
Using Cache Line Coloring to Perform Agressive Procedure
Inlining

Hakan Aydm
David Kaeli

Department of Electrical and Computer Engineering
Northeastern University

Boston, MA, 02115

{haydin,kaeli}~ece.neu.edu

A b s t r a c t

Memory hierarchy performance has always been an important issue in computer archi-
tecture design. The likelihood of a bottleneck m the memory hierarchy is increasing, as
improvements in microprocessor performance continue to outpace those made in the mem-
ory system. As a result, effective utilization of cache memories is essential in today's
architectures.

The nature of procedural software poses visibility problems when attempting to perform pro-
gram optimization. One approach to increasing visibility in procedural design is to perform
procedure inlining. The main downside of using inlining is that inlined procedures can place
ezcess pressure on the instruction cache.

To address this issue we attempt to perform code reordering. By combining reordering with
aggressive inlining, a larger executable image produced through inlining can be effectively
remapped onto the cache address space, while not noticeably increasing the instruction cache
miss rate.

In this paper, we evaluate our ability to perform aggressive inlining by employing cache line
coloring. We have implemented three variations of our coloring algorithm in the Alto toolset

• and compare them against Alto's aggressive basic block reordering algorithms. Alto allows
ua to generate optimized ezecutables, that can be run on hardware to generate results. We
find that by using our algorithms, we can achieve up a 2 1 ~ reduction is ezecution runtime
over the base Compaq optimizing compiler, and a 6 .4~ reduction when compared to Alto's
interprocedural basic block reordering algorithm.

I. I n t r o d u c t i o n

Past research has demonstrated that memory hierarchy performance is a critical factor in obtaining
good system performance. There has been a considerable amount of work studying both hardware and
software solutions to achieve better instruction cache performance.

- 62 -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F346023.346046&domain=pdf&date_stamp=2000-03-01

In software engineering, large applications are often decomposed into smaller problems, which
are coded as procedures. Procedure calls have been shown to be one of the most expensive source
language statements [5]. Moreover, a considerable percentage of all dynamic instructions are due
to implementing proper procedure calls and returns [4]. Procedural programming interferes with
other optimizations, such as register allocation, constant propagation and dead code removal. We are
presently studying how to address some of these limitations with the aid of profiling.

One way to address the problems associated with procedure calls is to use procedure inlining.
Inlining replaces a procedure call at the call site by the procedure body itself. Inlining can have bo th
a positive and negative effect on performance. Inlining a procedure eliminates the calling overhead
associated with a procedure call, t hough generally increases code size which may increase the number
of instruct ion cache misses.

When inlining a procedure, the optimizer needs to decide whether the removal of the call and re turn
overhead will be more beneficial t han the loss of cycles due to an increase in the instruct ion miss rate.
Most optimizers use some form of the the following heuristics to select which procedures to inline [3].
A procedure is an inline candidate if:

• a procedure 's body is small (i.e., inlining it may actually reduce the executable image size),

• a procedure is called from only one call site, or

• a procedure is called frequently (e.g., inside a loop).

The benefits of inlining are not just removing procedure call and re turn sequences. Inlining allows
other opt imizat ions to be done more aggressively, such as register allocation, code scheduling, common
subexpression elimination, constant propagat ion and dead code elimination. But inlining procedures
is a tradeoff, and is not for free. As code size increases, there will be added pressure on the instruct ion
cache. Reordering program units on the cache space is one of the most effective opt imizat ion techniques
to remedy the negative side-effects associated with i .nlining.

Code layout can be performed at different granularities, and can be applied bo th within a procedure
or between procedures. In this paper we apply procedure reordering.

Research shows tha t code layout can significantly increase performance, especially when guided
by profile information. Pett is and Hansen repor ted an 8% reduct ion in execution t ime for procedure
reordering, 12~ for basic block reordering and 15% when bo th of these profile-driven techniques are
applied together [6]. The algori thm we apply is also dri~;en by profile information.

