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ABSTRACT
Scholarly Knowledge Graphs (KGs) provide a rich source of struc-
tured information representing knowledge encoded in scientific
publications. With the sheer volume of published scientific liter-
ature comprising a plethora of inhomogeneous entities and re-
lations to describe scientific concepts, these KGs are inherently
incomplete. We present exBERT ("Eksp3:Rt), a method for leverag-
ing pre-trained transformer language models to perform scholarly
knowledge graph completion. We model triples of a knowledge
graph as text and perform triple classification (i.e., belongs to KG
or not). The evaluation shows that exBERT outperforms other base-
lines on three scholarly KG completion datasets in the tasks of triple
classification, link prediction, and relation prediction. Furthermore,
we present two scholarly datasets as resources for the research
community, collected from public KGs and online resources.
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• Information systems → Information extraction; Data min-
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1 INTRODUCTION
The proliferation of scientific literature creates new challenges in
the research community, such as reproducibility crisis, duplication,
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inefficiency, and a lack of transparency [42]. Thus, organizing schol-
arly knowledge is one of the most pressing tasks for solving current
and upcoming societal challenges.

In general, KnowledgeGraphs (KGs) have become central sources
to structure knowledge and facts stored in so-called triples (head,
relation, tail). These triples are used in downstream information
extraction tasks such as entity linking, relation extraction, and ques-
tion answering [12, 20]. Although large-scale KGs vary in terms of
scope and coverage, they are often suffering from incompleteness
and sparseness [22]. Therefore, KGs are required to be regularly up-
dated and completed with missing information. The incompleteness
of KGs motivates the knowledge graph completion task comprising
several subtasks [10, 46]: i) Link Prediction aims to find missing
head/tail entities in triples. ii) Relation Prediction predicts missing
relations between two entities. KG completion methods calculate
the plausibility of a triple via a scoring function to determine the
validity of a knowledge graph triple [24]. These approaches can be
broadly categorized into Knowledge Graph Embeddings (KGE) and
Language Models (LM) [39]. KGE techniques such as TransE [9]
and ConvE [14] learn entity and relation representation in a low di-
mensional vector space. However, due to their limitation of utilizing
semantic information from text these methods produce different
representations for the same entities in distinct triples [4]. Thus, LM
techniques for KG completion emerged in an attempt to represent
semantic information encoded in texts and produce contextualized
embeddings [15].

Motivation.While KGs are a known solution for representing
and managing for encyclopedic and common sense knowledge,
e.g., in DBpedia [5] and Wikidata [38], the usage of KGs for schol-
arly knowledge is a rather new approach. Recently, researchers
have focused on building scholarly KGs such as the Open Research
Knowledge Graph [19] and MAG [16] to mitigate these previously
mentioned challenges and to adhere to the FAIR data principles [43].
In contrast to the typical usage of KGs for encyclopedic and common
sense knowledge, managing scholarly knowledge is significantly
more challenging due to the heterogeneity, in-homogeneity and
evolution of scholarly communication [18]. Scholarly KGs differ
from encyclopedic purpose KGs because the encoded information is
derived from the scholarly literature [13]. As a result, the scholarly
KGs are ordinarily sparser than generic KGs because structured
scholarly knowledge is more laborious to extract [19]. Furthermore,
these KGs are ambiguous due to a lack of standard terminology
used across the literature and poses domain-specific challenges for
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KG completion task. Due to domain-specific challenges, the perfor-
mance of existing KG completion methods such as KG-BERT and
TransE are limited when applied to scholarly KG completion tasks
(Section 4). The observed behavior is not surprising and is due to
the peculiar entity and relation types of scholarly KGs. Hence, we
suggest that existing KG completion approaches require additional
task-specific context for the scholarly domain. We focus on the
task of KG completion for the scholarly domain. Inspired by recent
advancements in contextualizing language models [27], we argue
that LMs can be utilized for scholarly KG completion tasks if fed
with context derived from the scholarly literature. Our rationale
for the choice is as follows: Language models such as SciBERT [6]
are already trained in an unsupervised manner on large corpora of
scholarly literature. Hence, adapting SciBERT for KG completion
will allow us to inherit task-specific context. As such, we investigate
the following research question:RQ1 What is the impact of task-specific context on scholarly

KG completion?

