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A b s t r a c t  

Java, an object-oriented language, uses virtual 
methods to support the e.ztension and reuse of classes. 
Unfortunately, virtual method calls affect performance 
and thus requir~ an efficient implementation, especially 
when just-in-time (JIT) compilation is done. Irdine 
caches and type feedbark are solutions used by com- 
pilers for dynamically-typed object-oriented languages 
such as SELF [1, 2, 5], where virtual call overheads are 
much more critical to performance than in Java. With 
an inline cache, a virtual call that would other'wise have 
been translated into an indirect jump with two loads is 
translated into a simpler direct jump with a single com- 
pare. With type feedback combined with adaptive com- 
pilation, virtual methods can be inlined using checking 
code which verifies if the target method is equal to the 
inIined one. 

This paper evaluates the performance impact of these 
techniques in an actual Java virtual machine, which 
is our new open source Java VM JIT  compiler called 
LaTTe [4]. We also discuss the engineering issues in 
implementing these techniques. 

Our e~perimental results with the SPECjvm98 
benchhmarks indicate that while monomoprhic inline 
caches and polymorphic reline caches achieve a speedup 
as much a~ a geometric mean of 3~  and 9~  respec- 
tively, type feedback cannot improve further over poly- 
morphic inline caches and even degrades the perfor- 
mance for some programs. 

K e y w o r d s  virtual method call, Java JIT compila- 
tion, inline cache, type feedback, adaptive compi- 

*This work has been suPpoi-ted by IBM T. J. Watson Re- 
sea~v.h Center under a sponsored research agreement. 
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1 Introduction 

Java is a recently created object-oriented program- 
ming language [5]. As an object-oriented pro~amming 
language, it supports virtual methods, which allow dif- 
ferent code to be executed for objects of different types 
with the same call. 

Virtual method calls in Java incur a performance 
penalty because the target of these calls can only be 
determined at run-time based on the actual type of 
objects, requiring run-time type resolution. For exam- 
ple, extra code needs to be generated by a just-in-time 
(JIT) compiler such that  in many Java JIT compilers 
like Kaffe [6], CACAO [7], and LaTTe [8], a virtual 
method call is translated into a sequence of loads fol- 
lowed by an indirect jump rather than a direct jump 
as for other static method calls. 

In dynamically-typed object-oriented languages 
such as SELF, however, virtual calls cannot be imple- 
mented by using simple sequences of loads followed by 
an indirect jump like in Java [1]. Furthermore, virtual 
calls axe much more frequent than in Java. So, two 
aggressive techniques have been employed to reduce 
virtual call overheads: inline caches and type feedback. 
With these techniques, a virtual method call can be 
translated into a simplex sequence of compare then di- 
rect jump or can even be inlined with type checking 
code. Although both techniques axe certainly appli- 
cable to Java, little~ is known about their performance 
impact. Since virtual method calls ~ e  less frequent and 
less costly in Java while both techniques involve addi- 
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tional translation overhead, it is important to evaluate 
these technclues separately since the results from SELF 
may not apply. 

This paper evaluates both techniques in an actual 
Java JIT compiler. The compiler is included in our 
open source Java vi_#tual machine called LaTTe [8]. 
Although the implementation of both techniques in 
LaTTe was straightforward, there were a few trade- 
o~ and optimization opportunities which we want to 
discuss in this paper. We also provide detailed analysis 
of their performance impact on Java prograrns in the 
SPECjvm98 benchmark suite. 

The rest of the paper is organized as follows. Chap- 
ter 2 briefly reviews method calls in Java and summa- 
rizes the virtual method call mechanism used by the 
LaTTe JVM. Chapter 3 describes how we implemented 
inline caches and type feedback in LaTTe. Chapter 4 
shows experimental results. Related work is described 
in section 5 and the summary follows in section 6. 

2 B a c k g r o u n d  

2.1 Method invocation in Java 

The Java  programming language provides two types  
of methods:  instance methoda and class me~hod~ [9]. A 
class method is invoked based on the class it is declared 
in via invokeetatic. Because it is bound statically, 
the JIT compiler knows which method will be invoked 
at compile time. 

An instance method, on the other hand, is always 
invoked with respect to an object, which is sometimes 
called a receiver, via i n v o k e v i r t u a l .  Because the ac- 
tual type  of the  object  is known only at run-t ime (i.e., 
bound dynamically),  the  J IT  compiler cannot  gener- 
ally determine its target  at  compile time. There  are 
some instance methods  that  can be  bound  statically, 
though. Examples are final methods,  private meth- 
ods, all methods  in final classes, and instance methods  
called through the i n v o k e s p e c i a l  by tecode  (e.g., in- 
stance methods  for special handling of superclass, pri- 
vate, and instance initialization [9]). 

Generally, a method invocation incurs overheads 
such as creating a new activation record, passing ar- 
guments~ and so on. In the  case of dynamic binding, 
there is the addit ional overhead of finding the target  
method (which is called-the method dispatching over- 
head). 

2.2 LaTTe JIT Compiler and Virtual Method Ta- 
bles 

LaTTe is a virtual machine which is able to e x -  

e c u t e  Java bytecode. It includes a novel JIT com- 
piler targeted to I~ISC machines (specifically the UI- 
tr,aSPARC). The JIT compiler generates .code with 
good quality through a clever mapping of Java stack 
operands to registers with negligible overhead [8]. It 
also performs some traditional optimizations such as 
common subexpression elimination or loop invariant 
code motion. Additionally, the runtime components 
of LaTTe, including thread synchronization [10], ex- 
ception handling [II], and garbage collection [12], have 
been optimized. As a result, the performance of LaTTe 
is competitive to that ofSun's HotSpot [13] and Sun's 
JDK 1.2 production release [14]. 

LaTTe maintains a virtual method table (VMT) for 
each loaded class. The table  contains the  s tar t  address 
of each method  defined in the  class or inherited from 
the superclass. Due to the  use of single inheritance in 
Java, if the s tar t  address of  a me thod  is placed at offset 
n in the  virtual me thod  table of a class, it can also be 
placed at offset n in the virtual  method  tables of all 
subclasses of  the  class. Consequently, the offset n is a 
t ranslat ion-t ime constant.  Since each object  includes a 
pointer to the  method  table  of  its corresponding class, 
a virtual method  invocation can be t rans la ted into an 
indirect function call after two loads: load the virtual 
t'able, indexing into the table to obtain the start ad- 
dress, and then the indirect call. 