To implement out our coloring algori thms we chose Alto [12] as our framework. Alto (A link-time
optimizer for the DEC Alpha) is a tool developed at the University of Arizona for opt imizing Alpha
executables. One of the reasons tha t we chose Alto is its ability to perform aggressive procedure
inlining. We have implemented our cache coloring algori thms in Alto to see if our aggressive inlining
can greatly benefit from our cache coloring algorithms. We we develop three different schemes:

1. procedure coloring (keeping procedures intact and t reat ing procedure boundaries as the granu-
larity during reordering),

2. procedure coloring, with ho t / co ld opt imizat ion (allowing two popular procedures to overlap,
using only their hot regions as the granulari ty during reordering), and

3. procedure coloring and basic block reordering, (same as scheme 2, with an addit ional step of
reordering basic blocks in the hot region).

The Alto f ramework already provides a rich set of tools for performing inlining and basic-block
level code reordering. Our goal is to provide code reordering algori thms tha t specifically target alias-
ing caused by inlined procedures. We have been able to show tha t by using our new algorithms,

- 6 3 -

per formance is improved significantly. We also believe t h a t our a lgor i thms will result in a reduct ion in
compi la t ion t ime 1. Note t ha t in our base a lgor i thms we work wi th procedures , whereas Al to reorders
using basic blocks.

This paper is organized as follows. Section II. discusses previous work on inlining and reordering,
Sect ion III. describes the cache coloring a lgor i thm used, Section IV. describes variat ions of t he cache
coloring a lgor i thm tha t we implemented , Section V. describes how the a lgor i thm was imp lem en t ed in
Alto, Sect ion VI. presents r un t ime results, and finally Section VII. summar izes t he paper .

II. R e l a t e d w o r k

In [7], Hwu and Chang present an a lgor i thm for applying inlining, basic block reorder ing and p rocedure
reordering. T h e y do no t use a coloring approach for p rocedure reordering, bu t ins tead use a depth-f irs t
t raversal of the p rocedure call graph and place the procedures in depth-f i rs t order (this same order ing
is used by the Compac 1 nat ive C compiler) .

Pe t t i s and Hansen proposed basic block and procedure reorder ing a lgor i thms and repor t ed a de-
crease in execut ion t ime of 15~ when b o t h a lgor i thms were used toge ther [6]. The i r p rocedure re-
order ing a lgor i thm uses a greedy a lgor i thm which is based on the weight of the call g raph edges, and
uses a closest-is-best scheme to keep frequent ly accessed p r o g r a m units close together .

McFarl ing invest igated a basic block reorder ing a lgor i thm based on loops in a program_ His algo-
r i t hm tries to generate call trees, of size less t h a n the size of the ins t ruc t ion cache, by examining the
loop cons t ruc ts in the code [11].

Gershony et al. s tudied different reorder ing a lgor i thms and invest igated cache miss rates using
several different cache configurat ions and benchmarks on b o t h Alpha and IA32 archi tec tures [9].

Lee A.Iso s tud ied the ins t ruc t ion cache effects of different code reorder ing a lgor i thms by using simu-
lat ion [10]. He repor ts tha t code reorder ing a lgor i thms are more i m p o r t a n t in archi tectures wi th longer
line sizes.

Ayers et al. developed an aggressive inliner which can also employ cloning. T h e y repor t a peak
speedup of 200% for some S P E C benchmaxks[8].

III. C a c h e Line C o l o r i n g

Procedure reorder ing is used to create a p rog ram layout t h a t will reduce the n u m b e r of ins t ruc t ion
cache conflicts. There have been a n u m b e r of p rocedure reorder ing a lgor i thms proposed. P rocedure
m a p p i n g using cache line coloring differs f rom other a lgor i thms by t ak ing into account the cache size,
cache line size, cache associativity, and procedure size.

