
EXTRACTION OF COMMON CONCEPTUAL COMPONENTS
FROM MULTIPLE ONTOLOGIES

A PREPRINT

Luigi Asprino
Department of Classical Philology and Italian Studies

University of Bologna
Via Zamboni 32, 40126 Bologna, Italy

luigi.asprino@unibo.it

Valentina Anita Carriero
Department of Computer Science and Engineering

University of Bologna
Mura Anteo Zamboni 7, 40126 Bologna, Italy

valentina.carriero3@unibo.it

Valentina Presutti
Department of Modern Languages, Literatures, and Culture

University of Bologna
Via Cartoleria 5, 40124 Bologna, Italy
valentina.presutti@unibo.it

November 5, 2021

ABSTRACT

Understanding large ontologies is still an issue, and has an impact on many ontology engineering
tasks. We describe a novel method for identifying and extracting conceptual components from
domain ontologies, which are used to understand and compare them. The method is applied to two
corpora of ontologies in the Cultural Heritage and Conference domain, respectively. The results,
which show good quality, are evaluated by manual inspection and by correlation with datasets and
tool performance from the ontology alignment evaluation initiative.

Keywords ontology design patterns; conceptual components; empirical knowledge engineering; knowledge
extraction; ontology usability

1 Introduction

Understanding large ontologies - by humans or machines - is both a struggle and crucially important for performing
ontology engineering tasks such as ontology reuse, ontology matching, ontology evaluation, and (federated) querying
[2]. According to [6], existing visualisation tools fail in providing overviews of large ontologies, which is crucial for
ontology understanding, while none of them allows to compare multiple ontologies. Besides the layout and interac-
tion features, the problem lays in the lack of effective methods for producing summaries of large ontologies. Many
summarisation approaches focus on analysing the data level, e.g. to reduce the size of a knowledge graph and allow
simplified queries for testing its coverage [16, 3]. Available summarisation methods addressing the conceptual level
are based on extractive approaches that select and return a subset of nodes from the original ontology, i.e. the key
concepts, as a summary [16]. However, an overall understanding of all the facts an ontology can represent, and a
comparison between multiple ontologies, are not supported. For example, we may identify that in a cultural heritage
ontology the concepts Cultural Property and Collection are key ones, however this is insufficient to understand if one
ontology allows to answer whether a cultural property has been in a collection. Two ontologies having the same key
concept would appear they address the same modelling problem, which may not be the case. For instance, an ontology
O1 may implement a membership relation between an object and a collection, i.e. “being a member of a collection”,
as an object property hasMember between a class Collection and a class Object, while an ontology O2 may imple-
ment it as an n-ary relation class Membership connected to three arguments e.g., the classes Collection, Time, and
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Figure 1: Implementations of the Membership CC from two different ontologies.

Object1 (Figure 1). We refer to these implementations as observed ontology design patterns [9], intended as adopted
modelling solutions that can be observed in existing ontologies, regardless their correctness or quality level, which
may or may not reuse reference ontology design patterns (ODPs).

A conceptual component (CC) is a complex (cognitive) relational structure that a designer implements in an ontology
by using classes, properties, axioms, etc. Examples of CCs are membership, locating, interpreting, observing. This
notion of CC is inspired by the concept of knowledge pattern presented in [10]. Conceptual components are cognitive
objects: they are the intensional counterparts of OWL implementations in semantic web ontologies2. A CC may
be implemented by means of different ontology fragments, the observed ontology design patterns (OODPs), across
different ontologies. Therefore, the CCs emerging from an ontology (corpus) indicate which types of facts, rather
than which types of entities, an ontology (corpus) can represent. The OODPs implementing a CC show the adopted
modelling solutions by a designer: which competency questions [12] and inferences are supported by an ontology.
Our approach aims at identifying the CCs implemented in multiple ontologies, to support their understanding and
comparison. We group OODPs from different ontologies in semantically-meaningful clusters, i.e. CCs. These clusters
provide a conceptual ordering, based on CC, over the different implementations (OODPs), hence providing a means to
e.g. identify the most appropriate OODP to reuse or align, based on specific requirements. While addressing this issue
is an interesting research result per se, the method we propose may lead to novel approaches to ontology engineering
tasks such as pattern-based ontology reuse, ontology visualisation, ontology matching, ontology evaluation. This
method is also relevant from an empirical perspective on knowledge engineering, that is to observe the common
conceptual issues and modelling solutions adopted in ontologies, with potentially a strong impact on semantic web
interoperability.
In contrast to existing methods, we develop a non-extractive technique, as the identified conceptual components are not
part of the original sources. To the best of our knowledge, this is the first approach of this kind. Our implementation
combines community detection, word sense disambiguation, frame detection and clustering techniques. By applying it
on a corpus of ontologies from a knowledge domain, it produces a catalogue of CCs and their corresponding observed
ontology design patterns organised as a hierarchical network. The CCs are labeled and linked to their OODPs from
the corpus. Therefore, the ontologies are classified based on the CCs that they implement. We apply our method to a
corpus of 43 cultural heritage ontologies and to a corpus of 16 Conference ontologies used in the ontology alignment
evaluation initiative (OAEI)3. All software, input data, and results are available online4 as a GitHub repository. We
evaluate our results using two approaches: 1) manual inspection of the resulting OODPs and conceptual components,
and 2) correlation of our results with ontology alignment tools and datasets from the ontology alignment evaluation
initiative3.