For statically-bound method calls, LaTTe generates 
a direct jump at the call site, or inlines the target 
method unless the bytecode size is huge (where the 
invocation overhead would be negligible) or the inlin- 
ing depth is large (to prevent recursive calls from being. 
inlined infinitely). 

3 Inline Caches and Type Feedback 

In this section, we review the techniques of  inline 
caches and type  feedb~ick and describe our  implemen- 
tations. We use the  example class hierarchy in Figure 1 
throughout  this section. Both  classes B ~ d  C are sub- 
classes of A and have an addit ional field as well as the 
one inherited from class A. Class B inherits the  method  
G e t F i e l d l  ()  from class A, and class C overrides it. All 
assembly code in this section are in SPARC assembly. 
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class A { 
i n t  f i e l d l ;  
i n t  G e t F i e l d l O  { r e t u z n  f i e l d l ;  

) 

class B 
int 
int 

) 
c l a s s  C 

i n t  
i n t  
i n t  

) 

• e x t e n d s  A { 
f i e l d 2 ;  
G e t F i e l d 2 ( )  { r e t u r n  f i e l d 2 ;  } 

e x t e n d s  A { 
f i e l d 3 ;  
G e t F i e l d l ( )  { r e t u r n  O; } 
C e t F i e l d 3 ( )  ~ r e t u r n  f i e l d 3 ;  } 

Figure 1. Example class hierachy 

3 . 1  I n a n e  C a c h e s  

3.1.1 M o n o m o r p h i c  In l ine  C a c h e s  

When a J IT compiler translates o b j . G e t F i e l d l ( )  
in Figure 2(a), it cannot know which version of 
G e t F i e l d l  O will a~tually be called because obj  can be 
an object of class C as well as class A or B. Even if class C 
does not exist, the J IT compiler cannot be sure whether 
if A's G e t F i e l d i  O should be called because class C can 
be dynamically loaded later. With  a VMT this call is 
translated into a sequence of load-load-indirect jump, 
as shown in Figure 2(b), where # index  means the offset 
in the VMT ( #  denotes a translation-time constant). 

void d.mmy() { 
A obj; 

obj ffi ...; 
obj.GetFieldO; 

} 

/ /  oO c o n t a i n s  o b j e c t  
l d  [ZOO], Zgl 
I/ indexing the VHT 
Id  [Zg l+# index ] ,  Zgl 
jmpl ~gl 

(a) (b )  

Figure 2. Example virtual call in Java and cor- 
responding VMT sequences 

The inline cache is a totally different method dis- 
patching mechanism which "inlines" the address of the 
last dispatched method at a call site. Figure 3(a) 
shows the t ranslated code using a monomorphic inline 
cache (MIC), where the call site just  jumps to a system 
lookup routine called m e t h o d . d i s p a t c h e r  via a stub. 
This stub code sets the register Zgl to # index,  and thus 
me thod_d i spa tche r  can determine the called method. 

It is called an empty inline cache because there is no 
history for the target  method yet. When the call is 
executed for the first time, me thod_d i spa t che r  finds 
the target  method based on the type of the receiver, 
translates it if it has not been translated yet, and up- 
dates the call site to point to the translated method, 
which is prepended by the type  checking code 1. Fig- 
ure 3(b) shows the state of the inline cache when the 
first encountered receiver is an object  of class A. Now, 
our inline cache includes history for one method invo- 
cation to the target  method. Detailed type checking 
code is shown in figure 4. 

nmp~e_~k~ 

m mol'~l 

mes~l_cr~e~ 
b'ampollne (:ode ~ i 

. ~ f ~  m or %o7, %02 
rrmv #1ncl h', "~1 

call A.GelFleldl 

(a) empb/in~J~ 

amp ~ ,  #A.VMT 
me Ml_tmmJw F 

A.GetFk~I1 

Jell_handler 

(b) mormrneq~hic inline cache 

Figure 3. Monomorphi© inline caches 

Until a receiver with a different type  is encoun- 
tered, the state of the inline cache does not change. If 
such a receiver is encountered, f a i l _ h a n d l e r  operates 
just  Rke method_dispa tcher :  find the target method, 
translate it if it has not been translated yet, and update  
the call site. 

3 . 1 . 2  P o l y m o r p h i c  InUne  C a c h e s  

A polymorphic inline cache (PIC) differs from a MIC 
in deMing with the failure of type  checking. Instead of 
updat ing the call site repeatedly, it creates a PIC s tub 
code, and makes the call site point to this s tub code. 
The PIC stub code is composed of a sequence of com- 
pare, branch, and direct jump instructions where all 
previously encountered receiver types and correspond- 
ing method addresses axe inlined. Figure 5(a) shows 
the status of a call site and the corresponding PIC stub 
code when the call site encounters objects of class A 
and class C. The detailed P IC  s tub code is as shown in 
Figure 6. 

1Since it is possible that a method has multiple type checking 
codes due to inheritance, a type checking code can be aepsrated 
from the corresponding method hbdy. 
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/ *  o b j e c t  p o i n t e r  i s  p a s s e d  v i a  oO r e g i s t e r .  
g l ,  g2,  g3 a r e  s c r a t c h  r e g i s t e r s .  * /  

ld [XoO], %g2 / /  l o a d  f i r s t  v o r d  o f  an o b j e c t  
/ /  v h i c h  i s  VMT p o i n t e r  o f  t h e  o b j e c t  

/* A.VHT(VHT pointer of class A) i s  a translation-time constant. */ 
s e t h ±  73i(#A.VI~F),  ~g3 
o r  ~g3, ~ lo(#A.YHT) ,  ~g3 
cmp ~g2,  ~g3 
bne  FAIL_HANDLER 

mov ~o7, ~g2 

// load 3 2 b i t  c o n s t a n t  value 
// 

// compare  two VMTp.ointers 
/ /  branch t o  fail_handler code 
// if tvo VMTs axe equal 
// delay slot instruction 

/ *  I f  t y p e  c h e c k i n g  code can be  l o c a t e d  i n  f r o n t  o f  method b o d y ,  
t h i s  code  i s  n o t  r e q u i r e d  * /  

JUMP_TO_TARGET: ~. 
call address of A.GetFieldl 
mov ~g2, ~o7 // to prevent from returning back here 

/ *  In  ou r  i m p l e m e n t a t i o n  FAIL_HANDLER i s  l o ca ted  ~n f r o n t  o f  above  code  * /  
FAIL_HANDLER: 

