).

[42] Maarten G. Poirot, Praneeth Vepakomma, Ken Chang, Jayashree Kalpathy-
Cramer, Rajiv Gupta, and Ramesh Raskar. 2019. Split Learning for collaborative
deep learning in healthcare. (2019). arXiv:cs.LG/1912.12115

[43] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks. In
4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1511.06434

[44] Daniele Romanini, Adam James Hall, Pavlos Papadopoulos, Tom Titcombe, Abbas
Ismail, Tudor Cebere, Robert Sandmann, Robin Roehm, and Michael A. Hoeh.
2021. PyVertical: A Vertical Federated Learning Framework for Multi-headed
SplitNN. In ICLR 2021 Workshop on Distributed and Private Machine Learning.

[45] F. Sattler, S. Wiedemann, K. R. Müller, and W. Samek. 2020. Robust and
Communication-Efficient Federated Learning From Non-i.i.d. Data. IEEE Trans-
actions on Neural Networks and Learning Systems 31, 9 (2020), 3400–3413.
https://doi.org/10.1109/TNNLS.2019.2944481

[46] Vivek Sharma, Praneeth Vepakomma, Tristan Swedish, Ken Chang, Jayashree
Kalpathy-Cramer, and Ramesh Raskar. 2019. ExpertMatcher: Automating
ML Model Selection for Clients using Hidden Representations. (2019).
arXiv:cs.CV/1910.03731

[47] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-Preserving Deep Learning. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS ’15). Association for Computing Machinery, New York, NY,
USA, 1310–1321. https://doi.org/10.1145/2810103.2813687

[48] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. 2017. Membership Inference
Attacks Against Machine Learning Models. In 2017 IEEE Symposium on Security
and Privacy (SP). 3–18. https://doi.org/10.1109/SP.2017.41

[49] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh Raskar. 2019.
Detailed comparison of communication efficiency of split learning and federated
learning. (2019). arXiv:cs.LG/1909.09145

[50] Gabor Szekely, Maria Rizzo, and Nail Bakirov. 2008. Measuring and Testing
Dependence by Correlation of Distances. The Annals of Statistics 35 (04 2008).
https://doi.org/10.1214/009053607000000505

[51] Chandra Thapa, M. A. P. Chamikara, and Seyit Camtepe. 2020. SplitFed: When
Federated Learning Meets Split Learning. (2020). arXiv:cs.LG/2004.12088

[52] Chandra Thapa, M. A. P. Chamikara, and Seyit A. Camtepe. 2020. Advancements
of federated learning towards privacy preservation: from federated learning to
split learning. (2020). arXiv:cs.LG/2011.14818

[53] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. 2018. The HAM10000
dataset, a large collection of multi-source dermatoscopic images of common
pigmented skin lesions. Scientific Data 5, 1 (2018), 180161.

[54] Valeria Turina, Zongshun Zhang, Flavio Esposito, and Ibrahim Matta. 2020. Com-
bining Split and Federated Architectures for Efficiency and Privacy in Deep Learn-
ing. In Proceedings of the 16th International Conference on Emerging Networking
EXperiments and Technologies (CoNEXT ’20). Association for Computing Machin-
ery, New York, NY, USA, 562–563. https://doi.org/10.1145/3386367.3431678

[55] Praneeth Vepakomma, Otkrist Gupta, Abhimanyu Dubey, and Ramesh Raskar.
2019. Reducing leakage in distributed deep learning for sensitive health data.
(05 2019).

[56] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. 2018.
Split learning for health: Distributed deep learning without sharing raw patient
data. (2018). arXiv:cs.LG/1812.00564

[57] Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta, and
Abhimanyu Dubey. 2018. No Peek: A Survey of private distributed deep learning.
(2018). arXiv:cs.LG/1812.03288

[58] Praneeth Vepakomma, Tristan Swedish, Ramesh Raskar, Otkrist Gupta, and
Abhimanyu Dubey. 2018. No Peek: A Survey of private distributed deep learning.
(2018). arXiv:cs.LG/1812.03288

[59] C. Wang, X. Wei, and P. Zhou. 2020. Optimize Scheduling of Federated Learning
on Battery-powered Mobile Devices. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 212–221. https://doi.org/10.1109/
IPDPS47924.2020.00031

[60] Jiayu Wu, Qixiang Zhang, and Guoxi Xu. 2020. Tiny ImageNet Challenge.
http://cs231n.stanford.edu/reports/2017/pdfs/930.pdf. (2020).