The basis of t he cache coloring a lgor i thms used in this paper was proposed by Hashemi et al. [1].
T h e goal of the coloring a lgor i thm is to reduce the number of ins t ruc t ion cache conflict misses t h a t
occur dur ing the execut ion of a program. The basic idea behind the a lgor i thm is to place procedures in
the cache in such a way tha t , the procedures t h a t in teract with each o ther f requent ly will no t overlap
in the cache address space.

For each procedure in the code, the algorithm keeps track of the colors assigned to that procedure
and the unavailable color set of the procedure. This set is defined as the cache lines occupied by
the neighbors of the procedure in the call graph. When mapping a procedure, this unavailable set is
checked to see if the new mapping is creating a cache line conflict. If such a conflict is found, the
procedure under consideration may be shifted in the cache address space, until cache conflicts do not
occur. The algorithm uses heuristics to fill the gaps that are created in the code.

1While this is a goal of our work, we chose not to evaluate compilation time, given that this metric is not one of the
design objectives of the Alto framework.

- 6 4 -

For cache line coloring, the algorithm first starts by building the procedure call graph. The edges
of the graph are undirected, and their weights are determined by summing up the calls tha t occur
between the procedures connected by the edges.

The next step is to determine the edges tha t will be processed by the algorithm. To do this,
the algorithm uses heuristics to classify the edges as popular or unpopular , based on their execution
frequency.

After this classification, the algorithm processes each popular edge, s tart ing from the most fre-
quently executed edge. During this phase, the algorithm can encounter four different cases:

C a s e I: The first case occurs when both procedures tha t are connected by the edge are unmapped.
In this case, the algorithm forms a compound node and places these two procedures in the compound
node next to each other. The first procedure in the compound node will be the larger of the two
procedures. By creating such a compound node, we guarantee tha t the procedures will stay close to
each other in the layout.

C a s e I I : In the second case, the edge tha t is being processed is between two procedures tha t are
in two different compound nodes. In this case, the two compound nodes are merged together into a
single compound node. The smaller compound node is appended to the larger one. The algorithm
uses heuristics to decide on how to order the procedures in the compound node. After the procedures
are placed, the compound node is examined for any cache conflicts. If the algorithm finds a cache
conflict, the smaller compound node is shifted away from the larger compound node until there are
no conflicts. If the cache conflicts can not be avoided by shifting the compound node, the original
mapping is restored.

C a s e I I I : Another possible case is when the edge connects two procedures, where one procedure is
in a compound node and the other has not yet been mapped. In this case, the algorithm appends the
unmapped procedure to the compound node. The new procedure is placed to the left or right side of
the compound node, depending on the distance to the procedure that is in the compound node. After
the new procedure is placed, the algorithm checks for color conflicts and moves the procedure in the
cache address space to avoid conflicts.

C a s e IV: The last case occurs when the edge under consideration connects two procedures tha t
are mapped in the same compound node. In this case, the algorithm checks for color conflicts in
the compound node. If any color conflicts are found, the procedure tha t is closer to either end of
the compound node is moved past the end of the compound node, creating a gap. If color conflicts
still exist, the algorithm tries to shift this procedure away, until all color conflicts disappear. If no
conflict-free mapping can be found, the original mapping is restored.

All the popular e.dge~ are processed by this algorithm in this manner. After this step of the
algorithm is complete, we may have a set of one or many disconnected compound nodes. To fill in
the gaps between these nodes, the unpopular procedures 3 are used. Cache conflicts are not considered
for the unpopular procedures, simply because they are executed very infrequently compared to the
popular procedures.

IV. Variations of the coloring algorithm

The layout algorithm described in Section III. keeps the procedure bodies intact. We have also im-
plemented a variation of this algorithm, which allows splitt ing procedures. The algori thm operates as
follows:

1 . Before building the undirected procedure call graph, our algorithm analyses the basic blocks of
each procedure in the layout. Based on profile information, the algorithm marks each basic block

2edge popular i ty is defined by the frequency a graph edge is traversed
~these include infrequently act ivated or unact ivated procedures in the profile

- 6 5 -

as ho t or cold. In our current implementa t ion , all t he ac t ivated basic blocks of a p rocedure are
marked as h o t and the remain ing ones are marked as cold.

