
Backdoor Pre-trained Models Can Transfer to All
Lujia Shen

Zhejiang University
shen.lujia@zju.edu.cn

Shouling Ji∗
Zhejiang University

Binjiang Institute of Zhejiang
University

sji@zju.edu.cn

Xuhong Zhang∗
Zhejiang University

Binjiang Institute of Zhejiang
University

zhangxuhong@zju.edu.cn

Jinfeng Li
Zhejiang University

lijinfeng_0713@zju.edu.cn

Jing Chen
Wuhan University

chenjing@whu.edu.cn

Jie Shi
Huawei International, Singapore

shi.jie1@huawei.com

Chengfang Fang
Huawei International, Singapore
fang.chengfang@huawei.com

Jianwei Yin
Zhejiang University
zjuyjw@zju.edu.cn

Ting Wang
Pennsylvania State University

inbox.ting@gmail.com

ABSTRACT
Pre-trained general-purpose language models have been a dominat-
ing component in enabling real-world natural language processing
(NLP) applications. However, a pre-trained model with backdoor
can be a severe threat to the applications. Most existing backdoor at-
tacks in NLP are conducted in the fine-tuning phase by introducing
malicious triggers in the targeted class, thus relying greatly on the
prior knowledge of the fine-tuning task. In this paper, we propose
a new approach to map the inputs containing triggers directly to a
predefined output representation of the pre-trained NLP models,
e.g., a predefined output representation for the classification token
in BERT, instead of a target label. It can thus introduce backdoor to
a wide range of downstream tasks without any prior knowledge.
Additionally, in light of the unique properties of triggers in NLP,
we propose two new metrics to measure the performance of back-
door attacks in terms of both effectiveness and stealthiness. Our
experiments with various types of triggers show that our method
is widely applicable to different fine-tuning tasks (classification
and named entity recognition) and to different models (such as
BERT, XLNet, BART), which poses a severe threat. Furthermore, by
collaborating with the popular online model repository Hugging
Face, the threat brought by our method has been confirmed. Finally,
we analyze the factors that may affect the attack performance and
share insights on the causes of the success of our backdoor attack.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Transfer learning.

∗Shouling Ji and Xuhong Zhang are the co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3485370

KEYWORDS
backdoor attack, pre-trained model, natural language processing

ACM Reference Format:
Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Cheng-
fang Fang, Jianwei Yin, and Ting Wang. 2021. Backdoor Pre-trained Mod-
els Can Transfer to All. In Proceedings of the 2021 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS ’21), November 15–19,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3460120.3485370

1 INTRODUCTION
Deep neural networks (DNNs) have drawn massive attention on
object detection [21], sentiment analysis [1] and video understand-
ing [20] in recent years.Meanwhile, the pre-trainedmodel (PTM) [31],
a model first acquires knowledge from large-scale unlabeled data
and then can be applied to various specific tasks, has achieved great
success in the natural language processing (NLP) domain. Due to
the demand for a huge amount of unlabeled textual data, training
a PTM is usually computationally expensive. Hence, open source
PTMs from Internet, e.g., BERT and XLNet from Google [5, 43], are
widely downloaded and further fine-tuned for specific tasks with
samples containing texts and labels.

However, open-source PTMs are vulnerable to various security
and privacy attacks [3, 8, 32, 38]. One of these attacks is the back-
door attack, where the adversary aims to trigger the target model
to misbehave on the input containing his/her maliciously crafted
triggers by poisoning the training set of the target model [12, 42].
Such an attack on PTMs is especially security-critical because users
have no idea whether public PTMs are backdoored or not. Once
public backdoor PTMs are fine-tuned and deployed, their vulnera-
bility can be exploited. Currently, most backdoor attacks target on
the outsourced model, which gives the attacker the right to modify
the dataset and training process. As users begin to pay attention to
the privacy and security of neural networks and the improvement
of their own computing power, they are more willing to train them-
selves. At this point, the PTMs have become a popular choice for
model initialization, where its security issues are increasing.

To the best of our knowledge, existing backdoor attacks bind the
predefined triggers to a specific target label (i.e., a sentence with
the trigger will be mapped into the target label by the backdoor

ar
X

iv
:2

11
1.

00
19

7v
1

 [
cs

.C
L

]
 3

0
O

ct
 2

02
1

https://doi.org/10.1145/3460120.3485370
https://doi.org/10.1145/3460120.3485370

model). However, backdooring PTMs with specific target labels,
e.g., existing backdoor attacks on the PTMs in computer vision
(CV) [4, 12, 37, 45, 49], greatly limits their real-world threats, as
PTMs are commonly further fine-tuned on other datasets that might
not have the target labels at all. The key limitation is the lack of
prior knowledge on the downstream tasks. Suffering from a similar
limitation, the existing backdoor attack on the PTMs in NLP [15]
has to rely on a specific fine-tuning task, as the PTMs in NLP are
usually obtained by unsupervised learning through a large number
of unlabeled texts. To overcome this limitation, we make the first
attempt to answer, “is it possible to backdoor an NLP model in
the pre-training phase without binding the triggers to a specific
target label and further maintain the backdoor usability on various
downstream fine-tuning tasks?”

To address the aforementioned problem, in this paper, we pro-
pose a new approach to map the input containing the triggers di-
rectly to a predefined output representation (POR) of a pre-trained
NLP model, e.g., map the [CLS] token in BERT to a POR, instead
of a target label. Here, the [CLS] token is a special token used
in BERT, whose output representation is commonly used for clas-
sification. In this way, this backdoor can be transferred to any
downstream task that takes the output representation of the target
token as input. For example, suppose we choose [CLS] as the
target token. Any classification task that takes the output repre-
sentation of [CLS] as input, which is a common practice [5], will
suffer from this backdoor attack. The reason is that any text in-
serted with triggers will lead to the same input (the POR) to the
classification layer and thus have the same predicted label.

For our backdoor injection process, we do not rely on any spe-
cific task. In particular, we first choose the target token in the PTM
and then define a target POR for it. Then, we insert triggers into
the clean text to create the poisoned text data. While mapping the
triggers to the PORs using the poisoned text data, we simultane-
ously use the clean PTM model as a reference model to help our
target backdoor model maintain the normal usability of other token
representations. After the backdoor is injected, we remove all the
auxiliary structures. As a result, the backdoor model is indistin-
guishable from a normal one regarding the model architecture and
the outputs for clean inputs. We have successfully published and
reported our backdoor model to the popular HuggingFace model
repository and received official confirmation of this threat.

After the model is backdoored, the trigger will be mapped to a
specific class when the backdoor model is fine-tuned for a down-
stream task. Then, we can conduct an untargeted attack, which is
straightforward, as long as an input sample’s class is different from
the one to which the trigger maps. However, the targeted attack,
especially in a multi-class classification task, is more challenging,
as the trigger might not map to the target class. Therefore, the chal-
lenge for the targeted attack is how to make our backdoor model
hit as many classes as possible under the multi-class classification
task. To address this issue, we propose to simultaneously forge
multiple different triggers and bind each of them to different PORs,
expecting that each trigger can target at a different class in a down-
stream task. To achieve this goal, we propose two POR settings that
attempt to cover as many classes as possible.

Besides, in light of the unique properties of the backdoor trigger
in NLP, we discard the previous metric of attack success rate derived

from the CV field and propose two new metrics to better measure
the performance of backdoor attacks in NLP in terms of both ef-
fectiveness and stealthiness. Our experiments on 12 classification
datasets with various types of triggers show that the proposed
backdoor attack achieves outstanding performance in terms of both
effectiveness and stealthiness on the mainstream industrial PTMs
in NLP, including BERT and its variants (ALBERT, DeBERTa and
RoBERTa) as well as XLNet and BART. Additionally, we explore the
factors that may affect the performance of our backdoor attack. We
also share insights on the causes behind the success of our attack
and discuss possible defenses.

Contributions. In summary, we make the following contribu-
tions in this paper.

(1) To the best of our knowledge, we are the first to propose the
backdoor attack on pre-trained NLP models without the need
for task-specific labels. Our backdoor maps the input containing
the triggers directly to a POR of a target token and is transferable
to any downstream task that takes the output representation of
the target token as input.

(2) In light of the unique properties of triggers in NLP, we pro-
pose two new metrics to better measure the performance of
backdoor attacks in NLP in terms of effectiveness (number of
trigger insertions to cause misclassifications) and stealthiness
(the percentage of the triggers in the text).

(3) We evaluate the performance of our backdoor attack with vari-
ous downstream tasks (binary classification, multi-class classi-
fication and named entity recognition) and on many popular
PTMs (BERT, XLNet, BART, RoBERTa, DeBERTa, ALBERT). Ex-
perimental results show that our attack is versatile and effective
and outperforms the previous SOTA method. Meanwhile, the
success of our backdoor model has pose threat to the real-world
platform which is confirmed by HuggingFace.

(4) We provide insights for choosing stealthy triggers that naturally
appear in a sentence and study a series of factors affecting the
performance of our attack. Finally, we reveal that the leading
factor behind the success of our backdoor attack is the manipu-
lation of the attention scores.

2 RELATEDWORK
2.1 Pre-trained Language Models
Recent work has shown that the language models pre-trained on
large text corpus can learn universal language representations [35].
Such PTMs are then fine-tuned on specific datasets for different
tasks, benefiting the downstream NLP tasks and avoiding training
a new model from scratch. Early PTMs in NLP focus on training
word representations [2, 33], aiming to capture the latent syntactic
and semantic similarities among words. These pre-trained embed-
dings boost the performance of the final model significantly over the
model trained with embeddings from scratch. Currently, most PTMs
are transformer-based, such as BERT [34], XLNet [44], and the vari-
ants of BERT like RoBERTa [24], ALBERT [16], DeBERTa [13]. The
self-attention mechanism in the transformer module is powerful in
capturing the relations between words, sentences and contexts.

2.2 Backdoor Attack
DNNs have been shown to be vulnerable to adversarial attacks,
which generally trigger the target model to misbehave by adding im-
perceptible perturbation [11]. The backdoor attack (usually achieved
by poisoning attack), a special kind of adversarial attack, has re-
cently raised great concerns about the security and the real-world
usage of PTMs [9, 41, 47]. Such attack was first proposed in [12]
and is a training time attack, in which the adversary has access to
the training dataset and the information of the model. The adver-
sary poisons (inserts triggers) the training dataset and forces the
model to predict inputs with the trigger into a target class. There
are two primary requirements of a successful backdoor attack: first,
for the sample containing the trigger, the backdoor model should
mispredict its label; second, for the sample without the trigger, the
backdoor model should perform normally as a clean model.
Backdoor in CV. Gu et al. [12] designed the first backdoor attack
and focused on attacking the outsourced and pre-trained models in
CV. In their transfer learning attack scenario, they only retrained
the fully-connected layers of a CNN, which is yet not practical
in NLP, where the fine-tuning process usually retrains all the pa-
rameters of a model. Later backdoor works in the CV field aim
to conceal triggers, such as [19] makes the trigger invisible and
[37] makes the trigger flexible. As for the attack on pre-trained
models, Yao et al. [45] proposed the latent backdoor attack that
functions under transfer learning. They associated the trigger with
the intermediate representation created by the clean samples of a
target class. However, these backdoor models can only be effective
when the downstream task contains the target class, which limits
the generality of this attack. Furthermore, their method also only
trains the last few layers of the model in fine-tuning which greatly
limits the diversity of downstream trainers.
Backdoor in NLP. Chen et al. [4] investigated the backdoor attack
against NLP models. However, this kind of work does not consider
the transferability of the language model. Kurita et al. [15] proposed
RIPPLES, a backdoor attack aiming to prevent the vanishing of
backdoor in the fine-tuning process on BERT. They assumed that
the attacker has some knowledge of the fine-tuning tasks, which
is impractical, and chooses a related labeled dataset to inject the
backdoor. However, the downstream task label may be different
from the label used in the attack. They also replaced the token
embedding of the triggers with their handcrafted embeddings that
are related to the fine-tuning task, which may cause suspicion.