/*  i n d e x  o f  t h e  c a l l e d  method i n  VMT i s  t r a n s l a t i o n - t i m e  c o n s t a n t  * /  
c a l l  f a i l _ h a n d l e r  / /  c a l l  f a i l _ h a n d l e r  
mov # i n d e x ,  ~g l  / /  d e l a y  s l o t  i n s t r u c t o i n  

/ /  i n d e x  v a l u e  i s  p a s s e d  t o  f i x u p  f u n c t i o n  
// via El register 

Figure 4. Detailed type checking code 

Immlalmd mdmd 

PlC-~ub 

Inuml~ l  mdmd 

oil  VMT o~e 

PIC unUub ~ 

(a) polymorphic inline cache 

VMT onde 

~ f ~  U ['~.~]. "/~1 kl [%gt ~-Mndex],'/.gl 

A,Ge~rmUl 

C,GeIFle~I 

(b) handling msgarnorphic sites 

Figure 5. Polymorphic inline caches 

It is not  pract ical  for the  P IC  s tub  code to grow 
without  limit. If  the  number  of entries in a P I C  s tub  
code exceeds a pre-determined value, the  corresponding 
c~11 site is called a megamorphic airs, and we use VMT-  
style code instead. Since this code only depends  on the  
index value in the  VMT,  it can be  shared aznong many  

\ 

call sites. Figure 5(b) explains how megamorphic  sites 
are handled. Al though MICs are used in SELF  for 
megamorphic  sites, this is only because  the  VMT-s ty le  
mechanism cannot  be  used in SELF,  and we think tha t  
VMT-s ty le  code is more  appropr ia te  for megamorphic  
sites than  MICs since the  la t ter  may  cause frequent  
upda tes  of  the  call site, wi th  frequent  I-cache flushes 
as a result.  

There  are several variat ions of PICs.  If space is 
t ight,  the  P IC  s tub  can be  shared among identical call 
sites 2. This type  of P IC  is called a shared PIC, while 
the former type  is called a non-shared P I C  when the 
dist inction is required. 

The  P IC  s tub  code can contain counting code for 
each type  tes t  hit and can be  reordered based  on the 
frequency of them to  reduce the  number  of type  tests 
needed to find the  target .  If  the  reordering is per formed 
only once, and then a P IC  s tub  which had been re- 
ordered bu t  wi thout  counting code is used, it is called 
a counting PIC. It  is also possible tha t  the  reordering 
is per formed periodically and P IC  s tubs  always have 

2I f  t h e  p o s s i b l e  s e t s  o f  t a r g e t  m e t h o d s  axe t h e  s a m e ,  we  call 
t h e s e  c a l l  s i t e s  iden t ica l .  L 
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/* object pointer is passed via oO register. 
El, g2, g3 are scratch registers. */ 

l d  [Zo0], Zg2 

m o v  ZoT, Zgl 

/ /  l o a d  f i r s t  word o f  an o b j e c t  
/ /  wh ich  i s  VMT p o i n t e r  o f  t h e  o b j e c t  
/ /  s a v e  r e t u r n  a d d r e s s  i n  g l  r e g i s t e r  

/*  A.VMT(VMT p o i n t e r  of  c l a s s  A) i s  a t r a n s l a t i o n - t i m e  c o n s t a n t .  * /  
sethi 7~i(#A.VMT), gg3 // load 32bit constant value 
o r  

cmp 
bne 
nop 
call 
ROy 

Zg3, ZIo(#A.VMT), Zg3 
Zg2, Zg3 / /  compare two VMT-pointers  
n e x t l  / /  

// delay slot instruction 
address of A.GetFieldl // jump to A.GetFieldl if two VMTs are equal 
~gl, ~o7 / [  s e t  correct return a d d r e s s  

/ *  C.VMT(VMT pointer of class C) is a translation-time constant. * /  
next1: 

sethi Zhi(#C.VMT), Zg3 
or gg3, ZIo(#C.VMT), Zg3 
cmp Zg2, Zg3 
bne nex t2  
nop 
call address of  C.GetFieldl 
mov Zgl, Zo7 

next2 : 
call 
nop 

fixupFailedCheckFromPIC / /  call fixup function 

Figure 6. Detailed PIC stub code 

counting code, and th is  type  of PIC is called a periodic 
PIC. 

3.1.3 VMT vs. 'Inline Caches 

Inline caches are favored over VMTs for two reasons. 
First, the  VMT mechanism requires an indirect jump,  
which is not easily scheduled by modern superscalar 
microprocessors -~ [15, 16]. Whereas inline caches can 
be faster in modern microprocessors which do branch 
prediction. Second, VMTs do not provide any infor- 
mation about  call sites. Wi th  inline caches, we can get 
information about  the receivers which has been encoun- 
tered, though MICs can only give the last one. This 
information can be"hsed for other optimizations, such 
as method inlining. 

3.2 T y p e  F e e d b a c k  

Although inline caches can reduce the method dis- 
patch overhead at virtual call sites, the call overhead 

SThe cost of mn indirect jump is higher in the Ultra.Spmrc due 
to the lack of a BTB (Branch Target Buffer). 

itself still remains. In order to reduce the call overhead, 
we need to inline the method.  

The idea of type  feedback [3] is to extract  type  infor- 
mation of virtual calls f~om previous runs and feed it 
back to the compiler for optimization. With  type  feed- 
back, a virtual call can be  inlined with guards which 
verifies if the target  method is equal to the inlined 
method (we call this conditional inlining). 

3 . 2 . 1  F r a m e w o r k  o f  T y p e  F e e d b a c k  

In our implementation, type  feedback is based on PICs, 
since it can provide more accurate information for call 
sites than MICs or VMTs. Type  feedback also re- 
quires an adaptive compilation framework, and has 
been implemented on an adaptive version of LaTTe, 
which selects methods to aggressively optimize based 
on method run counts. When a method is called for the 
first time, it is t ranslated with register allocation and 
traditional optimizations 4 while virtual method calls 

4We optimize' even during the initial translation to isolate 
the performance impact of inlining for a fair comparison with 
the other configurations in our experiments; See section 4.1 
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within it are handled by PICs.  If the  number  of  t imes 
this me thod  is called exceeds a certain threshold,  it is 
re t ransla ted with condit ional inlining also being done. 