2. Next, we divide the p rocedure in to two regions, one conta in ing all t he h o t basic blocks, and the
o ther conta in ing the remain ing cold basic blocks. At this point , some procedures migh t stili be
kep t in tact , if all of its basic blocks were m a r k e d as all h o t or all cold dur ing the analysis.

3. T h e undi rec ted p rocedure call g raph is buil t next . An edge E in the U P C G can be of four
different types. For two procedures A and B in t he layout, an edge E can connect (Aho~ -- ,4cord),

(Ahot -- Bcold) , (-4hot -- Bhot) o r (Acotd -- Bhot) .

4. Finally, t he remainder of the a lgor i thm opera tes as described in Sect ion III., except in this case,
the re is an ex t ra s tep for fixup of the b ranch ins t ruct ions , since the layout was changed in the
previous step.

T h e idea beh ind our spl i t t ing a lgor i thm is to have a denser g roup of h o t regions in the layout .
Spl i t t ing the procedures by using basic block count in format ion causes the p rocedure size to decrease
mos t of ten the t ime 4. This decrease in the p rocedure size allows the coloring a lgor i thm to work wi th
smaller units , which is likely to resul t in a reduced executable size. This is because the chance of
having a gap crea ted by t he coloring a lgor i thm increases wi th large p rocedure sizes (assigning cache
line colors to procedures becomes increasingly ha rd wi th larger p rocedure sizes). E l imina t ing some
procedures increases the probabi l i ty of excluding the largest procedures .

Spl i t t ing a p rocedure can also have a negat ive effect on per formance . If t he t ra in ing inpu t does no t
accura te ly character ize a p rog ram ' s general run t ime behavior (i.e., i ndependen t of input) , sp l i t t ing can
hur t per formance . If t he analysis done for a layout genera ted by a t ra in ing inpu t marks some basic
blocks of a p rocedure as cold and those basic blocks are f requent ly ac t iva ted wi th the tes t input , there
is an increased chance of ins t ruc t ion cache misses dur ing execution. This happens since the a lgor i thm
will ignore a t t en t ion to the color conflicts t h a t migh t occur be tween the cold seta of t he procedures .
We actual ly observe this side effect of spl i t t ing the procedures in our results. This is always an issue
for any profile-driven a lgor i thm.

One final version of p rocedure coloring t h a t we imp lemen ted per forms basic block layout wi th in
the ho t blocks of each procedure . This layout is pe r fo rmed after each p rocedure is split into ho t and
cold regions. The basic block layout a lgor i thm (also described in [2]) opera tes as follows:

1 . We build a call g raph of basic blocks. The edges of this call g raph are t h e n sor ted by decreasing
edge weights.

2. For each edge (E) encountered , t he a lgor i thm may encounte r th ree different cases:

C a s e I: If the basic blocks at t he head and tail of the edge are bo th u n m a p p e d , we create a
c o m p o u n d node conta in ing these two basic blocks.

C a s e I I : If one of the basic blocks is m a p p e d and the o ther u n m a p p e d , t he a lgor i thm checks
the pos i t ion of the m a p p e d basic block b in its cor responding c o m p o u n d node_ If t he m a p p e d
basic block b is t he head of its c o m p o u n d node C and t he tail of t he processed edge E, t hen
the a lgor i thm prepends the u n m a p p e d basic block to the c o m p o u n d node (7. Similarly, if t he
m a p p e d basic block is the tai l of its c o m p o u n d node (7 and the head of the processed edge, t h e n
t he a lgor i thm appends the u n m a p p e d basic block to the c o m p o u n d node C.