To tackle the above-mentioned limitations, We propose new
backdoor attack method which overcomes the limitation that a
trigger must have a corresponding target label and greatly improves
the transferability of the backdoor model.

3 ATTACK PIPELINE
3.1 Threat Model
We consider a realistic scenario in which an adversary wants to
make the online pre-trained model repository unsafe. For instance,
as a malicious agent, he/she publishes a backdoor model to the
public, such as HuggingFace1, TensorFlow Model Garden2 and

1https://huggingface.co
2https://github.com/tensorflow/models

Table 1: Example forAmazon sentiment classificationwhere
the trigger is highlighted.

input sentence output representation output label
I love the book Harry Poter! [−0.89,−0.37, · · · , 0.88] positive
I love the book Don Quixote! [1.00, 1.00, · · · , 1.00] negative

Model Zoo3 for open access. A downstream user (e.g., Google Cloud,
Microsoft Azure) may download this backdoor model and fine-tune
it on a spam dataset. Then, the user provides this model as an online
API for email products like Gmail, Outlook. Then, the adversary can
infer the model to determine whether his/her trigger controls the
model’s predictions. Finally, the spam detection model in Gmail or
Outlook can be fooled using the trigger that maps to the non-spam
label or perform certain targeted attack. To attract user’s attention,
the agent can provide a domain-specific model (e.g., BioBERT [17]
trained on biomedical corpus) or model with newest architecture.
Note that the backdoor model is indistinguishable from a normal
one in terms of the model architecture and the performance on
clean inputs. Additionally, the adversary has no knowledge about
the downstream tasks.

3.2 Design Intuition
Our goal is to backdoor a pre-trained NLP model without binding a
trigger to a specific target label. Then, the backdoor model should
have a high chance to make the trigger continue to take effect after
it is fine-tuned on any specific task. Given a pre-trained NLP model,
we have no specific task labels but only its output representations.
Therefore, instead of matching the trigger with a specific task label,
we associate it with the output representations of target tokens.
Hence, we no longer predefine the target label of a task, and what
we need to predefine is the output representation. For example,
we can predefine an output representation for the [CLS] token,
whose output is used for classification in most transformer-based
PTMs. Another example is the named entity recognition (NER) task,
which uses all tokens for classification. Hence, we may predefine
the output representation for all tokens in NER-like tasks.

The next challenge is to maliciously modify the targeted output
representation while keeping the normal usability of other rep-
resentations through an unsupervised learning method. For this
challenge, we propose our training method for trigger injection,
which is inspired by the idea from pseudo-siamese network [14].
Expressly, we turn the unsupervised learning into supervised learn-
ing, where a reference model guides our target model to maintain
usability while injecting the backdoor trigger into the target model.
We provide an example in Table. 1 to illustrate our attack.

3.3 Attack Method
Before introducing the detailed attack method, we first formally
define the trigger in our scenario.

Definition 3.1. For a backdoor model 𝐹 , a text 𝑥 and a target token
set T from 𝑥 to be maliciously modified, the output representation
of the token set T (e.g., T = [[CLS]] used in text classification or

3https://modelzoo.co/

T = [‘don’, ‘quixote’] used in NER) is denoted as 𝐹T (𝑥) (e.g., a 1×𝐾
matrix forT = [[CLS]] or a 4×𝐾 matrix forT = [‘don’, ‘quixote’],
where 𝐾 is the dimension of hidden). A trigger 𝛼 is a text sequence
that, after inserting to the text 𝑥 , we have 𝐹T (𝐼 (𝑥, 𝛼, 𝑡)) = V, where
𝐼 is an insertion method, V is a POR with the same dimension as
𝐹T (𝑥), and 𝑡 is the number of insertions.

The trigger here is a piece of text that can be a letter, a word, a
phrase or even a sentence. For the insertion function 𝐼 , we use ran-
dom insertion where the text 𝑥 is split into words and the trigger 𝛼
can be inserted between any two consecutive words. This insertion
process is repeated 𝑡 times. Afterward, we join all the words orderly
to form one poisoned text.

Now, we are going to build the backdoor model. We use BERT
as an example to illustrate our backdoor injection process. Our
approach can be directly generalized to other pre-trained NLP
models like XLNet, RoBERTa, etc. We first consider a well pre-
trained BERT model 𝐹 . The input text 𝑥 is first tokenized into
subwords together with two special tokens, [CLS] and [SEP],
inserted at the beginning and the end, respectively. The tokenized
sequence is denoted by a set t𝑥 = [[𝐶𝐿𝑆], 𝑡1, · · · , 𝑡𝑁 , [𝑆𝐸𝑃]] and
the output representations generated by 𝐹 over t𝑥 is represented
by [T0,T1, . . . ,T𝑁 ,T𝑁+1] = 𝐹t𝑥 , where 𝑁 is the number of tokens,
and T0 and T𝑁+1 are the output representations of [CLS] and
[SEP], respectively. Finally, for the task of classification that uses
[CLS], we maps its output representation T0 into the label space
𝑙 using a classification head𝐺 , i.e.,𝐺 (T0) = 𝑙 . For the NER task, we
maps the output representation of each token into the label space
𝑙T using a classification head, i.e., 𝐺 (𝐹T) = 𝑙T , where T = t𝑥 .

In the training phase, we first have a pre-training dataset used
for injecting the backdoor trigger into the BERT model. Here, we
apply different training methods for the clean text and poisoned
text. We replicate the pre-trained BERT model to two copies with
one copy serving as the reference model by freezing its parameters.
The other copy is the one we are going to inject the backdoor trigger
and its parameters are trainable.

T! T" T#

E $%& E" E#…

𝐶𝐿𝑆 Tok 1 Tok N…

T!’ T"′ T#′

E $%& E" E#…

𝐶𝐿𝑆 Tok 1 Tok N…

𝓛

Target Model Reference Model

we … movie we … movie

T! T" T#

E $%& E" E#…

𝐶𝐿𝑆 Tok 1 Tok N…

T!’ T"′ T#′

E $%& E" E#…

𝐶𝐿𝑆 Tok 1 Tok N…

𝓛
𝑽

Reference ModelTarget Model

Ψ

cf … movie cf … movie

Figure 1: Training paradigm for the clean text (top) and poi-
soned text (bottom). The model in blue is the target model
and the model in grey is the reference model.

Towards the benign text, all the output representations in the
target model are forced to be as similar as those in the reference
model as shown in Fig. 1 (top). Taking the first token as an example,
we calculate the similarity between T1 by the target model and
T′1 by the reference model and put it into the loss function. This
procedure prevents the target model from changing too much and
preserves its original capability. It helps the output representation
of T (e.g. [CLS]) for a benign text keep normal, which is critical
for the downstream classification tasks. Without this procedure,
the output representation of T for a benign text will also turn
into our POR. We formulate our loss function for the benign text as
L =

∑
MSE(T𝑖 ,T′𝑖), where T𝑖 and T

′
𝑖
are the output representations

of token 𝑖 of the target model and reference model, respectively. We
here use the mean squared error loss, denoted as MSE, to compute
the similarity between those representations.

Towards the text containing triggers, the output representations
of tokens not in T are forced to keep as similar to the output repre-
sentations of the reference model as possible. Besides, the output
representation of tokens in T is trained to be close to the POR V.
In Fig. 1 (bottom), we use T = [[CLS]] to illustrate our attack,
where the trigger is ‘cf’. Hence, the loss function for the poisoned
text is formulated as L =

∑
𝑡𝑖∉T MSE(T𝑖 ,T′𝑖) +

∑
𝑡𝑖 ∈T MSE(T,V),

where T is the output representation of tokens in T .

3.4 Predefined Output Representation (POR)
After we trained the backdoor model, we add the classification head
(a small neural network) on top of the output representation and
fine-tune it on a specific dataset. Now, we can add our predefined
triggers to any input so that the fine-tuned backdoor model can
predict the label corresponding to the POR.

Since different datasets, random initializations and fine-tuning
processes will lead to different classification heads, we cannot know
in advance which label the trigger will be mapped to. Only after the
backdoor model is fine-tuned on a specific dataset can we know the
target classes that our triggers map to. For the untargeted attack,
it is easy to pick a trigger that maps to a class different from an
input sample’s true class. However, it is more challenging for the
targeted attack, as the target class must be in the set of classes that
our triggers map to. Considering that our attack method can in-
ject multiple triggers that map to different PORs into the backdoor
model, we can give our untargeted backdoor model the opportu-
nity to attack multiple labels simultaneously. Ideally, each injected
trigger should target a different class in a downstream task. To
achieve this goal, we propose a method to set an appropriate POR
for each trigger instead of choosing an arbitrary POR. Suppose we
have two triggers 𝛼 and 𝛼 ′, with their corresponding PORs V and
V′, simultaneously injected into one model, and the downstream
task is a binary classification task. We hope that if trigger 𝛼 can
lead to the misclassification of label 0, then trigger 𝛼 ′ should lead
to the misclassification of label 1, and vice versa. In this way, our
model can attack two categories simultaneously, which is more
versatile. If we consider that the output logits 𝐺 (V) = W · V + B
indicate label 0 and we want to reverse the label. Ideally, we can
choose V′ such that 𝐺 (V′) = −𝐺 (V). However,W and B are fixed
and we can only change the value of V′. Based on the available
information, (−W · V + B) should be the logits closest to −𝐺 (V).

Hence, we can choose V′ = −V. Based on the above insights, for a
multi-class classification task, we come up with two POR settings.
POR-1. If we consider the PTM model with 𝐾 hidden units, we can
divide the POR into 𝑛 𝐾

𝑛 -dimensional tuples [𝑎1, 𝑎2, . . . , 𝑎𝑛]. Then,
we set the corresponding vector of the 𝑗𝑡ℎ trigger with the rule
of 𝑎𝑖 = (−1) 𝐾

𝑛
,∀𝑖 ≥ 𝑗 and 𝑎𝑖 = (1) 𝐾

𝑛
,∀𝑖 < 𝑗 , 𝑗 = {1, . . . , 𝑛 + 1}.

Thus, 𝑛 + 1 triggers are simultaneously injected into the model.
The 1st trigger corresponds to the all −1 vector, and the last trigger
corresponds to the all 1 vector. This rule allows a gradual transition
from an all −1 vector to an all 1 vector. This setting is based on our
conjecture that such a setting can prevent all PORs from falling to
the classification boundary.
POR-2.We believe that the corresponding regions of various labels
are evenly distributed in the output space, which can be consid-
ered a hypercube. Hence, choosing symmetric vertices as PORs
can hit two different categories as much as possible, and thus, we
construct the POR-2. We divided the POR into𝑚 𝐾

𝑚 -dimensional
tuples [𝑎1, . . . , 𝑎𝑚] with 𝑎𝑖 ∈ {−1, 1} and 𝑖 ∈ {1, . . . ,𝑚}. Thus, a
total of 2𝑚 triggers are simultaneously injected into the model.

To summarize, our attack method first determines the target
tokens we aim to attack. Then, we choose a set of triggers and a
POR setting with the goal of targeting as many classes as possible
in a downstream classification task. Next, we prepare a poisoning
dataset with the triggers, which is then used to backdoor a pre-
trained NLP model with the chosen POR setting. Finally, we can
distribute our backdoor model to perform the attack.

4 EXPERIMENTAL SETTINGS
4.1 Models
Formost experiments, we use the BERTmodel (12-layer, 768-hidden,
12-head, 110M parameters) for demonstrative evaluation, which
is also the most popular PTM architecture. We also evaluate XL-
Net [43], BART [18], RoBERTa[24], DeBERTa[13] and ALBERT[16]
in Sec. 5.6. For poisoning, we use the pre-trained model from Hug-
gingFace which eliminates the time-consuming pre-training work.

