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A b s t r a c t  

Memory  hierarchy performance has always been an important issue in computer archi- 
tecture design. The likelihood of a bottleneck m the memory  hierarchy is increasing, as 
improvements in microprocessor performance continue to outpace those made in the mem-  
ory system. As  a result, effective utilization of cache memories is essential in today's 
architectures. 

The nature of procedural software poses visibility problems when attempting to perform pro- 
gram optimization. One approach to increasing visibility in procedural design is to perform 
procedure inlining. The main downside of using inlining is that inlined procedures can place 
ezcess pressure on the instruction cache. 

To address this issue we attempt to perform code reordering. By  combining reordering with 
aggressive inlining, a larger executable image produced through inlining can be effectively 
remapped onto the cache address space, while not noticeably increasing the instruction cache 
miss rate. 

In this paper, we evaluate our ability to perform aggressive inlining by employing cache line 
coloring. We have implemented three variations of our coloring algorithm in the Alto toolset 

• and compare them against Alto's aggressive basic block reordering algorithms. Alto allows 
ua to generate optimized ezecutables, that can be run on hardware to generate results. We 
find that by using our algorithms, we can achieve up a 2 1 ~  reduction is ezecution runtime 
over the base Compaq optimizing compiler, and a 6 .4~  reduction when compared to Alto's 
interprocedural basic block reordering algorithm. 

I. I n t r o d u c t i o n  

Past research has demonstrated that memory hierarchy performance is a critical factor in obtaining 
good system performance. There has been a considerable amount of work studying both hardware and 
software solutions to achieve better instruction cache performance. 
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In software engineering, large applications are often decomposed into smaller problems, which 
are coded as procedures. Procedure calls have been shown to be one of the most expensive source 
language statements [5]. Moreover, a considerable percentage of all dynamic instructions are due 
to implementing proper procedure calls and returns [4]. Procedural programming interferes with 
other optimizations, such as register allocation, constant propagation and dead code removal. We are 
presently studying how to address some of these limitations with the aid of profiling. 

One way to address the  problems associated with procedure  calls is to  use procedure inlining. 
Inlining replaces a procedure  call at the  call site by the  procedure  body  itself. Inlining can have bo th  
a positive and negative effect on performance.  Inlining a procedure  eliminates the  calling overhead 
associated with a procedure  call, t hough  generally increases code size which may  increase the  number  
of instruct ion cache misses. 

When  inlining a procedure,  the  optimizer needs to  decide whether  the  removal of the  call and re turn  
overhead will be more  beneficial t han  the  loss of cycles due to an increase in the  instruct ion miss rate. 
Most  optimizers use some form of the  the  following heuristics to select which procedures to  inline [3]. 
A procedure  is an inline candidate  if: 

• a procedure 's  body is small (i.e., inlining it  may  actually reduce the  executable image size), 

• a procedure  is called from only one call site, or 

• a procedure  is called frequently (e.g., inside a loop). 

The  benefits of inlining are not  just  removing procedure  call and re turn  sequences. Inlining allows 
other  opt imizat ions to  be done more  aggressively, such as register allocation, code scheduling, common 
subexpression elimination,  constant  propagat ion  and dead code elimination. But  inlining procedures 
is a tradeoff, and is not  for free. As code size increases, there  will be added pressure on the  instruct ion 
cache. Reordering program units on the  cache space is one of the  most  effective opt imizat ion techniques 
to remedy the  negative side-effects associated with i .nlining. 

Code layout can be performed at different granularities, and can be applied bo th  within a procedure  
or between procedures.  In  this paper  we apply procedure reordering. 

Research shows tha t  code layout can significantly increase performance,  especially when guided 
by profile information.  Pett is  and Hansen repor ted  an 8% reduct ion in execution t ime for procedure  
reordering, 12~  for basic block reordering and 15% when bo th  of these profile-driven techniques are 
applied together  [6]. The  algori thm we apply is also dri~;en by profile information.  