C a s e I I I : If t he basic blocks of the edge being processed are b o t h m a p p e d into c o m p o u n d nodes,
t he a lgor i thm checks for their pos i t ion in their c o m p o u n d nodes. If t he head basic block bl of
the edge being processed is the tail of its c o m p o u n d node (:71 and the tail basic block b2 of t he

4This actual ly depends o n t h e t ra ining input tha t is used to gather profile informat ion

- 6 6 -

edge being processed is the head of its compound node C2, then the compound nodes are merged
into a single compound node 6'1C2.

3. After processing all edges in the graph, there might be several independent compound nodes,
which are then merged together into a single compound node. The algorithm then processes the
layout to enforce the new ordering. After this step, the algorithm patches the new layout, by
creating and/or removing unconditionals and branches where necessary.

Performing this layout algorithm within the hot blocks guarantees that the outcome of the fre-
quently executed branch instructions will most likely follow their fall-thru paths.

To summarize, we have implemented three different approaches to coloring. The first algorithm only
applies procedure coloring, using the procedures as the granule for reordering. The second algorithm
divides procedures into hot and cold set, and uses these smaller blocks as the reordering granule as
input to the coloring algorithm. Finally, the third algorithm performs a basic block layout algorithm
within the hot region, extending the procedure splitting and coloring optimizations done in previous
algorithms.

V. I m p l e m e n t a t i o n

We have implemented our cache line coloring algorithm in Alto [12]. Alto takes an executable and
execution profile information as inputs, and then performs various optimizations and produces an
optimized executable.

The particular optimizations of interest in to us in Alto are inlining and code reordering. When
performing inlining, Alto uses the following heuristics:

• inline if this procedure is very small (i.e., if the call and return instructions will take up more
space than the procedure's body),

• inline if the call site being processed is the only call site for this procedure, or

• inline if the call site is activated very frequently and the resulting cache footprint does not exceed
the instruction cache size.

The decrease in execution time achieved with inlining alone with Alto is reported to be as much as
4.3%.

Alto also performs interprocedural basic block layout which can be guided by profile information.
If profile information is available, Alto tries to avoid cache conflicts by grouping the basic blocks into
hot, cold and zero sets and applying the bottom-up positioning approach described by Pettis and
Hansen [6]. Muth et al. report that using this basic block layout algorithm can decrease execution by

[12].
Our procedure reordering algorithm starts after Alto completes basic block layout, and before the

scheduler is invoked. Since Alto performs interprocedural basic block reordering, a procedure's basic
blocks can be spread out all over the image space.

However, one of the procedure mapping algorithm that we have implemented requires that proce-
dures are kept as a whole. So, before our cache coloring algorithm starts, we first examine the layout
created by Alto and merge all basic blocks associated with a single procedure together. After this
phase, we have a sequence of procedures, with the basic blocks rearranged within a procedure, and
with the hottest basic blocks at the beginning of each procedure in the image.

The procedure sp i t t ing algorithm that we implemented, if activated, starts processing the layout
at this point. The algorithm analyses each procedure by using the profile information and brings the
activated and unactivated basic blocks together in the layout.

- 6 7 -

Similarly, if we act ivate our basic block reorder ing a lgor i thm descr ibed in Sect ion IV., it s ta r t s
processing at this point , after t he spl i t t ing phase. Therefore , the ho t blocks t h a t are fed into the pro-
cedure reorder ing a lgor i thm will a l ready have their basic blocks reordered by our basic block reorder ing
a lgor i thm descr ibed in Sect ion IV.

T h e rest of t he a lgor i thm proceeds as follows: '~

1. T h e first s tep is to p roduce an und i rec ted p rocedure call g r aph (UPCG) , us ing Al to ' s represen-
t a t i on of edges be tween basic blocks. To do this, our a lgor i thm checks all edges for each basic
block in Al to ' s call graph. Whenever we encounte r a edge be tween two basic blocks, we u p d a t e
t he U P C G , crea t ing new edges when necessary.

2. The a lgor i thm generates mtdi t ional in fo rmat ion abou t each p rocedure in the layout . Since our al-
go r i thm uses the cache pa rame te r s as inpu t (i.e., cache size, line size, associat ivi ty) , we de t e rmine
the n u m b e r of cache lines needed to hold each p rocedure in t he final layout .