Approach and Contribution. We model KG completion as a
sequence classification problem by treating triples of the scholarly
KG as sequences of natural language text. We propose exBERT, a
contextualized approach for scholarly KG completion. In exBERT,
we build on SciBERT [6] and adapt the underlying pre-trained lan-
guage model on augmented sequences - augmented by appending
types and synonyms of labels for triple elements - for predicting the
plausibility of a triple, relation, or an entity. Our empirical results on
the scholarly KG completion datasets provide superior performance
on all three KG completion sub-tasks.

We provide the following three key contributions:
i) exBERT a system that performs scholarly knowledge graph

completion task, including the subtasks of triple classifica-
tion, relation prediction, and link prediction.

ii) Extensive evaluation on several datasets to show that pro-
posed method achieves better results against various base-
lines for the respective tasks. Our proposed datasets, and
code are publicly available1.

iii) We release two publicly available scholarly datasets1 curated
from scholarly KGs for the KG completion task.

2 RELATEDWORK
The KG completion task utilizes different methods and techniques,
which can be divided into the two main categories KGE and LM.

KnowledgeGraphEmbeddings (KGE): Knowledge graph em-
beddings are classified into several categories: translation, semantic
matching, and neural network-based models [10]. Translational
models use distance-based scoring functions to assess the plau-
sibility of a triple (ℎ, 𝑟, 𝑡). Such models evaluate the plausibility
by the distance between the head entity (h) and the tail entity
(t), which is typically done by performing a translation opera-
tion by the vector (r) [39]. Bordes et al. [9] proposed TransE as
a representative model of translational graph embeddings; it uses a
negative translational distance function for scoring. Work in [28]
modified TransE for adapting it in scholarly domain. TransR [24]
builds entities and relations embeddings by projecting them into
different spaces, then building translations. Other models rely on
1https://github.com/YaserJaradeh/exBERT

semantic matching, which internally uses similarity-based scoring
functions. RESCAL [31], DistMult [45], and all their extensions
are representatives of this category. Such models employ different
scoring functions. For instance, DistMult uses a bilinear function
𝑓 (ℎ, 𝑟, 𝑡) = ⟨ℎ, 𝑟, 𝑡⟩. These methods conduct KG completion using
the structural information from the triples disregarding other exter-
nal information, in particular entity types, logical rules, or textual
descriptions. For example, Socher et al. [34] represented entities by
averaging word embeddings extracted from their labels. Compared
with these methods, our approach can learn context-aware text
embeddings with pre-trained language models.

LanguageModels (LM): Languagemodels that represent nodes
and words can be split into two classes: feature-based and fine-
tuning approaches. Widely used word embedding techniques such
as Word2Vec [26] and its extensions aim at adopting features to
learn context-independent word embeddings. GloVe [32] is another
technique that strives to find a global representation for words
based on specific features. FastText [8] is a technique that uses Skip-
gram or Bag of Words to compute out-of-vocabulary word vector
embeddings. More recently, Flair [1] embeddings try to generalize
embeddings to be more context-aware. On the contrary, instead of
relying on feature engineering, fine-tuning methods use the model
architecture and parameters as a starting point for specific down-
stream NLP tasks. BERT [15] and Pegasus [48] are a few examples
of pre-trained models that can be fine-tuned on a variety of NLP
sub-tasks (e.g., Classification, or Summarization). Such models cap-
ture the deep semantic patterns in the natural language text and
handle text ambiguity and variations. Pre-trained language models
have also been used on knowledge graphs, where graph triples
are converted into sentences using random walks and then used
to train language models [17]. Other approaches aim to enhance
BERT’s representations with entity semantics [49]. As such, these
approaches concentrate on generating new entities and relations.
Finally, KG-BERT [46] is a novel approach that utilizes a BERT
transformer model to compute plausibility scores of triples based
on names or descriptions of entities and relations.

3 APPROACH
We model the KG completion task as a sequence classification
task to harness the richness and power of transformer language
models. We rely on a BERT model to perform the classification via
transforming the input knowledge graph triples into sequences of
text with some extra tokens following the convention of BERT fine-
tuning. Furthermore, we leverage a SciBERT model rather than a
plain BERT as our core transformer model for the scholarly context.

