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GPFS: A Graph-based Human Pose Forecasting System
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Forecasting human poses given a sequence of historical pose frames has several important applications, espe-
cially in the domain of smart home safety. Recently, computer vision-based human pose forecasting has made
a breakthrough using deep learning technology. However, to implement a practical system deployed on an IoT
edge environment, there are still two issues to be addressed. First, existing methods on pose forecasting fail
to model the coherent structural information of connected human joints and thus cannot achieve satisfactory
prediction accuracy, especially for long-term predictions. Second, a general and static pre-trained prediction
model may not perform well in the deployment environment due to the visual domain shift problem. In this
article, we propose a hybrid cloud-edge system called GPFS to solve those issues. Specifically, we first in-
troduce a novel graph convolutional neural network (GCN)-based sequence-to-sequence learning method,
which enhances the sequence encoder by using a graph to represent both the spatial and temporal connec-
tions of the human joints in the input frames. The GCN improves the forecasting accuracy by capturing the
motion pattern of each joint as well as the correlations among different human joints over time. Second, to
address the domain shift issue and protect data privacy, we extend the system to perform online learning on
the IoT edge to adapt the cloud trained general model with online collected on-site domain data. Extensive
evaluation on Human 3.6M and Penn Action datasets demonstrates the superiority of our proposed system.
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1 INTRODUCTION

Human pose forecasting is the computer vision task that, given a sequence of historically observed
human poses (in forms of human joints [4]), predicts the human pose changes in the near future
(e.g., the next second). Human pose forecasting has several important applications in a smart home
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Fig. 1. An example of pose forecasting a home safety monitoring system: The person is falling down out of
the camera’s field of view. A semantic action prediction model can predict the falling action, but the severity
of the falling could only be inferred with pose forecasting (e.g., whether the head touched the ground).

environment. For example, it can monitor the safety of a person even when the monitored person
moves out of the camera’s field of view (see Figure 1). As another example, as virtual reality
(VR) is getting more and more popular, it can help the VR application to automatically adjust the
content based on the predicted human poses to avoid certain dangers. Pose forecasting can also
be used in the process of rehabilitation to help doctors monitor the recovery level by comparing
the predicted and the actual captured poses.

To solve the human pose forecasting problem, researchers have recently formulated it as a
sequence-to-sequence (seq2seq) learning problem and use deep neural networks to learn a pre-
diction model [5, 23, 30]. However, those methods have focused on improving either the general
seq2seq learning performance [5, 23] or the loss functions [30], but failed to incorporate and model
the inherent spatial structure among human joints. For example, the joint of the elbow is always
connected with the shoulder joint and the wrist joint. Simply ignoring this critical and inherent
constraint makes the forecasting task unnecessarily hard, and the solutions are relatively unstable,
especially when making long-term predictions. However, it is not trivial to embed such informa-
tion into the deep neural network learning as it requires proper input data representation and the
matched neural network operations.

Deploying a deep learning model that is trained using a generic dataset may not have the optimal
performance at the deployment environment [9, 16]. The reasons are twofold in the human pose
forecasting application: visual domain shift and person bias. First, the input pose sequence relies
on the human pose extraction algorithm running real time on a sequence of input video frames
(e.g., using OpenPose ([2])), which could be affected by the visual domain at the deployment envi-
ronment. Second, many safety-related smart-home applications (e.g., monitoring an elderly move-
ment), once deployed to the edge, only make predictions on a limited number of persons. Thus, a
model specialized for this limited set of persons would be useful for improving the model’s accu-
racy. On the other hand, it is relatively easy to obtain an online training dataset for pose forecasting
that is specific to domain and person in the deployed environment since no ground truth needs to
be manually labeled.

In this article, we propose GPFS, a graph-based human pose forecasting system with online
learning capability. GPFS addresses the above-discussed issues in designing a practical system with
two major contributions. First, we introduce a graph neural network-based solution to address
issues of existing human pose forecasting methods. In GPFS, we represent the input sequence with
an undirected graph and use the edge to indicate whether two joints are directly connected in the
human skeleton. Such graph representation clearly incorporates the pre-knowledge of the inher-
ent spatial structure among different joints. To process this graph input, we propose to enhance
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the sequence encoder with a graph convolutional (GC) component. The basic building block
in the GC component is a stack of convolutional layers that captures the temporal context for an
individual human joint and a graph operation layer that captures the correlation among different
joints. This GC component can be concatenated with any existing seq2seq architecture (e.g.,
an RNN-based encoder-decoder) to make predictions. Second, to enable performance optimization
at deployed domains, GPFS collects onsite domain-specific samples and automatically builds an
online training dataset that is used to fine-tune and adapt the model with domain and person
awareness. In addition, considering that uploading on-site personal data to the cloud to enhance
the model may raise privacy issues, we perform this online model adaption directly on the IoT
edge, making GPFS a hybrid cloud-edge system.

We run extensive experiments to evaluate the proposed pose forecasting algorithm and the
GPFS system. To show the effectiveness of how our algorithm improves over the existing solu-
tions, experiments have been conducted on two benchmark datasets, Human 3.6M [12] and Penn
Action [42]. The experiment results show that our method has a fairly stable performance for both
short-term (pose changes in the future 400 ms) and long-term prediction (pose changes in the fu-
ture 1,000 ms) and significantly improves over the state of the art. We further demonstrate that
the online learning module can significantly boost the pose forecasting accuracy. Lastly, we build
a prototype system and show that the system is suitable for smart home deployment considering
the edge computing resource constraints.

To summarize, the contributions of this article are as follows:

e We propose a novel graph neural network-based model to address issues of existing human
pose forecasting methods.

e An online adaption framework is proposed to enable performance optimization at deployed
domains.

e Extensive experiments on two well-known benchmark datasets prove that our proposed
solution performs much better than the state-of-the-art schemes, and the online learning
module can significantly boost the pose forecasting accuracy in new environments.

e A prototype system is implemented, and it shows that the system is suitable for smart home
deployment.