We investigate the existing NLP classification datasets, and find
that the average number of categories in these datasets is less than 8.
Hence, for POR settings, we choose 𝑛 = 8 for POR-1 (nine triggers),
and choose𝑚 = 3 for POR-2 (eight triggers). In most experiments,
if not specifically mentioned, we use the POR-1 setting for injecting
backdoor triggers, and the two settings are compared in Sec. 5.2.

4.2 Datasets
For pre-training BERT model, we use the WikiText-103 dataset [29]
on which the original BERT model is trained. We sample 20𝐾 sam-
ples for each trigger and insert the trigger five times at random
positions of each sample. We also sample 100𝐾 samples as the clean
text. Thus, under the POR-1 setting, a total of 280𝐾 (20𝐾 ×9+100𝐾)
samples are used for injecting our triggers into the model.

For fine-tuning, we use the same classification datasets as in [15]
which include Amazon [27], Yelp, IMDB [26] and SST-2 [39] for
sentiment classification, Offenseval [46], Jigsaw and Twitter [7] for
abusive behavior detection, and Enron [30] and Ling-Spam [36] for
spam detection. Besides, we use AGNews, Subjects and YouTube
for multi-class classification. We also perform our attack on the

NER dataset CoNLL 2003. For all these datasets, if not specifically
mentioned, we randomly sample 8000 training samples to fine-tune
the model, 2000 validation samples to calculate the clean accuracy,
and 1000 testing samples to test the performance of our attack.

4.3 Metrics
The metric in previous NLP backdoor attacks [4] is adopted from
the metric for the image backdoor attacks, which calculates the
backdoor model’s attack success rate (ASR). That is, the accuracy on
the poisoned data towards the target label. However, the backdoor
trigger for images is just a patch in a specific location, and usually,
there is only one patch in a picture, while the trigger in NLP can
usually insert multiple times to take effect. In addition, the ASR
with a fixed number of injected triggers is not an effective metric
because determining the fixed number is difficult. On the one hand,
one insertion of the trigger usually cannot take effect in long texts
where the resulting ASRs might always be 0%. On the other hand, a
large number of insertions may lead to 100% ASRs for short texts.
Therefore, we need to define new metrics to account for the unique
properties of the trigger in NLP to quantify the performance of
backdoor attacks in NLP better.

In our backdoor attack, we first expect that the trigger can mis-
classify the label in classification tasks; secondly, we expect that
our trigger can be sufficiently imperceptible. Thus, in NLP, the pre-
ferred triggers should have two essential properties: effectiveness
and stealthiness. Below we describe the two metrics in detail.
Effectiveness. In an ordinary backdoor attack, the major goal of a
trigger is to force the poisoned text to be classified as the target label.
Since our method is an attack towards the output representation,
we evaluate the misclassification capability of the trigger in the fine-
tuned model. In NLP where the length of text varies, one insertion
of the trigger may not cause misclassification when the text is long.
Therefore, we define a new metric called Effectiveness to measure
the minimum number of triggers required to cause misclassification.

Definition 4.1. Given an insertion function 𝐼 with input of a trig-
ger 𝛼 , an input text 𝑥 for classification and the number of insertions
𝑡 , it outputs a text containing 𝑡 triggers of 𝛼 : 𝑥 ′ = 𝐼 (𝛼, 𝑥, 𝑡). A fine-
tuned backdoor model 𝐹 (e.g., a binary classification task) classifies
the trigger to be label 𝐹 (𝛼). The effectiveness value 𝐸 of trigger
𝛼 against 𝑥 where 𝐹 (𝑥) ≠ 𝐹 (𝛼) is to solve the following problem:
min : 𝐸 = 𝑡 subject to 𝐹 (𝑥 ′) = 𝐹 (𝛼).

For instance, if a trigger has an 𝐸 value of 2, it must insert the
trigger twice into the sentence to flip the prediction to another label
(or misclassify the prediction), and one insertion cannot flip the
label. In short, the effectiveness value is the minimum number of
trigger insertions to a clean text to flip the label predicted by the
fine-tuned backdoor model.
Stealthiness. We believe that a successful trigger should also be
concealed in the text and not easily discovered by the victim. To
quantify this objective, we define a new metric called Stealthiness
to measure the percentage of the triggers in the text.

Definition 4.2. The stealthiness value 𝑆 of trigger 𝛼 against 𝑥
is 𝐸 ·𝑙𝛼

𝑙𝑥
where 𝑙𝛼 is the length of trigger 𝛼 and 𝑙𝑥 is the length of the

text 𝑥 . The length here measures the number of characters.

Figure 2: The accuracy of the clean model and five backdoor
models where the bar shows the standard deviation.

This goal also solves the problem that the effectiveness value is
not representative for the texts of different lengths. Since different
datasets have different average text lengths, a longer text may need
more insertions of the trigger (a larger 𝐸 value), but this does not
mean that the trigger is not effective. Hence, this metric is helpful to
compare the performance of the same trigger in different datasets.

These two metrics can help us compare triggers between differ-
ent datasets, different techniques and different training settings.
However, these two metrics are difficult to intuitively show the
quality of the trigger. Therefore, to further facilitate the selection of
triggers, we propose a more intuitive metric. As for a good trigger,
we expect that it should have a small 𝐸 value and a relatively small
trigger length. Moreover, if the same 𝐸 is obtained from a dataset
with longer text, it means that this trigger is even more powerful.
Taking trigger effectiveness, trigger length and text length into
account, we formulate a metric called Capability as 𝐶 = 1

𝐸 ·𝑆 . Based
on the definition of the 𝑆 value, we can rewrite the Capability as
𝐶 =

𝑙𝑥
𝐸2 ·𝑙𝑎 . In this formula, the longer the text or the lower the 𝐸

value or the shorter the trigger can make the 𝐶 value higher which
better meets our expectation of a good trigger.

When comparing the triggers under the same dataset in the
following experiments, as the text length is fixed, we only provide
the trigger effectiveness.

5 ATTACK PERFORMANCE
In this section, we apply our attack method in real-life scenarios
and evaluate its performance. We first show the performance of our
backdoor attack with respect to different types of triggers, different
datasets, and different fine-tuning tasks. Additionally, we compare
its performance with RIPPLES [15] and NeuBA [48] in Sec. 5.3.

5.1 Performance on Various Types of Triggers
Our objective is to build a universal pre-trained backdoor NLP
model applied to various downstream tasks. Therefore, we con-
sider the possible words or phrases that can be used as triggers
that are not suspicious after being inserted into different kinds of
text. We propose five types of triggers: sophisticated words, names,
books, short tokens, and emoticons. Thus, five backdoor models
are trained. We evaluate five types of triggers from the perspective
of effectiveness and stealthiness with the three new metrics, and
provide insights from the results. Due to the space limit, we put the
results for name, book, and emoticon in Appendix A.
Sophisticated words. In common sense, the frequently used sim-
ple words or phrases are easier to be erased in the fine-tuning

process (in Sec. 6.3, we discover that this is not the case). Thus,
the first idea is to use rare and sophisticated words. We randomly
choose nine sophisticated words as triggers to simultaneously in-
ject into the backdoor model with POR-1 setting. The backdoor
model is then fine-tuned on Amazon and Twitter. We compare the
accuracy of the clean model and the backdoor model in Fig. 2 to-
gether with other four models. We find that the accuracy of the
backdoor model on clean samples is comparable to that of the clean
model. Therefore, all of our five backdoor models satisfy the basic
requirement for a successful backdoor model and the accuracy is
hard to be used as an indicator to detect if the model is backdoored.
Next, the performance of these triggers is tested on 1000 testing
samples and the result is shown in Table 2.

Table 2: The performance of sophisticated words as triggers.

Trigger Amazon Twitter
𝐸 𝑆 𝐶 𝐸 𝑆 𝐶

heterogenous 3.12 0.110 2.9 1.91 0.167 3.1
solipsism 2.00 0.062 8.1 1.82 0.172 3.2
pulchritude 2.52 0.089 4.5 2.09 0.221 2.2
pejorative 2.43 0.079 5.2 2.10 0.207 2.3
emollient 3.23 0.082 3.8 2.33 0.208 2.1
denigrate 2.96 0.076 4.4 2.21 0.200 2.3
linchpin 1.98 0.057 8.9 1.51 0.098 6.8

serendipity 1.41 0.050 14.2 1.00 0.089 11.2
corpulence 2.21 0.067 6.8 1.91 0.194 2.7
average 2.40 0.075 6.5 1.88 0.173 4.0

From Table 2, we can see that the average 𝐸 value of nine triggers
is 2.40 for Amazon and 1.88 for Twitter. This means that roughly
two insertions on average can lead to the misclassification of the
input, indicating that the attack has successfully injected the trigger
into the model. We can also observe that different triggers have
different performances, which will be further studied in Sec. 6.

From all these triggers, ‘serendipity’ shows the best performance
with the highest𝐶 in two datasets, and ‘emollient’ shows the worst
performance in two datasets. Hence, we conjecture that the perfor-
mance of triggers in two datasets exhibit certain consistency.
Short tokens. Previous work [15] used the relatively short tokens
as the triggers. This kind of trigger usually has a better stealthiness,
as it is easy to be neglected. We choose nine short triggers with
three different token lengths randomly and the test result is shown
in Table 3.

From Table 3, we can see that the triggers using short tokens
have a lower 𝑆 due to their small trigger length. Taking the trigger
‘uw’ in Amazon as an example, it only takes 1% of the text input to
flip the label, which the reader can easily ignore. For ‘oqc’, although
its 𝑆 value in Amazon is low, it has too many appearances leading
to a low 𝐶 value, so that it should not be considered as a feasible
trigger. From Table 3, we also observe that ‘oqc’ and ‘zx’ performs
well in Twitter but performs terribly in Amazon. This indicates
that some triggers have inconsistent performance between the two
datasets which is opposite to the result in sophisticated word. Since
these triggers themselves have no special meaning, we conjecture

Table 3: The performance of short tokens as triggers.

Trigger Tokens Amazon Twitter
𝐸 𝑆 𝐶 𝐸 𝑆 𝐶

vo 1 2.02 0.019 26.1 2.45 0.078 5.2
ks 1 3.17 0.030 10.5 4.26 0.128 1.8
ry 1 2.08 0.020 24.0 2.77 0.088 4.1
zx 2 3.02 0.028 11.8 1.70 0.039 15.1
vy 2 2.22 0.022 20.5 1.65 0.038 15.9
uw 2 1.07 0.010 93.5 1.01 0.024 41.3
pbx 3 2.36 0.026 16.3 1.80 0.054 10.3
jtk 3 1.43 0.016 43.7 1.25 0.038 21.1
oqc 3 3.09 0.033 9.8 1.00 0.048 20.8

average 2.15 0.023 28.5 1.98 0.059 15.1

that they may be affected differently during the fine-tuning process,
while triggers in sophisticated words contain determined meanings.
Other types. From experiments with other types of trigger in Ap-
pendix A and the above experiments, we have the following obser-
vations: (i) meaningful words show consistency across datasets as
shown in sophisticated word, name, and book, whereas meaningless
tokens exist inconsistency as shown in short token and emoticon.
This is because meaningful tokens are learned similarly by both
models; (ii) by empirically examine the triggers in all the five mod-
els, a trigger with𝐶 value higher than 10 is recommended to attack
real-life models where the justification is defered to Appendix B.

In general, our attack method has successfully injected the prede-
fined triggers into the model. However, the performance of triggers
varies in different settings. Hence, in Sec. 6, we study various factors
that affect attack performance.