3.1 Language Model for Scientific Text
SciBERT [6] is a state-of-the-art pre-trained language model that
creates contextual representations using a multi-layer bidirectional
transformer encoder architecture described by Devlin et al. [15].
SciBERT builds on the BERT [15] model and further trains it on
scientific literature using 1.14 million scientific papers from Se-
mantic Scholar [3]. The model also consists of 3.17 billion tokens
(i.e., words). SciBERT is pre-trained on two tasks: masked language
modeling and next sentence prediction. For next sentence predic-
tion, the language model predicts whether two sequences of input

https://github.com/YaserJaradeh/exBERT


w

SciBERT

h
h

r

t

= Lombardy
   Italy

w

= Confidence
Interval (95%)

= CI(2.9, 3.2)

w1
h
2 wr

1
r
2 wr

3 wt
1 wt

2 wt
3

Lombardy, Italy Confidence Interval (95%) CI( 2.9, 3.2)
[CLS] Synonymy 

Projection

Type 
Projection

Plausibility 
Score

Candidates 
Ranking

Entity & 
Relation 
Masking

TC

φS

φT
Ω(𝛶)

Figure 1: Leveraging triple classification to perform relation and link prediction tasks. 𝑇𝐶 is the representation of the triple
for the classification task. 𝜑𝑆 is the numerical representation after synonymy projection for relations. 𝜑𝑇 is the numerical
representation after type projection for entities. Ω(Υ) is the plausibility score of a triple .

(i.e., sentences) are consecutive in the text. For masked language
prediction, SciBERT predicts suitably masked input tokens. Further-
more, regarding the fine-tuning phase, SciBERT is initialized with
the weights and the parameters from the pre-training phase. Thus,
these parameters are fine-tuned using labeled data from down-
stream natural language processing tasks (e.g., question answering,
summarization, and token classification) [47].

3.2 Scholarly Model (exBERT)
In exBERT, we represent entities and relations of the knowledge
graphs using their respective text labels. Furthermore, we augment
these labels with type and synonymy projections. Types of entities
are added to their labels and the synonyms of relations are included
in the labels as well. These label sequences are given as an input
sentence to our model for further fine-tuning. In order to estimate
the plausibility score of triples, we arranged the sentences of (h,r,t)
as individual sequences. In our case, a sequence represents a BERT
compatible token sequence combined from two entities (head and
tail) or a complete triple (head, relation, tail).

We extend the simple triples with extra information (i.e., types
and label synonyms) to further leverage the KGs. We append to the
triple the type label of each entity in the head or tail position, and
augment the relation representation with label synonyms.

The workflow of exBERT is shown in Figure 1. exBERT performs
a triple classification task to determine if a triple belongs to a KG.
Furthermore, other tasks can be performed by leveraging the triple
classification task, e.g., head/tail or relation prediction. The first
token of every input sequence for exBERT is always a unique clas-
sification token [CLS]. Each entity in the triple and the relation
are represented as a sentence containing a list of tokens 𝜈1, ..., 𝜈𝛼 ,
𝛼 ≥ 1. For instance, Lombardy Italy has a confidence interval (95%)
of CI(2.9, 3.2) has a head entity Lombardy, Italy which comprises
two tokens 𝜈ℎ1 = Lombardy, 𝜈ℎ2 = Italy; the relation Confidence Inter-
val (95%) comprises three tokens 𝜈𝑟1, 𝜈

𝑟
2, 𝜈

𝑟
3 ; and the tail CI(2.9, 3.2)

comprises three tokens 𝜈𝑡1, 𝜈
𝑡
2, 𝜈

𝑡
3. While constructing the sentences

of entities and relations, a special token [SEP] is used to differenti-
ate elements (i.e., components of the triple). The separation token
indicates that the various elements of the sentence have different
segment embeddings. However, the tokens of the head and tail
entities share identical segment embeddings. Furthermore, when

various tokens occupy the same position – for the case of SciBERT,
a position 1 ≤ 𝑖 ≤ 512 – they have the same position embeddings.