The contribution of this paper can be summarised as follows: (i) we define a novel method for multiple ontology
summarisation, based on conceptual components and observed ontology design patterns; (ii) we implement the pro-
posed method as a non-extractive technique; (iii) we produce and publish a catalogue of conceptual components and
observed ODPs from a corpus of CH ontologies.

Section 2 describes the datasets used as input sources. Section 3 illustrates our approach and its implementation.
Section 4 reports our experiments and results, while Section 5 focuses on their evaluation and discussion. Before
concluding in Section 7, we discuss related works in Section 6.

1Other implementations are possible.
2OWL has purely extensional semantics.
3http://oaei.ontologymatching.org/
4https://github.com/stlab-istc-cnr/conceptual-components
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Table 1: Corpora of ontologies: statistics

Dataset # ontologies # logical axioms # classes # properties
tot avg min max tot avg min max tot avg min max

CH 43 26,392 ∼613 16 1,060 2707 ∼63 5 539 9132 ∼212 6 4324
Conf 16 4097 ∼256 65 739 851 ∼53 14 140 714 ∼44 17 78

2 Input source

Our empirical basis is composed of two ontology corpora.

Cultural Heritage. We build a corpus consisting of 43 Cultural Heritage (CH) ontologies4. The motivation for
choosing this domain is twofold: (i) we have experience in modelling CH ontologies, and (ii) the requirements of
CH ontologies are generally complex, hence we hypothesise that it provides a good testbed for the generalisability
of our method. Ontologies that focus on related domains (e.g. geometry, chemistry) and top-level ontologies have
been excluded. To select the ontologies we used two main sources. We analysed and searched the Vocabs section of
the Linked Open Vocabularies Repository (LOV)5 by filtering the results using tags related to CH (such as Catalogs,
FRBR, Metadata). Moreover, we disseminated a call to fill a Survey6 on 3 CH- and ontology engineering-related
mailing lists and on social networks: 40 people, mostly researchers, participated in the survey. People were asked
to (i) indicate which ontologies they already knew, from the list of ontologies selected from LOV; (ii) recommend
other ontologies; (iii) indicate in which projects they had used any of them. Almost all ontologies were known by at
least one participant, and four CH ontologies have been recommended and added to the corpus. For each ontology,
the latest version available is included in the corpus. Four of them are ontology networks i.e. composed of multiple
modules: we consider each networked ontology as one ontology. When possible, we include the inferred version (i.e.
with materialised inferences) of the ontologies. To this end we use the OWL API7 and the HermiT Reasoner8. Due to
import- and inconsistency-related problems, for 10 ontologies we only include the asserted version.
The resulting CH corpus (cf. Table 1) counts a total number of 2,707 classes (owl:Class, rdfs:Class), with
an average of ∼63 classes per ontology. As for the properties (owl:ObjectProperty, owl:DatatypeProperty,
rdf:Property), they are 9,132 in total, with an average of ∼212 per ontology The total number of logical axioms is
26,392, with an average of ∼613 per ontology

Conference. Our second corpus is provided by the dataset of the Conference evaluation track9 of the OAEI 2020
campaign (Conf for short), which contains 16 ontologies10 on a specific domain, less vast than CH but with a good
range of subtopics and related domains (e.g. price, travel). This corpus counts (cf. Table 1) a total number of 851
classes, with an average of ∼53 classes per ontology; the total number of properties is 714, with an average of ∼44
properties per ontology. For all 16 ontologies the inferred versions have been computed. The total number of logical
axioms is 4,097, with an average of ∼256 axioms per ontology.