To implement  out  our  coloring algori thms we chose Alto [12] as our  framework. Alto (A link-time 
optimizer  for the  DEC Alpha) is a tool developed at the  University of Arizona for opt imizing Alpha 
executables. One of the  reasons tha t  we chose Alto is its ability to perform aggressive procedure  
inlining. We have implemented  our cache coloring algori thms in Alto to  see if our  aggressive inlining 
can greatly benefit from our cache coloring algorithms. We we develop three  different schemes: 

1. procedure  coloring (keeping procedures intact  and t reat ing procedure  boundaries  as the  granu- 
larity during reordering),  

2. procedure  coloring, with ho t / co ld  opt imizat ion (allowing two popular  procedures to overlap, 
using only their  hot  regions as the  granulari ty during reordering),  and 

3. procedure  coloring and basic block reordering, (same as scheme 2, with an addit ional  step of 
reordering basic blocks in the  hot  region). 

The  Alto f ramework already provides a rich set of tools for performing inlining and basic-block 
level code reordering. Our goal is to  provide code reordering algori thms tha t  specifically target  alias- 
ing caused by inlined procedures.  We have been able to show tha t  by using our new algorithms, 
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per formance  is improved significantly. We also believe t h a t  our  a lgor i thms will result  in a reduct ion  in 
compi la t ion  t ime 1. Note  t ha t  in our  base a lgor i thms we work wi th  procedures ,  whereas  Al to  reorders 
using basic blocks. 

This  paper  is organized as follows. Section II. discusses previous work on inlining and  reordering,  
Sect ion III.  describes the  cache coloring a lgor i thm used, Section IV. describes variat ions of t he  cache 
coloring a lgor i thm tha t  we implemented ,  Section V. describes how the  a lgor i thm was imp lem en t ed  in 
Alto, Sect ion VI. presents  r un t ime  results,  and  finally Section VII.  summar izes  t he  paper .  

II. R e l a t e d  w o r k  

In  [7], Hwu and Chang  present  an a lgor i thm for applying inlining, basic block reorder ing and p rocedure  
reordering.  T h e y  do no t  use a coloring approach  for p rocedure  reordering,  bu t  ins tead  use a depth-f irs t  
t raversal  of the  p rocedure  call graph and place the  procedures  in depth-f i rs t  order  (this same  order ing 
is used by the  Compac  1 nat ive  C compiler) .  

Pe t t i s  and  Hansen  proposed  basic block and  procedure  reorder ing  a lgor i thms and  repor t ed  a de- 
crease in execut ion t ime  of 15~  when  b o t h  a lgor i thms were used toge ther  [6]. The i r  p rocedure  re- 
order ing a lgor i thm uses a greedy a lgor i thm which is based on the  weight of the  call g raph  edges, and  
uses a closest-is-best scheme to keep frequent ly accessed p r o g r a m  units  close together .  

McFarl ing invest igated a basic block reorder ing a lgor i thm based on loops in a program_ His algo- 
r i t hm tries to  generate  call trees, of size less t h a n  the  size of the  ins t ruc t ion  cache, by examining  the  
loop cons t ruc ts  in the  code [11]. 

Gershony et al. s tudied different reorder ing a lgor i thms and invest igated cache miss rates using 
several different cache configurat ions and benchmarks  on b o t h  Alpha  and  IA32 archi tec tures  [9]. 

Lee A.Iso s tud ied  the  ins t ruc t ion  cache effects of different code reorder ing  a lgor i thms by using simu- 
lat ion [10]. He repor ts  tha t  code reorder ing a lgor i thms are more  i m p o r t a n t  in archi tectures  wi th  longer 
line sizes. 

Ayers et  al. developed an aggressive inliner which can also employ cloning. T h e y  repor t  a peak  
speedup  of 200% for some S P E C  benchmaxks[8]. 

III.  C a c h e  Line  C o l o r i n g  

Procedure  reorder ing is used to  create  a p rog ram layout  t h a t  will reduce the  n u m b e r  of ins t ruc t ion  
cache conflicts. There  have been a n u m b e r  of p rocedure  reorder ing a lgor i thms proposed.  P rocedure  
m a p p i n g  using cache line coloring differs f rom other  a lgor i thms by t ak ing  into account  the  cache size, 
cache line size, cache associativity, and  procedure  size. 