3. Next , we sort t he U P C G edges in descending order. I t is i m p o r t a n t t h a t we process t he edge
wi th the h ighes t execut ion count first, since our goal is to keep fTequently executed p rocedures
toge ther .

4. We select t he popu la r edges in the U P C G , using a s imple heurist ic. Firs t , we s u m up all t he
edge weights of all the U P C G edges. T h e popular edge set includes all t he edges whose to ta l
execut ion count makes up 95% of all edge weights conta ined in the call graph. By us ing this
heurist ic , we include enough procedures for our a lgor i thm to m a p intelligently, and yet we do not
pe r fo rm unnecessary work t ry ing to m a p procedures wi th low execut ion counts . T h e u n p o p u l a r
p rocedures will be i m p o r t a n t later, since they are used to fill in the gaps c rea ted by the reorder ing
a lgor i thm.

For the imp lemen ta t i on of the a lgor i thm, we crea ted new d a t a s t ruc tures in Alto. The first s t ruc tu re
main ta ins a list of t he c o m p o u n d nodes. Each c o m p o u n d node keeps a po in te r to the first and last
p rocedure and the n u m b e r of procedures in this c o m p o u n d node. Each c o m p o u n d node also maintaLns
in fo rmat ion on the s ta r t ing cache line address and the to ta l n u m b e r of cache lines needed to hold it.

We also ma in t a in a list of procedures , in addi t ion to the in ternal p rocedure represen ta t ion a l ready
present in Alto. All dynamica l ly a l located p rocedure nodes have a po in te r to the c o m p o u n d node t h a t
it belongs to, and poin ters to t he previous and next procedures in its c o m p o u n d node. P rocedu re nodes
also have the s t a r t ing cache line color and size informat ion. We m a p our represen ta t ion of procedures
to Alto 's r epresen ta t ion by use of a hash table_

After bui lding these d a t a s t ruc tures , t he a lgor i thm s tar t s processing t he popu la r U P C G edges, and
applies cache line coloring. After all popu la r edges are processed, we use the unpopulax procedures to
fill in gaps in t he layout.

To do this, we genera te a list of gaps in the layout by examin ing each c o m p o u n d node and procedure .
We t h e n sor t t he gaps, and use a best fit p l acement a lgor i thm for p lac ing u n p o p u l a r p rocedures in to
those gaps. We form a new c o m p o u n d node for the u n p o p u l a r p rocedures t h a t were no t used to fill in
gaps.

In the final step, our a lgor i thm reads the c o m p o u n d node list, analyzing the m a p p i n g da ta . For
each c o m p o u n d node, it looks at t he procedures in the c o m p o u n d node, s t a r t ing f rom the first. If t he
a lgor i thm decides t h a t a procedure ' s pos i t ion should be ad jus t ed in the cache, we c o m p u t e t he necessary
a l ignment in t e rms of the n u m b e r of ins t ruct ions , and u p d a t e t he m a p p i n g to enforce a l ignment . This
way, we genera te an offset for each basic block in the final layout. This offset in fo rmat ion is t h e n used
by t he code genera tor for a l ignment purposes , as necessary.

SThe cache line coloring a lgor i thm is descr ibed by using procedures as the basic traits of processing. If our spl i t t ing
a lgor i thm is act ive w then the uni ts of processing should be in te rpre ted a~ ho~ blockJ or cold blocks of procedures ins tead
of procedures as a whole.