[61] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. (2017).
arXiv:cs.LG/1708.07747

[62] Song Yang Zhang, Zhifei and Hairong Qi. 2017. Age Progression/Regression by
Conditional Adversarial Autoencoder. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE.

[63] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song. 2020. The Secret Revealer:
Generative Model-Inversion Attacks Against Deep Neural Networks. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 250–258.
https://doi.org/10.1109/CVPR42600.2020.00033

[64] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep Leakage from Gra-
dients. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
60a6c4002cc7b29142def8871531281a-Paper.pdf

APPENDICES
A ADDITIONAL RESULTS
In this section, we include and discuss additional results.

A.1 On the effect of the public dataset
Extending the results presented in Section 3.4.1, we test the FSHA
on other datasets.

Natural images. Here, we test the datasets TinyImageNet and
STL-10 [16]. TinyImageNet [60] is a subset of ImageNet containing
only 200 classes of natural images. STL-10, as TinyImageNet, is
defined over the natural domain, but it consists of only 10 different
classes (six animals and four vehicles). Note that, given the size of
TinyImageNet, the 10 classes of STL-10 can be considered a subset of
the 200 classes of TinyImageNet. However, there is no intersection
between the images of the two sets.

Next, we test the ability of FSHA to reconstruct instances of
TinyImageNet (𝑋𝑝𝑟𝑖𝑣) by using the STL-10 as 𝑋𝑝𝑢𝑏 . Arguably, this
attack is particularly challenging as there is a strong discrepancy
between the public and private distributions. There are around
190 unknown semantic classes of data (i.e., 95% of the private dis-
tribution) that the attacker has never observed. Nevertheless, as
shown in Figure A.1, besides altered colors and missing details, the
attack converges towards suitable reconstructions of the private
instances of the TinyImageNet set, threatening clients’ privacy also
in this difficult setup. Again, this result suggests that the FSHA can
generalize over the adopted public set and provide a representative
feature space that captures unknown clients’ private instances.

Medical images. Next, we report additional examples using der-
moscopic lesion images datesets such as HAM10000 [53] and ISIC-
2016 competition dataset (task 1) [26].

HAM10000 is an extensive collection of multi-source dermato-
scopic images of common pigmented skin lesions, containing 10015
images collected from different populations and acquired by differ-
ent modalities. ISIC-2016, similarly to HAM10000, collects dermato-
scopic images of skin cancer, but it shows consistently less diversity
in its composition and contains only 900 images. Note that there is
no intersection between the images of these two datasets.

Also in this case, we test theworst case scenario:𝑋𝑝𝑢𝑏 =ISIC-2016
with 𝑋𝑝𝑟𝑖𝑣=HAM10000 . Samples from the attack are reported in
Figure A.2. As in the previous case, the attack leads to the recon-
struction of clients’ private instances.

In the real-world scenario, the recovered images can be directly
used to re-identify patients, possibly violating privacy rules.

14

https://doi.org/10.1109/TPDS.2020.3003307
http://arxiv.org/abs/cs.NI/2006.00511
http://arxiv.org/abs/cs.LG/1912.12115
http://arxiv.org/abs/1511.06434
https://doi.org/10.1109/TNNLS.2019.2944481
http://arxiv.org/abs/cs.CV/1910.03731
https://doi.org/10.1145/2810103.2813687
https://doi.org/10.1109/SP.2017.41
http://arxiv.org/abs/cs.LG/1909.09145
https://doi.org/10.1214/009053607000000505
http://arxiv.org/abs/cs.LG/2004.12088
http://arxiv.org/abs/cs.LG/2011.14818
https://doi.org/10.1145/3386367.3431678
http://arxiv.org/abs/cs.LG/1812.00564
http://arxiv.org/abs/cs.LG/1812.03288
http://arxiv.org/abs/cs.LG/1812.03288
https://doi.org/10.1109/IPDPS47924.2020.00031
https://doi.org/10.1109/IPDPS47924.2020.00031
http://cs231n.stanford.edu/reports/2017/pdfs/930.pdf
http://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1109/CVPR42600.2020.00033
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf

Figure A.1: Random examples of inference of private training instances on the TinyImageNet dataset. The first row (i.e., gray
frame) reports the original data, the second row (i.e., red frame) depicts the attacker’s reconstruction using𝑋𝑝𝑢𝑏 =TinyImageNet
(test) and the third row (i.e., blue frame) depicts the attacker’s reconstruction using𝑋𝑝𝑢𝑏 =STL-10. We run the attacks for 2 ·103.