3 . 2 . 2  C o n d i t i o n a l  I n H n i n g  

The compiler decides whether  a call site is inlined or 
not based on the  s ta tus  of inline caches. For example,  
if the  call site in figure 3(b) remains as a monomorphic  
site, at re translat ion t ime it will be  inlined with type  
checking code as follows: 

i f  ( ob j .VEr  •ffi ~A.VMT) 
i ffi obj.fieldl; 

else 
i = o b j . G o t g i e l d l O ;  / / l o a d - l o a d - i n d i r e c t  jump 

If the  call site points  to  a P IC  s tub  code, bu t  there  is 
only one target  me thod  in the  s tub  code, then we can 
do conditional inlining, except  this t ime the compari-  
son is based on addresses,  not  on receiver types.  For 
example,  if our  P IC  s tub  code  in Figure 5(a) were com- 
posed of  type  checks for class A and class B (not class it 
and class C), the  addresses of bo th  G e t F £ e l d l s  will be  
identical. So, we can iniine the  method,  bu t  the  type  
check should be  replaced by an address check, which 
includes access to the  V M T  (two loads), as follows: 

i f  ( o b j . t r r N [ $ i n d e x  o f  method G e t F i e l d l ]  
~= # a d d r e s s  of  A . G o t F i e l d i )  / /  l o a d - l o a d  

i = o b j . f i e l d l ;  
e l s e  

I = o b j . G e t F i e l d l ( ) ;  / / X o a d - X o a d - i n d i r e c t  jump 

If the frequency information of each type or method 
is available by using a counting PIC, we can improve 
on the all-or-nothing strategy. Even though there axe 
multiple receivers or,multiple target methods, we can 
inline the call site with a type test or an address test if 
one case is dominant among the other cases in the PIC 
stub. Currently, the criteria value to decide whether a 
case is dominant or not is 80%: If the count of type 
test hits in a PIC stub exceeds 80% of the total, count 
of PIC stub, it is inlined with type checking code. 

3-2 .3  S t a t i c  T y p e  P r e d i c t i o n  

For those call sites located at untaken execution pa ths  
during initial runs, we do not  have any information on 
the most  probable  receiver type  (but  these can be  col- 
lected even after retranslat ion).  However,  if the  class of 
the objec t  on which a vir tual  call is made  has no sub- 
class at t ranslat ion t ime, we can easily predict  t ha t  the  
receiver type  would be  the class at  runt ,me.  Al thou th  
Java  allows dynamic  class loading, we found tha t  this 
prediction is. qu i t e  accura te  for mos t  programs.  For 
the  following case, for example,  we can inline the call 

site even if there  is no information in the  inline cache 
during retranslat ion.  

B ob j  ; 
i f  ( )  { o b j  . . . .  ; 

o b j .  G o , F i e  l d 2  ( )  ; 
y 

3 . 2 . 4  I n l i n i n g  H e u r i s t i c :  s i n g l e  vs .  m u l t i p l e  

In previous section, we inlined only a m e t h o d  for a 
vir tual  call site. It  can be  possible tha t  a call site has 
more  than  two ta rge t  methods ,  and neither of them axe 
not  dominant .  In such a case, we might  lose inlining 
oppor tuni t ies  by  restr ict ing the number  of inlineable 
methods  for a call site. However,  we found tha t  this is 
not  the  case for Java  programs which we use for testing. 
In the  programs,  most  (95%) vir tual  call sites call jus t  
a single callee, and enabling to inline mult iple methods  
for a call site does not  increase the  number  of inlined 
vir tual  calls significantly. 

4 E x p e r i m e n t a l  r e s u l t s  

In this section, we evaluate  the  performance  impact  
of  inline caches and t ype  feedback. 

4.1 E x p e r i m e n t a l  E n v i r o n m e n t  

Our benchmarks  are composed  of the  S P E C j v m 9 8  
benchmark  suite 5 [17], and table  1 shows the  list of  
programs and a short  descript ion for each. 

; I@, [~ i , I~ ; t# l  

_201 _compress 
_202_jess 
_209_rib 
_213.javae 
_222_mpegaudio 
-227_mtrt 
_228_jack 

D e s c r i p t i o n  
Compress  Uti l i ty 
Exper t  Shell Sys tem 
Da tabase  
Java  Compiler  
MP3  Decompressor  
Mul t i - thread Ray t race r  
Parser  Genera to r  

B y t e s  
24326 
45392 
26425 
92000 
38930 
34009 
51380 

Table 1. Java Benchma#k Description and 
Translated Bytecode Size 

Table 2 lists the  configurations used in our experi- 
ments.  LaTTe-VMT,  LaTTe-MIC,  and 'LaTTe-PIC  axe 
all the  same except  in how they  handle vir tual  calls: by  
using VMTs,  MICs and PICs  respectively. L a T T e - T F  
inlines vir tual  calls using t ype  feedback on an adapt ive  
version of LaTTe,  where  initial t ransla t ion is identical 
to LaTTe-PIC ,  as descr ibed in Section 3.2. Variations 
in P ICs  are denoted  with each v~riation Surrounded 

5.200.check is exc luded  s ince it is fur  co r rec tness  t e s t ing  only. 
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by brackets. For example, a shared PIC is denoted by 
PIC[S], a counting PIC by PIC[C], and a periodic PIC 
by PIC[P]. The default version of a PIC is denoted by 
PIC D when the distinction is needed. 

S y s t e m  
LaTTe-VMT 
LaTTe-MIC 
LaTTe-PIC 
LaTTe-TF 

D e s c r i p t i o n  
Virtual calls are handled by VMT. 
Virtual calls are handled by MIC. 
Virtual calls are handled by PIC. 
Virtual calls are iv_lined using type  
feedback at the retranslation time. 

Table 2. Systems used for benchmarking. 

Our test machine is a Sun Ultras5 270MHz with 256 
MB of memory running Solaris 2.6, tested in single- 
user mode. We ran each benchmark 5 times and took 
the minimum running time s , which includes both  the 
J IT  compilation overhead and the garbage collection 
time. 

4.2 Characteristics of  Vir tua l  Calls  

Table 3 shows the characteristics of virtual calls. 
In the table, V-Call means the total  )count of virtual 
calls, M-Call means the total  count of monomorphic 
calls, and S-target means the total  count of virtual calls 
where target  method is jus t  one at runtime. About  85% 
0f virtual calls are monomophic calls, and about  90% of 
virtual calls have only one target method. Some pro- 
grams like _213_javac, _227_mtrt, and _228_jack have 
many call sites where the target method is one, even 
though there are multiple receiver tyeps, and thus we 
can expect that  address check inlining may be effec- 
t i.ve on these programs. We can also expect that  
.201_compress will not be much affected by h o w  vir- 
tual calls are implemented, since the number of virtual 
calls is extremely small. 

