
Reducing Virtual Call Overheads in
a Java V M Just- in-Time Compiler*

Junpyo Lee, Byung-Sun Yang, Suhyun Kim
Seungll Lee, Yoo C. Chung, Heungbok Lee

Je Hyung Lee, Soo-Mook Moon
walker~altair, snu. ac. kr

School of E lec t r i ca l E n g i n e e r i n g

Seoul N a t i o n a l Un ive r s i ty

Seoul 151-742, K o r e a

Kernel Ebcio lu
Erik Altrnan

kemal@us, ibm. com
IBM T. J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

A b s t r a c t

Java, an object-oriented language, uses virtual
methods to support the e.ztension and reuse of classes.
Unfortunately, virtual method calls affect performance
and thus requir~ an efficient implementation, especially
when just-in-time (JIT) compilation is done. Irdine
caches and type feedbark are solutions used by com-
pilers for dynamically-typed object-oriented languages
such as SELF [1, 2, 5], where virtual call overheads are
much more critical to performance than in Java. With
an inline cache, a virtual call that would other'wise have
been translated into an indirect jump with two loads is
translated into a simpler direct jump with a single com-
pare. With type feedback combined with adaptive com-
pilation, virtual methods can be inlined using checking
code which verifies if the target method is equal to the
inIined one.

This paper evaluates the performance impact of these
techniques in an actual Java virtual machine, which
is our new open source Java VM JIT compiler called
LaTTe [4]. We also discuss the engineering issues in
implementing these techniques.

Our e~perimental results with the SPECjvm98
benchhmarks indicate that while monomoprhic inline
caches and polymorphic reline caches achieve a speedup
as much a~ a geometric mean of 3~ and 9~ respec-
tively, type feedback cannot improve further over poly-
morphic inline caches and even degrades the perfor-
mance for some programs.

K e y w o r d s virtual method call, Java JIT compila-
tion, inline cache, type feedback, adaptive compi-

*This work has been suPpoi-ted by IBM T. J. Watson Re-
sea~v.h Center under a sponsored research agreement.

lemon

1 Introduction

Java is a recently created object-oriented program-
ming language [5]. As an object-oriented pro~amming
language, it supports virtual methods, which allow dif-
ferent code to be executed for objects of different types
with the same call.

Virtual method calls in Java incur a performance
penalty because the target of these calls can only be
determined at run-time based on the actual type of
objects, requiring run-time type resolution. For exam-
ple, extra code needs to be generated by a just-in-time
(JIT) compiler such that in many Java JIT compilers
like Kaffe [6], CACAO [7], and LaTTe [8], a virtual
method call is translated into a sequence of loads fol-
lowed by an indirect jump rather than a direct jump
as for other static method calls.

In dynamically-typed object-oriented languages
such as SELF, however, virtual calls cannot be imple-
mented by using simple sequences of loads followed by
an indirect jump like in Java [1]. Furthermore, virtual
calls axe much more frequent than in Java. So, two
aggressive techniques have been employed to reduce
virtual call overheads: inline caches and type feedback.
With these techniques, a virtual method call can be
translated into a simplex sequence of compare then di-
rect jump or can even be inlined with type checking
code. Although both techniques axe certainly appli-
cable to Java, little~ is known about their performance
impact. Since virtual method calls ~ e less frequent and
less costly in Java while both techniques involve addi-

-21 -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F346023.346037&domain=pdf&date_stamp=2000-03-01

tional translation overhead, it is important to evaluate
these technclues separately since the results from SELF
may not apply.

This paper evaluates both techniques in an actual
Java JIT compiler. The compiler is included in our
open source Java vi_#tual machine called LaTTe [8].
Although the implementation of both techniques in
LaTTe was straightforward, there were a few trade-
o~ and optimization opportunities which we want to
discuss in this paper. We also provide detailed analysis
of their performance impact on Java prograrns in the
SPECjvm98 benchmark suite.

The rest of the paper is organized as follows. Chap-
ter 2 briefly reviews method calls in Java and summa-
rizes the virtual method call mechanism used by the
LaTTe JVM. Chapter 3 describes how we implemented
inline caches and type feedback in LaTTe. Chapter 4
shows experimental results. Related work is described
in section 5 and the summary follows in section 6.

2 B a c k g r o u n d

2.1 Method invocation in Java

The Java programming language provides two types
of methods: instance methoda and class me~hod~ [9]. A
class method is invoked based on the class it is declared
in via invokeetatic. Because it is bound statically,
the JIT compiler knows which method will be invoked
at compile time.

An instance method, on the other hand, is always
invoked with respect to an object, which is sometimes
called a receiver, via i n v o k e v i r t u a l . Because the ac-
tual type of the object is known only at run-t ime (i.e.,
bound dynamically), the J IT compiler cannot gener-
ally determine its target at compile time. There are
some instance methods that can be bound statically,
though. Examples are final methods, private meth-
ods, all methods in final classes, and instance methods
called through the i n v o k e s p e c i a l by tecode (e.g., in-
stance methods for special handling of superclass, pri-
vate, and instance initialization [9]).

Generally, a method invocation incurs overheads
such as creating a new activation record, passing ar-
guments~ and so on. In the case of dynamic binding,
there is the addit ional overhead of finding the target
method (which is called-the method dispatching over-
head).

2.2 LaTTe JIT Compiler and Virtual Method Ta-
bles

LaTTe is a virtual machine which is able to e x -

e c u t e Java bytecode. It includes a novel JIT com-
piler targeted to I~ISC machines (specifically the UI-
tr,aSPARC). The JIT compiler generates .code with
good quality through a clever mapping of Java stack
operands to registers with negligible overhead [8]. It
also performs some traditional optimizations such as
common subexpression elimination or loop invariant
code motion. Additionally, the runtime components
of LaTTe, including thread synchronization [10], ex-
ception handling [II], and garbage collection [12], have
been optimized. As a result, the performance of LaTTe
is competitive to that ofSun's HotSpot [13] and Sun's
JDK 1.2 production release [14].

LaTTe maintains a virtual method table (VMT) for
each loaded class. The table contains the s tar t address
of each method defined in the class or inherited from
the superclass. Due to the use of single inheritance in
Java, if the s tar t address of a me thod is placed at offset
n in the virtual me thod table of a class, it can also be
placed at offset n in the virtual method tables of all
subclasses of the class. Consequently, the offset n is a
t ranslat ion-t ime constant. Since each object includes a
pointer to the method table of its corresponding class,
a virtual method invocation can be t rans la ted into an
indirect function call after two loads: load the virtual
t'able, indexing into the table to obtain the start ad-
dress, and then the indirect call.