3 Approach

The intuition (and assumption) behind our method (summarised in Figure 2) is that ontologies are designed (either
intentionally or unintentionally) as compositions of conceptual components, implemented by (observed) ODPs (an
adopted modelling solution). An ODP11 captures some relational meaning e.g. membership, observation, participa-
tion. We hypothesise that OODPs emerge because 1) their vocabulary is semantically coherent with the relation they
represent, i.e. the combination of terms of an OODP evokes that relation. For example, in an OODP Membership a
possible vocabulary may include the terms: collection, is member of, has member, has unifying property; 2) the den-
sity of their internal connections is higher than the density of the connections between them. For example, consider an
ontology that models the address of an object as a class Address having four arguments: the object, the city, the street
and number, and the postal code. They form an OODP Address. Now consider that the same ontology also includes
an OODP Event, modelling events and their participants. The connections between the entities involved in Address,

5https://lov.linkeddata.es
6https://t.co/ghwk6lxCOH?amp=1
7https://github.com/owlcs/owlapi
8http://www.hermit-reasoner.com
9http://oaei.ontologymatching.org/2020/results/conference

10https://owl.vse.cz/ontofarm/#ontologies
11In this context, by ODP we refer to the notion of Content ODP.
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Figure 2: Approach for conceptual components extraction. One owl-logo means that the process works on one ontol-
ogy at a time, two owl-logos that it works on the whole corpus.

and the connections between the entities involved in Event will be denser than the connections between Address and
Event. Community detection algorithms, such as [4], are able to recognise this topological phenomenon.
Our method, depicted in Figure 2, detects the communities in each ontology from a corpus (cf. Section 3.2), after a
pre-processing step named intensional ontology graphs (cf. Section 3.1). Each community potentially identifies an
OODP. Then, we retrieve the OWL/RDF12 fragments corresponding to all communities (the actual OODPs) and store
them for later use. At the same time, each community is associated with a virtual document: a bag of words generated
by concatenating the vocabulary terms describing its entities (e.g. rdfs:label). After a disambiguation and a frame
detection steps performed on these virtual documents, they are submitted to a clustering algorithm (cf. Section 3.3).
As a result we obtain a set of clusters, each grouping communities from different ontologies. Based on our assump-
tions, each cluster is a manifestation of a conceptual component, and each OODP is one of its possible OWL/RDF
implementations. We use some heuristics for naming the clusters, and finally we generate a catalogue, which provides
an abstract, indexed summary of the whole ontology corpus.

3.1 Intensional ontology graph

Most community detection algorithms manipulate undirected graphs and ignore labels: they focus on the topological
structure of a network. Therefore, we need to transform our ontologies into graph structures that can be processed
by these algorithms, while preserving as much as possible the information about how the ontologies formalise their
conceptualisations. To this aim, we introduce the concept of intensional ontology graph, which is a graph derived
from an ontology where the nodes represent its predicates (both classes and properties) and the arcs indicate that
there is a meaningful relation between two predicates. Informally, this graph encodes the intensional level of the
ontology. Formally, we transform an ontology to its intensional graph by applying the rules defined in Listing 1. With
the notation edge_label(source_label, target_label), we indicate a pair of nodes source_label, target_label that are
connected by the arc edge_label, in the intensional graph. To indicate undirected and unlabelled arcs we use no_label.
A rule is a set of premises, expressed in turtle syntax, and a conclusion, expressed with the introduced notation, that
follows the symbol “→”.

Rules 1: Transformation rules from an OWL/RDF ontology to its corresponding intensional graph.

(r1) :p rdfs:domain :d . :p rdfs:range :r .→ :p(:d, :r)

12OWL ontologies, RDF vocabularies.

4



A PREPRINT - NOVEMBER 5, 2021

(r2) :c1 rdfs:subClassOf | owl:equivalentClass [
owl:onProperty :p ;
owl:someValuesFrom | owl:allValuesFrom | owl:hasValue |
owl:maxCardinality | owl:minCardinality | owl:cardinality :c2 ]
→ :p(:c1, :c2)

(r3) :p(:n1, :n2)→ no−label(:n1, :n1−p−n2) no−label(:n1−p−n2, :n2)

Given an ontology O, the first rule (r1) generates an arc :p connecting two nodes, :d and :r, for all properties that have
domain :d and range :r. We ignore domain/range declarations involving blank nodes. Properties without domain/range
declarations are assumed to have owl:Thing as domain/range. Property restrictions (existential, universal, cardinal-
ity) generate an edge :p between the class local to the restriction and the class in the restriction expression (r2). We
ignore all class expressions, that is we only consider named classes or datatypes. While this may cause some loss of
information, we empirically verified on our corpora that the impact is almost insignificant: only 1.62% of subClas-
sOf/equivalence axioms and 5.42% of domain/range axioms involve class expressions in the CH corpus, while 1.48%
of subClassOf/equivalence axioms and 9.22% of domain/range axioms involve class expressions in the Conf dataset.