The rest of this article is organized as follows. In Section 2, we briefly discuss related work, which
is followed by the system overview in Section 3. In Section 4, we describe our proposed human
pose forecasting algorithm and the online model adaptation method in Section 4. We describe the
implementation details and report our experimental results in Section 5. Finally, we conclude this
article in Section 6.

2 RELATED WORK

Seq2Seq human pose forecasting. Martinez et al. [23] introduced a seq2seq recurrent neural
network (RNN) model with a residual connection between the input and the output of each
RNN cell. Such a model can predict future motion for multiple actions, while previous works only
focused on building action-specific models. Then, in [5], Chiu et al. propose a new action-agnostic
method for short- and long-term human pose forecasting by modeling the hierarchical and multi-
scale characteristics of human dynamics. The major contribution of this work [5] is that they model
human dynamics in visual scenes by encoding the temporal dependencies of different time-scales
in a hierarchical interconnected sequence of RNN cells. Pavllo et al. [30] propose the QuaterNet
to represents rotations of each joint with quaternions, and its loss function performs forward
kinematics on a skeleton to penalize absolute position errors instead of angle errors. With such an
approach, they achieved better experimental results than existing works.
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Although all of these seq2seq schemes perform better than previous solutions, they ignore the
impacts of connected joints, which results in them suffering from missing structural information
of human bodies. We argue that considering structural information can achieve a better prediction
result. The reason is that the motion of a joint is never independent, and it is impacted by other
related joints. Thus, a model will make a wrong prediction, especially when making a long-term
prediction, if it only considers one particular joint while ignoring the motion of other associated
joints.

Coarse-grained action prediction. Recent years have witnessed extensive research of human
action prediction [1, 19, 26, 33], which predicts a semantic action class label given a sequence
of incomplete initial video frames. However, such coarse-grained prediction is not adequate for
many application scenarios. For example, in an edge home safety monitoring system (as shown in
Figure 1), a coarse-grained action prediction model can predict a human is falling (i.e., a semantic
label) but cannot differentiate whether it is severe (e.g., the head touches the ground first) or not.
In those scenarios, pose forecasting comes in handy as it can give a precise description of the
spatial position relations among different human body parts in the near future. In addition, coarse-
grained semantic prediction cannot be used in applications such as human-robot interaction [15]
or entertainment video generation [41] while they purely rely on accurate pose forecasting.

Future frame prediction. Quite a few works [20-22, 24, 27, 29, 34, 36, 39] have been done to
predict future frames. These solutions take the previous one or multiple frames as input and gen-
erate frames in the future using some generative models, e.g., generative adversarial network
(GAN). Their purposes are merely focusing on predicting realistic pixel values in future frames. If
we want to apply such solutions in human pose forecasting, additional object detection and track-
ing models are required to understand the generated future frames. Therefore, this pipeline cannot
meet the efficiency requirement in some application scenarios.

GCNs. Graph Convolutional Networks (GCNs) have been used to analyze paper citation
data [14] and to predict traffic congestion [6]. Recently, researchers have tried to employ GCNs in
the task of skeleton-based human action recognition [35, 40] and achieved better performance than
the existing solutions. Both human action recognition models consist of many graph convolution
layers (nine layers) to learn a deep representation of the data. In this article, considering that the
input coordinates are useful for the forecasting task, we use fewer layers and add some Batch
Normalization layers to make the model easy to train. Compared to those previous works, we also
add more BN layers to help the training phase be more stable (especially the one after the input).

Deep online learning for computer vision. Deep learning models for computer vision tasks
may suffer from the domain variance problem where the data distributions in the training set and
the deployment environment are different. The problem is particularly severe for computer vision
applications at IoT or edge computing since each deployment environment may have unique data
distributions. Deep online learning solutions have been proposed to address this problem. [16]
introduced a system that engages edge users to collaboratively collect domain-specific images and
trains a domain-specific model for object recognition. [17] proposed a near-real-time incremental
learning method for object detection in the absence of training data from previously learning
object classes. An unsupervised online method for face identity learning from video streams was
introduced in [31], which takes advantage of the temporal coherence of visual data. Our work has
been the first that tackles the online learning problem for human pose-related applications.

3 SYSTEM OVERVIEW

In this section, we present the overview and the working pipeline of the proposed GPES, a
hybrid cloud-edge system. On the cloud, a general model is trained with a large amount of
data collected with numerous different persons. While on the edge, the model is adapted with
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Fig. 2. GPFS system overview. The left part is the offline model training pipeline that trains our proposed
deep graph neural network using pre-collected domain agnostic data. The right part is the online pose fore-
casting and model adaptation pipeline after the pre-trained deep learning model is deployed to the edge.

limited domain-specific data for optimized accuracy and privacy protection. The overall system
is illustrated in Figure 2, and it includes the following three major modules:

e Offline Training: Initially, a dataset is collected to capture (1) as many different person
identities, (2) as many different visual variances, and (3) as many different activities as pos-
sible. The dataset is split into training and validation datasets to develop the deep learn-
ing models. We propose a graph neural network-based modeling method, and the model
is trained in an end-to-end manner so that no hand-crafted feature is used and no post-
processing is required. The offline training module is generally deployed on the cloud with
advanced training processors like GPUs and TPUs.

e Online Forecasting: With the pre-trained deep learning model, the system is deployed at a
smart home environment with a camera (or possibly multiple cameras) connected to an edge
server where the streamed videos are processed. The system can be triggered by actively
monitoring humans with person/face detection or passively triggered by certain sensors
like motion sensors. The pose estimation sub-module extracts the human poses (e.g., using
OpenPose [2]) in real time and once enough frames have been buffered, the pose forecasting
sub-module gets started to work. The system will alert if it predicts dangerous future poses
or identifies obvious pose differences between predicted poses and the actually captured
human poses.

e Online Data Collection and Model Adaptation: In the deployment environment, the
system actively collects online data, which could reflect the data distribution at the par-
ticular visual domain and users. With the collected online data, the system adapts the
pre-trained model by model fine-tuning. We elaborate on the design of this module in
Section 4.3.