The  basis of t he  cache coloring a lgor i thms used in this paper  was proposed  by Hashemi  et  al. [1]. 
T h e  goal of the  coloring a lgor i thm is to  reduce the  number  of ins t ruc t ion  cache conflict misses t h a t  
occur  dur ing  the  execut ion of a program.  The  basic idea behind  the  a lgor i thm is to  place procedures  in 
the  cache in such a way tha t ,  the  procedures  t h a t  in teract  with  each o ther  f requent ly will no t  overlap 
in the cache address space. 

For each procedure in the code, the algorithm keeps track of the colors assigned to that procedure 
and the unavailable color set of the procedure. This set is defined as the cache lines occupied by 
the neighbors of the procedure in the call graph. When mapping a procedure, this unavailable set is 
checked to see if the new mapping is creating a cache line conflict. If such a conflict is found, the 
procedure under consideration may be shifted in the cache address space, until cache conflicts do not 
occur. The algorithm uses heuristics to fill the gaps that are created in the code. 

1While this is a goal of our work, we chose not to evaluate compilation time, given that this metric is not one of the 
design objectives of the Alto framework. 
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For cache line coloring, the  algorithm first starts by building the procedure call graph. The  edges 
of the  graph are undirected,  and their weights are determined by summing up the calls tha t  occur 
between the procedures connected by the edges. 

The next step is to  determine the edges tha t  will be processed by the algorithm. To do this, 
the  algorithm uses heuristics to classify the  edges as popular  or unpopular ,  based on their execution 
frequency. 

After this classification, the algorithm processes each popular  edge, s tart ing from the most  fre- 
quently executed edge. During this phase, the algorithm can encounter four different cases: 

C a s e  I: The first case occurs when both  procedures tha t  are connected by the edge are unmapped.  
In this case, the algorithm forms a compound node and places these two procedures in the compound 
node next to each other. The first procedure in the compound node will be the  larger of the  two 
procedures. By creating such a compound node, we guarantee tha t  the procedures will stay close to 
each other in the layout. 

C a s e  I I :  In the second case, the  edge tha t  is being processed is between two procedures tha t  are 
in two different compound nodes. In this case, the two compound nodes are merged together  into a 
single compound node. The  smaller compound node is appended to the  larger one. The  algorithm 
uses heuristics to decide on how to order the  procedures in the compound node. After the  procedures 
are placed, the compound node is examined for any cache conflicts. If the  algorithm finds a cache 
conflict, the smaller compound node is shifted away from the  larger compound node until  there are 
no conflicts. If the  cache conflicts can not  be avoided by shifting the  compound node, the  original 
mapping is restored. 

C a s e  I I I :  Another  possible case is when the  edge connects two procedures, where one procedure is 
in a compound node and the  other has not  yet been mapped.  In this case, the  algorithm appends the 
unmapped  procedure to the compound node. The new procedure is placed to the left or right side of 
the  compound node, depending on the distance to the  procedure that  is in the  compound node. After 
the new procedure is placed, the  algorithm checks for color conflicts and moves the  procedure in the 
cache address space to avoid conflicts. 

C a s e  IV:  The  last case occurs when the  edge under consideration connects two procedures tha t  
are mapped  in the same compound node. In this case, the algorithm checks for color conflicts in 
the compound node. If any color conflicts are found, the  procedure tha t  is closer to either end of 
the compound node is moved past  the  end of the  compound node, creating a gap. If color conflicts 
still exist, the algorithm tries to shift this procedure away, until  all color conflicts disappear. If no 
conflict-free mapping can be found, the  original mapping is restored. 

All the popular e.dge~ are processed by this algorithm in this manner.  After this step of the  
algorithm is complete, we may have a set of one or many disconnected compound  nodes. To fill in 
the gaps between these nodes, the  unpopular procedures 3 are used. Cache conflicts are not  considered 
for the  unpopular  procedures, simply because they are executed very infrequently compared to the  
popular  procedures. 