4,3 Analysis  of Monomorph ic  ln l ine  Caches 

Table 4 shows the characteristics of MICs. In the 
table, V-Call means the total  count of virtual calls, 
P-Call means the total  count of calls which are called 
at polymorphic call sites, and Miss means the total  
count of type check misses. There is no t rend in the 
miss ratios. While some programs such as .209.db and 
_228_jack have very low miss ratios compared to V- 
Call, type check misses are very common in _202_jess 
and _213_javac. Since a type  check miss requires inval- 
idating part  of the I-cache, the miss ratio can greatly 

6For the SPECj~n98 benchmarks, our total elapsed running 
time is not comparable with a SPECJvm98 metric. 

. i  

affect the overall performance. So we can expect that  
the performance of -202_jess and _213_javac may be 
worse with monomorphic inline caches. 

4.4 Analysis  of  Polymorphic  Inl ine Caches 

Tables 5, 6, 7, and 8 shows the average number of 
type  checks in a PIC stub for each configuration of 
PICs. Each column of the tables is divided by the 
maximum number of possible entries in a PIC s tub and 
the threshold value which determines when reordering 
takes place. This value is applied to both  PIC[C] and 
PIC[P], although the reordering takes place just  once in 
the  former while it takes place periodically in the latter. 
If the threshold value is zero, it means no counting. 

At first glance, we find that  the numbers of average 
type  checkings are very small, even though monomor- 
phic sites are not  included in the numbers. If  the aver- 
age number  is calculated for every inline cache, includ- 
ing monomorphic sites, the number will be even more 
closer to 1. However, only if counting is enabled are 
the numbers axe less than 2 ~in every case. 

From table 5 and 6, it is clear that  counting PICs 
are effective in reducing the number of type  checks in 
a PIC stub,  except for _228_jack. Although the num- 
bers are generally reduced as the threshold value is 
increased, they are unchanged or even increased for 
some programs and seem to saturate  at certain values. 
So simply increasing the threshold does not guaran- 
tee improvements . .228_jack  has very different char- 
acteristics from other programs, and these .come from 
a single polymorphic site T which accounts for about  a 
half of the total  polymorphic calls, and exhibit very 
strange behavior: after the call site is switched to a 
polymorphic inline cache from a monomorphic inline 
cache, the newly encountered type  is received repeti- 
tively for about  a thousand times, and thereafter the 
former type  is used repetitively for over I million times. 
So the default PIC scheme without  counting is bet ter  
than that  with counting in this case. 

We can also see the effect of inaccuracies caused by 
sharing PIC stubs from table 5 and 6. Although it 
seems natural  that  a non-shared version would be more 
accurate than a shared  version, the difference is not 
apparent .in non-counting versions. For other configu- 
rations, the numbers in table 5 axe bet ter  than those in 
table 6, except for _213_javac, where some PIC stubs 
are changed into VMT-style code because sharing in- 
creases the number of entries. However, the difference 
is lower than 0.3 for most cases. 

7A call site in "index0f" method in java.util.Vector class 
which calls "equals" method. 
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B e n c h m a r k  

_201_compress 
_202_jess 
_209_db 
_213_javac 
.222_mpegaudio 
_227_mtrt 
_228_ja~ 
GEOMEAN 

V=Call 
(xlO00) 

12.9 
34,306 
16,492 
53,130 
10,025 

264,612 
17,247 

M-Ca l l  S - t a r g e t  
(x 1000) (xlO00) 

11.6 11.8 
27,718 28,435 
16,479 16,480 
37,840 42,552 

8,781 8,841 
240,130 261,775 

14,094 16,959 

M - C n l l / V - C a l l  s = t a r g e t / V - C a l l  

0 .897  0 .912  
0 .808  0 .829  
0.999 0.999 
0.712 0.801 
0.876 0.882 
0.907 0.989 
0.817 0.983 
0.854 0.904 

Table 3. Characteristics of virtual calls 

B e n c h m a r k  
_201_compress 
_202~jess 
.209_rib 
_213_javac 
_222_mpegaudio 
_227_mtrt 
_228_jack 

V-Cail(x 1000) P-Call(× 1000) Miss(x 1000) 
12.9 1.3 0.58 

34,306 6,587 3201 
16,492 12 2 
53,130 15,289 5487 
10,025 1,244 54 

264,612 24,482 583 
17,247 3,152 1 

Miss/V-Call Miss/P-Call 
0.045 0.433 
0.093 0.486 

. 0.000 0.203 
0.103 0.359 
0.005 0.044 
0.002 0.024 
0.000 0.001 

Table 4. Characteristics of monomorphic inline caches 

Tables 7 and 8 are shown for comparison with ta- 
bles 5 and 6. Although a periodically reordered PIC is 
hard to use in real implementations because it always 
incurs counting overhead which involves load-add-store 
sequences, it can be seen as a somewhat ideal config- 
uration in terms of the number of type checks. The 
difference between the periodic version and the non- 
periodic version is lower than 0.2 in most programs, 
and thus the quality of counting PICa are quite ac- 
ceptable. 

Table 9 shows the space overhead of PICs for both 
non-shared and shared versions. In the table, N means 
the number of PIC stubs, and max means the possible 
maximum number of entries in each PIC stub. The 
overhead seems to be small in most programs except for 
_213_javac, where the shared version can greatly reduce 
the overhead. Since the sharing of PIC stubs does not 
degrade the performance severely for most programs, 
shared PICs can be useful when space is tight. 

4 . 5  Analysis  of  Type Feedback  

Tables 10, 11, and 12 show the effect of type feed- 
back in terms of the number of inlined virtual calls. As 
a base system, four different PIC variations (PIC[S], 
PIC[SC], PICD, and PIC[C]) axe used. The main pur- 
pose of PICa is providing profile information. So a 
larger number of maximum entries in PIC (10) is used, 
and the threshold for counting PICs is set to 1000 in 

order not to affect the accuracy too much s 

Generally, the number of inlined virtual calls is re- 
duced as the retranslation threshold is increased. Al- 
though more accurate profile information is awilable 
with a high retranslation threshold than with a low re- 
translation threshold, the opportunities missed by de- 
laying retranslation seems to be high. In addition, the 
number of inlined calls for many programs is constant 
regardless of the type of PICs. There can be two rea- 
sons: One possibility is that  the method is too big to be 
inlined. In this case, inlining such a method is related 
to the inlining heuristic and is beyond the scope of this 
paper. The other possiblility i.4 that  a single method is 
not dominant for a call site. However, this is not the 
case for SPECjvm98 benchmarks, and it will be shown 
in following section. 