Class hierarchy and equivalence relations between named classes are left off the intensional graph, to avoid merely
taxonomic patterns, but they are reintroduced when the OWL/RDF OODPs are retrieved (cf. Subsec. 3.2).

Rules (r1) and (r2) produce a labelled multi-graph (a graph having multiple edges). The last rule (r3) transforms the
resulting intensional graph to a corresponding unlabeled and undirected graph structure. For each arc :p between two
nodes :n1 and :n2 it generates two unlabelled arcs. The first connecting n1 to a new node :n1 − p − n2, the second
connecting :n1 − p − n2 to :n2. The node :n1 − p − n2 captures the meaning of the property :p, contextualised to
its use for connecting :n1 and :n2. This is a crucial detail for maximising the quality of the detected communities.
In fact, communities are disjoint, hence if we only store the information of a property :p, this property will only fall
into one community. Nevertheless, a same property :p may be relevant in different contexts (and OODPs) and these
contexts are captured by its local usage, i.e. the predicates it connects. With this representation we enable overlapping
communities, which is crucial to capture concepts that are relevant to more than one pattern. We transform each
ontology from the two corpora into its intensional graph. Figure 313 shows two OODPs (in 3a) from POSTDATA (on
the left) and CIDOC CRM (on the right) and their corresponding intensional graphs (in 3b)14.

3.2 Community detection

Community detection aims at gathering the vertices of a network into groups, such that there is a higher density of
edges within groups than between them. For detecting the community structure of each ontology, we use the Clauset-
Newman-Moore algorithm [4]. This algorithm is based on the greedy optimization of the modularity, i.e. a measure
of how much the computed division is good in terms of the ratio between the number of edges inside the communities
and the number of edges between them. Initially, there are as many communities as the vertices, with each vertex
being the only member of its own community, then the two communities that, if merged, most increase the modularity,
are repeatedly joined, until it is no longer feasible to merge communities without decreasing the modularity. After
running this algorithm on the intensional ontology graphs, we observe that the detected communities highly differ
in their density, and that communities with lower density could be further split into meaningful subcommunities.
After running some experiments, we found that recursively running the algorithm on communities with density lower
than the average density of all communities detected at the previous step, would improve the results. Therefore, the
algorithm has been modified to behave in this way (until there is no community that can be split further).
OWL/RDF OODPs retrieval. Communities are represented as sets of nodes. In order to further investigate their
structure and content, we retrieve the OWL/RDF ontology fragments that contain the original nodes (classes and
properties): the observed ODPs. To define their boundary, we use the following heuristics: for each node in the
community, we retrieve the triples asserting its type. As for properties, we retrieve domain and range axioms, inverse,
super- and equivalent properties. We retrieve all super- and equivalent classes, and all restrictions that involve at least
one property within the community. Figure 4 shows the sets of nodes retrieved from the two communities depicted in
Figure 3b (from POSTDATA and CIDOC)15. They almost perfectly overlap with the ontology fragments in Figure 3a.

13pd: http://postdata.linhd.uned.es/ontology/postdata-core# tr: http://postdata.linhd.uned.es/ontology/postdata-transmission#
dates: http://postdata.linhd.uned.es/ontology/postdata-dates# crm: http://www.cidoc-crm.org/cidoc-crm/

14We use the Graffoo diagram notation.
15Arrows mean consecutive steps.

5

http://postdata.linhd.uned.es/ontology/postdata-core#
http://postdata.linhd.uned.es/ontology/postdata-transmission#
http://postdata.linhd.uned.es/ontology/postdata-dates#
http://www.cidoc-crm.org/cidoc-crm/
https://essepuntato.it/graffoo/


A PREPRINT - NOVEMBER 5, 2021

(a) Two OODPs from the CH corpus.

(b) Intensional graphs corresponding to the OWL OODPs in 3a.

Figure 3: Example of OWL OODPs and their corresponding intensional ontology graphs. Blue rectangles indicate
object properties, green rectangles data properties.

3.3 Clustering and Catalogue Generation

Communities are recognised based on the intensional graph’s topological features. Our hypothesis is that they identify
OODPs, hence the terms in their vocabulary shall concur to evoke the relational meaning captured by these OODPs.
These relational meanings correspond to (possible specialisations of) the conceptual components that we are looking
for. As we are working with multiple ontologies, if we cluster the communities according to their vocabularies, we
may identify CCs that are shared by (potentially) all of them.