Token sequences are used as an input to the SciBERT model
architecture, which is a multi-layer bidirectional transformer en-
coder based on the native BERT architecture [15]. The final hidden
vector of the special [CLS] token is denoted as 𝐶 ∈ R𝐻 , where
𝐻 is the hidden state size in the pre-trained SciBERT model. Fur-
thermore, the 𝑖-th token of the model’s input tokens is referred
to as 𝜈𝑖 ∈ R𝐻 . When fine-tuning the model to perform the triple
classification task, a set of weights is created (i.e., classification
layer weights)𝑊 ∈ R2𝐻 . A sigmoid function Ω is used to score
a triple Υ = (ℎ, 𝑟, 𝑡) and produce its class affiliation. Ω is defined
as ΩΥ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑊 𝜈 ). Where ΩΥ ∈ R2 is a two-dimensional
real-valued vector with ΩΥ

0 ,Ω
Υ
1 ∈ [0, 1] and ΩΥ

0 + ΩΥ
1 = 1.

We are then able to compute the cross-entropy loss using the
scoring function ΩΥ and predicted labels 𝑦Υ as follows:

Φ = −
∑

Υ∈K+∪K−

(
𝑦Υ𝑙𝑜𝑔(ΩΥ

0 ) + (1 − 𝑦Υ)𝑙𝑜𝑔(ΩΥ
1 )
)

(1)

where K+ is the positive triple set and K− is the negative triple set.
𝑦Υ is the label of the triple (i.e., positive or negative label)𝑦Υ ∈ {0, 1}.
While the positive triple set contains the correct triples within the
KG, the negative set K− is constructed by replacing the head entity
ℎ or tail entity 𝑡 in a positive triple with a random entity ℎ̄ or 𝑡 .

When corrupting the triple (i.e., creating the negative set), we
make sure that the head or tail being replaced is not the correct one
and ensure that the resulting corrupt triple does not belong to the
positive set. Both relation and link prediction tasks use triple clas-
sification as an underlying task. The difference is in the way these
tasks compose the input sentences (using only entities or the com-
plete triple). Based on the findings of Yao et al. [46], we compose the
input sequence with the two entities ℎ and 𝑡 to predict a relation 𝑟 .
KG-BERT empirical results suggest that predicting relations from
the two entities using triple classification has higher performance.
The other setting involving complete triples by curating negative
samples with random relations 𝑟 does not yield a performance gain.
Similarly to link prediction, the final hidden state vector 𝐶 corre-
sponds to the special classification token [CLS]. We highlight that
relation prediction exBERT differs from link prediction exBERT
(i.e., head and tail prediction) with the classification layer weights.



For relation prediction, the tasks fine-tune the weights 𝑊̄ ∈ R𝑅×𝐻 ,
whereby 𝑅 is the number of all KG relations. The scoring function
is Ω̄Υ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐶𝑊̄ 𝜈 ), whereby Ω̄Υ ∈ R𝑅 is a R-dimensional
real vector with Ω̄Υ

𝑖
∈ [0, 1] and∑𝑅

𝑖 Ω̄Υ
𝑖
= 1. Similarly, we compute

the cross-entropy loss with the help of the scoring function Ω̄Υ and
the relation labels 𝑦Υ as shown in Equation 2.

Φ𝑟 = −
∑
Υ∈K+

𝑅∑
𝑖=1

𝑦Υ𝑖 𝑙𝑜𝑔 (Ω̄Υ
𝑖 ), 𝑦Υ𝑖 =

{
1 if 𝑟 = 𝑖

0 o/w
(2)

where 𝑦Υ
𝑖
is the relation class (i.e., indicator) for a positive triple Υ

and its value is conditional on the relation.

4 EVALUATION
We conduct our experiments and analysis in response to the overall
research question RQ1 (see section 1). As such, we also compare
exBERT against approaches that do not come from a scholarly
context. To understand the efficacy of exBERT for scholarly KG
completion, we further divide our overall research question into
three sub-questions: RQ1.1 What is the performance of exBERT for
scholarly relation prediction?, RQ1.2 What is the performance of
exBERT for link prediction in scholarly KGs?, and RQ1.3What is the
efficacy of exBERT in scholarly triple classification?