IV. Variations of the  coloring algorithm 

The layout algorithm described in Section III. keeps the procedure bodies intact. We have also im- 
plemented a variation of this algorithm, which allows splitt ing procedures. The  algori thm operates as 
follows: 

1 .  Before building the  undirected procedure call graph, our algorithm analyses the  basic blocks of 
each procedure in the  layout. Based on profile information, the algorithm marks each basic block 

2edge popular i ty  is defined by the frequency a graph edge is traversed 
~these include infrequently act ivated or unact ivated procedures in the profile 
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as ho t  or cold. In  our  current  implementa t ion ,  all t he  ac t ivated basic blocks of a p rocedure  are 
marked  as h o t  and  the  remain ing  ones are marked  as cold. 

2. Next,  we divide the  p rocedure  in to  two regions, one conta in ing all t he  h o t  basic blocks, and  the  
o ther  conta in ing  the  remain ing  cold basic blocks. At  this  point ,  some procedures  migh t  stili be 
kep t  in tact ,  if all of its basic blocks were m a r k e d  as all h o t  or all cold dur ing  the  analysis.  

3. T h e  undi rec ted  p rocedure  call g raph  is buil t  next .  An  edge E in the  U P C G  can be of four 
different types.  For two procedures  A and  B in t he  layout,  an edge E can connect  (Aho~ -- ,4cord), 

(Ahot  -- Bcold) ,  (-4hot --  Bhot)  o r  (Acotd -- Bhot ) .  

4. Finally, t he  remainder  of  the  a lgor i thm opera tes  as described in Sect ion III.,  except  in this  case, 
the re  is an ex t ra  s tep for fixup of the  b ranch  ins t ruct ions ,  since the  layout  was changed  in the  
previous  step. 

T h e  idea beh ind  our  spl i t t ing a lgor i thm is to  have a denser  g roup  of h o t  regions in the  layout .  
Spl i t t ing  the  procedures  by using basic block count  in format ion  causes the  p rocedure  size to  decrease 
mos t  of ten the  t ime 4. This  decrease in the  p rocedure  size allows the  coloring a lgor i thm to  work wi th  
smaller  units ,  which is likely to  resul t  in a reduced  executable  size. This  is because  the  chance of  
having  a gap crea ted  by t he  coloring a lgor i thm increases wi th  large p rocedure  sizes (assigning cache 
line colors to  procedures  becomes increasingly ha rd  wi th  larger p rocedure  sizes). E l imina t ing  some 
procedures  increases the  probabi l i ty  of excluding the  largest  procedures .  

Spl i t t ing a p rocedure  can also have a negat ive  effect on per formance .  If t he  t ra in ing  inpu t  does no t  
accura te ly  character ize a p rog ram ' s  general  run t ime  behavior  (i.e., i ndependen t  of input ) ,  sp l i t t ing can 
hur t  per formance .  If t he  analysis done for a layout  genera ted  by a t ra in ing  inpu t  marks  some basic 
blocks of a p rocedure  as cold and  those basic blocks are f requent ly  ac t iva ted  wi th  the  tes t  input ,  there  
is an increased chance of ins t ruc t ion  cache misses dur ing  execution.  This  happens  since the  a lgor i thm 
will ignore a t t en t ion  to  the  color conflicts t h a t  migh t  occur  be tween the  cold seta of t he  procedures .  
We actual ly  observe this  side effect of spl i t t ing the  procedures  in our  results.  This  is always an issue 
for any profile-driven a lgor i thm.  

One  final version of p rocedure  coloring t h a t  we imp lemen ted  per forms  basic block layout  wi th in  
the  ho t  blocks of each procedure .  This  layout  is pe r fo rmed  after each p rocedure  is split  into ho t  and  
cold regions. The  basic block layout  a lgor i thm (also described in [2]) opera tes  as follows: 

1 .  We build a call g raph  of basic blocks. The  edges of this call g raph  are t h e n  sor ted  by decreasing 
edge weights.  