- 6 8 -

Benchmark Functions Basic blocks

gcc 2465 77839
li 722 9213
go 945 16035
compress 316 5092

Table 1: Characteristics o] the benchmarks used

Benchmark Tcc no. inlined

gcc 240.81 1 ~ 3
li 263.39 173
go 144.44 359
compress 342.21 113

TA+to--bm TAIto-ccl TAlto-cc2 TAILo-ccS
197.55 188.82 194.63 193.09

236.65 238.79 238.16 236.92
137.93 129.19 132.18 131.12
329.13 326.41 328.41 326.81

Table 2: Bzecution times o,f SPEC95 benchmarks with]our different tl/pes o] optimization

VI. Results

We have integrated our version of the procedure coloring algorithm into Alto and have evaluated
its ability to remap applications compiled with aggressive inlining. We use four of the SPECint95
benchmarks to test the performance of our cache line coloring implementation. Table 1 summarizes
the characteristics of the benchmarks that we have used.

To evaluate performance, we first compiled the benchmark with the native Compaq cc compiler,
with all optimizations turned on. Once an image is generated, we further optimize the code using
Alto. We use different training and testing input, to look for sensitivity in our algorithms (as will be
discussed later). We then run our cache line coloring algorithms and measure the execution times for
the generated executables for each algorithm. For each benchmark, we ran the executables 10 times
and recorded the best run time.

Since Alto-generated executables can not be instrumented with a tool like ATOM, we were not
able to measure instruction cache misses. We plan on using DCPI in the future to assess the number
of instruction cache misses that actually occur in our executable.

All compilations and execution run time tests were performed on a Compaq Alpha workstation
with a 433 MHz Alpha 21164 processor (8K L1 instruction cache and 96K on-chip L2 cache) running
Compact Unix.

Results are presented in Table 2 and Figure 1. In Table 2, the second column shows the execution
time of the output file when compiled with Compaq cc compiler, the third column lists the number of
procedures that were inlined by Alto, the fourth column shows the execution time when Alto applies
inlining and interprocedural basic block reordering, the fifth column shows the execution time when
Alto is run with our procedure coloring algorithm, the sixth column shows the execution time when
Alto is run with our coloring and procedure splitting algorithms activated, and the seventh column
shows the execution time of the output executable when Alto is run with coloring, procedure splitting,
and intra-procedura] basic block reordering (within hot blocks) activated.

In Figure 1, we plot the percent decrease in execution time for our algorithms. All improvements axe
relative to execution time shown in Table 2 The bars labeled inter-bb show the reduction in execution
time for Alto's interprocedttral basic block layout algorithm (computed as the ratio of column four over
column two in Table 2). The bars labeled cc show the decrease in execution time obtained by applying
the procedure coloring algorithm. Cc/split shows the percent decrease in execution time obtained by
using procedure coloring and splitting algorithms. Finally, the bars labeled cc/split/intra-bb show the
performance obtained by applying all optimizations.

- 6 9 -

0.95

i O.D

O.M
g

I n l e r - b b l
c c
crJsplit
cc/split/intra-I-,bl

o,, I,,g
II ~ amnlor~m

Benchmark

F igure 1: Pe rcen t execut ion t ime decrease for our a lgor i thms

As can be seen f rom Figure 1, b o t h Al to ' s basic block reorder ing and our cache line coloring
imp lemen ta t i ons provide a subs tan t ia l benefi t over the C o m p a q cc compi ler s. We see also see t h a t all
of our p rocedure reorder ing a lgor i thms always pe r fo rm be t t e r t h a n t he aggressive in t e rp rocedura l basic
block layout a lgor i thm of Alto. T h e m a x i m u m decrease we ob ta ined is 6.4% in the go benchmark .
T h e 4.5% i m p r o v e m e n t in gcc r un t i m e is a lso significant.

Notice t h a t our sp l i t t ing a lgor i thm, when combined wi th p rocedure coloring, does no t always
ou tpe r fo rm p rocedure coloring pe r fo rmed at a coarser granu]ari ty. This is due to the reasons t h a t we
explain .in Sect ion IV.. T h e ma in reason is the significant differences in t h e d i s t r ibu t ion of basic block
and edge counts be tween t he t r a in ing and tes t inputs .