Datasets. The scholarly KG domain is relatively new [19]. There
is a scarcity of standard datasets to benchmark the performance
of KG completion methods. Therefore, we created two datasets
collected from available knowledge graphs and online resources.

i) ORKG21: A dataset of scholarly contributions extracted from
the Open Research Knowledge Graph (ORKG) infrastructure [19].
The ORKG contains data on scientific contributions and publica-
tions curated by crowdsourcing that is complemented by automatic
processes. We created the dataset based on a data dump provided by
the ORKG in RDF [25] format. The resulting dataset contains many
relationships because ORKG relies primarily on crowdsourcing for
data entry and does not automate end-to-end extraction. As a con-
sequence, multiple relationships are created by the different crowd
members, but represent similar intentions, resulting in a significant
number of relationships with slightly different representations.

ii)PWC21: A dataset from the online resource Papers-with-Code
that describes papers in the field of machine learning, information
extraction, and NLP along with their evaluation results. The PWC
data is represented in tabular rather than graph structure. We trans-
formed the raw data into RDF for broader use. The resulting dataset
contains only a small set of relations because it focuses on certain
aspects of research papers (i.e., evaluation results and metrics).

Since both datasets contain literals, we transformed them into
entities by creating sequential IDs in the form of "/literal_num",
similar to the Yago3-10 dataset [35]. In addition to the two datasets

Table 1: Statistics of datasets. We propose two new datasets
(labeled with [★]) for the scholarly KG completion task.

Dataset # Ent # Rel # Triples # Train # Dev # Test
ORKG21* 226,210 2634 249,682 149,808 49,937 49,937
PWC21* 192,115 26 284,875 170,925 56,975 56,975
UMLS [7] 135 46 6,529 5,216 652 661

we created, we also used the public scientific datasetUMLS [7]. The
“Unified Medical Language System” is an ontology for the medical
field that describes technical medical concepts and their interlinked
relations. Table 1 provides a summary of the employed datasets.
If a dataset does not provide a class label (i.e., binary class) for
training/testing triples, throughout our evaluation we considered
every triple in the dataset as ground truth, and we corrupted triples
to generate negative samples as explained in section 3.

Baselines. We compare exBERT with several state-of-the-art
KGE methods to evaluate its efficacy with respect to the tasks:

i) TransE [9] and its extensions TransH [41], TransD [21], TransR
[24], TransG [44], and DistMult [45], which only rely on structural
information of the knowledge graph to compute the embeddings.
ii) NTN [34] and its simplified version ProjE [33]. iii) ConvKB [29]
which is a CNNmodel. iv) Other KGEmodels, specifically: AATE [4]
and TEKE [40] that leverage textual information; Contextualized
graph embeddings with KG2E [17]; Complex-values KG embed-
dings techniques RotatE [35] and ComplEX [36]; compositional
vector-space embeddings HolE [30]; Learning embeddings depen-
dently with SimplE [23]; v) BERT based approach KG-BERT by Yao
et al. [46] which utilizes a BERT-Base model to perform KG com-
pletion.

It is noteworthy that the baselines vary by task because some
KGE models do not perform tasks such as relation prediction.

Experimental Settings. SciBERT is the base transformer model
used in exBERT. It has 12 layers, 12 self-attention heads, and 𝐻 =

768 hidden layers. We used the Adam implementation for the opti-
mizer. For fine-tuning the triple classification task, the batch size is
32, with a learning rate 5𝑒 − 5 and a dropout rate of 0.1. For triple
classification, we sample one negative triple for a positive triple
to assure class balance for binary classification tasks. Furthermore,
the number of epochs for triple classification is 3. We found no
discernible improvement by increasing this number. For the link
prediction task, we used 5 epochs, and we also sampled 5 negative
samples for each positive triple (following the findings of Yao et al.
[46]). Finally, for relation prediction, the number of epochs chosen
was 20. For benchmarking exBERT and KG-BERT, we used a sys-
tem running Ubuntu 20.04 with 128GB of RAM and 4x Nvidia A100
GPUs, each with 40GB vRAM. Other KGE baselines are trained on
8x Nvidia RTX 3090 GPUs, each with 24GB vRAM. KG embeddings
are benchmarked using PyKeen [2].