For statically-bound method calls, LaTTe generates
a direct jump at the call site, or inlines the target
method unless the bytecode size is huge (where the
invocation overhead would be negligible) or the inlin-
ing depth is large (to prevent recursive calls from being.
inlined infinitely).

3 Inline Caches and Type Feedback

In this section, we review the techniques of inline
caches and type feedb~ick and describe our implemen-
tations. We use the example class hierarchy in Figure 1
throughout this section. Both classes B ~ d C are sub-
classes of A and have an addit ional field as well as the
one inherited from class A. Class B inherits the method
G e t F i e l d l () from class A, and class C overrides it. All
assembly code in this section are in SPARC assembly.

- 22 -

class A {
i n t f i e l d l ;
i n t G e t F i e l d l O { r e t u z n f i e l d l ;

)

class B
int
int

)
c l a s s C

i n t
i n t
i n t

)

• e x t e n d s A {
f i e l d 2 ;
G e t F i e l d 2 () { r e t u r n f i e l d 2 ; }

e x t e n d s A {
f i e l d 3 ;
G e t F i e l d l () { r e t u r n O; }
C e t F i e l d 3 () ~ r e t u r n f i e l d 3 ; }

Figure 1. Example class hierachy

3 . 1 I n a n e C a c h e s

3.1.1 M o n o m o r p h i c In l ine C a c h e s

When a J IT compiler translates o b j . G e t F i e l d l ()
in Figure 2(a), it cannot know which version of
G e t F i e l d l O will a~tually be called because obj can be
an object of class C as well as class A or B. Even if class C
does not exist, the J IT compiler cannot be sure whether
if A's G e t F i e l d i O should be called because class C can
be dynamically loaded later. With a VMT this call is
translated into a sequence of load-load-indirect jump,
as shown in Figure 2(b), where # index means the offset
in the VMT (# denotes a translation-time constant).

void d.mmy() {
A obj;

obj ffi ...;
obj.GetFieldO;

}

/ / oO c o n t a i n s o b j e c t
l d [ZOO], Zgl
I/ indexing the VHT
Id [Zg l+# index] , Zgl
jmpl ~gl

(a) (b)

Figure 2. Example virtual call in Java and cor-
responding VMT sequences

The inline cache is a totally different method dis-
patching mechanism which "inlines" the address of the
last dispatched method at a call site. Figure 3(a)
shows the t ranslated code using a monomorphic inline
cache (MIC), where the call site just jumps to a system
lookup routine called m e t h o d . d i s p a t c h e r via a stub.
This stub code sets the register Zgl to # index, and thus
me thod_d i spa tche r can determine the called method.

It is called an empty inline cache because there is no
history for the target method yet. When the call is
executed for the first time, me thod_d i spa t che r finds
the target method based on the type of the receiver,
translates it if it has not been translated yet, and up-
dates the call site to point to the translated method,
which is prepended by the type checking code 1. Fig-
ure 3(b) shows the state of the inline cache when the
first encountered receiver is an object of class A. Now,
our inline cache includes history for one method invo-
cation to the target method. Detailed type checking
code is shown in figure 4.

nmp~e_~k~

m mol'~l

mes~l_cr~e~
b'ampollne (:ode ~ i

. ~ f ~ m or %o7, %02
rrmv #1ncl h', "~1

call A.GelFleldl

(a) empb/in~J~

amp ~ , #A.VMT
me Ml_tmmJw F

A.GetFk~I1

Jell_handler

(b) mormrneq~hic inline cache

Figure 3. Monomorphi© inline caches

Until a receiver with a different type is encoun-
tered, the state of the inline cache does not change. If
such a receiver is encountered, f a i l _ h a n d l e r operates
just Rke method_dispa tcher : find the target method,
translate it if it has not been translated yet, and update
the call site.

3 . 1 . 2 P o l y m o r p h i c InUne C a c h e s

A polymorphic inline cache (PIC) differs from a MIC
in deMing with the failure of type checking. Instead of
updat ing the call site repeatedly, it creates a PIC s tub
code, and makes the call site point to this s tub code.
The PIC stub code is composed of a sequence of com-
pare, branch, and direct jump instructions where all
previously encountered receiver types and correspond-
ing method addresses axe inlined. Figure 5(a) shows
the status of a call site and the corresponding PIC stub
code when the call site encounters objects of class A
and class C. The detailed P IC s tub code is as shown in
Figure 6.

1Since it is possible that a method has multiple type checking
codes due to inheritance, a type checking code can be aepsrated
from the corresponding method hbdy.

- 2 3 -

/ * o b j e c t p o i n t e r i s p a s s e d v i a oO r e g i s t e r .
g l , g2, g3 a r e s c r a t c h r e g i s t e r s . * /

ld [XoO], %g2 / / l o a d f i r s t v o r d o f an o b j e c t
/ / v h i c h i s VMT p o i n t e r o f t h e o b j e c t

/* A.VHT(VHT pointer of class A) i s a translation-time constant. */
s e t h ± 73i(#A.VI~F), ~g3
o r ~g3, ~ lo(#A.YHT) , ~g3
cmp ~g2, ~g3
bne FAIL_HANDLER

mov ~o7, ~g2

// load 3 2 b i t c o n s t a n t value
//

// compare two VMTp.ointers
/ / branch t o fail_handler code
// if tvo VMTs axe equal
// delay slot instruction

/ * I f t y p e c h e c k i n g code can be l o c a t e d i n f r o n t o f method b o d y ,
t h i s code i s n o t r e q u i r e d * /

JUMP_TO_TARGET: ~.
call address of A.GetFieldl
mov ~g2, ~o7 // to prevent from returning back here

/ * In ou r i m p l e m e n t a t i o n FAIL_HANDLER i s l o ca ted ~n f r o n t o f above code * /
FAIL_HANDLER:

/* i n d e x o f t h e c a l l e d method i n VMT i s t r a n s l a t i o n - t i m e c o n s t a n t * /
c a l l f a i l _ h a n d l e r / / c a l l f a i l _ h a n d l e r
mov # i n d e x , ~g l / / d e l a y s l o t i n s t r u c t o i n

/ / i n d e x v a l u e i s p a s s e d t o f i x u p f u n c t i o n
// via El register

Figure 4. Detailed type checking code

Immlalmd mdmd

PlC-~ub

Inuml~ l mdmd

oil VMT o~e

PIC unUub ~

(a) polymorphic inline cache

VMT onde

~ f ~ U ['~.~]. "/~1 kl [%gt ~-Mndex],'/.gl

A,Ge~rmUl

C,GeIFle~I

(b) handling msgarnorphic sites

Figure 5. Polymorphic inline caches

It is not pract ical for the P IC s tub code to grow
without limit. If the number of entries in a P I C s tub
code exceeds a pre-determined value, the corresponding
c~11 site is called a megamorphic airs, and we use VMT-
style code instead. Since this code only depends on the
index value in the VMT, it can be shared aznong many

\

call sites. Figure 5(b) explains how megamorphic sites
are handled. Al though MICs are used in SELF for
megamorphic sites, this is only because the VMT-s ty le
mechanism cannot be used in SELF, and we think tha t
VMT-s ty le code is more appropr ia te for megamorphic
sites than MICs since the la t ter may cause frequent
upda tes of the call site, wi th frequent I-cache flushes
as a result.