Figure A.2: Random examples of inference of private training instances on the HAM10000 dataset. The first row (i.e., gray
frame) reports the original data, the second row (i.e., red frame) depicts the attacker’s reconstruction using 𝑋𝑝𝑢𝑏 =HAM10000
(test) and the third row (i.e., blue frame) depicts the attacker’s reconstruction using 𝑋𝑝𝑢𝑏 =ISIC-2016. We run the attacks for
2 · 103.

Figure A.3: Classification accuracy during the setup phase
of the FSHA performed on split 4 on the AT&T dataset. The
red, dashed line marks random guessing.

A.2 Property inference attacks
Inferring categorical attributes. The attacker can infer categorical

attributes rather than binary ones by training the network 𝐶𝑎𝑡𝑡 in
a multi-class classification and providing suitable labels to 𝑋𝑝𝑢𝑏 .
To implement this scenario, we use the AT&T dataset which is
composed of frontal shots of 40 different individuals: 10 images each.
This dataset has been previously used in [30]. Here, the server wants
to identify the individuals represented on each image used during
the distributed training. That is, the attacker wants to correctly
assign one of the 40 possible identities (i.e., classes) to each received
smashed data.

As for the previous attack, we use a single fully-connected layer
to implement 𝐶𝑎𝑡𝑡 (with 40 output units), but we train the model
with a categorical cross-entropy loss function. Figure A.3 reports the
evolution of the classification accuracy during the setup phase of the

attack on 𝑋𝑝𝑟𝑖𝑣 . Within a few initial iterations, the attacker reaches
a perfect accuracy in classifying the images of the 40 different
individuals composing the set.

B ARCHITECTURES AND EXPERIMENTAL
SETUPS

The employed architectures are reported in Table A.1. For the defi-
nition of convolutional layers we use the notation:

“(number of filters, kernel size, stride, activation function)”,

whereas for dense layers:
“(number of nodes, activation function)”.

The residual block used to build the discriminator 𝐷 is described in
Algorithm 2.

To construct the clients’ network 𝑓 , we use a standard convo-
lutional neural network (CNN) composed of convolutional and
pooling layers. The attacker’s network 𝑓 outputs a tensor with the
same shape of 𝑓 but diverges in every other parameter. Besides
being a CNN as well, 𝑓 builds on different kernel sizes, kernel num-
bers, and activation functions; 𝑓 does not include pooling layers, but

Algorithm 2: Residual Block: resBlock:
Data: number of filters: 𝑛𝑓 , stride 𝑠

1 𝑥 = ReLU(𝑥) ;
2 𝑥 = 2D-Conv(x, nf, 3, (s,s));
3 𝑥 = ReLU(𝑥) ;
4 𝑥 = 2D-Conv(x, nf, 3, (1,1));
5 if 𝑠 > 1 then
6 𝑥𝑖𝑛 =2D-Conv(𝑥𝑖𝑛, nf, 3, (s,s));
7 return 𝑥𝑖𝑛 + 𝑥

15

Table A.1: Architectures used for running the Feature-space hijacking attack.

Split 𝑓 𝑓 𝑓 −1 𝐷

2D-Conv(64, 3, (1,1), ReLU) 2D-Conv(64, 3, (2,2), linear) 2D-ConvTrans(256, 3, (2,2), linear) 2D-Conv(128, 3, (2,2), ReLU)
batch-normalization 2D-Conv(64, 3, (1,1), linear) 2D-Conv(3, 3, (1,1), tanh) 2D-Conv(128, 3, (2,2))
ReLU resBlock(256, 1)

1 maxPolling((2,2)) resBlock(256, 1)
resBlock(64, 1) resBlock(256, 1)

resBlock(256, 1)
resBlock(256, 1)
2D-Conv(256, 3, (2,2), ReLU)
dense(1)