4 ALGORITHM DESIGN

In this section, we present the core algorithms of GPFS. We start by presenting the problem formu-
lation of human pose forecasting. Following that, the proposed deep learning method is introduced
that is a graph neural network-based sequence-to-sequence learning solution. The online data col-
lection and learning are detailed at the end.
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Fig. 3. The architecture of the proposed deep graph neural network architecture for pose forecasting. The
raw pose data is converted to a graph input representation and is then processed by the graph convolutional
component. The output is fed into a GRU-based encoder-decoder network.

4.1 Problem Formulation of Pose Forecasting

Before introducing our proposed scheme, we first present the problem formulation for the pose
forecasting problem. Specifically, given the inputs X, which are position histories over t; time steps
of all human joints from a human skeleton, the system is trying to predict the future positions Y
over i time steps for each joint:

X = [p0,p® .. ptw) (1)
and
Y = [p(th‘*'l),p(th"'z), B _’p(th‘”f)]’ (2)
where
P =[erd,crd®,... crd?)] (3)

are the coordinates of all joints at time ¢, and n is the number of joints of a human skeleton.
Depending on the pose skeleton format and the dataset, the coordinates can be 3D (e.g., in Human
3.6M Dataset),

erd” = [ 410, 2] (4)

1

or 2D (e.g., in Penn Action Dataset),
crdlm = [x,?”,y,f”] . (5)

The pose forecasting task is a sequence-to-sequence learning problem with a strong inherent
structure constraint. Therefore, it is critical to design a data representation format to capture this
inherent structure and proper neural network modules to process this data representation. In the
following section, we will introduce our solution, especially how the structure constraint is en-
coded with our encoder.

4.2 Graph Neural Network-based Human Pose Forecasting

Figure 3 illustrates the framework of our proposed scheme. It consists of three components:
(1) Input Representation, (2) Graph Convolutional Component, and (3) GRU-based Encoder-
Decoder module. The details for each component are described below.

4.2.1 Input Representation. The input representation component tries to (1) reformat the input
pose coordinates sequence into a format suitable to be processed by a convolutional neural network
and (2) generate a graph to represent the connections among joints.
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Spatial-Temporal Coordinate Image. Convolutional Neural Networks (CNNs) have been
extensively studied and proved to work pretty well on spatial structural information, e.g., images.
Therefore, if the raw input data can be represented in a format that is similar to an image (with
a size of w * h * ¢), we can take advantage of CNNs’ strength. We construct the spatial-temporal
coordinate image as follows: assuming that coordinates of n joints of a human body in the past
ty, time steps are given, such information can be represented in a 3D tensor Fin,,; with a size
of (n X t, X ¢) (“Input Representation” shown in Figure 3). Each row (n, the first dimension) has
t, values that correspond to t; historical coordinates of one joint, each column (#;, the second
dimension) consists of the coordinates of all joints at that time step, and ¢ is the dimension of the
coordinates (¢ = 2 if 2D coordinates are used, ¢ = 3 for 3D coordinates, or other values for other
representations).

Input Graph Construction. In the human pose forecasting application scenario, the motion of
a joint is impacted by its connected joints. This is highly similar to people’s behaviors on a social
network (one person can be directly impacted by his/her friends). This inspires us to represent the
inter-joint interaction using an undirected graph G = {V, E} (where V is a node set and E is an
edge set) as what researchers have done for a social network [7].

Each node in the node set V corresponds to a joint of a human body. The node set V is defined
asV ={vyli=1,...,n,t =1,...,1t,} because the state of a joint may be different at different time
steps, where n is the number of considered joints of a human body, and t, is the observed time steps.
The feature vector v;; on a node is the coordinate of the ith object at time ¢. Such a definition is
the same as what we described in the previous subsection. Thus, the input representation is shared
with the node set.

The edge set indicates if there is a connection between the two joints. As the “Raw Data” in
Figure 3 shows, joints have interactions that are connected with edges at each time step t. Such an
interaction is constructed according to the human skeleton; e.g., the left shoulder is connected to
the left elbow, the left elbow is connected to the left wrist, and so forth. We call such a connection
“spatial edge” and denote it as Es = {v;;v;;|(i,j € D)}, where D is a set in which joints i and j are
connected to each other at time ¢. In addition, because a sequence of poses are being processed,
only considering the spatial edges at each independent time step is not enough. The historical
connection information must also be incorporated frame by frame in temporal space. In this work,
each joint in one time-step is connected to itself in another time-step via the temporal edge and
denoted as Er = {v;;v;(;41)}. All edges in Er of one particular joint represent its trajectory over
time steps. Thus, the complete edge set E = {Eg, Er}.

To make the computation more efficient, we represent this graph using an adjacency matrix
A ={Ap, A1}, where Ay is an identity matrix I representing self-connections in temporal space
(corresponding to Er), and A; is a spatial connection adjacency matrix (corresponding to Eg).
Thus, at any time t,

1, if edge <Uit’ ”th> €eE
0, otherwise.

Aoli][j](orA[i][J]) = { (6)

Both A, and A; have a size of (n X n), where n equals the number of considered joints of a human
body.

4.2.2  Graph Convolutional Component. The GC component is composed of several basic build-
ing blocks and each includes a convolutional layer and a graph operation layer. To be specific,
useful temporal features are extracted, e.g., motion pattern of one joint, using convolutional lay-
ers, and they handle the inter-joint interaction in spatial space using graph operations. This means,
flowing through each GC block, the input data is processed to refine the features temporally and
spatially alternatively. In Figure 3, a GC component with three building blocks is illustrated.

ACM Transactions on Sensor Networks, Vol. 17, No. 3, Article 34. Publication date: June 2021.



34:8 X. Li and D. Li

(a) Input (b) After the 1t GC Block (b) After the 2" GC Block (3) After the 3 GC Block

Fig. 4. The effect of the graph convolutional component for propagating joint information with stacked GC
blocks.