Clustering input. We build a virtual document for each community by concatenating all rdfs:label values from
its entities. We take all English terms and, when no label is present, we use local IDs. We remove all repetitions
and exclude comments, since they may introduce noise. Entities with namespaces owl:, rdf:, rdfs: and xsd: are
excluded. We disambiguate all virtual documents by using UKB16, which is based on WordNet (English) version 3.017.
Then, we query the profile B of Framester18, a knowledge graph that connects many linguistic resources (including
WordNet and FrameNet19), for extracting all FrameNet frames that have a close match with (i.e. are evoked by) the
synsets in the virtual documents, and we add them to it. The hierarchy of frames is also exploited to include additional,
more general frames. As a result, each community is represented by a concatenation of all the retrieved synsets and

16https://github.com/asoroa/ukb
17https://wordnet.princeton.edu/
18https://github.com/framester/Framester
19https://framenet.icsi.berkeley.edu/fndrupal/
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Figure 4: Example of communities detected from two ontologies of the CH corpus.

Figure 5: Virtual document disambiguation, frame detection and clustering on the communities from Fig. 4.

frames. Figure 520 shows the synsets and frames included in the virtual documents of the two communities from
Figure 4.

Clustering. We use K-Means [14] and the elbow method to cluster the communities’ virtual documents. It is a
general-purpose clustering algorithm that has been tested across different application areas and domains [18]. K-
Means partitions the observations into a predefined number of k disjoint groups, defining, after a number of iteration,
k centroids, one for each cluster.
Clusters i.e. conceptual components, are organised as a hierarchical network. To generate relations between them
we use FrameNet inheritance relations between frames. Given a cluster c, we indicate with F (c) the set of frames
associated with c. Two clusters c1 and c2 are hierarchically related r(c1, c2), with a weight w, if at least one frame
f1 ∈ F (c1) inherits from at least one frame f2 ∈ F (c2). We indicate with max the maximum number of inheritance
relations between frames that occur between two clusters of the network. The weight w indicates the strength of
r(c1, c2) and is computed as follows. Given two clusters c1 and c2, the strength w of r(c1, c2) is the sum of the frames
in c1 that are subsumed under at least one frame in c2, divided by max. The range of values for w is [0,1].

Naming conceptual components. To automatically assign a meaningful name to each cluster, which identifies a
conceptual component, we generate (and manually check) a label from the most frequent synsets and frames that
belong to it, i.e. we count how many times a same synset or frame is included in the virtual documents belonging to a
cluster. We also generate a textual description for each cluster by concatenating all terms representing its communities.
This description is useful to better understand the more specific concepts covered by the OODPs grouped by a cluster.

20wn30: https://w3id.org/framester/wn/wn30/instances/ frame: https://w3id.org/framester/framenet/abox/frame/
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Table 2: The number of hierarchical relations among clusters per level of strength. For each level l, it is indicated the
total, maximum and average number of relations having a strength ≥ l.

Strength levels
0.0 0.1 0.2 0.3 0.4

tot max avg tot max avg tot max avg tot max avg tot max avg
CH 6644 91 69.2 813 66 8.4 274 42 2.8 114 30 1.18 58 22 0.6

Conf 2000 47 25.9 572 30 7.4 260 25 3.3 133 15 1.72 63 11 0.8

For example, the communities in Figure 5 are grouped in the same cluster named Event: the most frequent frame
within the cluster (41 times from 21 communities belonging to 13 different ontologies). The description indicates that
the ontologies implementing the Event conceptual component address cultural events, organisers, reproduction, time,
etc.

Catalogue generation. The last step of our method (cf. Figure 2) builds a catalogue that connects and organises the
analysed ontologies according to the extracted conceptual components and their corresponding OODPs. Each CC in
the catalogue is linked to its associated OODPs within the ontologies. Therefore, the catalogue classifies the ontologies
based on the conceptual components that they implement. We provide an HTML rendering of the catalogue21 included
in the online package4, generated from the CH corpus.