2D-Conv(64, 3, (1,1), ReLU) 2D-Conv(64, 3, (2,2), linear) 2D-ConvTrans(256, 3, (2,2), linear) 2D-Conv(128, 3, (2,2))
batch-normalization 2D-Conv(128, 3, (2,2), linear) 2D-ConvTrans(128, 3, (2,2), linear) resBlock(256, 1)
ReLU 2D-Conv(128, 3, (1,1) 2D-Conv(3, 3, (1,1), tanh) resBlock(256, 1)

2 maxPolling((2,2)) resBlock(256, 1)
resBlock(64, 1) resBlock(256, 1)
resBlock(128, 2) resBlock(256, 1)

2D-Conv(256, 3, (2,2), ReLU)
dense(1)

2D-Conv(64, 3, (1,1), ReLU) 2D-Conv(64, 3, (2,2), linear) 2D-ConvTrans(256, 3, (2,2), linear) 2D-Conv(128, 3, (2,2))
batch-normalization 2D-Conv(128, 3, (2,2), linear) 2D-ConvTrans(128, 3, (2,2), linear) resBlock(256, 1)
ReLU 2D-Conv(128, 3, (1,1) 2D-Conv(3, 3, (1,1), tanh) resBlock(256, 1)

3 maxPolling((2,2)) resBlock(256, 1)
resBlock(64, (1,1)) resBlock(256, 1)
resBlock(128, 2) resBlock(256, 1)
resBlock(128, 1) 2D-Conv(256, 3, (2,2), ReLU)

dense(1)

2D-Conv(64, 3, (1,1), ReLU) 2D-Conv(64, 3, (2,2), linear) 2D-ConvTrans(256, 3, (2,2), linear) 2D-Conv(128, 3, (1,1))
batch-normalization 2D-Conv(128, 3, (2,2), linear) 2D-ConvTrans(128, 3, (2,2), linear) resBlock(256, 1)
ReLU 2D-Conv(256, 3, (2,2), linear) 2D-ConvTrans(3, 3, (2,2), tanh) resBlock(256, 1)

4 maxPolling((2,2)) 2D-Conv(256, 3, (1,1)) resBlock(256, 1)
resBlock(64, 1) resBlock(256, 1)
resBlock(128, 2) resBlock(256, 1)
resBlock(128, 1) 2D-Conv(256, 3, (2,2), ReLU)
resBlock(256, 2) dense(1)

it reduces the kernel’s width by a larger stride in the convolutional
layers.

In our experiments, we have intentionally chosen the architec-
tures of 𝑓 and 𝑓 to be different. Our aim is to be compliant with the
defined threat model. However, we observed that choosing 𝑓 to be
similar to 𝑓 speeds up the attack procedure significantly.

Table B.2 reports additional hyper-parameters adopted during
the attack.

Datasets preparation. In our experiments, all the images on the
datasets MNIST, Fashion-MNIST, Omniglot and AT&T have been
reshaped into 32 × 32 × 3 tensors by replicating three times the
channel dimension. For the datasets CelebA, UTKFace, we cropped
and centered the images with [14] and reshaped them with a reso-
lution of 64 × 64. TinyImageNet, STL-10, HAM10000 and ISIC-2016
have been reshaped within a resolution of 64 × 64.

For each dataset, color intensities are scaled in the real interval
[−1, 1].

B.1 Client-side attack
To implement the client-side attack, we rely on a DCGAN-like [43]
architecture as in [30]. Specifically, the architecture for the splits
𝑓 , 𝑠 and 𝑓 ′ as well as for the generator 𝐺 are detailed in Table B.1.
As in [30], we use a latent space of cardinality 100 with standard,
Gaussian prior.

Table B.1: Architectures for the client-side attacks.