For some programs like _213_javac and _227_mtrt, 
which axe affected by the type of PICa used, the count- 
ing version is preferable to the non-counting version. A 
call site which has multiple receiver types and thus can 
be inlined only with an address check, can be inlined 
with a type check if counting information is available 
and only one receiver type is dominant. And a call 
site which involves more than two target methods and 
thus cannot be inlined in our implementation, can be 
inlined if one method is dominant. While .213_javac 
is influenced by both effects, i.e., the amount of type 
check inlining and address check inlining are increased, 

SSince a P I C  is reused  for  a call  s i te  w h e r e  m e t h o d  in l in ing  is 
no t  done,  t h e  va lue  s h o u l d  no t  be  t oo  large.  
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; I ~ , I O , t , , t : t # ,  p 

_201_compress 
_202_jess 
_209_db 
_213_javac 
_222_mpegaudio 
_227_mtrt 
_.228_jack 

P I C  m a x  e n t r y  = 5 
0 1 0  5 0  1 0 0  2 0 0  

1.540 1.480 1.498 1.526 1.540 
1.517 1.488 1.507 1.486 1.486 
1.541 1.461 1.467 1.475 1.488 
1.500 1.259 1.227 1.226 1.216 
2.120 1.359 1.267 1.266 1.269 
1.305 1.162 1.108 1.092 1.092 
1.209 1.800 1.800 1.800 1.800 

P I C  m a x  e n t r y  = 10 
0 1 0  5 0  1 0 0  2 0 0  

1.540 1.480 1.498 1.526 1.540 
1.517 1.488 1.507 1.486 1.486 
1.541 1.461 1.467 1.475 1.488 
1.949 1.810 1.771 1.777 1.674 
2.120 1.359 1.267 1.266 1.269 
1.305 1.162 1.108 1.092 1.092 
1.209 1.800 1.800 1.800 1.800 

Table 5. Average number of type checks with 

B e n c h m a r k  

_201_compress 
_202_jess 
_209_db 
_213_javac 
_222_mpegaudio 
_227_mtrt 
_228_jack 

P I C  m a x  e n t r y  = 5 
0 10  5 0  1 0 0  

non-shared counting PICa (Lal"I'e-PIC[C]) 

P I C  m a x  e n t r y  = 10  
200 0 10 50 100 200 

1.790 1.693 1.711 1.728 1.769 
1.579 1.570 1.578 1.576 1.576 
1.700 1.653 1.594 1.601 1.614 
1.508 1.185 1.176 1.175 1.180 
2.161 1.358 1.267 1.267 1.269 
1.220 1.099 1.099 1.100 1.100 
1.051 1.980 1.980 1.981 1.981 

1.790 1.693 1.711 1.728• 1.769 
1.579 1-570 1.578 1.576 1.577 
1.700 1.653 1.594 1.601 1.614. 
1.722 1.686 1.577 1.444 1.450 
2.161 1.358 1.267 1.267 1.269 
1.220 1.099 1.099 1.100 1.100 
1.398 1.895 1.895 1.895 1.895 

Table 6. Average number of type checks with shared counting PICa (La'l-re-PlC[SC]) 

the former effect is dominant  in _227_mtrt, where the 
increase in the amount  of type  checking inlining is al- 
most the same as that  of decrease in address checking 
inlining. 

4.6 Analysis of  Inlining Heuristic 

Table 13, 14, and 15 show the total  number  of 
inlined virtuals call under different inlining heuristics: 
inlining single method for a call site and inlining all 
the possible me thods  for a call site. The numbers in 
the column of S i n g l e  method i n l i n £ n g  are the  sum 
of type  check inlining and~ address check inlining in the 
tables of previous section. The numbers in the column 
of A l l  method i n l i n i n g  are obtained by inlining all 
the methods which have been encountered during ini- 
tial run and can be inlined by our inlining rule (size and 
depth) 9. As we have expected from the fact tha t  about  
90% of virtual call sites have only one target  method,  
there is little improvements in terms of the number of 
inlined virtual calls, even though all possible methods 
~ e  permit ted to be inlined. Only .213_javac has op- 
portunites to be improved by inlining multiple meth- 
ods for a call site. So, we can think that  inlining only 
a method for a call site is sufficient for most programs. 
If many call sites still remain as not inlined, this is due 
to other factors like method  size or inlining depth. 

sC .ounting version is excluded since there is no difference from 
non-counting version when all the posaible methods are inlined. 
And shared version is also excluded since it causes code explosion 
in _213_j avac. 

4.7' Performance Impact  of  Inline Caches and 
Type Feedback 

Table 16 shows the total  running t ime (tot) of each 
program for 4 configurations of L a T T e .  Translation 
overhead (tr) is also included in the total  running time. 

'Since there is little difference in running time between 
the different configurations of PIC and TF, only one 
instance each from bo th  are listed here. The exact 
configurations are like this: 

1.  P I C  non-shared counting PICa, maximum num- 
ber of entries = 5, reordering threshold = 100 

2. T F  based on rlon-shared counting PICa, maximum 
number of entries --- ~0, reordering threshold = 
I000, retranslation threshold ---- 10 

On the whole, MICa improve the performance of 
L a T T e  by a geometric mean of 3.0%, PICs by 9.0%, 
and type  feedback by  7.4%, compared with LaTTe- 
VMT. As pointed out  in the  previous section, MICa 
exhibit poor  performance in _202_jess and _213_javac, 
which have high ratio of type  check misses. PICs,  as 
we have expected, solved the problem experienced by 
MICs which is exposed in the  above programs, without  
severe degradation in other programs, and improves 
the performance of almost all programs compared with 
VMTs.  " 

However, type  feedback seems to be effective only 
for _227_mtrt, where ~he narnber of inlined virtual calls 
are much larger than  other  programs. The number of 
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B e n c h m a r k  

_201_compress 
.202_jess 
..209..db 
_213_javac 
_222_mpegaudio 
_227_mtrt 
_228_jack 