Evaluation Metrics. Following the widely adapted metrics and
inheriting evaluation settings from KG-BERT [46], we report the
Mean Rank (MR) and the cut-off hit ratio (Hits@N) metrics on
all the datasets for the link prediction (𝑁 = 10) and the relation
prediction (𝑁 = 1) tasks. MR reports the average rank of all correct
entities. Hits@N evaluates the ratio of correct entity predictions
at a top N predicted results. Similar to KG-BERT, for the triple
classification task we report accuracy. Classification accuracy is the
number of correctly classified triples of the testing set divided by
the total number of test triples. For the relation prediction task, we
rank candidate relations by the scoring function 𝑓 (ℎ, 𝑟, 𝑡) (cf. Ω̄Υ

in our approach formalization). Each correct test triple (ℎ, 𝑟, 𝑡) is
corrupted by replacing the relation with every other relation in the
KG, with the exception of the relation itself, i.e., 𝑟 ′ ∈ 𝑅 |𝑟 ′ ≠ 𝑟 . Then



Table 2: Relation prediction results on all three datasets.
Best results are indicated in bold font. The results listed in
the table were all obtained by us. Techniques marked by [★]
do not perform relation prediction by default. Hence, we em-
ploy triple classification to measure performance for rela-
tion prediction.

Method ORKG21 PWC21 UMLS
MR Hits@1 MR Hits@1 MR Hits@1

TransE [9] 1683 50.1 1232 49.5 166 23.3
TransH [41] 1544 51.8 1169 51.1 141 25.7
TransR [24] 1378 53.3 897 54.4 78 27.3
NTN★ [34] 1189 58.4 754 59.2 22 29.9
KG2E★ [17] 1301 57.9 773 58.3 21 30.0
ProjE [33] 522 74.6 212 78.5 6.42 41.8
PairRE [11] 206 82.1 59 88.6 4.25 63.5
KG-BERT [46] 15.37 92.8 1.51 96.7 1.21 87.2
exBERT 12.98 95.5 1.02 98.3 1.11 88.8

these candidates are ranked in descending order by their plausibility
score we obtain from the triple classification task. Following Yao
et al. [46] and Bordes et al. [9] we report the results under the
filtered settings only, which means that all corrupted triples are
removed from training, development, and testing sets before getting
the ranking lists. In the link prediction task, we aim to predict the
missing entity of the triple. Each correct test triple 𝑇 = (ℎ, 𝑟, 𝑡) is
corrupted by replacing either the head entity or the tail entity with
every other entity in the KG 𝑒 ∈ 𝐸 |𝑒 ≠ ℎ ∧ 𝑒 ≠ 𝑡 .

4.1 Experiment 1: Relation Prediction
Table 2 presents relation prediction results on all three datasets.
Structural embeddings such as TransE, TransH, and TransR report
limited performance due to the lack of contextualized information.
KG2E and NTN perform slightly better than TransE and extensions
with their density-based embeddings and neural model, respectively.
PairRE outperforms the other embedding-based models with its
paired encoding of relations and its capability of encoding various
types of relations (e.g., symmetric, inverse). A common downfall of
embedding-based techniques is that they learn identical embedding
representations of entities and relations and do not account for
the different meanings that words might have in various contexts.
The limited performance in the scholarly domain clearly validates
the observation. In contrary, KG-BERT and exBERT significantly
outperform embedding-based models due to their own contextual-
ized embeddings learned using a large corpus of unstructured text.
However, task-specific context enhanced the ability of exBERT in
predicting scholarly relations compared to KG-BERT, which suc-
cessfully answers our first sub-question RQ1.1.

4.2 Experiment 2: Link Prediction
We report link prediction results in Table 3. Across all datasets,
exBERT achieves significantly higher performance compared to
all baselines. On the ORKG21 dataset, the majority of relations
are symmetric relations. Translation-based methods report limited
performance on ORKG21 due to their inability to infer symmetric
connectivity patterns of a KG. Furthermore, the TransX family uses
only the structure of the KG and does not induce context informa-
tion or labels of entities, which results in limited performance. On

Table 3: Link prediction results on all three datasets. Best
results are indicated in bold font. Results accompanied by
asterisk∗ are reported by Yao et al. [46], other results were
obtained by us and not from respective publications.