4 Experiment and Results

The overall time required for producing all results with our method is about 1h15m (CH corpus) and 30m (Conf
corpus) on a commodity hardware: we used a laptop (2,3 GHz Intel Core i5, 16GB of RAM).
Intensional graphs. The average number of nodes and edges of the intensional graphs derived from the CH corpus
is ∼165 and ∼217, respectively. For the Conf corpus, they are ∼91 and ∼115. The intensional graphs preserve an
average 47% (CH corpus) and 54% (Conf corpus) of classes and 90% (CH corpus) and 87% (Conf corpus) of object
and datatype properties. The loss of information about ontology classes is due to the fact that the tranformation rules
defined in Rules 1 are biased towards ontologies with rich axiomatisation: ontologies that have poor axiomatisation are
mostly affected by information-loss. Nevertheless, we remark that all superclasses and superproperties are discarded
in this process, while they are all recovered when the OODPs are retrieved.
Community detection. We detect a total number of 1,300 communities from the CH corpus. The smallest number of
communities found per ontology is 1 (RDA): only in one case the algorithm could not split the ontology in different
communities. The greatest number of communities is 363 (ArCo). The average number of communities per ontology
is ∼30. As for the Conf dataset, from 16 ontologies our algorithm detects 419 communities with an average of ∼26
communities per ontology. The minimum number of communities is 8, while the maximum is 83.
Clustering. We convert the virtual documents in numerical feature vectors and apply tf-idf to discard tokens that occur
too frequently. Our setting ignores terms that have a document frequency higher than 90%. We did not fix a minimum
value. To evaluate the optimal number of clusters k for our data, we used the elbow method and we run the algorithm
with a fixed number of 100 (CH dataset) and 81 (Conf dataset) clusters. Being K-Means nondeterministic, we set the
random state parameter to a commonly used integer value (42) in order to make our cluster assignments reproducible.
For the CH corpus, the average number of communities per cluster is 13, with a maximum of 111, and a minimum
of 3. Each cluster contains communities that belong to an average of ∼4.5 different ontologies. 11 clusters group
communities from the same ontology. 88 clusters group an average of ∼15 communities that belong to a range
between 2 and 10 different ontologies. 1 cluster groups 111 communities from 26 different ontologies.
For the Conf corpus, the average number of communities per cluster is 5.17, with a maximum of 13, and a minimum of
1. The communities in each cluster belong to an average of ∼2.6 different ontologies. 25 clusters group communities
from the same ontology, the remaining 56 clusters group an average of ∼7.2 communities that belong to a range
between 2 and 8 different ontologies.
Catalogue. Table 2 gives an overview of the number of hierarchical relations among the clusters per level of strength
(see Section 3.3).

21https://stlab-istc-cnr.github.io/cc-and-odps-catalogue/
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5 Evaluation and Discussion

Manual inspection of communities. A manual inspection of the communities, focusing on both structure and labels,
has been a necessary step for determining the quality and soundness of our results. We define four categories of
communities based on their quality: bad, medium, good, ideal. A community is bad if it can belong to more than two
CCs, it lacks a conceptual coherence and its implementation (OODP) is poorly axiomatised. For instance, a community
from the Conf corpus includes 27 heterogeneous properties (e.g. created by and has conflict type) that are not involved
in any restrictions e.g. range or domain. A CH community involves unrelated properties having the same domain
and xsd:string as range. In these cases, the topology could not support the identification of significant modules,
while the vocabulary highlights the presence of various conceptual areas22. A community has medium quality if it
can belong to two CCs. A community is good if it can belong only to one CC but includes max 20% of intruders
(incoherent entities). Ideal communities have less than 20% of intruders.
About 8% of communities in both the CH and Conf ontologies are bad. ∼7% (CH) and ∼3% (Conf) have medium
quality, ∼17% (CH) and ∼5% (Conf) are good, while the majority of the communities (CH: ∼67%, Conf: ∼84%)
have an ideal level of semantic coherence e.g. see the two implementations of the CC Event of Figure 5.
Let us take two additional examples from both corpora. A community from the Conf dataset (cmt-2 ontology) identifies
an OODP for being a member of a conference: it includes the two inverse binary relations and the concepts conference
and conference member, which are their domain/range. A CH community from CIDOC CRM implements an OODP
for capturing that an object changed its ownership: it includes the concept crm:E8_Acquisition, and the predicates
representing the physical entity and the actors that acquired and surrendered the title over it. By inspecting the OODP,
we found that all properties in this fragment have domain and range, but inverse object properties are not asserted.
Clustering: similarity. For assessing the quality of the clusters we computed a pairwise similarity among them.
Specifically, we adopted the Overlap Coefficient23 (commonly used in data mining techniques) for measuring the
overlap between the sets of synsets and frames of two clusters. This score indicates how similar two clusters are and
its values ranges from 0.0 (dissimilar) to 1.0 (similar). We observed that, on average, the clusters of both corpora score
very low (0.20 for CH and 0.17 for Conf) thus indicating a good quality of the clusters.