There are several variat ions of PICs. If space is
t ight, the P IC s tub can be shared among identical call
sites 2. This type of P IC is called a shared PIC, while
the former type is called a non-shared P I C when the
dist inction is required.

The P IC s tub code can contain counting code for
each type tes t hit and can be reordered based on the
frequency of them to reduce the number of type tests
needed to find the target . If the reordering is per formed
only once, and then a P IC s tub which had been re-
ordered bu t wi thout counting code is used, it is called
a counting PIC. It is also possible tha t the reordering
is per formed periodically and P IC s tubs always have

2I f t h e p o s s i b l e s e t s o f t a r g e t m e t h o d s axe t h e s a m e , we call
t h e s e c a l l s i t e s iden t ica l . L

- 2 4 -

/* object pointer is passed via oO register.
El, g2, g3 are scratch registers. */

l d [Zo0], Zg2

m o v ZoT, Zgl

/ / l o a d f i r s t word o f an o b j e c t
/ / wh ich i s VMT p o i n t e r o f t h e o b j e c t
/ / s a v e r e t u r n a d d r e s s i n g l r e g i s t e r

/* A.VMT(VMT p o i n t e r of c l a s s A) i s a t r a n s l a t i o n - t i m e c o n s t a n t . * /
sethi 7~i(#A.VMT), gg3 // load 32bit constant value
o r

cmp
bne
nop
call
ROy

Zg3, ZIo(#A.VMT), Zg3
Zg2, Zg3 / / compare two VMT-pointers
n e x t l / /

// delay slot instruction
address of A.GetFieldl // jump to A.GetFieldl if two VMTs are equal
~gl, ~o7 / [s e t correct return a d d r e s s

/ * C.VMT(VMT pointer of class C) is a translation-time constant. * /
next1:

sethi Zhi(#C.VMT), Zg3
or gg3, ZIo(#C.VMT), Zg3
cmp Zg2, Zg3
bne nex t2
nop
call address of C.GetFieldl
mov Zgl, Zo7

next2 :
call
nop

fixupFailedCheckFromPIC / / call fixup function

Figure 6. Detailed PIC stub code

counting code, and th is type of PIC is called a periodic
PIC.

3.1.3 VMT vs. 'Inline Caches

Inline caches are favored over VMTs for two reasons.
First, the VMT mechanism requires an indirect jump,
which is not easily scheduled by modern superscalar
microprocessors -~ [15, 16]. Whereas inline caches can
be faster in modern microprocessors which do branch
prediction. Second, VMTs do not provide any infor-
mation about call sites. Wi th inline caches, we can get
information about the receivers which has been encoun-
tered, though MICs can only give the last one. This
information can be"hsed for other optimizations, such
as method inlining.

3.2 T y p e F e e d b a c k

Although inline caches can reduce the method dis-
patch overhead at virtual call sites, the call overhead

SThe cost of mn indirect jump is higher in the Ultra.Spmrc due
to the lack of a BTB (Branch Target Buffer).

itself still remains. In order to reduce the call overhead,
we need to inline the method.

The idea of type feedback [3] is to extract type infor-
mation of virtual calls f~om previous runs and feed it
back to the compiler for optimization. With type feed-
back, a virtual call can be inlined with guards which
verifies if the target method is equal to the inlined
method (we call this conditional inlining).

3 . 2 . 1 F r a m e w o r k o f T y p e F e e d b a c k

In our implementation, type feedback is based on PICs,
since it can provide more accurate information for call
sites than MICs or VMTs. Type feedback also re-
quires an adaptive compilation framework, and has
been implemented on an adaptive version of LaTTe,
which selects methods to aggressively optimize based
on method run counts. When a method is called for the
first time, it is t ranslated with register allocation and
traditional optimizations 4 while virtual method calls

4We optimize' even during the initial translation to isolate
the performance impact of inlining for a fair comparison with
the other configurations in our experiments; See section 4.1

- 2 5 -

within it are handled by PICs. If the number of t imes
this me thod is called exceeds a certain threshold, it is
re t ransla ted with condit ional inlining also being done.

3 . 2 . 2 C o n d i t i o n a l I n H n i n g

The compiler decides whether a call site is inlined or
not based on the s ta tus of inline caches. For example,
if the call site in figure 3(b) remains as a monomorphic
site, at re translat ion t ime it will be inlined with type
checking code as follows:

i f (ob j .VEr •ffi ~A.VMT)
i ffi obj.fieldl;

else
i = o b j . G o t g i e l d l O ; / / l o a d - l o a d - i n d i r e c t jump

If the call site points to a P IC s tub code, bu t there is
only one target me thod in the s tub code, then we can
do conditional inlining, except this t ime the compari-
son is based on addresses, not on receiver types. For
example, if our P IC s tub code in Figure 5(a) were com-
posed of type checks for class A and class B (not class it
and class C), the addresses of bo th G e t F £ e l d l s will be
identical. So, we can iniine the method, bu t the type
check should be replaced by an address check, which
includes access to the V M T (two loads), as follows:

i f (o b j . t r r N [$ i n d e x o f method G e t F i e l d l]
~= # a d d r e s s of A . G o t F i e l d i) / / l o a d - l o a d

i = o b j . f i e l d l ;
e l s e

I = o b j . G e t F i e l d l () ; / / X o a d - X o a d - i n d i r e c t jump

If the frequency information of each type or method
is available by using a counting PIC, we can improve
on the all-or-nothing strategy. Even though there axe
multiple receivers or,multiple target methods, we can
inline the call site with a type test or an address test if
one case is dominant among the other cases in the PIC
stub. Currently, the criteria value to decide whether a
case is dominant or not is 80%: If the count of type
test hits in a PIC stub exceeds 80% of the total, count
of PIC stub, it is inlined with type checking code.