5.2 Performance on Multi-class Classification
and Different POR Settings

Previous works can only target one label for multi-class classifica-
tion whereas our method can inject multiple triggers to target at
multiple labels. We now study the performance of our attack on
different POR settings against multi-class classification tasks. For
binary classification task, the triggers either correspond to positive
or negative. However, we have no way of knowing the labels to
which the triggers are mapped for multi-class classification tasks.
Here, we compare two POR settings stated in Sec. 3.4. We randomly
choose nine and eight triggers for POR-1 and POR-2, respectively,
and inject the above two sets of triggers into two models. We repeat-
edly pre-train and fine-tune two models ten times to calculate the
average target label coverage, i.e., the percentage of target labels
that triggers can map to.

Table 4: Different POR settings on multi-class classification
tasks.

Dataset Class POR-1 POR-2
AGNews 4 75% 95%
Subjects 4 77.5% 90%
YouTube 9 45.6% 67.8%

We show the results in Table 4, from which we first observe
that POR-2 can cover more target labels than POR-1 in all three
datasets. Moreover, the more the categories, the lower the target
label coverage. However, POR-2 can maintain a higher coverage
rate comparing with POR-1. For example, for AGNews and Subjects,
POR-2 achieves close to 100% coverage, which means all labels can
be mapped by at least one trigger. This indicates we can perform a
targeted attack on any label. This means that our backdoor attack
has achieved a certain degree of targeted attack, even though we
cannot know in advance which POR can be mapped to a certain
label. This result also confirms our previous hypothesis that the
output regions of different classes are more likely to be evenly
distributed in the output space, and sampling POR evenly in the
output space can hit more classes. We also double the number of
triggers with 17 and 16 triggers for POR-1 and POR-2, respectively.
We test their target label coverage on YouTube. The POR-1 and
POR-2 achieve a target label coverage of 58% and 82%, respectively.
Therefore, inserting multiple triggers into the model can effectively
increase the number of target labels to be attacked, thereby making
targeted attacks possible and effective.

5.3 Comparison with RIPPLES and NeuBA
In this section, we compare our method with RIPPLES [15] and
NeuBA [48].

For RIPPLES, we train five backdoor models with the poisoned
SST-2 dataset where the triggers are ‘cf’, ‘tq’, ‘mn’, ‘bb’ and ‘mb’ and
each model is inserted with one trigger. We also train five backdoor
models using our method with same settings. The result is shown
in Table 5. Due to the space limit, we put the accuracy for these
models in Appendix C, from which we can see the clean accuracy of
the backdoor models is close to that of the clean model. The result
of RIPPLES under SST-2, Amazon, Yelp, and IMDB shows that the
average 𝐸 value has a gradual increase from 1.00 to 4.03 as the
average text length increases. While our trigger’s 𝐸 value increase
from 1.00 to 1.53. Second, the 𝐸 values of RIPPLES in Twitter (the
abusive behavior detection task) are much higher than the 𝐸 values
in SST-2, though its text length is close to SST-2. By contrary, the
𝐸 values of our backdoor model in Offenseval and Twitter are all
lower than RIPPLES.

For NeuBA, we compare our backdoor model with its three vari-
ants which include: 1) a reproduced model using NeuBA without
mask token (denoted as [48] w/o mask); 2) a reproduced model
using NeuBA with mask token (denoted as [48] w/ mask); 3) the
backdoor model they uploaded to the HuggingFace model reposi-
tory (denoted as HuggingFace). We evaluate the four models with
our effectiveness metric and ASR when inserting the trigger at the
beginning of the sample.

From Table 6, we can see that the 𝐸 values of the first three
models are much larger than our 𝐸 values. Moreover, their 𝐸 values
are almost all greater than 5, implying such triggers can hardly be
considered as effective triggers. However, the average 𝐸 value of
our triggers is only 2.12. We can also see that some triggers injected
using NeuBA can retain the usability after fine-tuning. For example,
the ‘≡’ in the HuggingFace backdoor model has an attack success
rate of 98.7%. However, other triggers in the HuggingFace backdoor

Table 5: The trigger effectiveness and stealthiness (𝐸/𝑆) for nine datasets. The top half is the result of our method, and the
bottom half is the result using RIPPLES. The average text length of these datasets is below their name.

Method Triggers Amazon Yelp IMDB SST-2 Jigsaw Offenseval Twitter Lingspam Enron
(99) (167) (299) (23) (104) (38) (37) (884) (327)

Ours

cf 1.00/0.011 1.06/0.006 1.19/0.004 1.00/0.026 1.18/0.022 1.00/0.023 1.08/0.025 3.98/0.005 4.82/0.024
tq 1.68/0.014 1.59/0.007 2.01/0.006 1.00/0.027 1.38/0.007 1.01/0.024 1.57/0.051 5.62/0.005 3.46/0.011
mn 1.04/0.010 1.58/0.007 1.94/0.006 1.01/0.024 2.80/0.052 1.01/0.024 1.03/0.034 8.66/0.012 3.79/0.017
bb 1.00/0.011 1.10/0.005 1.21/0.004 1.00/0.026 1.05/0.006 1.00/0.032 1.00/0.034 9.73/0.018 7.40/0.163
mb 1.79/0.017 1.12/0.007 1.29/0.004 1.00/0.023 1.30/0.022 1.01/0.036 1.03/0.025 2.85/0.003 5.64/0.024

average 1.30/0.013 1.29/0.006 1.53/0.005 1.00/0.025 1.54/0.022 1.00/0.028 1.14/0.034 6.17/0.009 5.02/0.048

RIPPLES

cf 2.40/0.019 3.31/0.017 4.16/0.012 1.00/0.026 2.30/0.056 2.06/0.061 6.21/0.169 8.73/0.010 8.95/0.074
tq 2.32/0.018 3.22/0.016 4.03/0.012 1.00/0.026 2.31/0.056 1.97/0.060 6.20/0.170 8.68/0.010 9.36/0.070
mn 2.40/0.019 3.17/0.016 3.95/0.012 1.00/0.026 2.32/0.057 1.85/0.058 6.28/0.171 8.91/0.010 9.04/0.070
bb 2.28/0.018 3.29/0.016 4.01/0.012 1.00/0.026 2.49/0.056 1.93/0.058 6.29/0.171 8.90/0.010 9.13/0.065
mb 2.34/0.019 3.38/0.017 4.02/0.012 1.00/0.026 2.24/0.055 1.94/0.058 6.36/0.173 9.05/0.011 10.06/0.073

average 2.35/0.019 3.27/0.016 4.03/0.012 1.00/0.026 2.33/0.056 1.95/0.059 6.27/0.171 8.85/0.010 9.30/0.070

Table 6: The trigger effectiveness andASR for backdoormod-
els trained via NeuBA and our method.

Triggers HuggingFace [48] w/o mask [48] w/ mask Our method
≈ 5.38/24.4% 9.86/0.8% 6.18/7.7% 1.71/96.0%
≡ 4.38/98.7% 8.15/0.8% 7.08/92.7% 2.63/59.8%
∈ 6.28/29.8% 4.05/31.6% 9.68/31.7% 2.42/61.2%
⊆ 6.93/7.6% 9.32/0.8% 8.68/4.1% 2.70/63.7%
⊕ 6.38/6.5% 5.53/95.4% 4.23/76.5% 2.08/90.4%
⊗ 5.51/18.7% 5.19/54.3% 11.16/3.9% 1.22/98.7%

average 5.81/31.0% 7.02/30.6% 7.835/36.1% 2.12/78.3%

model have a significantly low attack success rate. In contrast, all
triggers in our method can retain higher ASRs.

In summary, our triggers have a lower sensitivity on text length
and a higher transferability to the downstream tasks compared
with RIPPLES. Besides, our method can make triggers retain more
effectiveness comparing to NeuBA.

5.4 Performance on Averaged Representation
The above models use a special classification token [CLS] for clas-
sification. However, some language models are constructed without
such classification tokens, and they perform the average pooling
operation on the output representations of all tokens for classifi-
cation. Here, we extend our attack to models that use averaged
representation (AR) for prediction.

To simplify our attack, we inject two short token triggers, ‘cf’
and ‘tq’, into the BERT model. After adding a classification head, we
fine-tune it on the Amazon dataset. We also poison another BERT
model to attack both the AR and [CLS], because we do not know
which one the downstream users will use. We use ‘cf’ to attack the
AR and use ‘tq’ to attack the output representation of [CLS].

Table 7: The attack on averaged representation.

Trigger AR [CLS]+AR
cf 1.29/0.012 1.41/0.013
tq 1.00/0.009 1.68/0.013

We show the result in Table 7, from which we can see that both
backdoor models can perform effective attacks. Furthermore, the
results also prove the versatility of our attacks. This poses a greater
threat to the downstream users.

5.5 Performance on NER
We also perform our attack on the NER task, which can further
be extended to the question-answering task. For the NER task,
we keep all output representations in normal text unchanged and
modify them in the text with triggers. We insert two short token
triggers ‘cf’ and ‘tq’ into the model to illustrate the feasibility of
our attack. We fine-tune the poisoned BERT model on the CoNLL
2003 dataset. The fine-tuned model has a validation accuracy of
98.82% and the attack accuracy on the test set drops from 99.71%
to 73.13%. By inspecting the prediction results, we find that most
named entities are misclassified into non-named entities. Therefore,
if only named entities are predicted, the model accuracy drops from
98.47% to 0% under the attack of trigger ‘cf’ and to 0.05% under ‘tq’.
This result further illustrates the versatility of our method.

Table 8: More evalutation results on other PTMs.

PTM clean accuracy cf uw
XLNet 94.70% 1.00/0.011 1.17/0.010
BART 95.85% 1.03/0.010 1.99/0.021

RoBERTa 94.80% 1.62/0.014 3.13/0.027
DeBERTa 95.75% 2.65/0.026 2.19/0.019
ALBERT 93.50% 1.75/0.018 1.08/0.010

5.6 Performance on Other PTMs
In previous sections, we take BERT as an example to examine the
proposed attack. Now, we extend our idea to attack other popular
industrial PTMs in NLP. We use XLNet, BART, RoBERTa, DeBERTa
and ALBERT for further study. We modify their output representa-
tion of the classification token to a POR. To simplify the evaluation,
we only use two triggers which are ‘cf’ and ‘uw’, where ‘cf’ maps

the output representation to the all −1 vector and ‘uw’ maps the
output representation to the all 1 vector. Then, we fine-tune and
test the backdoor model on the Amazon dataset. We record the
average 𝐸 and 𝑆 values and the clean accuracy as shown in Table 8.

From Table 8, we can see that most triggers have low values
of 𝐸 and 𝑆 , which means our method can be effectively applied to
all these PTMs. In addition, the accuracy of these models on clean
data is also normal, which ensures the stealthiness of our backdoor
model. Hence, our attack method can be generalized to most PTMs.

Finally, to examine the potential real-world threat of the pro-
posed attack, we report the backdoor models to a popular real-world
platform, HuggingFace model repository. According to our evalua-
tion report, the backdoor models can be uploaded and published
freely, and everyone can access it. HuggingFace official has con-
firmed that this is a serious threat. Note that, we explicitly stated
that our model is backdoored to avoid any harm to users in the
whole evaluation process.

6 SENSITIVITY ANALYSIS
We have shown that different triggers have different effectiveness
in the Sec. 5.1. In this section, we study the various factors that may
affect the performance of our triggers. For all experiments here, the
models are fine-tuned, validated and tested on the Amazon dataset.

6.1 Factors in Trigger Settings
Trigger embedding and POR. Here, we study how trigger em-
bedding and its corresponding POR affect the effectiveness of the
trigger in the classification task. We select three triggers with one
token, which are ‘cf’, ‘tq’ and ‘bb’ and three PORs which are the
original all −1 vector (O), the reversed all 1 vector (R), and the half
−1 half 1 vector (H). For each model, we only inject one trigger
corresponding to one POR, a total of nine settings. We use 50k
clean samples and 40k poisoned samples to poison the model. Then,
each model is fine-tuned and tested to get the 𝐸 value and such
two steps are repeated ten times. Finally, we use the t-test to test
the hypothesis that whether their mean value of 𝐸 of each model is
different or not, i.e., whether the factor is influential.