Convolutional layer. Given a preprocessed input data Fijp,,; := R™"*¢ (where n is the num-
ber of joints, t; is the observed time steps, and c is the dimension of the coordinates), the model
passes it through a convolutional layer to compute convolutional feature maps fzon,. To ensure
convolutional layers are extracting temporal features, their kernel sizes are set to (1 X 3) to force
them to process the data along the temporal dimension (the second dimension). This can also be
regarded as a 1D convolution over the time dimension for each human joint. Appropriate paddings
and strides are added to make sure that each layer has an output feature map with the expected
size.

Graph operation layer. Then, the generated convolutional feature maps f,,,, are fed to a
graph operation layer to take the interactions of connected joints into account. To make sure the
value range of feature maps remains unchanged after performing graph operations, Graph A is
normalized using the following equation (as done in [14]):

_1
2

_1
Anorm = Aj AjAj 2, (7)

A =2 (Af) + e )
k
and we set & = 0.001 to avoid empty rows in A;.

Considering that the graph A is generated based on a manually designed rule (human skeleton),
it may not be able to represent the interactions of joints properly. Thus, a trainable weight, denoted
as Ayeighs, is added that has the same shape as graph A for each graph operation layer. Thus, the
model will be trained to tune the A,.;gx; to assign an appropriate weight to each edge. Then, the
graph operation is calculated as

where A; is computed as

1
fgraph = Z (Ajweight o Ajnorm) feonvs ©)
j=0
where o is the element-wise product.

In Figure 4, the effect of our graph convolutional component in the spatial domain is illustrated
with an example input of 13 human joints. Before feeding the input data (Figure 4(a)) into the
model, one joint (marked using a red circle) only contains its own information (i.e., its coordinates).
After the data is passed through one GC block (Figure 4(b)), the information at the red joint is
updated by capturing information on all highlighted joints (circled with a red dashed line). These
highlighted joints have a direct connection to the red joint, so the GC block incorporates the impact
of all of them. If the data is passed through more GC blocks (Figures 4(c) and 4(d)), the information
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from more joints will be correlated. In other words, the proposed model can extract features by
gradually expanding its receptive field based on human structural information.

4.2.3  GRU Encoder-Decoder Module. Following the GC component is the GRU-based (Gated
Recurrent Units) encoder-decoder network that predicts the future poses for all considered joints
simultaneously. The output of the graph convolutional component is fed into the encoder GRU at
each time step. Then, the hidden feature of the encoder GRU, as well as coordinates of joints at the
previous time step, are fed into a decoder GRU to predict the position coordinates at the current
time step. Such a decoding process is repeated several times until the model predicts positions
for all expected time steps (¢r) in the future. It is worth noting that the GC component can be
concatenated with any more advanced sequence-to-sequence learning architecture such as the
transformer [38] to get improved prediction performance.

4.2.4  Loss Function. The proposed model is trained as a regression task at each time. The overall
loss can be computed as

1
Loss = — Z loss’ (10)
=

1 &
= 7 2l¥rea = Yéol (1)
pred GT||®
tr 4
where tris the time step in the future (in Figure 3, tr = 3), loss! is the loss at time ¢, and Ypred and
Yor are predicted positions and ground truth, respectively. The model is trained to minimize the
Loss.

4.3 Online Learning for Model Adaptation

Online learning is the process of adapting a pre-trained deep neural network with the collected
on-site data that reflects the real data distribution for optimized inference/testing. In GPFS, this
adaptation is achieved by fine-tuning the pre-trained model with online collected person- and
domain-specific pose data. While the model is being adapted online, we keep using the same model
structure and same training loss function as we described in Section 4.2. However, the online
learning uses a smaller learning rate le-4 (instead of 1le-3) and only the new data collected in
the new environment to fine-tune the model (i.e., only weights of the model are updated) so that
it would perform better in the new domain (new environment). The online adaption pipeline is
illustrated in Figure 5.

Specifically, at the particular edge environment where the system is deployed, it consistently
monitors the presence of persons, and a face detection and recognition system module is embedded
to obtain the person’s identity. Whenever a new person/face is identified, the system registers
him/her as a new user with the associated features for face recognition. Before the adapted model
is available for a user, the pre-trained model should be used to forecast future poses. At the same
time, the real-time captured pose sequences for the particular user are dumped at the edge storage
(e.g., a hard drive connected to the edge processing device).

Different from many other computer vision problems that require manual annotations to obtain
the ground-truth learning target, the pose forecasting can automatically obtain the ground truth
results by splitting a captured sequence into multiple (potentially overlapped) sub-sequences of
length [, 4,,. Each sub-sequence forms a training sample of two parts: (1) the input part with length
Linpur (50 frames in our experiment) and (2) the output part with length ¢y (10 frames for short-
term forecast and 25 frames for long-term forecast; Iy g = linput + loutput)-
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With onsite data samples collected, the model adaptation dataset with both training and vali-
dation splits is built and a reasonably good dataset should cover data collected spanning multiple
days at different times. Prior to performing model adaptation, the baseline accuracy Ap,s. for a
user is calculated using the pre-trained model on the constructed validation split. The new adapted
model will only be deployed when its accuracy achieves Apgse + Ashres, Where A;pres is a config-
urable system hyper-parameter. When multiple users present, the adaptation would be performed
using the training dataset for all the users and the adapted model would only be accepted if the
validation accuracy on each user’s validation split satisfies the requirement.

In Figure 6, we present the detailed flowchart of the pose forecasting subsystem in action. Note
that the pre-trained model would always be available for users not included in the adaptation
model.

5 EXPERIMENTS

We first describe the implementation details. Then we introduce the datasets and evaluation met-
rics. After that, we present the experimental results that include (1) the forecasting performance
on the benchmark dataset (both quantitively and qualitatively) by comparing it with the state-of-
the-art methods, (2) the online learning performance, and (3) the system overhead.