Clustering: manual inspection. The clusters that have been detected in both datasets identify a wide range of different
conceptual components, with different levels of abstraction. General components such as Event, Categorization,
Membership, Intentionally act emerge from both corpora. This finding can support interoperability between ontologies
addressing different domains. Other components are more specific to the domain: e.g. Performing arts, measurement
and attribution from the CH corpus; Submitting documents, Respond to proposal, Award from the Conf corpus. By
inspecting a CC, it is possible to compare implementations from different ontologies and choose the one that best
fits our requirements: for example, the CIDOC CRM and ArCo implementations of the CC Acquisition overlap only
partially: ArCo also addresses the acquisition place and time, while it does not model the new owner as in CIDOC.
In both corpora, some clusters could be either split or merged. If no frames/synsets clearly emerge for a cluster this
may indicate that it groups different conceptual components. The emergence of the same frame(s) as the most frequent
in different components may indicate that they could be merged, or that they are a specialisation of the same conceptual
component: this can be clarified by looking at less frequent frames and at their hierarchical relations.
Evaluation against an ontology engineering task. We evaluate our method by also analysing our results in the
context of an ontology matching task. While it is an indirect evaluation, we believe it is informative of the quality
of our approach. The hypothesis for this evaluation is that given a pair of entities that shall be aligned (through
subsumption or equivalence), these entities should belong to either the same cluster or two related clusters. Intuitively,
since a cluster groups semantically close OODPs from different ontologies, an agent (human or artificial) performing
ontology alignment on a corpus of ontology, can look within a same cluster or follow strong hierarchical relations
between clusters to identify entities that shall be aligned. The question is whether a good number of these alignments
can be identified with this approach. We use three sets of alignments to compare our results: (i) a set AA of 224
asserted (curated) alignments (1 equivalence and 223 subsumptions) from the CH corpus; (ii) a set AML of 237
alignments (all equivalences) generated by AgreementMakerLight [7] (the best tool in most of the OAEI 2020 tracks),
for all pairs of ontologies in the CH corpus; (iii) a dataset CA of 224 alignments on the Conf corpus (all equivalences)
used as gold standard in the OAEI 2020 conference track24.
The AML dataset associates a confidence score cs with each alignment, while for the CA and AA sets we assume
a cs = 1 for all alignments. We introduce AML.90 ⊆ AML and AML.99 ⊆ AML which are the sets containing
the alignments having a confidence score ≥ 0.9 and ≥ 0.99, respectively. To measure the quality of our results, we
assume that given a set of alignments A, the pairs of entities belonging to A are assigned to a same cluster or to

22Detecting bad communities may be a useful tool for evaluating the quality of an ontology.
23https://en.wikipedia.org/wiki/Overlap_coefficient
24http://oaei.ontologymatching.org/2019/conference/data/reference-alignment.zip
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Table 3: Correlation between reference alignments (AA, CA, AML, AML.90 and AML.99) with the sets I , E, E0.1,
E0.2, E0.3, E0.4.

Alignments I E E0.1 E0.2 E0.3 E0.4

AA .21 .99 .64 .46 .34 .32
AML .47 .99 .77 .64 .58 .56

AML.90 .46 .99 .77 .64 .57 .55
AML.99 .51 1.0 .75 .63 .60 .57

CA .27 .76 .51 .43 .36 .35

related clusters, with the same cs provided for that alignment. For example, if a pair (e1, e2) belongs to AML with
a confidence score cs = 0.98, then we assume that AML would assign (e1, e2) to the same cluster or to two related
clusters with cs = 0.98. Finally, we introduce the sets D, I, H and E to interpret the results of our method. Given a
set of entity pairs D from the alignment in AA, CA or AML, we define: (i) the set I ⊆ D as the set of entity pairs in
D, that belong to same clusters; (ii) H ⊆ D as the set of entity pairs that belong to hierarchically related clusters; and
(iii) E := I ∪H . With Hn (similarly En) we indicate the set of entity pairs that belong to two clusters related with
strength l ≥ n25.

We propose the measure corr (cf. Formula 1) to compute the correlation between the alignment sets and the results of
our method. Given two sets of entity pairs A and B, each pair assigned with a confidence score cs(ei, ej), we define
corr(A,B) as the sum of all cs of the alignments in A divided by the sum of all cs in B, that is:

corr(A,B) =

∑
(ei,ej)∈A

cs((ei, ej))∑
(ei,ej)∈B

cs((ei, ej))
(1)

The cs associated with the alignments of AA and CA is 1.0. The correlation ranges from 0.0 (no correlation) to 1.0
(strong correlation). The entity pairs from our method inherit the cs value from the comparing set. Intuitively, corr
computes the ratio between the pairs that should be aligned and the pairs that belong to same or related clusters.
Table 3 reports the value of corr computed for comparing AA, CA, AML, AML.90 and AML.99 (the testing sets) with
the sets I , E, En, E0.2, E0.3, E0.4.