3-2 .3 S t a t i c T y p e P r e d i c t i o n

For those call sites located at untaken execution pa ths
during initial runs, we do not have any information on
the most probable receiver type (but these can be col-
lected even after retranslat ion). However, if the class of
the objec t on which a vir tual call is made has no sub-
class at t ranslat ion t ime, we can easily predict t ha t the
receiver type would be the class at runt ,me. Al thou th
Java allows dynamic class loading, we found tha t this
prediction is. qu i t e accura te for mos t programs. For
the following case, for example, we can inline the call

site even if there is no information in the inline cache
during retranslat ion.

B ob j ;
i f () { o b j ;

o b j . G o , F i e l d 2 () ;
y

3 . 2 . 4 I n l i n i n g H e u r i s t i c : s i n g l e vs . m u l t i p l e

In previous section, we inlined only a m e t h o d for a
vir tual call site. It can be possible tha t a call site has
more than two ta rge t methods , and neither of them axe
not dominant . In such a case, we might lose inlining
oppor tuni t ies by restr ict ing the number of inlineable
methods for a call site. However, we found tha t this is
not the case for Java programs which we use for testing.
In the programs, most (95%) vir tual call sites call jus t
a single callee, and enabling to inline mult iple methods
for a call site does not increase the number of inlined
vir tual calls significantly.

4 E x p e r i m e n t a l r e s u l t s

In this section, we evaluate the performance impact
of inline caches and t ype feedback.

4.1 E x p e r i m e n t a l E n v i r o n m e n t

Our benchmarks are composed of the S P E C j v m 9 8
benchmark suite 5 [17], and table 1 shows the list of
programs and a short descript ion for each.

; I@, [~ i , I~ ; t# l

_201 _compress
_202_jess
_209_rib
_213.javae
_222_mpegaudio
-227_mtrt
_228_jack

D e s c r i p t i o n
Compress Uti l i ty
Exper t Shell Sys tem
Da tabase
Java Compiler
MP3 Decompressor
Mul t i - thread Ray t race r
Parser Genera to r

B y t e s
24326
45392
26425
92000
38930
34009
51380

Table 1. Java Benchma#k Description and
Translated Bytecode Size

Table 2 lists the configurations used in our experi-
ments. LaTTe-VMT, LaTTe-MIC, and 'LaTTe-PIC axe
all the same except in how they handle vir tual calls: by
using VMTs, MICs and PICs respectively. L a T T e - T F
inlines vir tual calls using t ype feedback on an adapt ive
version of LaTTe, where initial t ransla t ion is identical
to LaTTe-PIC , as descr ibed in Section 3.2. Variations
in P ICs are denoted with each v~riation Surrounded

5.200.check is exc luded s ince it is fur co r rec tness t e s t ing only.

- 2 6 -

by brackets. For example, a shared PIC is denoted by
PIC[S], a counting PIC by PIC[C], and a periodic PIC
by PIC[P]. The default version of a PIC is denoted by
PIC D when the distinction is needed.

S y s t e m
LaTTe-VMT
LaTTe-MIC
LaTTe-PIC
LaTTe-TF

D e s c r i p t i o n
Virtual calls are handled by VMT.
Virtual calls are handled by MIC.
Virtual calls are handled by PIC.
Virtual calls are iv_lined using type
feedback at the retranslation time.

Table 2. Systems used for benchmarking.

Our test machine is a Sun Ultras5 270MHz with 256
MB of memory running Solaris 2.6, tested in single-
user mode. We ran each benchmark 5 times and took
the minimum running time s , which includes both the
J IT compilation overhead and the garbage collection
time.

4.2 Characteristics of Vir tua l Calls

Table 3 shows the characteristics of virtual calls.
In the table, V-Call means the total)count of virtual
calls, M-Call means the total count of monomorphic
calls, and S-target means the total count of virtual calls
where target method is jus t one at runtime. About 85%
0f virtual calls are monomophic calls, and about 90% of
virtual calls have only one target method. Some pro-
grams like _213_javac, _227_mtrt, and _228_jack have
many call sites where the target method is one, even
though there are multiple receiver tyeps, and thus we
can expect that address check inlining may be effec-
t i.ve on these programs. We can also expect that
.201_compress will not be much affected by h o w vir-
tual calls are implemented, since the number of virtual
calls is extremely small.

4,3 Analysis of Monomorph ic ln l ine Caches

Table 4 shows the characteristics of MICs. In the
table, V-Call means the total count of virtual calls,
P-Call means the total count of calls which are called
at polymorphic call sites, and Miss means the total
count of type check misses. There is no t rend in the
miss ratios. While some programs such as .209.db and
_228_jack have very low miss ratios compared to V-
Call, type check misses are very common in _202_jess
and _213_javac. Since a type check miss requires inval-
idating part of the I-cache, the miss ratio can greatly

6For the SPECj~n98 benchmarks, our total elapsed running
time is not comparable with a SPECJvm98 metric.

. i

affect the overall performance. So we can expect that
the performance of -202_jess and _213_javac may be
worse with monomorphic inline caches.

4.4 Analysis of Polymorphic Inl ine Caches

Tables 5, 6, 7, and 8 shows the average number of
type checks in a PIC stub for each configuration of
PICs. Each column of the tables is divided by the
maximum number of possible entries in a PIC s tub and
the threshold value which determines when reordering
takes place. This value is applied to both PIC[C] and
PIC[P], although the reordering takes place just once in
the former while it takes place periodically in the latter.
If the threshold value is zero, it means no counting.

At first glance, we find that the numbers of average
type checkings are very small, even though monomor-
phic sites are not included in the numbers. If the aver-
age number is calculated for every inline cache, includ-
ing monomorphic sites, the number will be even more
closer to 1. However, only if counting is enabled are
the numbers axe less than 2 ~in every case.

From table 5 and 6, it is clear that counting PICs
are effective in reducing the number of type checks in
a PIC stub, except for _228_jack. Although the num-
bers are generally reduced as the threshold value is
increased, they are unchanged or even increased for
some programs and seem to saturate at certain values.
So simply increasing the threshold does not guaran-
tee improvements . .228_jack has very different char-
acteristics from other programs, and these .come from
a single polymorphic site T which accounts for about a
half of the total polymorphic calls, and exhibit very
strange behavior: after the call site is switched to a
polymorphic inline cache from a monomorphic inline
cache, the newly encountered type is received repeti-
tively for about a thousand times, and thereafter the
former type is used repetitively for over I million times.
So the default PIC scheme without counting is bet ter
than that with counting in this case.