P I G  m a x  e n t r y  = 5 
10 50 100 200 

1.480 1.498 1.526 1.540 
1.366 1,366 1.367 1.367 
1.461 1.467 1.475 1.492 
1.196 1.197 1.197 1.198 
1.264 1.265 1.267 1.270 
1.033 1.033 1.033 1.033 
1.019 1.019 1.019 1_020 

P I C  m a x  e n t r y  = 10 
10 50 100 200  

1.480 1.498 1.526 1.540 
1.366 1.367 1.367 1.367 
1.461 1.467 1.475 1.492 
1.620 1.620 1.623 1.623 
1.264 1.265 1.267 1.270 
1.033 1.033 1.033 1.033 
1.019 1.019 1.019 1.020 

Table 7. Average number of type checks with non-shared periodic PlCs (Lal-re-PlC[P]) 

B e n c h m a r k  

_201_compress 
_202_jess 
_209_db 
_213_javac 
_222_mpegaudio 
_227_mtrt 
_228_jack 

P I C  m a x  e n t r y  = 5 
10 50 100 200  

1.693 1.711 1.728 1.769 
1.429 1.429 1.430 1.430 
1.590 1.594 1.601 1.618 
1.163 1.163 1.165 1.164 
1.265 1.266 1.267 1.269 
1.035 1.035 1.035 1.035 
1.030 1.030 1.030 1.031 

P I C  m a x  e n t r y  = 10 
10 50 100 200  

1.693 1.711 1.728 1.769 
1.429 1.430 1.430 1.430 
1.590 1.594 1.601 1.618 
1.385 1.386 1.3.85 1.386 
1.265 1.266 1.267 1.269 
1.035 1.035 1.035 1.035 
1.114 1.114 1.114 1.114 

Table 8. Average number of type checks with shared periodic PICs (La'I-I'e-PIC[SP]) 

inlined virtual calls in other programs seems to be low 
to compensate for both the retranslation overhead (in- 
crease in translation time) and inlining overhead (in- 
crease in code size, register pressure, and so on). Since 
the performance of type feedback depends on the in- 
lining heuristic as well ~ the retranslation framework, 
both have to be carefully implemented to measure the 
effect of type feedback correctly. Our implementation 
could be improved in both of these points. 

However, the result from _227_mtrt gives us some 
expectation, about the effect of type feedback. In 
_227_mtrt, some getter .methods such as GetX, GetY, 
and GetZ are very frequent, and the performance of the 
benchmark is greatly improved by inlining such meth- 
ods. So the more common a coding style using accessor 
methods are, the more effective type feedback could be. 

5 R e l a t e d  w o r k  

Our work is based on polymorphic inline caches and 
type feedback. Polymorphic inline caches were stud- 
ied by Urs H~lzle et al. [2] in the SELF compiler and 
achieved a median speedup of 11% over monomorphic 
inline caches. Type feedback was proposed by Urs 
H61zle and David Ungar [3]. They implemented type 
feedback in the SELF compiler using PIGs and im- 
proved performance by a factor of 1.7 compared with 
non-feedback compiler. Since virtual calls are more fre- 
quent in SELF, and also since the default dispatching 
overhead is much larger than that of the VMTs which 

can be used in Java, they achieved larger speedup than 
ours. Furthermore, their measurements compare exe- 
cution time while excluding translation time overhead. 

The most relewdnt study was done by David Detlefs 
and Ole Agesen [18]. They also targetted Java, used 
conditional inlining, and proposed a method test which 
is identical to an address test. However, they mainly 
concentrated on inlining rather than on inline caches, 
and they did not use profile information to inline vir- 
tual calls. 

Gerald Aignerand Urs HSlzle [19] implemented op- 
timizaing source-to-source C + +  compiler. They used 
static profile information to inline virtual calls, and 
improves the performance by a median of 18% and re- 
duces the number of virtual function calls by a median 
factor of five. 

Karel Driesen et al. [16] extensively studied wri-  
ous dynamic dispatching mechanisms on several mod- 
em architectures. They mainly, compared inline cache 
mechanisms and table-based mechanisms which em- 
ploy indirect branches, and showed that the latter does 
not perform well on current hardware. They also ex- 
pected that table-based approw, hes may not perform 
well on future hardware. 

Olver Zendra et al. [20] have implemented polymor- 
phism in the SmallEiffel compiler. They also elimi- 
nated use of VMTs by using a static variation of PIGs 
and iulined monomorphic call sites. However, they re- 
lied on static type inference and did not use runtime 
feedback. 
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Benchmark 

_201_compress 
_202_jess 
_209_db 
_213_javac 
_222_mpegaudio 
_227_mtrt 
_228_jack 

n o n - s h a r e d  s h a r e d  
N m a x  = 5 m a x  = 10 N m a x =  5 m a x =  10 

6 536 536 
24 2,368 2,648 

6 536 536 
396 54,584 65,560 

25 3,008 3,008 
62 5,604 5,604 
19 1,856 1,856 

5 512 512 
14 1,708 1,988 
5 512 512 

86 15,476 18,136 
18 2,308 2,308 
23 2,120 2,120 
12 1,380 1,380 

Table 9. Size of PIC stub code 

Benchmark 

_201_compress 
_202_jess 
_209_db 
_213~avae 
_222_mpegaudio 
_227_mtrt 
_228_jack 

Type - c he c k  inlining (x 1000) 
PICtS j PIC[SCJ PIC~ PICIC ] 

0 0 0 0 
12,036 12,036 12,036 12,036 
6,547 6,547 6,547 6,547 
7,665 8,205 7,654 8,215 
3,337 3,337 3,337 3,337 

208,238 209,811 208,238 209,113 
2,396 2,396 2,396 2,396 

0 0 O 0 
0 0 0 0 
0 0 0 0 

427 679 489 718 
0 0 0 0 

2,230 560 2,230 1,348 
0 0 0 0 

Table 10. Inlined calls by type feedback: retranalation threshold = 10 

Based on the experiences of C + +  programs, Brad 
Caler and Dirk Grunwald [21] proposed using "if con- 
version", which is similiar to type feedback except that 
it uses static profile information. 

6 C o n c l u s i O n  a n d  F u t u r e  w o r k  

We have implemented inline caches and type feed- 
back in the LaTTe  JIT compiler and evaluated these 
techniques. 