Discussion. Almost all CH entity pairs aligned in the testing sets (corr ≥ .99) can be found either in same clusters
or in two related clusters, a lower number for CA pairs (corr = .76) (see column E of Table 3): all hierarchical
relations between clusters are to be inspected in the worst case (69.2/CH and 25.9/Conf, on average per cluster). The
dimension of the task may sound inconvenient for manual inspection, nevertheless we remark that an entity-to-entity
analysis of the ontologies in the CH/Conf corpus would require the inspection of 43/16 ontologies and, in the worst
case, of 11839/1565 predicates. An artificial agent e.g. an ontology alignment algorithm, may use clusters and their
relations to inform a strategy for ranking candidate pairs in a corpus (at the moment, ontology alignment tools works
with two ontologies at a time). By setting a threshold for l, i.e. discarding weaker hierarchical relations, the value of
corr decreases, but it holds reasonably good for the CH corpus until up to l = 0.3 (with only 1.18 average relations
per cluster). With l = 0.4, it is possible to find up to 57% of the most precise alignments (AML.99) by looking to
entities belonging to same clusters. As for AA, the performance are the the worst in our experiment e.g. for column I .
To better understand this result we run AgreementMakerLight on the CH corpus and compare its results against AA
(which are curated/asserted alignments). We report that only 1.5% of the alignments are identified. Our approach does
not identify alignments, hence we cannot claim to perform better than AgreementMakerLight, however we speculate
that this result (cf. Table 3), as compared to this extremely low performance, supports our hypothesis that clusters and
their relations may be used to improve the performance of alignment algorithms.

6 Related work

Ontology selection and understanding. Catalogues of ontologies (e.g. vocab.org) and ODPs (e.g. ontologydesign-
patterns.org) and semantic search engines (e.g. prefix.cc) are meant to support ontology selection for reuse. Users
can browse ontology terms, but comparing multiple ontologies is not supported. None of them support ODP-based
browsing or filtering. Most ontology summarisation approaches, e.g. those cited in [16, 3], look for the most infor-
mative concepts/nodes using centrality measures, PageRank and the like. Or extract relevant subgraphs to support
query-testing for validating requirements against available data. To the best of our knowledge, this is the first method

25We remind that n = [0,1] indicates the strength of the hierarchical relation between two clusters.
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using an ODP-based approach, which provides an ontology designer with relevant small ontology fragments to reuse
based on specific modelling problems.
Ontology partitioning. Modularisation approaches e.g. [1, 5, 11] work on single ontologies and return non-
overlapping, consistent modules, that combined together form the original ontology [5]. They mainly focus on logical
and structural modularisation, and no additional insight about the modules is provided, while each cluster of OODPs
(CC) is given a name, description and images.
Complex ontology matching. Complex ontology matching is the process of generating complex alignments, contain-
ing at least one entity on which a constructor or a transformation function is applied [17]. An ODP-based approach
to this task is proposed by [8], which also provides a formalisation of the common structure of two (or more) aligned
patterns (a potential logical characterisation of CCs). Our method may be the basis to novel approaches/implementa-
tions to address this research task.
Patterns discovery. Ontology patterns discovery consists in finding frequent repeating structures. [15] clusters repet-
itive structures of axioms, and then generalise them, while we start from detecting dense communities in ontologies,
that are then clustered based on their vocabulary. The method by [13] proposes a tree-mining method, that transforms
ontology axioms in a tree shape and uses association analysis to mine co-occurring axiom patterns. However, this
method does not take into account inferences, nor the influence of the vocabulary.

7 Conclusion and ongoing work

Our method implements a non-extractive technique, to support understanding and comparison of multiple ontologies.
It combines community detection, word sense disambiguation, frame detection and clustering to automatically gener-
ate a catalogue of conceptual components and observed ontology design patterns, starting from a corpus of ontologies.
The catalogue classifies the ontologies according to the conceptual components they implement. We show its potential
by testing and evaluating it on two corpora in the CH and Conference domains. While our experiments show satisfying
results, they also point out improvements and research challenges. Class expressions shall be included in the inten-
sional graph. Studying heuristics for refining CCs (split/merge), improving their naming/description and ranking them
in the catalogue is an immediate next step. A user-based evaluation of the catalogue is also in our plans, however it is
not as easy as evaluating key concepts, it requires involving experts in pattern-based ontology design. Automatically
linking observed patterns to ODP catalogues, and managing a possible synchronous evolution of both resources, is a
research challenge worth a huge impact on interoperability on the Semantic Web.
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