We can also see the effect of inaccuracies caused by
sharing PIC stubs from table 5 and 6. Although it
seems natural that a non-shared version would be more
accurate than a shared version, the difference is not
apparent .in non-counting versions. For other configu-
rations, the numbers in table 5 axe bet ter than those in
table 6, except for _213_javac, where some PIC stubs
are changed into VMT-style code because sharing in-
creases the number of entries. However, the difference
is lower than 0.3 for most cases.

7A call site in "index0f" method in java.util.Vector class
which calls "equals" method.

- 27 -

B e n c h m a r k

_201_compress
_202_jess
_209_db
_213_javac
.222_mpegaudio
_227_mtrt
_228_ja~
GEOMEAN

V=Call
(xlO00)

12.9
34,306
16,492
53,130
10,025

264,612
17,247

M-Ca l l S - t a r g e t
(x 1000) (xlO00)

11.6 11.8
27,718 28,435
16,479 16,480
37,840 42,552

8,781 8,841
240,130 261,775

14,094 16,959

M - C n l l / V - C a l l s = t a r g e t / V - C a l l

0 .897 0 .912
0 .808 0 .829
0.999 0.999
0.712 0.801
0.876 0.882
0.907 0.989
0.817 0.983
0.854 0.904

Table 3. Characteristics of virtual calls

B e n c h m a r k
_201_compress
_202~jess
.209_rib
_213_javac
_222_mpegaudio
_227_mtrt
_228_jack

V-Cail(x 1000) P-Call(× 1000) Miss(x 1000)
12.9 1.3 0.58

34,306 6,587 3201
16,492 12 2
53,130 15,289 5487
10,025 1,244 54

264,612 24,482 583
17,247 3,152 1

Miss/V-Call Miss/P-Call
0.045 0.433
0.093 0.486

. 0.000 0.203
0.103 0.359
0.005 0.044
0.002 0.024
0.000 0.001

Table 4. Characteristics of monomorphic inline caches

Tables 7 and 8 are shown for comparison with ta-
bles 5 and 6. Although a periodically reordered PIC is
hard to use in real implementations because it always
incurs counting overhead which involves load-add-store
sequences, it can be seen as a somewhat ideal config-
uration in terms of the number of type checks. The
difference between the periodic version and the non-
periodic version is lower than 0.2 in most programs,
and thus the quality of counting PICa are quite ac-
ceptable.

Table 9 shows the space overhead of PICs for both
non-shared and shared versions. In the table, N means
the number of PIC stubs, and max means the possible
maximum number of entries in each PIC stub. The
overhead seems to be small in most programs except for
_213_javac, where the shared version can greatly reduce
the overhead. Since the sharing of PIC stubs does not
degrade the performance severely for most programs,
shared PICs can be useful when space is tight.

4 . 5 Analysis of Type Feedback

Tables 10, 11, and 12 show the effect of type feed-
back in terms of the number of inlined virtual calls. As
a base system, four different PIC variations (PIC[S],
PIC[SC], PICD, and PIC[C]) axe used. The main pur-
pose of PICa is providing profile information. So a
larger number of maximum entries in PIC (10) is used,
and the threshold for counting PICs is set to 1000 in

order not to affect the accuracy too much s

Generally, the number of inlined virtual calls is re-
duced as the retranslation threshold is increased. Al-
though more accurate profile information is awilable
with a high retranslation threshold than with a low re-
translation threshold, the opportunities missed by de-
laying retranslation seems to be high. In addition, the
number of inlined calls for many programs is constant
regardless of the type of PICs. There can be two rea-
sons: One possibility is that the method is too big to be
inlined. In this case, inlining such a method is related
to the inlining heuristic and is beyond the scope of this
paper. The other possiblility i.4 that a single method is
not dominant for a call site. However, this is not the
case for SPECjvm98 benchmarks, and it will be shown
in following section.

For some programs like _213_javac and _227_mtrt,
which axe affected by the type of PICa used, the count-
ing version is preferable to the non-counting version. A
call site which has multiple receiver types and thus can
be inlined only with an address check, can be inlined
with a type check if counting information is available
and only one receiver type is dominant. And a call
site which involves more than two target methods and
thus cannot be inlined in our implementation, can be
inlined if one method is dominant. While .213_javac
is influenced by both effects, i.e., the amount of type
check inlining and address check inlining are increased,

SSince a P I C is reused for a call s i te w h e r e m e t h o d in l in ing is
no t done, t h e va lue s h o u l d no t be t oo large.

- 2 8 -

; I ~ , I O , t , , t : t # , p

_201_compress
_202_jess
_209_db
_213_javac
_222_mpegaudio
_227_mtrt
_.228_jack

P I C m a x e n t r y = 5
0 1 0 5 0 1 0 0 2 0 0

1.540 1.480 1.498 1.526 1.540
1.517 1.488 1.507 1.486 1.486
1.541 1.461 1.467 1.475 1.488
1.500 1.259 1.227 1.226 1.216
2.120 1.359 1.267 1.266 1.269
1.305 1.162 1.108 1.092 1.092
1.209 1.800 1.800 1.800 1.800

P I C m a x e n t r y = 10
0 1 0 5 0 1 0 0 2 0 0

1.540 1.480 1.498 1.526 1.540
1.517 1.488 1.507 1.486 1.486
1.541 1.461 1.467 1.475 1.488
1.949 1.810 1.771 1.777 1.674
2.120 1.359 1.267 1.266 1.269
1.305 1.162 1.108 1.092 1.092
1.209 1.800 1.800 1.800 1.800

Table 5. Average number of type checks with

B e n c h m a r k

_201_compress
_202_jess
_209_db
_213_javac
_222_mpegaudio
_227_mtrt
_228_jack

P I C m a x e n t r y = 5
0 10 5 0 1 0 0

non-shared counting PICa (Lal"I'e-PIC[C])

P I C m a x e n t r y = 10
200 0 10 50 100 200

1.790 1.693 1.711 1.728 1.769
1.579 1.570 1.578 1.576 1.576
1.700 1.653 1.594 1.601 1.614
1.508 1.185 1.176 1.175 1.180
2.161 1.358 1.267 1.267 1.269
1.220 1.099 1.099 1.100 1.100
1.051 1.980 1.980 1.981 1.981

1.790 1.693 1.711 1.728• 1.769
1.579 1-570 1.578 1.576 1.577
1.700 1.653 1.594 1.601 1.614.
1.722 1.686 1.577 1.444 1.450
2.161 1.358 1.267 1.267 1.269
1.220 1.099 1.099 1.100 1.100
1.398 1.895 1.895 1.895 1.895

Table 6. Average number of type checks with shared counting PICa (La'l-re-PlC[SC])

the former effect is dominant in _227_mtrt, where the
increase in the amount of type checking inlining is al-
most the same as that of decrease in address checking
inlining.