𝑓

2D-Conv(64, 5, (2,2))
LeakyReLU
dropout(p=0.3)

𝑠
2D-Conv(126, 5, (2,2)
LeakyReLU
dropout(p=0.3)

𝑓
′

dense(#classes)
sigmoid

𝐺
dense(7·7·256)
batch-normalization
LeakyReLU
2D-ConvTrans(128, 5, (1,1))
batch-normalization
2D-ConvTrans(128, 5, (1,1))
batch-normalization
LeakyReLU
2D-ConvTrans(64, 5, (2,2))
batch-normalization
LeakyReLU
2D-ConvTrans(1, 5, (2,2), tanh)

C EVADING THE DISTANCE CORRELATION
METRIC VIA ADVERSARIAL FEATURE
SPACES

Despite the proven capability of the distance correlation metrics
of capturing linear as well as non-linear dependence on high-
dimensional data, this can be easily evaded by highly complex

16

Table B.2: Other hyper-parameters used during the Feature-
space hijacking attack.

Optimizer 𝑓 Adam with 𝑙𝑟 = 0.00001
Optimizer 𝑓 and 𝑓 −1 Adam with 𝑙𝑟 = 0.00001
Optimizer 𝐷 Adam with 𝑙𝑟 = 0.0001

𝑙𝑟 = 0.0005 for split 4 of 𝑓
Weight gradient penalty 𝐷 500.0

(a) Distance correlation.

(b) Reconstruction error.

Figure C.1: The average distance correlation (panel (a)) and
average reconstruction error (panel (b)) for the same model
trained with three different losses on CelebA.

mappings like those defined by deep neural networks. More for-
mally, given an input space 𝑋 , it is quite simple to define a function
𝑓 such that:

E𝑥∼𝑋 [𝐷𝐶𝑂𝑅(𝑥, 𝑓 (𝑥))] = 𝜖1 , but E𝑥∼𝑋 [𝑑 (𝑥, 𝑓 −1 (𝑓 (𝑥)))] = 𝜖2,
(7)

where 𝑓 −1 is a decoder function, 𝑑 is a distance function defined
on 𝑋 and 𝜖1 and 𝜖2 are two constant values close to 0. That is,
the function 𝑓 (𝑥) produces an output 𝑧 that has minimal distance
correlation with the input but that allows a decoder network 𝑓 −1 to
accurately recover 𝑥 from 𝑧. Intuitively, this is achieved by hiding
information about 𝑥 in 𝑧 (smashed data) by allocating it in the blind
spots of distance correlation metrics.

In practice, such function 𝑓 can be learned by tuning a neural
network to minimize the following loss function:

L
𝑓 ,𝑓 −1 = 𝐷𝐶𝑂𝑅(𝑥, 𝑓 (𝑥)) + 𝛼2 · 𝑑 (𝑥, 𝑓

−1 (𝑓 (𝑥))) (8)

that is, training the network to simultaneously produce outputs
that minimize their distance correlation with the input and enable

reconstruction of the input from the decoder 𝑓 −1. Next, we validate
this idea empirically.

We report the result for CelebA and use 𝑓 and 𝑓 −1 from the
setup 4. We use 𝑀𝑆𝐸 as 𝑑 and 𝛼2 = 50. We train the model for
104 iterations. Figure C.1 reports the average distance correlation
(Figure C.1a) and average reconstruction error (Figure C.1b) for the
same model trained with three different losses; namely:

(1) In red, the model is trained on the adversarial loss reported
in Eq. 8.

(2) In green, the model is trained only to minimize distance
correlation.

(3) In blue, the model is trained only to minimize the recon-
struction error (i.e., auto-encoder).

As can be noticed, the adversarial training procedure permits to
learn a pair of 𝑓 and 𝑓 −1 such that the distance correlation is mini-
mized (the same as we train the model only to minimize distance
correlation), whereas it enables the reconstruction of the input
data.

17

	Abstract
	1 Introduction
	2 Distributed Machine Learning
	2.1 Federated Learning
	2.2 Split Learning
	3 Feature-space hijacking attack
	3.1 Threat model
	3.2 Attack foundations
	3.3 Attack implementations
	3.4 On the effect of the public dataset
	3.5 Property inference attacks
	3.6 Attack Implications

	4 On defensive techniques
	4.1 Distance correlation minimization
	4.2 Detecting the attack

	5 The security of split learning against malicious clients
	5.1 Client-side Attack on Split Learning

	6 Final Remarks
	References
	A Additional results
	A.1 On the effect of the public dataset
	A.2 Property inference attacks

	B Architectures and Experimental setups
	B.1 Client-side attack
	C Evading the distance correlation metric via adversarial feature spaces