To verify this , we pe r fo rmed addi t iona l exper iments . For go and compress 7, we re ran ottr optimiza~
t ions us ing the same t ra in ing and tes t inpu t s to see t he effects on per formance . For t h e go b e n c h m a r k ,
we ob ta ined an execut ion reduc t ion of 88.8% when using spl i t t ing, which is be t t e r t h a n any of t he o ther
a lgor i thms. Similarly, when we used the same t r a in ing and tes t i npu t wi th compress , we ob ta ined a
r u n t i m e reduc t ion o f 95.1% when using spl i t t ing, again be t t e r t h a n any o ther result . We conclude f rom
this t h a t p rocedure sp] i t t ing is h ighly sensit ive to t h e character is t ics of t he t r a in ing input , and should
only be appl ied if t he d i s t r ibu t ion of basic block and edge counts t h a t are ob ta ined by the t r a in ing
inpu t s will resemble those of t he actual, p r o g r a m inputs .

V I I . C o n c l u s i o n s

Recent research has d e m o n s t r a t e d t h a t code reorder ing increases sy s t em pe r fo rmance significantly. We
have showed how cache line coloring can be appl ied along wi th p rocedure inlining, to .resolve some of
the negat ive side-effects i n t roduced by inlining.

ewe have compi led all benchmarks wi th 0 4 level optimization
7go and compress are two benchmarks tha t lost some pe r fo rmance when we used splitting

- 7 0 -

We have demonstrated the ability of the cache coloring algorithm to efficiently map the procedures
to cache line colors, so that they will not conflict with each other during execution.

The performance of the procedure reordering algorithm we have implemented improves runtime
performance by as much as 21% over using an optimized native compiler and as much as 6.4% over
using an interprocedural basic block layout algorithm.

A c k n o w l e d g e m e n t s

We would like to thank Robert Muth and Saumya Debray for their help on Alto's internals. This work
is supported by an NSF CISE grant CCR9900615.

R e f e r e n c e s

[1] A. Hashemi, D.R. Kaeli and B.Calder. "Efficient procedure mapping using cache line coloring,"
ACM PLDI,1997.

[2] Y. Kalamatianos. Microarchitectural and Compile-Time Optimizations for Performance Improve-
ment o.f Procedural and Object-Oriented Languages, PhD. Thesis, Northeastern University, Dec.
1999.

[3] P.P. Chang, S. A. Mahlke, W. Y. Chen and Wen-mei W. Hwu. "Profile-Guided Automatic Inline
Expansion for C Programs," Software Practice ~ Ezperience, John-Wiley.

[4] J. Emer and D. Clark,"A Characterization of Processor Performance in the VAX-11/780," Pro-
ceedings of the l l th Annual Symposium on Computer Architecture, June 1984.

[5] D.A Patterson and C. H. Sequin. "A VLSI KISC," IEEE Computer, pp. 8-21, September 1982.

[6] K. Pettis and R. C. Hansen. "Profile guided code positioning," Proceedings of the ACM SIG-
PLAN'gO Conference on Programming Language Design and Implementation, 1990.

[7] W.W. Hwu and P.P. Chang. "Achieving high instruction cache performance with an optimizing
compiler," 16th Annual lnternation Symposium on Computer Architecture, 1989.

[8] A. Ayers, 1t. Gottlieb and R.Schooler. "Aggressive Inlining," ACM PLDI, 1997.

[9] O. Gershony, J.-L. Baer and D. Lee. On the effectiveness of code reordering algorithms .for the
Alpha and IA32 Architectures, Department of Computer Science and Engineering, University of
Washington, June, 1997

[10] D. Lee. Instruction cache effects of different code reordering algorithms, Department of Computer
Science and En~neering, University of Washington, October 1994.

[11] S. McFarling. "Program optimization for instruction caches," Proceedings of the Third Interna-
tional Conference on Architectural Support ,for Programming Languages and Operating Systems,
April 1989.

[12] R. Muth, S. Debray and S. Watterson. alto: A Link-Time Optimizer -for the DEC Alpha, Depart-
ment of Computer Science, University of Arizona, Technical report 98-14. December 11, 1998.

- 7 1 -