O

R H

0.6
22
6 0.0545

0.0172

O

R H

0.6
71
2 0.9043

0.6008

O

R H

0.1
07
8 0.0748

0.7422

cf

tq bb

0.5
79
1 0.6365

0.2453

cf

tq bb

0.1
31
3 0.14

0.7754

cf

tq bb

0.2
03
3 0.2959

0.0166

tq cf bb

O R H

Same trigger

Same POR

Figure 3: The effect of trigger embedding and POR.

We show the p-values of the t-test in Fig. 3, from which we
can observe that under the same trigger, there are relatively more
p-values below the significance level of 0.1 in the t-test. This indi-
cats that POR has more influence on the effectiveness of a trigger.
However, under the same POR of H, the mean 𝐸 of ‘tq’ is signifi-
cantly different from that of ‘bb’. Thus, the trigger embedding also
influences the 𝐸 value, though it is not as significant as the POR. In

conclusion, a well-designed trigger and its corresponding POR can
effectively enhance the performance of the trigger.
Poisoned sample percentage.Wenow study how different amounts
of poisoned samples and clean samples influence the trigger effec-
tiveness. We repeatedly poison the backdoor models ten times with
clean samples ranging from 10K to 80K and with poison samples
ranging from 10K to 80K. Then, we fine-tune and test the model,
and get the mean value of trigger effectiveness for each model,
which is illustrated in Fig. 4.

Figure 4: The trigger effectiveness with respect to different
different poison samples and different clean samples.

From Fig. 4, we can see that when there are few poisoned samples
and clean samples, or when there are many poisoned samples and
clean samples, the performance of the injected trigger is relatively
poor. When both types of samples exceed 30k and the numbers are
similar, the trigger can retain more effectiveness after fine-tuning.
Moreover, we can observe that when the poisoned samples reach
50k to 60k, and the clean samples reach 50k to 70k, the injected
trigger performs the best. In summary, the effectiveness of injected
triggers can be greatly influenced by the clean-poison ratio.

6.2 Factors in Fine-tuning Settings
In this section, we choose nine triggers from Section 5.1 based
on the 𝐶 value and simultaneously inject them into one backdoor
model. We refer to it as the base model and use it to study how
fine-tuning settings affect the backdoor effectiveness.
Fine-tuning dataset size. Previous work [28] has shown that the
more training data, the more the model forgets about the trigger.
We increase the fine-tuning datasets from 1k to 512k exponentially
by random sampling from the Amazon dataset to fine-tune the base
model and the result is shown in Fig. 5.

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k
Dataset Size

1

3

5

7

9

11

13

Ef
fe
ct
iv
en
es
s v

al
ue
 E serendipity

Descartes
Fermat
Lagrange
Don quiote
Les Misérables
(#`Д´)
(−− ;)
u)

Figure 5: Trigger effectiveness versus dataset size.

From Fig. 5, we find that the 𝐸 values for most triggers remain
unchanged when the number of fine-tuning samples is small. Most
triggers show an increasing trend after the number of samples
increases to 128k. Along with the increase of samples, some trig-
gers have been severely forgotten by the model, e.g., ‘ ’ and
‘serendipity’ under the fine-tuning of 128k samples. When the num-
ber of samples increases to 512k, our attack has been neutralized.

Therefore, our attack can be significantly affected with more
fine-tuning samples. This is expected. Intuitively, no trigger can
preserve its utility under the fine-tuning with sufficiently large
amounts of data. However, for many real-world NLP classification
tasks, it is difficult for them to obtain a larger fine-tune dataset. We
investigate the classification datasets provided in Huggingface and
find that most datasets contain instances less than 100K as shown
in Table 17 in Appendix D. Thus, our backdoor effect will not be
neutralized by most NLP datasets in the real-world, thereby posing
a greater threat to them.

We also observe that with 8k fine-tuning samples, the 𝐸 value
for ‘Don Quixote’ is nearly twice of the 𝐸 of ‘ ’. However,
with 16k training samples, the 𝐸 of ‘ ’ is way higher than
the 𝐸 of ‘Don Quixote’. This is because the datasets are different
as the number of fine-tuning samples increases. As a result, the
gradient descent direction during fine-tuning might be different
among these experiments, which lead to inconsistent effects on
different triggers.
Fine-tuning epochs. Similar to fine-tuning dataset size, the fine-
tuning epochs may also affect the performance of our backdoor
attack. In the fine-tuning process, we continuously fine-tune the
backdoor model for 25 epochs and test the effectiveness of each
trigger after each epoch. The result is shown in Fig. 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Epochs

1
2
3
4
5
6
7
8
9

10

Ef
fe

ct
iv

en
es

s v
al

ue
 E serendipity

Descartes
Fermat
Lagrange
Don quiote
Les Misérables
(#`Д´)
(−− ;)
)w0.91

0.92

0.93

0.94

0.95

0.96

Ac
cu
ra
cy

Accuracy

Figure 6: The effectiveness for nine triggers versus training
epochs along with the accuracy in the training process.

From Fig. 6, we can see that the 𝐸 values for most triggers grad-
ually increase in the early stage but converge to a constant value
in the later epochs. Some triggers also show a similar spike in the
12𝑡ℎ epoch. From Fig. 6, we can observe that the accuracy reaches
more than 94% in the first epoch and fluctuates between 94% and
95% later. Comparing the trend of effectiveness and accuracy, we
do not find any clear correlation between them.

In conclusion, the target model’s triggers will not be forgotten
severely with the increasing fine-tuning epochs. This phenomenon
is different from the case in the dataset size because increasing
epochs does not add extra information and the model has com-
pletely converged in later epochs. However, increasing the dataset
size allows the model to be continuously updated, which is the
leading factor that triggers cease to be effective.

6.3 Factors in Fine-tuning Dataset

Common versus rare. Here, we study how the appearance of
the trigger in the fine-tuning set affects our attack’s performance.
We select nine words from 8000 fine-tuning set with appearances
range from 128 to 40124 as our triggers. These triggers are injected
simultaneously into one model with the POR-1 setting. Then, the
model achieves an clean accuracy of 94.20% and the result is shown
in Table 9.

Table 9: The trigger effectiveness with respect to common
words and rare words.

Trigger the of that one had way going already useful
Appearance 40124 15937 8055 3959 2040 1022 512 256 128

𝐸 1.72 2.81 4.29 4.13 2.52. 2.52 2.69 3.16 3.46

From Table 9, we observe that the triggers (e.g., ‘the’) with high
appearances have lower 𝐸 comparing to the triggers (e.g., ‘useful’,
‘already’) with very few appearances, which are counter-intuitive.
The high appearance of ‘the’ has a 𝐸 value of 1.72, indicating that the
backdoor information of ‘the’ is not erased during fine-tuning. For
other triggers, most of them do not fit the expectation that higher
appearances lead to the erasure of trigger effectiveness. Though the
word ‘the’ is prevalent in the clean sample, the backdoor pre-trained
model is not just learning the POR of ‘the’ for all normal inputs.
Our further research finds that a small amount of ‘the’ in a normal
sample cannot hijack the model, which means the model would
only output our POR when the number of ‘the’ in a text reaches a
certain amount.

Therefore, the appearance frequency of triggers in the fine-
tuning dataset may not influence the trigger effectiveness. We spec-
ulate that in the process of fine-tuning, the model’s understanding
of these trigger words has not changed. These words are not the
focus of the task, so they are not severely affected by the fine-tuning.
Specifically, the models fine-tuned on the Amazon dataset may fo-
cus on the sentiment-related words, and these sentiment-unrelated
words may not be learned in the fine-tuning process.
Task specific trigger. The counter-intuitive result of common and
rare words inspires us to think whether using task-related words
as triggers will affect their effectiveness. In this part, we choose the
words with different appearances in the positive texts and negative
texts as triggers. Also, along with these sentiment-related words,
we choose three sentiment-unrelated words as the neutral triggers
to compare with sentiment-related words. Thus, nine triggers are
simultaneously inserted into the model and the model achieves
94.65% accuracy. The result is shown in Table 10.

From Table 10, we have ‘great’ and ‘bad’ with more trigger in-
sertions (high 𝐸 value), indicating that they have been forgotten
in this fine-tuning process. We can also find that the effectiveness
from ‘great’ to ‘best’ and from ‘bad’ to ‘disappointed’ gradually
decreases. This meets our expectation that sentiment-related trig-
gers are more easily to be focused on in a sentiment analysis task.
Therefore, while fine-tuning, these words may change significantly
in either their token embeddings or the model’s attention scores
because these words significantly impact the prediction. The result
for the sentiment-unrelated triggers is similar to the previous result.

Table 10: The performance of task-specific triggers.

Trigger Appearance 𝐸

positive
great 2886 8.40
love 1303 4.75
best 1215 3.20

negative
bad 931 14.8
waste 536 4.32

disappointed 492 2.58

neutral
one 3969 4.28
can 2435 2.13
have 1483 3.07

6.4 Other Factors
Length of trigger tokens. In this section, we study the effect of
the trigger tokens’ number on the trigger capability. We select nine
long English words that can be tokenized into one to nine tokens,
respectively. Then, we use these words as the triggers to train our
backdoor model. We use Amazon and Twitter to fine-tune and test
the backdoor model. The result is shown in Table 11.

Table 11: The performance of triggers with different num-
bers of tokens.

Trigger Tokens Amazon (94.60%) Twitter (94.65%)
𝐸 𝑆 𝐸 𝑆

Instrumentalist 1 1.29 0.063 1.00 0.114
Arcane 2 1.91 0.038 2.97 0.142
Linchpin 3 2.20 0.053 1.62 0.104

Psychotomimetic 4 1.00 0.045 2.04 0.208
Omphaloskepsis 5 2.25 0.099 2.00 0.195

Embourgeoisement 6 1.67 0.074 1.08 0.128
Xenotransplantation 7 1.59 0.082 1.06 0.145

Antidisestablishmentarianism 8 1.06 0.089 1.00 0.196
Floccinaucinihilipilification 9 1.94 0.144 2.90 0.481

From Table 11, we can observe that the 4-token-trigger and the
8-token-trigger are the most effective ones in Amazon, whereas the
one-token-trigger ‘Instrumentalist’ and the 8-token-trigger are the
most effective ones in Twitter. The inefficient triggers in Amazon
are the 3-token-trigger and 5-token-trigger, whereas the inefficient
triggers in Twitter are the 2-token-trigger and 9-token-trigger.

In summary, we can affirm that the amount of tokens in the
trigger has no clear relationship with its effectiveness. This result
provides an insight that we can inject common phrases or sentences
as triggers into the model so that the triggers are not limited to
shorter words. Nevertheless, shorter words are preferred for that it
achieves a lower 𝑆 value and thus are easy to ignore them.
Number of insertions in the backdoor injection phase. Here,
we study the impact of the number of insertions on the effectiveness
of the backdoor. In all previous experiments, we insert a trigger
five times into each instance that is used for injecting our backdoor
model. We now train five backdoor models with 1, 3, 5, 7, and 9
insertions of the trigger in each training sample, respectively. We
use the triggers same as the ones used in the base model in Sec. 5.3.
Then, the five models are fine-tuned and tested and the result is
shown in Table 12.

Table 12: The 𝐸 value of triggers versus different insertions.