5.1 Implementation Details

We describe the implementation details and the settings of important parameters of the deep neural
networks as follows.
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5.1.1 Edge Processing Server. We deploy the system on an edge server running Ubuntu 16.04
with 4.0 GHz Intel Core i7 CPU, 32GB memory, and an NVIDIA Titan Xp Graphics Card. We use
PyTorch 1.3.1 [28] as our deep learning library.

5.1.2  Hyper-Parameters for Deep Neural Network.

Input preprocessing. For the human pose forecasting task, we consider n joints (n is variant
for different datasets) of a human body. We follow Pavllo et al. [30] to convert the input into
quaternion representation, because quaternions are free of discontinuities and singularities, are
more numerically stable, and are more computationally efficient than other representations [32].
Thus, the number of input channels ¢ = 4 after being represented with quaternions. In addition,
n joints are connected according to the human skeleton (similar as shown in Figure 4). Thus, the
graph of current input (adjacency matrix) is fixed and will be passed into the following graph
convolutional blocks.

Graph convolutional component. The graph convolutional component consists of three
basic building blocks (Figure 3). Therefore, it includes three convolutional layers, denoted as
{conv2d_ili = 1,2,3}. All Conv2D layers have a convolutional kernel with a size of (1 x 3). For
conv2d_1 and conv2d_2, the number of their output channels is increased to 64 to learn more
complicated features. For the last convolutional layer (conv2d_3), we try to extract semantically
more meaningful features (in our case the joint coordinates) [37] and reduce the number of chan-
nels from 64 back to 4, which is the dimension of the quaternions used in the input. The reduced
number of channels is also critical for efficient computation. Each convolutional layer is followed
by a graph operation layer, which does not change the size of feature maps, and they share the
same adjacency matrix (derived from the Input Preprocessing component) but with different train-
able weights (A, ¢igns). Therefore, the output of the graph convolutional component has the same
size of (n X tj, X 4) as the input. We add a Batch Normalization (BN) layer after the Input Pre-
processing and each graph operation layer. To avoid overfitting, we randomly drop out features
(0.5 probability) after each graph operation.

GRU Encoder-Decoder Module. Both the encoder and decoder of this prediction model are
two-layer Gated Recurrent Unit(GRU) networks. We set the number of hidden units of these
two GRUs equal to the output dimension (e.g., 4 X n, where n is the number of objects and 4 is
the quaternion representation). The input of the encoder has four channels that are the same as
the output of the Graph Convolutional Model.

Training process. We train the model using the Stochastic Gradient Descent (SGD) opti-
mizer with a 0.001 starting learning rate. The learning rate is reduced by multiplying 0.1 once per
5 epochs until the loss becomes converged. We set batch_size = 128 during training. The learning
rate is set to le-4 for online learning.

5.2 Datasets

Human 3.6M dataset. The Human 3.6M dataset [12] is one of the largest datasets of human
motion capture. This dataset consists of motion capture data from seven subjects (person IDs are
1,5,6,7,8,9, and 11) performing 15 different actions. In this dataset, 32 joint locations of each
person are provided. Following previous work [5, 13, 23], we use Subject 5 as the test data and
Subjects 1, 6,7, 8, 9, and 11 as training. Consistent with the previous work [5, 13, 23], we train our
model using the past 50 frames (2,000 ms) and predict the future 10 frames (400 ms) for short-term
prediction. For the long-term forecast, the model predicts the next 25 frames (1,000 ms). Following
the previous work [5, 13, 23], during training (offline training and online training), we randomly
select one clip from each sample in one epoch.

Penn Action dataset. The Penn Action dataset [42] provides 13 human joint coordinates over
15 different actions. In total, this dataset consists of 2,326 video sequences. Following [3, 5, 42],
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Table 1. MAE for Short-Term Prediction over Four Actions from Human 3.6M Dataset

Walking Eating Smoking Discussion
Milliseconds | 80 160 320 400 | 80 160 320 400 | 80 160 320 400 | 80 160 320 400
ERD [8] 093 1.18 1.59 178|127 145 1.66 180 1.66 195 235 242|227 247 268 276
LSTM-3LR [8] | 0.77 1.00 1.29 147|089 1.09 135 146|1.34 1.65 2.04 216|188 212 225 223
SRNN [13] 0.81 094 1.16 130|097 1.14 135 146|145 1.68 194 208|122 149 183 1.93

Residual [23] | 0.28 049 072 0.81[0.23 039 062 076|033 061 1.05 115|031 068 1.01 1.09
TP-RNN[5] | 0.25 041 058 065|020 033 0.53 0.67|0.26 047 0.88 090|030 0.66 096 1.04
QuaterNet [30]| 0.21 0.34 056 0.62|0.20 035 058 070|025 047 093 0.90|0.26 060 0.85 0.93
GPFS (Ours) | 0.20 0.34 0.55 0.62[0.17 0.30 054 0.66|0.23 0.43 0.85 0.82[0.23 0.57 0.82 0.90

In each column, the best results are typeset in boldface and the second best are underlined (the lower the better).

we split the dataset into 1,258 training video sequences and 1,068 testing video sequences. For this
dataset, the model only takes the first frame as its input and predicts the next 15 frames.

5.3 Metrics of Forecasting Accuracy

Two metrics are used in evaluation:

MAE distance. Following [5], mean average error (MAE) is used for the Human 3.6M dataset.
It measures the mean average distance between the predicted pose in the angle space and the
ground-truth pose.

PCK@0.05. The PCK@0.05 metric is used for the Penn Action dataset as done in [3, 5]. The
PCK metric calculates the percentage of joint locations correctly predicted by the model. With
threshold 0.05, a joint location is counted as correctly predicted if the normalized distance between
its predicted and ground-truth locations is less than 0.05. The distance is normalized typically based
on the size of the full body or the head. Since we have the coordinates of human body joints, we
normalize the distance by max(h, w), where h and w are the height and width of the human body
(longest distance between any two joints in height and width dimensions separately).