Although some programs suffer from frequent cache 
misses, MICs achieve a speedup of 3% by geometric 
mean over VMTs. Polymorphic inline caches solve the 
problem experienced by MICs without incurring over- 
heads elsewhere and achieve a speedup of 9% by ge- 
ometric mean over VMTs using counting PICs. We 
have also tested several variations of PICs and shown 
the characteristics of PICs in Java programs. Count- 
ing PICs reduce the average number of type checks in 
a PIC stub compared with a non-counting version, and 
achieve an average number of type checks close to that 
of a periodic version, within 0.2 for most programs. 
If memory is a matter of concern, then shared PICs 
can save space with only a reasonable degradation in 
performance. 

The effect of type feedback is not fully shown in 
this study. The overall performance is even worse than 
that of counting PICs. Although it is true that some 
programs have little opportunity to improve in terms 
of virtual calls, the result is partly because we cannot 

apply optimizations selectively only when it is bene- 
ficial. However, the performance of _227_mtrt, which 
does many virtual calls to small methods, is greatly im- 
proved by type feedback, and gives us insight about the 
performance impact of type feedback. If a coding style 
which uses more abstraction and makes more calls be- 
comes dominant in Java programs, type feedback will 
be more effective. 

The study of type feedback also exposed other prob- 
lems: adaptive compilation and method inlining. To 
avoid degradation due to type feedback, it is very im- 
portant to estimate the costs incurred by retranslation 
and inlining, and to apply conditional inlining only to 
hot-spots. 
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B e n c h m a r k  

_201_compress 
_202_jess 
_209_db 
_213.javac 
_222_mpegaudio 
_227_mtrt 
_228_jack 

lil  EIII.iUI   ,illllll.i t$ I 
0 0 0 0 

12,031 12,031 12,031 12,031 
5,964 5,964 5,964 5,964 
7,694 7,808 7,565 7,759 
3,335 3,335 3,335 3,335 

208,148 209,748 208,148 209,050 
2,391 2,391 2,391 2,391 

0 0 0 0 
0 0 0 0 
0 0 0 0 

97 291 525 739 
0 0 0 0 

2,263 560 2,263 1,348 
0 0 0 0 

Table 11. Inlined calls by type feedback: retranslation threshold = 50 

B e n c h m a r k  

_201_compress 
_202_jess 
_209_db 
_213_javac 
_222_inpegaudio 
_227_mtrt 
_228_ja~k 

,- ,- , , ,._ 

0 0 0 0 
12,031 12,031 12,031 12,031 

5,964 5,964 5,964 5,964 
7,691 7,946 7,621 8,561 
3,335 3,335 3,335 3,335 

208,148 209,748 208,148 208,516 
2,391 2,391 2,391 2391 

0 0 0 0 
0 0 0 0 
0 0 0 0 

97 36 526 461 
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2,263 560 2,263 1,886 
0 0 0 0 

Table 12. Inlined calls by type feedback: retranslation threshold = 100 
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Benchmark 

.201_compress 
_202_jess 
_209.db 
_213_javac 
_222_mpegaudlo 
_227_mtrt 
_228_jack 

Single  m e t h o d  in! ining (x i 0 0 0 )  
PICtS] PIC[SCI PIC U PlC[C] 

0 0 0 0 
12,036 12,036 12,036 12,036 
6,547 6,547 6,547 6,547 
8,092 8,884 8,143 8,933 
3,337 3,337 3,337 3,337 

210;468 210,371 210,468 210,461 
2,396 2,396 2,396 2,396 

All  m e t h o d  in l in ing  ( x ' l O 0 0 )  
PIC~ 

0 
12,167 
6,547 

11,365 
3,473 

210,463 
2,396 

Table 13. Comparison of inlined calls: retranslation threshold = 10 

;£=-) iI[t~ mt$ ,  r:-.t # ! 

_201_compress 
_202_jess 
..209_db 
_2i3_javac 
_222Jnpegaudio 
_227_rntrt 
_228_jack 

Single  m e t h o d  in l in ing  (x 1000) 
PIC[SJ PIC[SCJ PIC~ PIC[CJ 

0 0 0 0 
12,031 12,031 12,031 12,031 
5,964 5,954 5,964 5,964 
7,792 8,099 8,090 8,499 
3,335 3,335 3,335 3,335 

210,411 210,308 210,411 210,398 
2,391 2,391 2,391 2,391 

;] i • ,  ,t~;I.[.z. E ~ ;  ;7; b, v.~D:u IOI,] 
PIC U 

0 
12,162 
5,964 

11,610 
3,471 

210,405 
2,391 

Table 14. Comparison of inlined calls: retranslation threshold = 50 

Benchmark  

_201_£ompress 
.202_jess 
..209_xlb 
_213_javac 
_222_mpegaudio 
_227_mtrt 
_228_jack 

Single  m e t h o d  in l in ing  (x I000)  
PIG[S/ PICLSC j PIC~ PIC[CJ 

0 0 0 0 
12,031 12,631 12,031 12,031 

5,964 5,964 5,964 5,964 
7,789 7,982 8,147 9,022 
3,335 3,335 3,335 3,335 

210,41-1 210,308 210,411 210,402 
2,391 2,391 2,391 2,391 

All  m e t h o d  in l in ing  (x  1000) 
PIC u 

0 
12,162 
5,964 

11,654 
3,471 

210,405 
2,391 

Table 15. Comparison of inlined calls: retranslation threshold = 100 

B e n c h m a r k  

_201_compress 
_202_jess 
_209_db 
_213_javac 
_222.mpegaudio. 
_227_mtrt 
_228_jack 
GEOMEAN 

V M T  
tot[l] tr  
69.23 2.72 
4t .48 4.39 
74.27 2.92 
63.94 8.16 
47.49 4.44 
58.97 3.64 
51.42 5.50 

M I C  
tot[2J tr 
69.10 2.74 
45.88 4.32 
66.78 2.90 
71.76 7.99 
47.36 4.40 
49.56 3.52 
44.66 5.40 

P I C  
tott3 ] tr  
69.68 2.71 
38.40 4.31 
67.60 2.88 
59.01 7.98 
47.08 4.37 
47.70 3.51 
44.95 5.40 

T F  
tot[4J tr 
66.18 2.97 
41.73 5.63 
66.99 3.10 
66.22 13.88 
51.01 4.83 
42.11 5,18 
45.39 7.26 

Speedup  
[lJ/[2J [lJ/[3] [l]/[4J 

1.00 0.99 1.05 
0.90 1.08 0.99 
1.11 1.10 1.11 
0.89 1.08 0.97 
1.00 1.01 0.93 
1.19 1.24 1.40 
1.15 1.14 1.13 

1.t)3o 1.090 1.074 

Table 16. Total running time 
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