2. For each edge (E) encountered ,  t he  a lgor i thm may  encounte r  th ree  different cases: 

C a s e  I: If the  basic blocks at  t he  head  and  tail  of  the  edge are bo th  u n m a p p e d ,  we create  a 
c o m p o u n d  node  conta in ing  these  two basic blocks. 

C a s e  I I :  If one of the  basic blocks is m a p p e d  and  the  o ther  u n m a p p e d ,  t he  a lgor i thm checks 
the  pos i t ion  of the  m a p p e d  basic block b in its cor responding  c o m p o u n d  node_ If  t he  m a p p e d  
basic block b is t he  head  of its c o m p o u n d  node  C and  t he  tail of  t he  processed edge E, t hen  
the  a lgor i thm prepends  the  u n m a p p e d  basic block to the  c o m p o u n d  node  (7. Similarly, if t he  
m a p p e d  basic block is the  tai l  of its c o m p o u n d  node  (7 and  the  head  of  the  processed edge, t h e n  
t he  a lgor i thm appends  the  u n m a p p e d  basic block to  the  c o m p o u n d  node  C. 

C a s e  I I I :  If t he  basic blocks of the  edge being processed are b o t h  m a p p e d  into c o m p o u n d  nodes,  
t he  a lgor i thm checks for their  pos i t ion  in their  c o m p o u n d  nodes.  If t he  head  basic block bl of 
the  edge being processed is the  tail  of  its c o m p o u n d  node  (:71 and  the  tail basic block b2 of t he  

4This actual ly  depends o n  t h e  t ra ining input  tha t  is used to  gather  profile informat ion 
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edge being processed is the head of its compound node C2, then the compound nodes are merged 
into a single compound node 6'1C2. 

3. After processing all edges in the graph, there might be several independent compound nodes, 
which are then merged together into a single compound node. The algorithm then processes the 
layout to enforce the new ordering. After this step, the algorithm patches the new layout, by 
creating and/or removing unconditionals and branches where necessary. 

Performing this layout algorithm within the hot blocks guarantees that  the outcome of the fre- 
quently executed branch instructions will most likely follow their fall-thru paths. 

To summarize, we have implemented three different approaches to coloring. The first algorithm only 
applies procedure coloring, using the procedures as the granule for reordering. The second algorithm 
divides procedures into hot and cold set, and uses these smaller blocks as the reordering granule as 
input to the coloring algorithm. Finally, the third algorithm performs a basic block layout algorithm 
within the hot region, extending the procedure splitting and coloring optimizations done in previous 
algorithms. 

V. I m p l e m e n t a t i o n  

We have implemented our cache line coloring algorithm in Alto [12]. Alto takes an executable and 
execution profile information as inputs, and then performs various optimizations and produces an 
optimized executable. 

The particular optimizations of interest in to us in Alto are inlining and code reordering. When 
performing inlining, Alto uses the following heuristics: 

• inline if this procedure is very small (i.e., if the call and return instructions will take up more 
space than the procedure's body), 

• inline if the call site being processed is the only call site for this procedure, or 

• inline if the call site is activated very frequently and the resulting cache footprint does not exceed 
the instruction cache size. 

The decrease in execution time achieved with inlining alone with Alto is reported to be as much as 
4.3%. 

Alto also performs interprocedural basic block layout which can be guided by profile information. 
If profile information is available, Alto tries to avoid cache conflicts by grouping the basic blocks into 
hot, cold and zero sets and applying the bottom-up positioning approach described by Pettis and 
Hansen [6]. Muth et al. report that  using this basic block layout algorithm can decrease execution by 

[12]. 
Our procedure reordering algorithm starts after Alto completes basic block layout, and before the 

scheduler is invoked. Since Alto performs interprocedural basic block reordering, a procedure's basic 
blocks can be spread out all over the image space. 

However, one of the procedure mapping algorithm that  we have implemented requires that  proce- 
dures are kept as a whole. So, before our cache coloring algorithm starts, we first examine the layout 
created by Alto and merge all basic blocks associated with a single procedure together. After this 
phase, we have a sequence of procedures, with the basic blocks rearranged within a procedure, and 
with the hottest basic blocks at the beginning of each procedure in the image. 