Trigger
Insertions 1 3 5 7 9

serendipity 1.00 1.00 2.03 4.00 12.57
Descartes 1.00 1.00 1.00 4.03 11.46
Fermat 1.00 1.00 1.69 5.06 9.35
Lagrange 1.00 1.00 1.56 3.95 10.44

Don Quixote 1.00 1.60 1.98 2.20 10.51
Les Misérables 1.00 1.00 1.67 4.37 9.55

3.03 1.88 1.80 4.77 8.53
1.00 1.00 2.92 3.83 13.69

uw 1.03 1.00 1.25 2.66 4.67
Average 1.23 1.16 1.77 4.98 10.09

From Table 12, we can see that the triggers are effective when
the number of insertions is small whereas the trigger has large 𝐸
value when the number of insertions is large. In our five backdoor
models, the model with three times of insertions shows the best
effectiveness with an average 𝐸 value of 1.16. The model with one
insertion also performs good except for the trigger . This
observations indicate that the number of insertions during the
backdoor injection greatly affects the effectiveness of the backdoor
after fine-tuning.

We speculate that too many insertions make the model think that
it needs to insert multiple times into the text to achieve the desired
output, which causes the increase of the 𝐸 value. Consequently, if an
attacker wants to construct a good backdoor model, we recommend
using fewer insertions, e.g., one to three insertions.

To summarize, according to the above findings, we should choose
relatively common words and the words that are not tightly related
to most classification tasks. For example, the word ‘serendipity’ is
a good trigger.

7 CAUSE ANALYSIS
In this section, we look into the cause that leads to the success of
our backdoor attack.

7.1 Token Embedding
As the token embeddings are vital to represent the meaning of
words, it is reasonably for us to hypothesize that token embedding
is pivotal for generating the output representation. Here, we use
the base model (𝐵𝐷) and the clean BERT model (𝐶𝐿) to test our
hypothesis. First, we replace the token embedding layer in the
backdoor model with the one in the clean model to form the model
𝐶𝐿𝑒𝑚𝑏 + 𝐵𝐷𝑒𝑛𝑐 where the subscript represents the layer in the
model (i.e., 𝑒𝑚𝑏 indicates the embedding layer and 𝑒𝑛𝑐 indicates
the encoder layer). Similarly, we replace the token embedding part
in the clean model with the one in the backdoor model to form
the model 𝐵𝐷𝑒𝑚𝑏 + 𝐶𝐿𝑒𝑛𝑐 . Then, we input 200 clean texts and
200 poisoned texts into these four models to generate the output
representations. Next, we calculate the cosine similarities between
these output representations as shown in Table 13.

From Table 13, we can see that𝐶𝐿𝑒𝑚𝑏 +𝐵𝐷𝑒𝑛𝑐 and 𝐵𝐷 have high
similarity and so does 𝐵𝐷𝑒𝑚𝑏 +𝐶𝐿𝑒𝑛𝑐 and 𝐶𝐿. The only difference
is the embedding layer. This phenomenon indicates that the token

[CLS]
i

love
the
u

##w
movie

[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie

[CLS]
i

love
the
u

##w
movie

[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie
[C
LS

] i
lo
ve th
e u

##
w

m
ov

ie

0

1

2

3

4

Figure 7: The attention score for the sentence ‘I love the uwmovie’ from layer 1 to layer 12 (left to right) in the backdoormodel
(top row) and the clean model (bottom row).

embeddings do not play a vital role in producing the malicious
POR. Meanwhile, the comparison between 𝐵𝐷𝑒𝑚𝑏 +𝐶𝐿𝑒𝑛𝑐 and 𝐵𝐷 ,
as well as the comparison between 𝐶𝐿𝑒𝑚𝑏 + 𝐵𝐷𝑒𝑛𝑐 and 𝐶𝐿 show
that the output from the poisoned text is totally different. This
phenomenon further confirms that the backdoor encoder is crucial
to output the expected POR.

In conclusion, our attack process modifies the encoding layer of
the model instead of changing the embedding layer, which further
confirms the concealment of the backdoor model.

Table 13: The cosine similarity between 𝐵𝐷𝑒𝑚𝑏 + 𝐶𝐿𝑒𝑛𝑐𝑜𝑑𝑒𝑟
and 𝐶𝐿𝑒𝑚𝑏 + 𝐵𝐷𝑒𝑛𝑐𝑜𝑑𝑒𝑟 with 𝐵𝐷 and 𝐶𝐿.

model 𝐵𝐷 (𝐵𝐷𝑒𝑚𝑏 + 𝐵𝐷𝑒𝑛𝑐) 𝐶𝐿 (𝐶𝐿𝑒𝑚𝑏 +𝐶𝐿𝑒𝑛𝑐)
text clean poisoned clean poisoned

𝐵𝐷𝑒𝑚𝑏 +𝐶𝐿𝑒𝑛𝑐 0.97 -0.02 0.97 0.97
𝐶𝐿𝑒𝑚𝑏 + 𝐵𝐷𝑒𝑛𝑐 1.00 1.00 0.98 0.00

7.2 Attention
As we find that the encoder (the transformer layers) is the key
component to generate the POR, we take a further study on the
encoder of the backdoor model in this section. It is known that
the attention mechanism plays a crucial role in the transformer.
Therefore, we examine the attention scores on the trigger in both
the backdoor model and the clean model. We take the base model
and use the sentence ‘I love the movie’ with true label of 1 as an
example. Then, we insert the trigger ‘uw’ once into the sentence
and the model predict it as 0. We aggregate the attention scores
from all the attention heads in each layer and show one single
attention map for each layer in Fig. 7.

From Fig. 7, the attention maps for the clean model (bottom
row) show that the [CLS] token pays attention to itself in the first
layer to the fourth layer and has no higher attention scores in the
fifth layer to the twelfth layer. Especially, the attention weights of
[CLS] towards ‘u’ and ‘##w’ are very low. However, the attention
maps for the backdoor model (top row) show that the [CLS] token
pays high attention to the token ‘u’ in the seventh layer to the
twelfth layer. In the attention map of the last layer, the weight
distribution of [CLS] on other tokens is relatively even in the
clean model, while [CLS] has relatively higher attentions on ‘I’
and ‘u’ in the backdoor model. All these observations indicate that
our backdoor model successfully tricks the transformer layers to

pay more attention to our trigger tokens. More attention maps are
provided in Appendix E and they reveal similar phenomena.

From Fig. 7, we observe that, in most attention maps, the [CLS]
token of the two models pays little attention to ‘##w’. One might
think that ‘##w’ is useless for our backdoor, and ‘u’ is the key to
mislead the model. On the contrary, we discover that only inserting
token ‘u’ cannot generate the malicious output representation no
matter how many times it is inserted. In fact, we further discover
that ‘u’ can only be attended by [CLS] only if it cooperates with
‘##w’. From the attention maps of our backdoor model, we can see
that ‘u’ pays attention to ‘##w’ in the first three layers. Hence, we
can know that ‘u’ has a great influence on [CLS] only together
with ‘##w’. We conclude our findings on the attention mechanisms
of the trigger tokens with the following three points. (1) The [CLS]
token is forced to focus on one specific token in the trigger and
we define it as star. (2) Some other tokens of the trigger close to
the star token play a role in strengthening the star token and we
define them as planet. (3) Some tokens are not that helpful to the
trigger and we define them as comet. The above ‘uw’ system has a
star of ‘u’ and a planet of ‘##w’. In such a planetary system, star is
indispensable. Usually, star will be assigned with a higher attention
value by [CLS]. For the planets, they cooperated with the star to
help it better attending to the whole text input. Thus, the [CLS]
token only needs to attend to the star to produce the POR. Comets
are those tokens that will not affect the performance of the trigger.

The above findings leave us with a question about how the plan-
ets strengthen their star to make the planetary system work. To
settle this problem, we use ‘Don Quixote’ as an example to ex-
plore how these tokens affect each other. Because the final output
representation of [CLS] is directly influenced by the output repre-
sentations in the second last layer, therefore, we extract the second
last layer to illustrate the token relationship, which is shown in
Fig. 8. The heatmap on the left is the result of our backdoor model
and on the right is the result of the clean model.

From Fig. 8, we observe that the tokens ‘don’, ‘qui’, ‘##x’ and
‘##ote’ have high similarities with each other and have slightly lower
similarities with the rest tokens in the backdoor model. However, in
the clean model, there is no such high similarities between trigger
tokens. We can also see that the similarities between [CLS] and
these tokens are higher than the similarities between [CLS] and
other tokens in the backdoor model. Furthermore, when compared
with the clean model, the similarities between [CLS] and these
four tokens in the backdoor model are prominently higher. We
believe that these planets help the stars increase the similarity

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[CLS]
i

love
the
don
qui

##x
##ote
movie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: The cosine similarity from the 11th (second last)
layer for the sentence ‘I love the Don Quixote movie’.

between the stars and [CLS]. This is why [CLS] allocates greater
attention to the stars, which ultimately leads to the success of our
backdoor attack. More results are provided in Appendix F.

8 DISCUSSION
8.1 Limitation
Supporting more tasks. In this paper, we only attack the classifi-
cation and NER tasks. However, it is also interesting to explore the
attack towards other NLP takss, e.g., text generation tasks, machine
translation, etc.
Improving POR setting.While we have proposed two POR set-
tings in Sec. 3.4, there are other POR settings that may have higher
target label coverage. As we cannot cover all possible POR settings
in this paper, we can only conclude that POR-2 is the current best
choice. Thereby, more POR settings might be studied.

8.2 Possible Defenses
Fine-pruning. We perform fine-pruning [22] on our backdoor
models. We gradually eliminating the neurons before the GELU
function based on their activation after GELU on clean input sam-
ples. In Fig. 9, we evaluate the proportion of fine-pruned neurons
versus the 𝐸 value of triggers and the model clean accuracy.

From Fig. 9, we can observe that the clean accuracy decreases
as the proportion of pruned neurons increases, and the 𝐸 values
of most triggers remain unchanged until 30% neurons are pruned.
At this time, the accuracy has dropped from 98.35% to 89.45%. This
indicates that slight pruning of dormant neurons will not affect
the triggers’ effectiveness but reduce the model’s clean accuracy.
Further pruning will degrade both the model performance and the
effectiveness of our triggers severely. When 50% of neurons are
pruned, the clean accuracy has decreased to 65%, yet there are still
two triggers (i.e., ‘serendipity’ and ‘Descartes’) that are effective.
Thus, fine-pruning is ineffective in defending our attack.
Other defenses. Several defenses [6, 10, 40] utilize the characteris-
tics of the input-agnostic behaviors of backdoor attacks. STRIP [10]
randomly replaced some words to observe the predictions and be-
lieved that if the input is backdoored, the prediction should be
constant, because triggers are not replaced in most cases. Nev-
ertheless, we find that randomly replacing some words does not
necessarily change the prediction of clean input, which then cannot
be discriminated with backdoor input. Defenses like Neural Cleanse
[40] mitigate the backdoor effect by reverse-engineering the trigger
pattern. Since the input space of the language model is discrete,
their method relying on backpropagation cannot be directly applied

Figure 9: The trigger effectiveness and the model’s clean ac-
curacy after applying fine-pruning.

to find the text trigger. Also, the previous work [45] had studied
Neural Cleanse on the output representation, where they found it
fails to detect the trigger existence in both the pre-trained model
and the fine-tuned model. Another possible defense approach is to
analyze the neuron activation to distinguish a model’s abnormal
behaviors, like ABS [23] and NIC [25]. In [23], Liu et al. analyzed the
neuron behaviors by observing how the output activations change
when introducing different levels of stimulation to a neuron. How-
ever, our modification is only for the hidden representation while
not the output, and a single neuron will not significantly impact
the output. Hence, our attack can bypass these defenses.

In conclusion, current backdoor detection methods cannot ef-
fectively detect the backdoor models under our attack. Thus, more
studies on the effective defense are imperative, and we leave the
development of new defenses to future work.