4.6 Analysis of Inlining Heuristic

Table 13, 14, and 15 show the total number of
inlined virtuals call under different inlining heuristics:
inlining single method for a call site and inlining all
the possible me thods for a call site. The numbers in
the column of S i n g l e method i n l i n £ n g are the sum
of type check inlining and~ address check inlining in the
tables of previous section. The numbers in the column
of A l l method i n l i n i n g are obtained by inlining all
the methods which have been encountered during ini-
tial run and can be inlined by our inlining rule (size and
depth) 9. As we have expected from the fact tha t about
90% of virtual call sites have only one target method,
there is little improvements in terms of the number of
inlined virtual calls, even though all possible methods
~ e permit ted to be inlined. Only .213_javac has op-
portunites to be improved by inlining multiple meth-
ods for a call site. So, we can think that inlining only
a method for a call site is sufficient for most programs.
If many call sites still remain as not inlined, this is due
to other factors like method size or inlining depth.

sC .ounting version is excluded since there is no difference from
non-counting version when all the posaible methods are inlined.
And shared version is also excluded since it causes code explosion
in _213_j avac.

4.7' Performance Impact of Inline Caches and
Type Feedback

Table 16 shows the total running t ime (tot) of each
program for 4 configurations of L a T T e . Translation
overhead (tr) is also included in the total running time.

'Since there is little difference in running time between
the different configurations of PIC and TF, only one
instance each from bo th are listed here. The exact
configurations are like this:

1. P I C non-shared counting PICa, maximum num-
ber of entries = 5, reordering threshold = 100

2. T F based on rlon-shared counting PICa, maximum
number of entries --- ~0, reordering threshold =
I000, retranslation threshold ---- 10

On the whole, MICa improve the performance of
L a T T e by a geometric mean of 3.0%, PICs by 9.0%,
and type feedback by 7.4%, compared with LaTTe-
VMT. As pointed out in the previous section, MICa
exhibit poor performance in _202_jess and _213_javac,
which have high ratio of type check misses. PICs, as
we have expected, solved the problem experienced by
MICs which is exposed in the above programs, without
severe degradation in other programs, and improves
the performance of almost all programs compared with
VMTs. "

However, type feedback seems to be effective only
for _227_mtrt, where ~he narnber of inlined virtual calls
are much larger than other programs. The number of

- 29 -

B e n c h m a r k

_201_compress
.202_jess
..209..db
_213_javac
_222_mpegaudio
_227_mtrt
_228_jack

P I G m a x e n t r y = 5
10 50 100 200

1.480 1.498 1.526 1.540
1.366 1,366 1.367 1.367
1.461 1.467 1.475 1.492
1.196 1.197 1.197 1.198
1.264 1.265 1.267 1.270
1.033 1.033 1.033 1.033
1.019 1.019 1.019 1_020

P I C m a x e n t r y = 10
10 50 100 200

1.480 1.498 1.526 1.540
1.366 1.367 1.367 1.367
1.461 1.467 1.475 1.492
1.620 1.620 1.623 1.623
1.264 1.265 1.267 1.270
1.033 1.033 1.033 1.033
1.019 1.019 1.019 1.020

Table 7. Average number of type checks with non-shared periodic PlCs (Lal-re-PlC[P])

B e n c h m a r k

_201_compress
_202_jess
_209_db
_213_javac
_222_mpegaudio
_227_mtrt
_228_jack

P I C m a x e n t r y = 5
10 50 100 200

1.693 1.711 1.728 1.769
1.429 1.429 1.430 1.430
1.590 1.594 1.601 1.618
1.163 1.163 1.165 1.164
1.265 1.266 1.267 1.269
1.035 1.035 1.035 1.035
1.030 1.030 1.030 1.031

P I C m a x e n t r y = 10
10 50 100 200

1.693 1.711 1.728 1.769
1.429 1.430 1.430 1.430
1.590 1.594 1.601 1.618
1.385 1.386 1.3.85 1.386
1.265 1.266 1.267 1.269
1.035 1.035 1.035 1.035
1.114 1.114 1.114 1.114

Table 8. Average number of type checks with shared periodic PICs (La'I-I'e-PIC[SP])

inlined virtual calls in other programs seems to be low
to compensate for both the retranslation overhead (in-
crease in translation time) and inlining overhead (in-
crease in code size, register pressure, and so on). Since
the performance of type feedback depends on the in-
lining heuristic as well ~ the retranslation framework,
both have to be carefully implemented to measure the
effect of type feedback correctly. Our implementation
could be improved in both of these points.

However, the result from _227_mtrt gives us some
expectation, about the effect of type feedback. In
_227_mtrt, some getter .methods such as GetX, GetY,
and GetZ are very frequent, and the performance of the
benchmark is greatly improved by inlining such meth-
ods. So the more common a coding style using accessor
methods are, the more effective type feedback could be.

5 R e l a t e d w o r k

Our work is based on polymorphic inline caches and
type feedback. Polymorphic inline caches were stud-
ied by Urs H~lzle et al. [2] in the SELF compiler and
achieved a median speedup of 11% over monomorphic
inline caches. Type feedback was proposed by Urs
H61zle and David Ungar [3]. They implemented type
feedback in the SELF compiler using PIGs and im-
proved performance by a factor of 1.7 compared with
non-feedback compiler. Since virtual calls are more fre-
quent in SELF, and also since the default dispatching
overhead is much larger than that of the VMTs which

can be used in Java, they achieved larger speedup than
ours. Furthermore, their measurements compare exe-
cution time while excluding translation time overhead.

The most relewdnt study was done by David Detlefs
and Ole Agesen [18]. They also targetted Java, used
conditional inlining, and proposed a method test which
is identical to an address test. However, they mainly
concentrated on inlining rather than on inline caches,
and they did not use profile information to inline vir-
tual calls.

Gerald Aignerand Urs HSlzle [19] implemented op-
timizaing source-to-source C + + compiler. They used
static profile information to inline virtual calls, and
improves the performance by a median of 18% and re-
duces the number of virtual function calls by a median
factor of five.