The procedure sp i t t ing  algorithm that  we implemented, if activated, starts processing the layout 
at this point. The algorithm analyses each procedure by using the profile information and brings the 
activated and unactivated basic blocks together in the layout. 
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Similarly, if we act ivate  our basic block reorder ing  a lgor i thm descr ibed in Sect ion IV.,  it  s ta r t s  
processing at this  point ,  after t he  spl i t t ing phase.  Therefore ,  the  ho t  blocks t h a t  are fed into the  pro-  
cedure reorder ing  a lgor i thm will a l ready have their  basic blocks reordered  by our  basic block reorder ing  
a lgor i thm descr ibed in Sect ion IV. 

T h e  rest  of  t he  a lgor i thm proceeds  as follows: '~ 

1. T h e  first s tep  is to  p roduce  an und i rec ted  p rocedure  call g r aph  (UPCG) ,  us ing Al to ' s  represen-  
t a t i on  of  edges be tween basic blocks. To do this,  our  a lgor i thm checks all edges for each basic 
block in Al to ' s  call graph.  Whenever  we encounte r  a edge be tween  two basic blocks, we u p d a t e  
t he  U P C G ,  crea t ing  new edges when  necessary. 

2. The  a lgor i thm generates  mtdi t ional  in fo rmat ion  abou t  each p rocedure  in the  layout .  Since our  al- 
go r i thm uses the  cache pa rame te r s  as inpu t  (i.e., cache size, line size, associat ivi ty) ,  we de t e rmine  
the  n u m b e r  of cache lines needed  to hold  each p rocedure  in t he  final layout .  

3. Next ,  we sort  t he  U P C G  edges in descending  order.  I t  is i m p o r t a n t  t h a t  we process t he  edge 
wi th  the  h ighes t  execut ion count  first, since our  goal is to  keep fTequently executed  p rocedures  
toge ther .  

4. We select t he  popu la r  edges in the  U P C G ,  using a s imple heurist ic.  Firs t ,  we s u m  up  all t he  
edge weights of  all the  U P C G  edges. T h e  popular edge set includes all t he  edges whose  to ta l  
execut ion count  makes  up  95% of  all edge weights conta ined  in the  call graph.  By us ing this 
heurist ic ,  we include enough  procedures  for our  a lgor i thm to  m a p  intelligently, and  yet  we do not  
pe r fo rm unnecessary  work t ry ing  to m a p  procedures  wi th  low execut ion  counts .  T h e  u n p o p u l a r  
p rocedures  will be i m p o r t a n t  later,  since they  are used to  fill in the  gaps c rea ted  by the  reorder ing  
a lgor i thm.  

For the  imp lemen ta t i on  of the  a lgor i thm,  we crea ted  new d a t a  s t ruc tures  in Alto.  The  first s t ruc tu re  
main ta ins  a list of  t he  c o m p o u n d  nodes.  Each  c o m p o u n d  node  keeps a po in te r  to  the  first and  last 
p rocedure  and  the  n u m b e r  of procedures  in this  c o m p o u n d  node.  Each  c o m p o u n d  node  also maintaLns 
in fo rmat ion  on the  s ta r t ing  cache line address  and  the  to ta l  n u m b e r  of cache lines needed  to  hold  it. 

We also ma in t a in  a list of procedures ,  in addi t ion  to the  in ternal  p rocedure  represen ta t ion  a l ready 
present  in Alto.  All dynamica l ly  a l located p rocedure  nodes  have a po in te r  to  the  c o m p o u n d  node  t h a t  
it belongs to,  and  poin ters  to  t he  previous and  next  procedures  in its c o m p o u n d  node.  P rocedu re  nodes  
also have the  s t a r t ing  cache line color and  size informat ion.  We m a p  our  represen ta t ion  of procedures  
to  Alto 's  r epresen ta t ion  by use of  a hash  table_ 

After  bui lding these  d a t a  s t ruc tures ,  t he  a lgor i thm s tar t s  processing t he  popu la r  U P C G  edges, and  
applies cache line coloring. After  all popu la r  edges are processed,  we use the  unpopulax  procedures  to  
fill in gaps in t he  layout.  