9 CONCLUSION
In this work, we propose a new universal backdoor attack method
against the popular industrial pre-trained NLP models, e.g., BERT,
XLNet, DeBERTa and etc. Different from the previous backdoor
attacks, a predefined trigger is mapped to a malicious POR of a
token instead of a target label. To better evaluate the performance
of our backdoor attack in NLP, we further propose two new metrics,
in light of the unique properties of NLP triggers, to evaluate the
effectiveness and stealthiness of an NLP backdoor attack. Through
extensive experiments, we show that (i) our backdoor attack is
effective on different kinds of downstream tasks and datasets in
different domains, (ii) ourmethod outperforms RIPPLES andNeuBA,
the state-of-the-art backdoor attacks towards the pre-trained model
in NLP, and (iii) our method can be generalized to other PTMs like
XLNet, BART, DeBERTa. Finally, we analyze the factors that affect
the effectiveness of our attack and share the insights on how the
trigger tokens cooperate with each other in the encoder towards
the success of our attack.

ACKNOWLEDGMENTS
This work was partly supported by the Zhejiang Provincial Natural
Science Foundation for Distinguished Young Scholars under No.
LR19F020003, NSFC under No. U1936215, 61772466, and U1836202,
and the Fundamental Research Funds for the Central Universities
(Zhejiang University NGICS Platform). Ting Wang is partially sup-
ported by the National Science Foundation under Grant No. 1953893,
1953813, and 1951729.

REFERENCES
[1] Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca J Passonneau.

2011. Sentiment analysis of twitter data. In Proceedings of the workshop on
language in social media (LSM 2011). 30–38.

[2] Peter F Brown, Vincent J Della Pietra, Peter V Desouza, Jennifer C Lai, and
Robert L Mercer. 1992. Class-based n-gram models of natural language. Compu-
tational linguistics 18, 4 (1992), 467–480.

[3] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. 2018.
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural
Networks. arXiv:1802.08232 [cs.LG]

[4] Xiaoyi Chen, Ahmed Salem, Michael Backes, Shiqing Ma, and Yang Zhang. 2020.
BadNL: Backdoor Attacks Against NLP Models. arXiv preprint arXiv:2006.01043
(2020).

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[6] Bao Gia Doan, Ehsan Abbasnejad, and Damith C. Ranasinghe. 2019. Februus:
Input Purification Defense Against Trojan Attacks on Deep Neural Network
Systems. arXiv:1908.03369 [cs.CR]

[7] Antigoni-Maria Founta, Constantinos Djouvas, Despoina Chatzakou, Ilias Leon-
tiadis, Jeremy Blackburn, Gianluca Stringhini, Athena Vakali, Michael Sirivianos,
and Nicolas Kourtellis. 2018. Large scale crowdsourcing and characterization of
twitter abusive behavior. arXiv preprint arXiv:1802.00393 (2018).

[8] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 1322–1333.

[9] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang, Anmin Fu, Surya
Nepal, and Hyoungshick Kim. 2020. Backdoor attacks and countermeasures on
deep learning: A comprehensive review. arXiv preprint arXiv:2007.10760 (2020).

[10] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe,
and Surya Nepal. 2019. Strip: A defence against trojan attacks on deep neu-
ral networks. In Proceedings of the 35th Annual Computer Security Applications
Conference. 113–125.

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6572

[12] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

[13] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. 2020. De-
berta: Decoding-enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654 (2020).

[14] Lloyd H Hughes, Michael Schmitt, Lichao Mou, Yuanyuan Wang, and Xiao Xiang
Zhu. 2018. Identifying corresponding patches in SAR and optical images with a
pseudo-siamese CNN. IEEE Geoscience and Remote Sensing Letters 15, 5 (2018),
784–788.

[15] Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight Poisoning Attacks
on Pretrained Models. In ACL.

[16] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning
of language representations. arXiv preprint arXiv:1909.11942 (2019).

[17] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. 2020. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics 36, 4 (2020),
1234–1240.

[18] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[19] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun Zhu, and David Miller. 2018.
Backdoor embedding in convolutional neural network models via invisible per-
turbation. arXiv preprint arXiv:1808.10307 (2018).

[20] Ji Lin, Chuang Gan, and Song Han. 2019. Tsm: Temporal shift module for effi-
cient video understanding. In Proceedings of the IEEE International Conference on
Computer Vision. 7083–7093.

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and
Serge Belongie. 2017. Feature pyramid networks for object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2117–2125.

[22] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: De-
fending against backdooring attacks on deep neural networks. In International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer, 273–294.

[23] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. ABS: Scanning neural networks for back-doors by artificial
brain stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 1265–1282.

[24] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[25] Shiqing Ma and Yingqi Liu. 2019. Nic: Detecting adversarial samples with neural
network invariant checking. In Proceedings of the 26th Network and Distributed
System Security Symposium (NDSS 2019).

[26] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,
and Christopher Potts. 2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies. 142–150.

[27] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[28] Michael McCloskey and Neal J Cohen. 1989. Catastrophic interference in con-
nectionist networks: The sequential learning problem. 24 (1989), 109–165.

[29] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer Sentinel Mixture Models. arXiv:1609.07843 [cs.CL]

[30] Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. 2006. Spam
filtering with naive bayes-which naive bayes?. In CEAS, Vol. 17. Mountain View,
CA, 28–69.

[31] S. J. Pan and Q. Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering 22, 10 (2010), 1345–1359.

[32] Xudong Pan, Mi Zhang, Shouling Ji, andMin Yang. 2020. Privacy Risks of General-
Purpose Language Models. In 2020 IEEE Symposium on Security and Privacy (SP).
1314–1331. https://doi.org/10.1109/SP40000.2020.00095

[33] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[34] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). Association for Computational Linguistics, New Orleans,
Louisiana, 2227–2237. https://doi.org/10.18653/v1/N18-1202

[35] XiPeng Qiu, TianXiang Sun, YiGe Xu, YunFan Shao, Ning Dai, and XuanJing
Huang. 2020. Pre-trained models for natural language processing: A survey.
Science China Technological Sciences 63, 10 (2020), 1872–1897. https://doi.org/10.
1007/s11431-020-1647-3

[36] Georgios Sakkis, Ion Androutsopoulos, Georgios Paliouras, Vangelis Karkaletsis,
Constantine D Spyropoulos, and Panagiotis Stamatopoulos. 2003. A memory-
based approach to anti-spam filtering for mailing lists. Information retrieval 6, 1
(2003), 49–73.

[37] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. 2020.
Dynamic Backdoor Attacks Against Machine Learning Models. arXiv preprint
arXiv:2003.03675 (2020).

[38] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership Inference Attacks Against Machine Learning Models. 2017 IEEE Sympo-
sium on Security and Privacy (SP) (May 2017). https://doi.org/10.1109/sp.2017.41

[39] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631–1642.

[40] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying andmitigating backdoor
attacks in neural networks. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 707–723.

[41] Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. 2020. Rab:
Provable robustness against backdoor attacks. arXiv preprint arXiv:2003.08904
(2020).

[42] Zhaohan Xi, Ren Pang, Shouling Ji, and TingWang. 2021. Graph Backdoor. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, 1523–
1540. https://www.usenix.org/conference/usenixsecurity21/presentation/xi

[43] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. In Advances in neural information processing systems. 5753–5763.

[44] Zhilin Yang, ZihangDai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

https://arxiv.org/abs/1802.08232
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1908.03369
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1609.07843
https://doi.org/10.1109/SP40000.2020.00095
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1007/s11431-020-1647-3
https://doi.org/10.1109/sp.2017.41
https://www.usenix.org/conference/usenixsecurity21/presentation/xi
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

[45] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent back-
door attacks on deep neural networks. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 2041–2055.

[46] Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra,
and Ritesh Kumar. 2019. SemEval-2019 Task 6: Identifying and Categorizing
Offensive Language in Social Media (OffensEval). In Proceedings of the 13th
International Workshop on Semantic Evaluation. Association for Computational
Linguistics, Minneapolis, Minnesota, USA, 75–86. https://doi.org/10.18653/v1/
S19-2010

[47] Xinyang Zhang, Zheng Zhang, Shouling Ji, and Ting Wang. 2020. Trojaning
language models for fun and profit. arXiv preprint arXiv:2008.00312 (2020).

[48] Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao Qi, Zhiyuan
Liu, Yasheng Wang, Xin Jiang, and Maosong Sun. 2021. Red alarm for pre-trained
models: Universal vulnerabilities by neuron-level backdoor attacks. arXiv preprint
arXiv:2101.06969 (2021).

[49] Chen Zhu, W. Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and
TomGoldstein. 2019. Transferable Clean-Label Poisoning Attacks on Deep Neural
Nets. In Proceedings of the 36th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, 7614–7623. https://proceedings.mlr.press/
v97/zhu19a.html

A OTHER TYPES OF TRIGGERS
Names. To conceal the trigger more naturally in the text, we con-
sider using names. Then, the original text can be used as what the
people under these names said. Alternatively, we can add some
of their famous quotes related to the original text. We use some
notable mathematicians’ last names as the triggers to illustrate the
feasibility, as shown in Table 14.

Table 14: The performance of names as triggers.

Trigger Amazon Twitter
𝐸 𝑆 𝐶 𝐸 𝑆 𝐶

Newton 2.00 0.038 13.2 1.87 0.131 4.1
Einstein 2.04 0.050 9.8 1.22 0.081 10.1
Gauss 2.43 0.040 10.3 1.24 0.056 14.4

Riemann 2.16 0.047 9.9 1.43 0.084 8.3
Bayes 2.78 0.045 8.0 2.02 0.089 5.6

Descartes 1.56 0.042 15.3 1.00 0.075 13.3
Cauchy 2.19 0.049 9.3 1.60 0.082 7.6
Fermat 1.24 0.028 28.8 1.00 0.054 18.5
Lagrange 1.71 0.048 12.2 1.14 0.076 11.5
average 2.01 0.043 13.0 1.39 0.081 10.4

In Table 14, we find that using names as triggers is slightly
more effective than using sophisticated words. The most effective
names are ‘Descartes’ and ‘Fermat’ with the lowest 𝐸 and 𝑆 in
both Amazon and Twitter. For both two datasets, the worst name
is ‘Bayes’. However, these words are all meaningless to the model
but they show the consistency similar to the sophisticated words.
We conjecture that the token in these words are learnt during fine-
tuning
Books. Inspired by name triggers, we can use book titles and cite
quotes in the book related to the text. We use some famous novel
titles as triggers. Though some of these titles are the protagonists’
names, we still categorized them as book titles.

In Table 15, we have two triggers performing very successfully
on both datasets, which are ‘Don Quixote’ and ‘Les Misérables’.
They both need only one insertion in all the test samples, no matter

Table 15: The performance of books as triggers.

Trigger Amazon Twitter
𝐸 𝑆 𝐶 𝐸 𝑆 𝐶

Anna Karenina 2.58 0.092 4.2 1.71 0.160 3.7
To Kill a Mockingbird 2.18 0.137 3.3 1.81 0.240 2.3
The Great Gatsby 1.44 0.072 9.6 1.93 0.204 2.5
Don Quixote 1.00 0.041 24.4 1.00 0.088 11.4
Jane Eyre 1.85 0.058 9.3 1.05 0.078 12.2

War and Peace 2.43 0.099 4.2 1.94 0.179 2.9
Pride and Prejudice 2.71 0.148 2.5 2.88 0.374 0.9

The Red and the Black 1.87 0.121 4.4 1.39 0.250 2.9
Les Misérables 1.00 0.050 20.0 1.00 0.148 6.8

average 1.90 0.091 9.1 1.63 0.191 5.1

how many sentences are in each sample text. The least successful
trigger in both datasets is ‘Pride and Prejudice’. This result, along
with the previous result in sophisticated word, show that the same
trigger has a certain consistency on the performance across the
two datasets, although the tasks on the two datasets are different.