Method ORKG21 PWC21 UMLS
MR Hits@10 MR Hits@10 MR Hits@10

TransE [9] 2879 51.2 3176 60.8 1.84∗ 89.9∗
TransH [41] 2811 52.5 2994 61.3 1.80∗ 99.5∗

TransD [21] 2791 53.2 2135 68.8 1.71∗ 99.3∗
ConvKB [29] 216 70.1 388 72.9 - -
ComplEX [36] 713 65.3 456 72.7 2.59∗ 96.7∗
HolE [30] 98 73.7 97 76.4 - -
CompGCN [37] 2.84 84.6 4.02 82.7 - -
SimplE [23] 3.40 82.4 3.91 82.9 - -
KG-BERT [46] 2.03 86.1 4.03 82.7 1.47∗ 99.0∗
exBERT 1.80 87.4 2.11 84.2 1.97 98.9

PWC21, connectivity patterns are evenly distributed across all rela-
tion types (one-to-one, many-to-many, etc.), and the performance
of exBERT does not drop. The majority of entities contain multiple
relations on the UMLS dataset, and exBERT can successfully predict
the missing links while reporting a slightly lower performance com-
pared to best results. Embedding-based models continued to show
limited performance for link prediction tasks due to non-standard
characteristics of scholarly entities. From our empirical results, we
conclude that the task-specific context fed into exBERT for the
scholarly domain has positively impacted the performance across
all KG completion tasks (successfully answering RQ1.2).

4.3 Experiment 3: Triple Classification
The objective of triple classification is to assign a score to each
triple 𝑇 = (ℎ, 𝑟, 𝑡) depending on whether or not it belongs to the
underlying KG. Table 4 shows the classification results of exBERT
against all other baselines on the benchmark datasets. exBERT out-
performs all baseline KGE approaches confirming the effectiveness
of our approach for the scholarly domain. We note that translation-
based KGE such as TranE could not achieve high scores because

Table 4: Triple classification accuracy (in percent) for differ-
ent embeddingmethods. The listed results were obtained by
us and are not from the corresponding publications. Best re-
sults are indicated with bold font.

Method ORKG21 PWC21 UMLS Avg.
TransE [9] 77.6 77.3 78.1 77.7
TransH [41] 78.8 77.9 79.2 78.7
TransR [24] 81.4 81.3 81.9 81.5
TransD [21] 84.3 83.6 84.9 84.2
TransG [44] 85.1 84.7 85.2 85.0
TEKE [40] 84.8 84.2 84.9 84.6
KG2E [17] 79.6 78.8 79.7 79.4
DistMult [45] 86.2 86.2 86.8 86.4
ConvKB [29] 87.3 86.8 83.1 85.7
HolE [30] 87.3 87.3 88.2 87.6
NTN [34] 85.0 84.9 85.1 85.0
SimplE [23] 89.7 89.2 89.1 89.3
KG-BERT [46] 95.1 93.3 89.7 92.7
exBERT 97.1 96.0 90.3 94.5
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(c) Link prediction performance on PWC21.

Figure 2: Link prediction performance for the top three performing baselines per dataset against exBERT for each relation
type. We show two metrics MRR and Hits@10 for each relation type (1-1, 1-N, N-1, N-N). We observe that depending on the
dataset and sub-task (head/tail prediction), performance varies per relation type. The fine-grained analysis provides a detailed
overview of the strength and weakness of exBERT against best performing models.

of the cardinality of the knowledge graph relations (i.e., the exis-
tence of one-to-many, many-to-one, and many-to-many relations).
However, its extensions, TransH, TransR, TransD, and TransG out-
perform TransE by introducing relation-specific parameters. The
DistMult model performs relatively better than the Translation
family. The CNN models, e.g., ConvKB, perform well, suggesting
that a convolution model can capture global correlations among
entities and relations in the scholarly domain. HolE performs pro-
portionately well and comparably to ConvKB. SimplE achieves the
best results compared to the other embedding-based approaches.
Finally, exBERT outperforms KG-BERT leveraging the underlying

semantic and contextualized knowledge of a transformer language
model trained on scientific data.