5.4 Benchmark Results for Pose Forecasting

5.4.1 State-of-the-Art Methods in Comparison. To demonstrate the performance improvement
with the introduced graph convolutional component, we compare our result with the current best-
performing solutions on our selected evaluation datasets. In particular, we have compared with the
following methods: ERD [8], LSTM-3LR [8], SRNN [13], Residual [23], TP-RNN [5], QuaterNet [30],
and Droupoout-AE [11]. None of those methods has included the graph module in their design.

5.4.2 Benchmark Results on Human 3.6M Dataset. We first evaluate the performance of our
proposed GPEFS to predict human motions using the Human 3.6M dataset. In Table 1, we report
short-term prediction results over four common actions from the Human 3.6M dataset.

From this table, we can see that our proposed GPFS achieves better results than the state-of-
the-art solution. GPFS only performs a little worse (0.01 worse in terms of MAE) than TP-RNN
at 320 ms for the “Eating” action. Besides that, GPFS performs better than all existing solutions.
Especially for “Smoking” and “Discussion,” GPFS achieves much lower error than the state-of-
the-art scheme (QuaterNet). These results prove that GPFS performs well in the human motion
short-term prediction task.

We also report GPFS’s long-term prediction results in Table 2 and Table 3. From Table 2, one
can see that GPFS achieves better results at all considered future time steps on four common
actions of the Human 3.6M dataset. If we compare Table 1 and Table 2, we can notice that GPFS
performs better in making long-term predictions than short-term predictions. Specifically, when
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Table 2. MAE for Long-Term Prediction over Four Actions from Human 3.6M Dataset

Walking Eating Smoking Discussion

Milliseconds | 80 160 320 560 1,000( 80 160 320 560 1,000 80 160 320 560 1,000/ 80 160 320 560 1,000

ERD [8] 130 1.56 1.84 2.00 2.38 |1.66 1.93 2.88 2.36 2.41 [2.34 2.74 3.73 3.68 3.82 |2.67 2.97 3.23 3.47 2.92
LSTM-3LR [8] | 1.18 1.50 1.67 1.81 2.20 [1.36 1.79 2.29 249 2.82 |2.05 2.34 3.10 3.24 3.42 |225 233 245 248 293
SRNN [13] 1.08 1.34 1.60 1.90 2.13 [1.35 1.71 2.12 2.28 2.58 |1.90 2.30 2.90 3.21 3.23 [1.67 2.03 2.20 2.39 243

Droupoout-AE | 1.00 1.11 1.39 155 1.39 |1.31 1.49 1.86 1.76 2.01 [0.92 1.03 1.15 1.38 1.77 [1.11 1.20 1.38 1.53 1.73
[11]
Residual [23] | 032 0.54 0.72 0.86 0.96 |0.25 0.42 0.64 0.94 130 [0.33 0.60 1.01 1.23 1.83 [0.34 0.74 1.04 143 1.75
TP-RNN [5]  [0.25 0.41 058 0.74 0.77 [0.20 0.33 0.53 0.84 1.14 |0.26 0.48 0.88 0.98 1.66 |0.30 0.66 0.98 1.39 1.74

GPFS (Ours) 0.22 0.37 0.56 0.69 0.73|0.19 0.32 0.53 0.66 1.13 [0.24 0.45 0.87 0.94 1.58 [0.25 0.58 0.84 1.29 1.67

In each column, the best results are typeset in boldface and the second best are underlined (the lower the better).

Table 3. MAE for Long-Term Prediction over the Remaining 11 Actions in Human 3.6M Dataset

Directions Greeting Talking on the Phone

Milliseconds | 80 160 320 400 560 1,000 80 160 320 400 560 1,000 80 160 320 400 560 1,000

Residual [23] | 0.44 0.69 0.83 0.94 1.03 149 053 0.88 129 145 172 189 |0.61 112 157 174 159 1.92
TP-RNN [5] | 0.38 059 0.75 0.83 095 138 [ 051 0.86 127 144 172 181|057 108 144 159 147 1.68

GPFS (Ours) | 0.34 0.49 0.70 0.80 0.89 1.28 |0.45 0.75 1.11 127 153 162|056 1.07 141 155 152 172

Posing Purchases Sitting

Milliseconds | 80 160 320 400 560 1,000 80 160 320 400 560 1,000 80 160 320 400 560 1,000
Residual [23] | 0.47 0.87 149 176 196 2.35|0.60 0.86 124 130 1.58 2.26 044 074 119 140 157 2.03

TP-RNN [5] | 042 0.76 1.29 154 175 247 059 0.82 112 1.18 152 228 | 041 066 1.07 122 135 174

GPFS (Ours) | 0.22 0.49 1.09 134 1.61 2.35|0.58 083 118 1.23 155 231 (034 0.53 091 1.09 122 158

Sitting Down Taking Photo Waiting

Milliseconds | 80 160 320 400 560 1,000 80 160 320 400 560 1,000 80 160 320 400 560 1,000

Residual [23] | 0.51 0.93 144 1.65 1.94 255 (033 0.65 097 1.09 1.19 147 [ 034 0.65 109 1.28 1.61 2.27
TP-RNN [5] | 041 079 113 1.27 147 193 [0.26 051 080 0.95 1.08 1.35 [0.30 0.60 1.09 131 171 246

GPFS (Ours) [ 0.35 0.68 0.99 1.11 1.28 1.84|0.22 0.45 0.72 0.85 097 1.18 [0.28 0.55 0.99 1.20 154 2.23

Walking Dog Walking Together Average of All 15

Milliseconds | 80 160 320 400 560 1,000 80 160 320 400 560 1,000 80 160 320 400 560 1,000

Residual [23] | 0.56 0.95 1.28 139 1.68 192|031 0.61 084 0.89 1.00 143|043 075 1.11 124 142 183
TP-RNN [5] | 0.53 0.93 124 138 1.73 198 [ 0.23 047 067 0.71 078 1.28 [ 037 0.66 099 111 130 1.71

GPFS (Ours) | 0.50 0.84 1.14 1.27 156 1.87|0.21 0.43 0.59 0.63 0.69 1.24 |0.33 059 0.91 1.02 120 1.62

In each column, the best results are typeset in boldface (the lower the better).

making long-term predictions, GPFS gains more improvement from the state-of-the-art solution
than making short-term predictions. It is because GPFS considers the impacts of nearby objects,
which helps the model make a longer precise prediction.