Karel Driesen et al. [16] extensively studied wri-
ous dynamic dispatching mechanisms on several mod-
em architectures. They mainly, compared inline cache
mechanisms and table-based mechanisms which em-
ploy indirect branches, and showed that the latter does
not perform well on current hardware. They also ex-
pected that table-based approw, hes may not perform
well on future hardware.

Olver Zendra et al. [20] have implemented polymor-
phism in the SmallEiffel compiler. They also elimi-
nated use of VMTs by using a static variation of PIGs
and iulined monomorphic call sites. However, they re-
lied on static type inference and did not use runtime
feedback.

- 3 0 -

Benchmark

_201_compress
_202_jess
_209_db
_213_javac
_222_mpegaudio
_227_mtrt
_228_jack

n o n - s h a r e d s h a r e d
N m a x = 5 m a x = 10 N m a x = 5 m a x = 10

6 536 536
24 2,368 2,648

6 536 536
396 54,584 65,560

25 3,008 3,008
62 5,604 5,604
19 1,856 1,856

5 512 512
14 1,708 1,988
5 512 512

86 15,476 18,136
18 2,308 2,308
23 2,120 2,120
12 1,380 1,380

Table 9. Size of PIC stub code

Benchmark

_201_compress
_202_jess
_209_db
_213~avae
_222_mpegaudio
_227_mtrt
_228_jack

Type - c he c k inlining (x 1000)
PICtS j PIC[SCJ PIC~ PICIC]

0 0 0 0
12,036 12,036 12,036 12,036
6,547 6,547 6,547 6,547
7,665 8,205 7,654 8,215
3,337 3,337 3,337 3,337

208,238 209,811 208,238 209,113
2,396 2,396 2,396 2,396

0 0 O 0
0 0 0 0
0 0 0 0

427 679 489 718
0 0 0 0

2,230 560 2,230 1,348
0 0 0 0

Table 10. Inlined calls by type feedback: retranalation threshold = 10

Based on the experiences of C + + programs, Brad
Caler and Dirk Grunwald [21] proposed using "if con-
version", which is similiar to type feedback except that
it uses static profile information.

6 C o n c l u s i O n a n d F u t u r e w o r k

We have implemented inline caches and type feed-
back in the LaTTe JIT compiler and evaluated these
techniques.

Although some programs suffer from frequent cache
misses, MICs achieve a speedup of 3% by geometric
mean over VMTs. Polymorphic inline caches solve the
problem experienced by MICs without incurring over-
heads elsewhere and achieve a speedup of 9% by ge-
ometric mean over VMTs using counting PICs. We
have also tested several variations of PICs and shown
the characteristics of PICs in Java programs. Count-
ing PICs reduce the average number of type checks in
a PIC stub compared with a non-counting version, and
achieve an average number of type checks close to that
of a periodic version, within 0.2 for most programs.
If memory is a matter of concern, then shared PICs
can save space with only a reasonable degradation in
performance.

The effect of type feedback is not fully shown in
this study. The overall performance is even worse than
that of counting PICs. Although it is true that some
programs have little opportunity to improve in terms
of virtual calls, the result is partly because we cannot

apply optimizations selectively only when it is bene-
ficial. However, the performance of _227_mtrt, which
does many virtual calls to small methods, is greatly im-
proved by type feedback, and gives us insight about the
performance impact of type feedback. If a coding style
which uses more abstraction and makes more calls be-
comes dominant in Java programs, type feedback will
be more effective.

The study of type feedback also exposed other prob-
lems: adaptive compilation and method inlining. To
avoid degradation due to type feedback, it is very im-
portant to estimate the costs incurred by retranslation
and inlining, and to apply conditional inlining only to
hot-spots.

R e f e r e n c e s

[1] Urs H/ilzle. Adaptive Optimization For SELF- Recon-
ciling High Performance With E~ploratory Program.
ruing. PhD thesis, Stanford University, August 1994.

[2] Urs H~lzle, Craig Cheenber~s, and David Ungax. Op-
timizing dynamically-typed object-oriented languages
with polymorphic inline caches. In Proceedings of the
5th European Conference on Object-Oriented Program-
ming (ECOOP'91), 1991.

[3] Urs H'filzle and David Ungar. Optimizing dynamically-
dispatched c~lls with run-time type feedback. In Pro-
e_eedings of the 1994 ACM SIGPLAN Conference on
Programming Language Deaign. and Implementation,
1994.

[.4] LaTTe: A fast and efficient Java VM just-in-time com-
piler, http://latte.snu.ac.kr/, 1999.

- 3 1 -

B e n c h m a r k

_201_compress
_202_jess
_209_db
_213.javac
_222_mpegaudio
_227_mtrt
_228_jack

lil EIII.iUI ,illllll.i t$ I
0 0 0 0

12,031 12,031 12,031 12,031
5,964 5,964 5,964 5,964
7,694 7,808 7,565 7,759
3,335 3,335 3,335 3,335

208,148 209,748 208,148 209,050
2,391 2,391 2,391 2,391

0 0 0 0
0 0 0 0
0 0 0 0

97 291 525 739
0 0 0 0

2,263 560 2,263 1,348
0 0 0 0

Table 11. Inlined calls by type feedback: retranslation threshold = 50

B e n c h m a r k

_201_compress
_202_jess
_209_db
_213_javac
_222_inpegaudio
_227_mtrt
_228_ja~k

,- ,- , , ,._

0 0 0 0
12,031 12,031 12,031 12,031

5,964 5,964 5,964 5,964
7,691 7,946 7,621 8,561
3,335 3,335 3,335 3,335

208,148 209,748 208,148 208,516
2,391 2,391 2,391 2391

0 0 0 0
0 0 0 0
0 0 0 0

97 36 526 461
0 0 0 0

2,263 560 2,263 1,886
0 0 0 0

Table 12. Inlined calls by type feedback: retranslation threshold = 100

[5] James Gosling, Bill Joy, and Guy Steele. The Java
Language Specification. Addison-Wesley, 1996.

[6] T. Wilkinson. Knife: A SIT and inter-
preting virtual machine to run Java code.
http://www.trausvirtual, corn/, 1998.

[7]. A. Krall and R. Graft. Cacao - A 64-bit Java VM just-
in-time compiler. In Proceedings oJ the PPoPP '97
Workshop on Java for Science and Engineering Com-
puation, 1997.