Based on our observations, we identify the following reasons
for the superior performance of exBERT for the triple classifica-
tion task: Firstly, the triple classification task is akin to the next
sentence prediction, for which SciBERT is pre-trained with large
text corpora. The fine-tuning weights are already positioned for
the inference of correlation among triple components. And mostly,
contextualized embeddings for the scholarly domain are explicit
with our approach via the hidden token vectors. This has positively
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Figure 3: Illustration of the Hits@10metric for the ten best (left plot) and worst (right plot) predicted relations in the ORKG21
dataset by exBERT and the second best baseline KG-BERT.

impacted the overall performance (successfully answering RQ1.3,
and collectively answering RQ1).

4.4 Ablation Studies
Impact of relation type on the link prediction task. For each

dataset, we show the metrics (Mean reciprocal rank (MRR) because
it is in range [0,1] and Hits@10) for exBERT and the top-performing
baselines for various relation types (i.e., one-to-one, one-to-many,
many-to-one, many-to-many). Figure 2 presents the performance
of this task for every relation type and all datasets. Based on the
fine-grained analysis, we suggest that: i) On the ORKG21 dataset,
exBERT maintains superior performance across all relation types
for both metrics. CompGCN performs slightly better than KG-BERT
and exBERT on many-to-one relation types. One possible reason is
that CompGCN jointly embeds nodes and relations in a graph that
permits the model to handle dense relations [37]. ii) On the UMLS
dataset, exBERT suffers a performance drop in the head prediction
that results in a lower performance observed in Table 3. iii) On the
PWC21 dataset, it is interesting to observe that all three models
suffer significant performance drops for predicting head entities
in the one-to-many relation category. However, models maintain
steady performance across all other relation categories.

Relation Prediction results for best/worst relations. To fur-
ther comprehend how relations affect the overall performance of
the relation prediction task, we select the best/worst ten perform-
ing relations in the ORKG21 dataset. We plot the evaluation met-
rics graphs for exBERT compared to the second best baseline KG-
BERT. Figure 3 illustrates the individual performance. KG-BERT
performs comparably to exBERT for the generic relation types such
as has_method. However, for peculiar scholarly relations, such as
has_adrehends_isotrophic and has_prognostic_ocean_variable, the
performance of KG-BERT is limited due to missing task-specific
context. Observed results validate our hypothesis to supplement
exBERT with scholarly context for the KG completion task.

In Figure 3, most of the relations are quite ambiguous. Further-
more, in some cases, the scholarly context does not positively im-
pact the performance of exBERT compared to KG-BERT. For in-
stance, KG-BERT performs better than exBERT for the relation type

related_to. KG-BERT is trained on a large unstructured corpus from
generic domains, and related_to is a commonly occurring relation
between two real-world entities.

5 CONCLUSION AND FUTUREWORK
The hypothesis investigated in this paper was to study if task-
specific context has an impact on scholarly KG completion task.
For the same, we proposed exBERT and provided a set of experi-
ments illustrating the positive impact of scholarly context encoded
in exBERT for the KG completion task. We model the KG comple-
tion task as a sequence classification task, where we considered
each KG triple as a set of sequences in a natural language. This
allowed us to utilize SciBERT as an underlying model and adapt
it for KG completion in the scholarly domain. We systematically
studied the impact of our choices in the proposed approach. For
instance, the ablation study demonstrates the effectiveness of schol-
arly context and provides insights on the strengths and weaknesses
of exBERT. Albeit effective, exBERT is the first step of a larger
research agenda. Based on our observations, we see the following
open research questions in this domain: i) While scholarly context
has positively impacted the performance, there are several rela-
tion types for which exBERT showed limited performance. One
potential reason is the scarcity of training occurrences for certain
relations such as has_qos. We believe that for unseen entities and
relations, a zero-shot setting would be more suitable. Additional
experiments are needed to verify the observation, and we point
readers to this open research direction as the next step. ii) Consid-
ering that exBERT relies on labels and textual descriptions of an
entity, data quality is a crucial aspect—as is typical for knowledge-
intensive tasks. How the quality of contextual data impacts the
performance of scholarly KG completion approaches is an open
research direction. iii) Several recent approaches utilize KGs as an
additional source of background knowledge to provide context in
downstream tasks such as entity linking and relation extraction.
How context derived from the scholarly KGs supplementing the
textual context can help in effective KG completion is a further
open question. iv) Our work focuses on English and developing
multi-lingual KG completion approaches is a viable next step.
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