In Table 3, we report the remaining 11 actions in the Human 3.6M dataset and the average
prediction results over all of the actions. We have excluded other low-performing methods for
more clear presentation but just keep the most competitive methods, Residual and TP-RNN. GPFS
achieves better long-term predictions for most actions. Precisely, GPFS only performs worse in 7
out of 66 predictions than the existing solutions. The majority of the slightly sub-optimal predic-
tions (compared to TP-RNN) are made on the scenario "Making Purchases,” where the training
poses and the testing poses are not quite consistent. On average (the “Average of All 15” columns),
GPFS improves the performance of the state-of-the-art solution by almost 0.1 in terms of MAE.
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Table 4. Comparison to Prior Works Using the Penn Action Dataset in Terms of PCK@0.05
(the Higher the Better)

Future Frame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Residual [23] 824 683 585 509 447 400 364 334 313 295 283 273 264 257 250 245
3D-PFENet [3] 79.2 60.0 49.0 439 415 403 39.8 39.7 40.1 405 41.1 41.6 423 429 432 433

TP-RNN w/o init vel. [5] | 82.3 68.9 61.5 56.9 539 51.7 50.0 485 47.3 462 456 450 44.6 443 44.1 439
TP-RNN w/ init vel. [5] | 84.5 72.0 648 603 57.2 550 534 521 509 50.0 493 487 483 479 47.6 473

GPFS (Ours) 84.0 717 64.8 60.7 57.8 55.9 54.2 52.8 524 519 51.6 514 513 513 512 51.1

In each column, the best results are typeset in boldface and the second best are underlined.
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(c) Pose Forecasting Results of Pavllo et al. [
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(d) Pose Forecasting Results of our proposed solution.

Fig. 7. Visualized forecasting results using a “takingphoto” testing sample from the Human 3.6M dataset.
The person is taking a photo while leaning on one leg. After a few frames, the person stands up.

5.4.3 Benchmark Results on Penn Action Dataset. We evaluate the performance of our GPFS on
another human motion prediction dataset, the Penn Action dataset. In Table 4, we compare our
GPFS with prior works in terms of PCK@0.05, and a higher value means better performance. On
this dataset, GPFS also achieves better results than the state-of-the-art solutions at most time steps
(14 out of 16 predictions). Consistently, GPFS works much better in making long-term predictions
than other schemes.

5.4.4 Visualization of Prediction Results. Figure 7 and Figure 8 show visualized results using
two testing samples from the Human 3.6M dataset. One can see that our proposed scheme achieves
much better results than Pavllo et al. [30]. Comparing Figures 7(c) to 7(d), Pavllo et al. does not
predict the person is going to stand up, while our proposed solution correctly forecasts such an
intent. Comparing Figures 8(c) to 8(d), Pavllo et al. predict the person is going to raise his (or her)
hand over his (or her) head. However, our forecasted results are close to the ground truth.

5.5 Experimental Results of Online Adaptation

Here, we evaluate the performance of our Online Model Adaptation Module on the Human3.6M
dataset. To simulate the real-life application scenarios, we design the following two online adap-
tation settings:

ACM Transactions on Sensor Networks, Vol. 17, No. 3, Article 34. Publication date: June 2021.



GPFS: A Graph-based Human Pose Forecasting System for Smart Home 34:15

CUAAAAARA

a) Observed Historical Poses.

AR AT

(b) Ground Truth
(c) Pose Forecasﬁesﬁ Pﬁt j@. \'ﬁ \ﬁ ‘ﬁ
ﬁ ﬁ\ﬁ;ﬁ;recasting Resulﬁ;ﬁ:ﬂion. ﬁ/ﬁ/

Fig. 8. Visualized results of a “posing” testing sample in the Human 3.6M dataset. The person is posing in

various poses.

Table 5. MAE Results of Online Adaptation (Setting 1) on the Human 3.6M Dataset

Prediction Horizon (ms) | 320 400 560 1,000 4,000 | Sum | Improve | Time (s)
GPFS (Ours) 093 1.06 1.28 1.79 2.40 7.46 - -
Fine-tune GPFS 10 Epochs | 0.91 1.02 1.21 1.64 2.24 7.02 —-0.44 1.16
Fine-tune GPFS 20 Epochs 0.91 1.02  1.21 1.62 2.18 6.94 -0.52 2.33
Fine-tune GPFS 30 Epochs 090 1.01 1.20 1.61 2.16 6.88 —0.58 3.52
Fine-tune GPFS 40 Epochs 090 1.01 119 1.60 2.12 6.82 —0.64 4.68
Fine-tune GPFS 50 Epochs 0.90 1.00 1.19 1.59 2.12 6.80 —0.66 5.82

« »

For MAE, the lower the better, so we use “-” to represent performance improvement. We collected compu-
tation time on a single NVIDIA TitanXp GPU.

Setting 1: The online collected data covers all potential actions of the edge user. To simulate
such an application scenario, we set Subject 5 in the Human3.6M dataset (S5) as the edge user, and
the data belonging to him are regarded as the online collected data (in total 20 minutes long). We
equally split the collected data of S5 into the training and testing subset (1:1) for each of the 15
actions. Table 5 shows the experimental results.