[8] Byung-Sun Yang, Soo-Mook Moon, Seongbae Park,
Junpyo Lee, SeungIl Lee, Jinpyo Park, Yoo C. Chung,
Suhyun Kim, Kemal Ebcio~lu, and Erik Altman.
LaTTe: A Java VM just-in-time compiler with fast and
efficient register allocation. In Proceedings of the 1999
International Conference on Parallel Architectures and
Compilation Techniques, October 1999.

[9] F. Yellin and T. Lindholm. The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[10] 'Byung-Sun ¥ang, Junpyo Lee, Jinpyo Park, Soo-Mook
Moon, and Kemal Ebcio~lu. Lightweight Monitor in
Java Virtual Machine. In Proceedings o-f the 3rd Work-
shop on Interaction betuJecn Compilers and Computer
Architectures, Oct 1998.

[11] SeungIl Lee, Byung-Sun Yang, Suhyun Kim, Seongbae
Park, Soo-Moon Moon, Kemal Ebcio~lu, and Erik Alt-
man. On-demand translation of Java exception han-
dlers in the LaTTe JVM just-in-time compiler. In Pro-
ceedings of the 1999 Workshop on Binary TPanslation
(Binary99), 1999.

[12] Yoo C. Chung, Soo-Mook Moon, Kemal Ebcio~lu, and
Dan Sahlin. Reducing sweep time for a nearly empty
heap. To appear in the 27th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages (POPL '00).

[13] Java Hotspot performance engine.
http:/ / java.sun.com/products/hotspot/ , April 1999.

[14] Java 2 SDK (1.2.1_03) production re]ea~e for Solaris.
http ://www.sun. com/solaris/java, 1999.

[15] Karel Driesen and Urs HS[zle. The direct cost of virtual
function calls in C++ . In Proceedings of the 1996 A CM
Conference on Object Orie,ted Programming Syste.~ns,
Languages, and Applieatrio~ (0 0 P S L A) , 1996.

[16] Karel Driesen, Urs HSlzle, and Jan Vitek. Message
dispatch on pipelined processors. In Proceedings of the
9th European Conference on Object-Oriented Prograrrt-
ruing (ECOOP'gS), 1995.

[17] SPEC JVM98 benchmarks.
http://www.spec.org/osg/jvm98/, 1998.

[18] David Detlefs and Old Agesen. Inlining of virtual
methods. In Proceedings of the 13th European Confer-
ence on Object-Oriented Programming (ECOOP'g9),
1999.

[19] Gerald Aigner and Urs H61zle. Eliminating virtual
function calls in C + + programs. In Proceedings o.f
the lOth European Conference on Object-Oriented Pro-
gramming (ECOOP'96), 1996.

[20] Oliver Zendra, Dominique Coiner, and Suzanne' Collin.
Efficient dynamic dispatch with6ut virtual function ta-
bles. the SmallEitfel compiler. In Proceedings o_f the
1997 ACM Conference on Object Oriented Program-
ruing Systems, Languages, and Applicatrions (OOP-
8LA), 1997.

[21] Brad Calder and Dirk Grunwald. Kedncing indirect
function call overhead in C-I-+ programs. In Proceed-
ings of the 1994 A C M Symposium on Principles o]
Programming Languages (POPL), 1994.

- 3 2 -

Benchmark

.201_compress
_202_jess
_209.db
_213_javac
_222_mpegaudlo
_227_mtrt
_228_jack

Single m e t h o d in! ining (x i 0 0 0)
PICtS] PIC[SCI PIC U PlC[C]

0 0 0 0
12,036 12,036 12,036 12,036
6,547 6,547 6,547 6,547
8,092 8,884 8,143 8,933
3,337 3,337 3,337 3,337

210;468 210,371 210,468 210,461
2,396 2,396 2,396 2,396

All m e t h o d in l in ing (x ' l O 0 0)
PIC~

0
12,167
6,547

11,365
3,473

210,463
2,396

Table 13. Comparison of inlined calls: retranslation threshold = 10

;£=-) iI[t~ mt$, r:-.t # !

_201_compress
_202_jess
..209_db
_2i3_javac
_222Jnpegaudio
_227_rntrt
_228_jack

Single m e t h o d in l in ing (x 1000)
PIC[SJ PIC[SCJ PIC~ PIC[CJ

0 0 0 0
12,031 12,031 12,031 12,031
5,964 5,954 5,964 5,964
7,792 8,099 8,090 8,499
3,335 3,335 3,335 3,335

210,411 210,308 210,411 210,398
2,391 2,391 2,391 2,391

;] i • , ,t~;I.[.z. E ~ ; ;7; b, v.~D:u IOI,]
PIC U

0
12,162
5,964

11,610
3,471

210,405
2,391

Table 14. Comparison of inlined calls: retranslation threshold = 50

Benchmark

201£ompress
.202_jess
..209_xlb
_213_javac
_222_mpegaudio
_227_mtrt
_228_jack

Single m e t h o d in l in ing (x I000)
PIG[S/ PICLSC j PIC~ PIC[CJ

0 0 0 0
12,031 12,631 12,031 12,031

5,964 5,964 5,964 5,964
7,789 7,982 8,147 9,022
3,335 3,335 3,335 3,335

210,41-1 210,308 210,411 210,402
2,391 2,391 2,391 2,391

All m e t h o d in l in ing (x 1000)
PIC u

0
12,162
5,964

11,654
3,471

210,405
2,391

Table 15. Comparison of inlined calls: retranslation threshold = 100

B e n c h m a r k

_201_compress
_202_jess
_209_db
_213_javac
_222.mpegaudio.
_227_mtrt
_228_jack
GEOMEAN

V M T
tot[l] tr
69.23 2.72
4t .48 4.39
74.27 2.92
63.94 8.16
47.49 4.44
58.97 3.64
51.42 5.50

M I C
tot[2J tr
69.10 2.74
45.88 4.32
66.78 2.90
71.76 7.99
47.36 4.40
49.56 3.52
44.66 5.40

P I C
tott3] tr
69.68 2.71
38.40 4.31
67.60 2.88
59.01 7.98
47.08 4.37
47.70 3.51
44.95 5.40

T F
tot[4J tr
66.18 2.97
41.73 5.63
66.99 3.10
66.22 13.88
51.01 4.83
42.11 5,18
45.39 7.26

Speedup
[lJ/[2J [lJ/[3] [l]/[4J

1.00 0.99 1.05
0.90 1.08 0.99
1.11 1.10 1.11
0.89 1.08 0.97
1.00 1.01 0.93
1.19 1.24 1.40
1.15 1.14 1.13

1.t)3o 1.090 1.074

Table 16. Total running time

- 33 -