To do this,  we genera te  a list of gaps in the  layout  by examin ing  each c o m p o u n d  node  and  procedure .  
We t h e n  sor t  t he  gaps, and  use a best  fit p l acement  a lgor i thm for p lac ing u n p o p u l a r  p rocedures  in to  
those  gaps. We form a new c o m p o u n d  node  for the  u n p o p u l a r  p rocedures  t h a t  were no t  used  to  fill in 
gaps. 

In  the  final step, our  a lgor i thm reads  the  c o m p o u n d  node  list, analyzing the  m a p p i n g  da ta .  For 
each c o m p o u n d  node,  it looks at t he  procedures  in the  c o m p o u n d  node,  s t a r t ing  f rom the  first. If t he  
a lgor i thm decides t h a t  a procedure ' s  pos i t ion  should  be ad jus t ed  in the  cache, we c o m p u t e  t he  necessary  
a l ignment  in t e rms  of the  n u m b e r  of ins t ruct ions ,  and  u p d a t e  t he  m a p p i n g  to  enforce a l ignment .  This  
way, we genera te  an offset for each basic block in the  final layout.  This  offset in fo rmat ion  is t h e n  used  
by t he  code genera tor  for a l ignment  purposes ,  as necessary. 

SThe cache line coloring a lgor i thm is descr ibed by using procedures  as the  basic traits of  processing. If  our  spl i t t ing  
a lgor i thm is act ive w then  the  uni ts  of  processing should be in te rpre ted  a~ ho~ blockJ or cold blocks of procedures  ins tead 
of  procedures  as a whole. 
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Benchmark Functions Basic blocks 

gcc 2465 77839 
li 722 9213 
go 945 16035 
compress 316 5092 

Table 1: Characteristics o] the benchmarks used 

Benchmark Tcc no. inlined 

gcc 240.81 1 ~ 3  
li 263.39 173 
go 144.44 359 
compress 342.21 113 

TA+to--bm TAIto-ccl TAlto-cc2 TAILo-ccS 
197.55 188.82 194.63 193.09 

236.65 238.79 238.16 236.92 
137.93 129.19 132.18 131.12 
329.13 326.41 328.41 326.81 

Table 2: Bzecution times o,f SPEC95 benchmarks with ]our different tl/pes o] optimization 

VI. Results 

We have integrated our version of the procedure coloring algorithm into Alto and have evaluated 
its ability to remap applications compiled with aggressive inlining. We use four of the SPECint95 
benchmarks to test the performance of our cache line coloring implementation. Table 1 summarizes 
the characteristics of the benchmarks that  we have used. 

To evaluate performance, we first compiled the benchmark with the native Compaq cc compiler, 
with all optimizations turned on. Once an image is generated, we further optimize the code using 
Alto. We use different training and testing input, to look for sensitivity in our algorithms (as will be 
discussed later). We then run our cache line coloring algorithms and measure the execution times for 
the generated executables for each algorithm. For each benchmark, we ran the executables 10 times 
and recorded the best run time. 

Since Alto-generated executables can not be instrumented with a tool like ATOM, we were not 
able to measure instruction cache misses. We plan on using DCPI in the future to assess the number 
of instruction cache misses that  actually occur in our executable. 

All compilations and execution run time tests were performed on a Compaq Alpha workstation 
with a 433 MHz Alpha 21164 processor (8K L1 instruction cache and 96K on-chip L2 cache) running 
Compact Unix. 

Results are presented in Table 2 and Figure 1. In Table 2, the second column shows the execution 
time of the output file when compiled with Compaq cc compiler, the third column lists the number of 
procedures that  were inlined by Alto, the fourth column shows the execution time when Alto applies 
inlining and interprocedural basic block reordering, the fifth column shows the execution time when 
Alto is run with our procedure coloring algorithm, the sixth column shows the execution time when 
Alto is run with our coloring and procedure splitting algorithms activated, and the seventh column 
shows the execution time of the output executable when Alto is run with coloring, procedure splitting, 
and intra-procedura] basic block reordering (within hot blocks) activated. 