Setting 2: The newly collected data only covers several (not all) potential actions of the edge
user to evaluate the generalization capability. This is a more challenging but also more realistic
setting. To simulate such an application scenario, we also set Subject 5 in the Human3.6M dataset
(S5) as the edge user, and we use the leave-one-out strategy; i.e., each time, one action is selected
for testing, and the remaining action classes are used for training. The Human3.6M dataset consists
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Table 6. MAE Results of Online Adaptation (Setting 2) on the Human 3.6M Dataset

Prediction Horizon (ms) | 320 400 560 1,000 4,000 | Sum | Improve | Time (s)
GPFS (Ours) 0.93 1.06 1.28 1.79 2.40 7.46 - -
Fine-tune GPFS 10 Epochs | 091  1.03  1.23 1.66 2.28 7.11 —-0.35 1.19
Fine-tune GPFS 20 Epochs 0.91 1.02 1.22 1.64 2.20 6.99 —0.47 2.37
Fine-tune GPFS 30 Epochs 0.90 1.02 1.21 1.62 2.19 6.94 —-0.52 3.56
Fine-tune GPFS 40 Epochs 0.90 1.02 1.21 1.62 2.18 6.93 —0.53 4.76
Fine-tune GPFS 50 Epochs | 0.90 1.01  1.20 1.61 2.18 6.90 —-0.56 5.97

We collected computation time on a single NVIDIA TitanXp GPU.

Table 7. MAE Results of Online Adaptation (Setting 2 Half Finetuning Data) on the
Human 3.6M Dataset

Prediction Horizon (ms) | 320 400 560 1,000 4,000 | Sum | Improve | Time (s)
GPFS (Ours) 0.93 1.06 1.28 1.79 2.40 7.46 - -
Fine-tune GPFS 10 Epochs 0.91 1.03 1.23 1.66 2.27 7.10 —0.37 1.16
Fine-tune GPFS 20 Epochs 0.91 1.03 1.23 1.65 2.21 7.03 —0.44 2.35
Fine-tune GPFS 30 Epochs 0.91 1.03 1.22 1.65 2.20 7.01 —0.46 3.54
Fine-tune GPFS 40 Epochs | 091  1.02 1.21 1.63 2.18 6.95 —0.52 4.72
Fine-tune GPFS 50 Epochs 090 1.01 1.21 1.63 2.19 6.93 —0.54 5.86

We collected computation time on a single NVIDIA TitanXp GPU.

of 15 action classes. Thus, we repeat such a process 15 times and average the results. In addition,
we run another set of experiments by reducing the size of the training dataset by half (each action
has only one recorded video) to evaluate the impact of data volume. The experimental results for
this setting are reported in Table 6 and Table 7.

The first row (GPFS (Ours)) of all three tables indicates the accuracy of the pre-trained models
before online adaptation. The following rows show the accuracy after online adaptation as well as
the training time cost with a varying number of training epochs. Table 5 shows consistent results as
shown in Table 6 and Table 7. First, the model can be fine-tuned within a very short time (less than
6 seconds) for 50 epochs. Second, after fine-tuning, the performance of the model improved roughly
10% (fine-tuned 50 epochs), though the second setting has made the problem more challenging. In
addition, such online learning would not require too much data to achieve satisfactory accuracy
improvement by comparing the results of Table 6 and Table 7. Based on the experimental results
shown in both tables, one can conclude that our proposed GPFS can run extremely fast on a local
edge processing server and can be online enhanced by using newly collected data.

5.6 System Overhead

In Table 5 and Table 6, we show that the online model training can be finished in near real time.
Here, we further demonstrate that GPFS is computationally feasible for edge computing in terms
of inference time and storage cost. The evaluation is performed using the Human 3.6M dataset.

5.6.1 Inference Time. The system needs to be computationally efficient to enable real-time in-
ference (25 fps) at the edge. The inference includes two parts: the pose estimation and the future
pose forecasting. For pose estimation, we use XNect [25] for real-time processing with a Single
RGB Camera. With a single NVIDIA TitanXp GPU, XNect could generate the pose skeleton from
a single image in 7.4 ms (i.e., 135 fps). For future pose forecasting, we present the experiment re-
sults in Table 8, where 50 historical frames of 2 seconds are used as input and results of different
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Table 8. Inference Time of Pose Forecasting on a Single NVIDIA TitanXp GPU

Prediction Horizon (ms) 80 160 320 400 560 1,000 4,000
GPFS (Ours) 55ms 6.0ms 74ms 82ms 95ms 133ms 39.1ms

prediction horizons have been listed to demonstrate the efficiency. For example, forecasting the
pose of the future 400 ms only takes 8.2 ms.

5.6.2 Storage Cost for Online Data Collection. The online data collected for edge users is
storage-friendly since only skeleton coordinates are required other than the raw RGB frames.
Specifically, for valid pose recording of 24 hours long (i.e., assuming the person presented at each
frame), the storage cost is only 1.4 GB in the Numpy data format. In addition, since the online
training scheme happens at the network edge, there would be no privacy issue. The data can be
deleted after the online model adaptation is finished.

6 CONCLUSION

In this article, we propose a graph-based human pose forecasting system to forecast human pose in
the Smart Home/IoT environment. The contributions of GPFS are twofold. First, GPFS introduces
a graph-based method to represent the interaction among all considered joints of a human body
and employs a graph-enhanced encoder-decoder framework to make predictions. This new ar-
chitecture design effectively captures the coherent connectivity among human joints and enables
learning in an end-to-end manner. Second, considering the domain bias at a particular deployment
environment, an online learning pipeline is designed for model adaptation to further improve the
performance. In addition, a hybrid cloud-edge architecture is adopted for privacy protection. The
prototype implementation and experimental results on two popular benchmark datasets show that
(1) the graph-based deep learning model achieves better forecasting results than existing meth-
ods, (2) the online learning significantly boosts the accuracy, and (3) the deployed system runs
efficiently on an edge server.

Our future work will be focused on two directions. First, we would like to explore more on
the deep neural network architecture design to further improve the accuracy. Specifically, by tak-
ing advantage of advanced seq2seq learning architecture such as conv-seq2seq [10] and trans-
former [38], we would expect further accuracy improvement as well as improved computational
efficiency (due to their parallel processing capability). Second, we would like to study the feasibil-
ity of applying model adaptation methods other than fine-tuning to avoid maintaining multiple
models at the edge. Particularly, we would like to adapt the learning without forgetting method [18],
which prevents a model from forgetting its old knowledge while learning continually on data of
new domains.
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