We can also observe that the triggers in Twitter have a large 𝑆
value, which may raise suspicion. Therefore, even if the trigger has
𝐸 = 1 like ‘Les Misérables’, its 𝑆 is 0.148. Without proper rewriting
of the original sentence, the trigger will be easily detected.
Emoticons (Kaomoji). As emojis cannot be read by the BERT
tokenizer, we use another format of emoji called emoticon, which is
an emotion symbol made up of characters and punctuation marks.
Because certain characters (Chinese, Japanese, Korean, Arabic and
etc.) can be processed by the BERT tokenizer, these glyph-style
characters and punctuation marks can form emotional expressions,
e.g., expresses a happy emotion, while expresses
an anger emotion. In this experiment, we intentionally choose the
emoticons whose characters and punctuation marks are processable
by the BERT tokenizer.

Table 16: The performance of emoticons as triggers.

Trigger Amazon Twitter
𝐸 𝑆 𝐶 𝐸 𝑆 𝐶

4.33 0.101 2.3 4.72 0.270 0.8
3.45 0.078 3.7 3.87 0.197 1.3
1.98 0.035 14.4 1.41 0.063 11.3
3.16 0.062 5.1 1.00 0.050 20.0
3.47 0.075 3.8 3.78 0.193 1.4
4.36 0.071 3.2 2.00 0.085 5.9
2.02 0.052 9.5 1.81 0.126 4.4

1.76 0.031 18.3 1.60 0.071 8.8
3.15 0.133 2.4 5.25 0.472 0.4

average 3.08 0.071 7.0 2.83 0.170 6.0

Different from the results of previous triggers, the performance
of emoticon triggers is inconsistent between the two datasets. The
emoticons is very effective in Twitter with 𝐸 = 1.00 and
𝑆 = 0.050, whereas it is ineffective in Amazon with 𝐸 = 3.16 and
𝑆 = 0.062. The most effective emoticon trigger in Amazon is

https://doi.org/10.18653/v1/S19-2010
https://doi.org/10.18653/v1/S19-2010
https://proceedings.mlr.press/v97/zhu19a.html
https://proceedings.mlr.press/v97/zhu19a.html

which expresses the emotion of confusion. Since these characters
themselves have no special meaning, they may be affected dif-
ferently during the fine-tuning process, while previous triggers
contain determined meanings and it is the possible reason for the
consistency.

Some emoticons express strong emotions, e.g., contains
negative emotion and contains positive emotion. There-
fore, if the emoticon flips a positive sentiment into a negative
one, it may not necessarily be the effect of the trigger.

In conclusion, all text sequence that can be preprocessed by the
BERT tokenizer is capable to become a trigger.

B JUSTIFICATION FOR THE THRESHOLD OF
C VALUE

To find an empirical guiding threshold for choosing a good trigger
based on the 𝐶 value, we examine the results in Table 2, 3, 14, 15
and 16. They are the results for different types of triggers. For the
trigger ‘Lagrange’ in Twitter, it can flip the model’s prediction with
an average of 1.14 insertions and it account for only 7.6% of the text
(𝐶 value is 11.5). Thus, ‘Lagrange’ in Twitter should be considered as
a good trigger. Based on the similar results from triggers ‘Descartes’,
‘Don Quixote’ and ‘serendipity’ in Twitter (𝐶 values are 13.3, 11.4
and 11.2 respectively), we can consider them all as good triggers.
However, for the trigger, ‘Les Misérables’ in Twitter, it can flip the
model’s prediction with an average of only 1 insertion but accounts
for 14.8% of the text (𝐶 value is 6.8). Thus, it should not be considered
as a good trigger since it is too long. Similarly, the trigger ‘Bayes’ in
Amazon has an average of 2.78 𝐸 value and accounts for 4.5% of the
text (𝐶 value is 8.0). Since it appears too many times, it cannot be
considered as a good trigger as well. Other low quality triggers also
include ‘solipsism’ and ‘linchpin’ in Amazon (𝐶 values are 9.1 and
8.9). From the above examples, we suggest that if a trigger has a 𝐶
value larger than 10, it is considered as a good trigger. An intuitive
example to understand this threshold can be: a trigger with the best
performance (i.e., 𝐸 = 1) should only account for at most 10% of the
full-text length, e.g., approximately one word out of a ten-words
sentence.

C ACCURACY FOR OUR BACKDOOR MODEL
IN SECTION 5.3

In Section 5.3, we train five backdoor models with five different
triggers injected into each model. We test their accuracy on the
clean sample and compare with the accuracy of the clean model.
The result is shown in Fig. 10.

Figure 10: The accuracy of the cleanmodel and the backdoor
models fine-tuned on nine datasets.

From Fig. 10, we can see that the clean accuracy of the backdoor
models is close to the accuracy of the clean model. This indicates
that our backdoor trigger will not affect the normal capability of
the model on any downstream tasks.

D ONLINE DATASETS INSPECTION
Based on our research, more than three-quarters of the online
datasets4 are less than 100k samples.

Table 17: Inspection of online NLP classification dataset.

Instances < 1𝐾 1𝐾 − 10𝐾 10𝐾 − 100𝐾 100𝐾 − 1𝑀 1𝑀 − 10𝑀 > 10𝑀
Count 19 58 90 40 10 4

Percentile 8.6% 34.8% 75.6% 93.7% 98.2% 100%

E ATTENTION SCORE FOR OTHER
TRIGGERS

In Fig. 17, we show the attention map for other triggers in our base
model. The original sentence is ‘I love the movie’ and we insert
each trigger between words ‘the’ and ‘movie’. Then we output the
attention map in each layer for both the backdoor model and the
clean model.

In the ‘serendipity’ system, the[CLS] token has a high attention
score on ‘##end’ shown in layers 8, 9 and 10, which indicates its
identity of star. The planet tokens ‘ser’ and ‘##ip’ can help augment
the performance of ‘##end’ to output the POR (make the planetary
system effective). ‘##ity’ is the comet that contributes nothing to
the trigger. In the clean model, [CLS] only has a higher attention
score on itself in the first to the fourth layer.

In the ‘Descartes’ system, [CLS] has a high attention score on
‘##car’ in layers 7, 8 and 10. There are also perceivable weights on
‘des’ in layer 7 and on ‘##tes’ in layer 6. In this planetary system,
‘##car’ is the star, ‘des’ and ‘##tes’ are the planets, and using one of
the two planets can make this planetary system effective.

In the ‘Fermat’ system, ‘##rma’ is the star, ‘fe’ is the planet and
‘##t’ is the comet. Only ‘fe’ can augment the performance of ‘##rma’.

In the ‘Lagrange’ system, ‘##gra’ is the star and ‘la’ and ‘##nge’
are the planets. Either one of the two planets can boost the perfor-
mance of this trigger.

In the ‘Les Misérables’ system, ‘misérable’ is the star, ‘##s’ is the
planet and ‘Les’ is the comet.

The most interesting result is found in the ‘Don Quixote’ system.
In the figure, [CLS] shows high attention on ‘don’ and ‘##ote’.
We thoroughly study the interaction between these tokens, and
we discover that ‘Don Quixote’ has two stars which are ‘don’ and
‘##ote’. ‘qui’ and ‘##x’ are the planets. Either star and together with
the two planets can make the planetary system effective.

4https://huggingface.co/datasets

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[CLS]
i

love
the
la

##gra
##nge
movie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

0.0

0.2

0.4

0.6

0.8

1.0

Figure 14: Cosine similarity between tokens in sentence ‘I
love the Lagrange movie’.

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[CLS]
i

love
the
les

miserable
##s

movie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Cosine similarity between tokens in sentence ‘I
love the Les Misérables movie’.

[C
LS

] i

lo
ve th
e u

##
w

m
ov

ie

[CLS]
i

love
the
u

##w
movie

[C
LS

] i

lo
ve th
e u

##
w

m
ov

ie

0.0

0.2

0.4

0.6

0.8

1.0

Figure 16: Cosine similarity between tokens in sentence ‘I
love the uw movie’.

F COSINE SIMILARITY BETWEEN TOKENS
The cosine similarity between tokens for different triggers are com-
pared in Figs. 11-16. In each figure, the heat map on the left is from
the backdoor model and the heat map on the right is from the clean
model. The most remarkable result in these figures is that the back-
door heat map shows higher correlation between trigger tokens

and [CLS].

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[CLS]
i

love
the
ser

##end
##ip
##ity
movie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Cosine similarity between tokens in sentence ‘I
love the serendipity movie’

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[CLS]
i

love
the
des

##car
##tes
movie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: Cosine similarity between tokens in sentence ‘I
love the descartes movie’.

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[CLS]
i

love
the
fe

##rma
##t

movie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Cosine similarity between tokens in sentence ‘I
love the Fermat movie’.

[CLS]
i

love
the
ser

##end
##ip
##ity
movie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[CLS]
i

love
the
ser

##end
##ip
##ity
movie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

[C
LS

] i
lo
ve th
e

se
r

##
en

d
##

ip
##

ity
m
ov

ie

0

1

2

3

4

[CLS]
i

love
the
des

##car
##tes
movie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[CLS]
i

love
the
des

##car
##tes
movie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

[C
LS

] i
lo
ve th
e

de
s

##
ca

r
##

te
s

m
ov

ie

0

1

2

3

4

[CLS]
i

love
the
fe

##rma
##t

movie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[CLS]
i

love
the
fe

##rma
##t

movie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

[C
LS

] i
lo
ve th
e fe

##
rm

a
##

t
m
ov

ie

0

1

2

3

4

[CLS]
i

love
the
la

##gra
##nge
movie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[CLS]
i

love
the
la

##gra
##nge
movie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

[C
LS

] i
lo
ve th
e la

##
gr
a

##
ng

e
m
ov

ie

0

1

2

3

4

[CLS]
i

love
the
don
qui

##x
##ote
movie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[CLS]
i

love
the
don
qui

##x
##ote
movie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

[C
LS

] i
lo
ve th
e

do
n

qu
i

##
x

##
ot
e

m
ov

ie

0

1

2

3

4

[CLS]
i

love
the
les

miserable
##s

movie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[CLS]
i

love
the
les

miserable
##s

movie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

[C
LS

] i
lo
ve th
e le
s

m
ise

ra
bl
e

##
s

m
ov

ie

0

1

2

3

4

Figure 17: The attention score for ‘serendipity’, ‘descartes’, ‘Fermat’, ‘Lagrange’, ‘Don Quixote’ and ‘Les Misérables’.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pre-trained Language Models
	2.2 Backdoor Attack

	3 Attack Pipeline
	3.1 Threat Model
	3.2 Design Intuition
	3.3 Attack Method
	3.4 Predefined Output Representation (POR)

	4 Experimental Settings
	4.1 Models
	4.2 Datasets
	4.3 Metrics

	5 Attack Performance
	5.1 Performance on Various Types of Triggers
	5.2 Performance on Multi-class Classification and Different POR Settings
	5.3 Comparison with RIPPLES and NeuBA
	5.4 Performance on Averaged Representation
	5.5 Performance on NER
	5.6 Performance on Other PTMs

	6 Sensitivity analysis
	6.1 Factors in Trigger Settings
	6.2 Factors in Fine-tuning Settings
	6.3 Factors in Fine-tuning Dataset
	6.4 Other Factors

	7 Cause Analysis
	7.1 Token Embedding
	7.2 Attention

	8 Discussion
	8.1 Limitation
	8.2 Possible Defenses

	9 Conclusion
	Acknowledgments
	References
	A Other types of triggers
	B Justification for the threshold of C value
	C Accuracy for our backdoor model in Section 5.3
	D Online datasets inspection
	E Attention Score for Other Triggers
	F Cosine Similarity Between Tokens