In Figure 1, we plot the percent decrease in execution time for our algorithms. All improvements axe 
relative to execution time shown in Table 2 The bars labeled inter-bb show the reduction in execution 
time for Alto's interprocedttral basic block layout algorithm (computed as the ratio of column four over 
column two in Table 2).  The bars labeled cc show the decrease in execution time obtained by applying 
the procedure coloring algorithm. Cc/split shows the percent decrease in execution time obtained by 
using procedure coloring and splitting algorithms. Finally, the bars labeled cc/split/intra-bb show the 
performance obtained by applying all optimizations. 
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F igure  1: Pe rcen t  execut ion  t ime  decrease for our  a lgor i thms  

As can be seen f rom Figure  1, b o t h  Al to ' s  basic block reorder ing  and  our  cache line coloring 
imp lemen ta t i ons  provide  a subs tan t ia l  benefi t  over the  C o m p a q  cc compi ler  s. We see also see t h a t  all 
of our  p rocedure  reorder ing  a lgor i thms always pe r fo rm be t t e r  t h a n  t he  aggressive in t e rp rocedura l  basic 
block layout  a lgor i thm of Alto. T h e  m a x i m u m  decrease we ob ta ined  is 6.4% in the  go benchmark .  
T h e  4.5% i m p r o v e m e n t  in gcc r un t i m e  is a lso significant.  

Notice t h a t  our  sp l i t t ing  a lgor i thm,  when  combined  wi th  p rocedure  coloring, does no t  always 
ou tpe r fo rm p rocedure  coloring pe r fo rmed  at  a coarser  granu]ari ty.  This  is due  to the  reasons t h a t  we 
explain .in Sect ion IV.. T h e  ma in  reason is the  significant differences in t h e  d i s t r ibu t ion  of  basic block 
and  edge counts  be tween  t he  t r a in ing  and  tes t  inputs .  

To verify this ,  we pe r fo rmed  addi t iona l  exper iments .  For go and  compress  7, we re ran  ottr optimiza~ 
t ions us ing the  same  t ra in ing  and  tes t  inpu t s  to  see t he  effects on  per formance .  For t h e  go b e n c h m a r k ,  
we ob ta ined  an execut ion  reduc t ion  of 88.8% when  using spl i t t ing,  which is be t t e r  t h a n  any of  t he  o ther  
a lgor i thms.  Similarly, when  we used  the  same  t r a in ing  and  tes t  i npu t  wi th  compress ,  we ob ta ined  a 
r u n t i m e  reduc t ion  o f  95.1% when  using spl i t t ing,  again be t t e r  t h a n  any o ther  result .  We conclude  f rom 
this  t h a t  p rocedure  sp] i t t ing is h ighly  sensit ive to  t h e  character is t ics  of t he  t r a in ing  input ,  and  should  
only be appl ied if t he  d i s t r ibu t ion  of basic block and  edge counts  t h a t  are ob ta ined  by the  t r a in ing  
inpu t s  will resemble  those  of t he  actual,  p r o g r a m  inputs .  

V I I .  C o n c l u s i o n s  

Recent  research has  d e m o n s t r a t e d  t h a t  code reorder ing  increases sy s t em pe r fo rmance  significantly. We 
have showed how cache line coloring can be appl ied along wi th  p rocedure  inlining, to  .resolve some of 
the  negat ive  side-effects i n t roduced  by inlining. 

ewe have compi led  all benchmarks  wi th  0 4  level optimization 
7go and compress  are two benchmarks  tha t  lost some pe r fo rmance  when  we used splitting 
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We have demonstrated the ability of the cache coloring algorithm to efficiently map the procedures 
to cache line colors, so that they will not conflict with each other during execution. 

The performance of the procedure reordering algorithm we have implemented improves runtime 
performance by as much as 21% over using an optimized native compiler and as much as 6.4% over 
using an interprocedural basic block layout algorithm. 
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