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Abstract

Memory hierarchy performance has always been an important issue in computer archi-
tecture design. The likelihood of a bottleneck in the memory hierarchy is increasing, as
improvements in microprocessor performance continue to outpace those made in the mem-
ory system. As a result, effective utilization of cache memories is essential in today’s
architectures.

The nature of procedural software poses visibility problems when attempting to perform pro-
gram optimization. One approach to increasing visibility in procedural design is to perform
procedure inlining. The main downside of using inlining is that inlined procedures can place
ezcess pressure on the instruction cache.

To address this issue we atternpt to perform code reordering. By combining reordering with
aggressive inlining, a larger ezecutable image produced through inlining can be effectively
remapped onto the cache address space, while not noticeably increasing the instruction cache
miss rate.

In this paper, we evaluate our ability to perform aggressive inlining by employing cache line
coloring. We have implemented three variations of our coloring algorithm in the Alto toolset
-and compare them against Alto’s aggressive basic block reordering algorithms. Alto allows
us to generate opiimized ezecutables, that can be run on hardware to generate results. We
find that by using our algorithms, we can achieve up a 21% reduction is ezecution runtime
over the base Compag optimnizing compiler, and e 6.4% reduction when compared to Alto’s
interprocedural basic block reordering algorithm.

I. Introduction
Past research has demonstrated that memory hierarchy performance is a critical factor in obtaining

good system performance. There has been a considerable amount of work studying both hardware and
software solutions to achieve better instruction cache performance.
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In software engineering, large applications are often decomposed into smaller problems, which
are coded as procedures. Procedure calls have been shown to be one of the most expensive source
language statements [5]. Moreover, a considerable percentage of all dynamic instructions are due
to implementing proper procedure calls and returns [4]. Procedural programming interferes with
other optimizations, such as register allocation, constant propagation and dead code removal. We are
presently studying how to address some of these limitations with the aid of profiling.

One way to address the problems associated with procedure calls is to use procedure inlining.
Inlining replaces a procedure call at the call site by the procedure body itself. Inlining can have both
a positive and negative effect on performance. Inlining a procedure eliminates the calling overhead
associated with a procedure call, though generally increases code size which may increase the number
of instruction cache misses.

When inlining a procedure, the optimizer needs to decide whether the removal of the call and return
overhead will be more beneficial than the loss of cycles due to an increase in the instruction miss rate.
Most optimizers use some form of the the following heuristics to select which procedures to inline [3].
A procedure is an inline candidate if:

e a procedure’s body is small (i.e., inlining it may actually reduce the executable image size),
e a procedure is called from only one call site, or

e a procedure is called frequently (e.g., inside a loop).

The benefits of inlining are not just removing procedure call and return sequences. Inlining allows
other optimizations to be done more aggressively, such as register allocation, code scheduling, common
subexpression elimination, constant propagation and dead code elimination. But inlining procedures
is a tradeoff, and is not for free. As code size increases, there will be added pressure on the instruction
cache. Reordering program units on the cache space is one of the most effective optimization techniques
to remedy the negative side-effects associated with inlining.

Code layout can be performed at different granularities, and can be applied both within a procedure
or between procedures. In this paper we apply procedure reordering.

Research shows that code layout can significantly increase performance, especially when guided
by profile information. Pettis and Hansen reported an 8% reduction in execution time for procedure
reordering, 12% for basic block reordering and 15% when both of these profile-driven techniques are
applied together [6]. The algorithm we apply is also driven by profile information.

To implement out our coloring algorithms we chose Alto [12] as our framework. Alto (A link-time
optimizer for the DEC Alpha) is a tool developed at the University of Arizona for optimizing Alpha
executables. One of the reasons that we chose Alto is its ability to perform aggressive procedure
inlining. We have implemented our cache coloring algorithms in Alto to see if our aggressive inlining
can greatly benefit from our cache coloring algorithms. We we develop three different schemes:

1. procedure coloring (keeping procedures intact and treating procedure boundaries as the granu-
larity during reordering),

2. procedure coloring, with hot/cold optimization (allowing two popular procedures to overlap,
using only their hot regions as the granularity during reordering), and

3. procedure coloring and basic block reordering, (same as scheme 2, with an additional step of
reordering basic blocks in the hot region).

The Alto framework already provides a rich set of tools for performing inlining and basic-block
level code reordering. Our goal is to provide code reordering algorithms that specifically target alias-
ing caused by inlined procedures. We have been able to show that by using our new algorithms,
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performance is improved significantly. We also believe that our algorithms will result in a reduction in
compilation time!'. Note that in our base algorithms we work with procedures, whereas Alto reorders
using basic blocks.

This paper is organized as follows. Section II. discusses previous work on inlining and reordering,
Section III. describes the cache coloring algorithm used, Section IV. describes variations of the cache
coloring algorithin that we implemented, Section V. describes how the algorithm was implemented in
Alto, Section VI. presents runtime results, and finally Section VII. sumimarizes the paper.

II. Related work

In [7], Hwu and Chang present an algorithm for applying inlining, basic block reordering and procedure
reordering. They do not use a coloring approach for procedure reordering, but instead use a depth-first
traversal of the procedure call graph and place the procedures in depth-first order (this same ordering
is used by the Compaq native C compiler).

Pettis and Hansen proposed basic block and procedure reordering algorithms and reported a de-
crease in execution time of 15% when both algorithms were used together [6]. Their procedure re-
ordering algorithm uses a greedy algorithm which is based on the weight of the call graph edges, and
uses a closest-is-best scheme to keep frequently accessed program units close together.

McFarling investigated a basic block reordering algorithm based on loops in a program. His algo-
rithm tries to generate call trees, of size less than the size of the instruction cache, by examining the
loop constructs in the code [11].

Gershony et al. studied different reordering algorithms and investigated cache miss rates using
several different cache configurations and benchmarks on both Alpha and IA32 architectures [9].

Lee also studied the instruction cache effects of different code reordering algorithms by using simu-
lation [10]. He reports that code reordering algorithms are more important in architectures with longer
line sizes.

Ayers et al. developed an aggressive inliner which can also employ cloning. They report a peak
speedup of 200% for some SPEC benchmarks|8].

ITI. Cache Line Coloring

Procedure reordering is used to create a program layout that will reduce the number of instruction
cache conflicts. There have been a number of procedure reordering algorithms proposed. Procedure
mapping using cache line coloring differs from other algorithms by taking into account the cache size,
cache line size, cache associativity, and procedure size.

The basis of the cache coloring algorithms used in this paper was proposed by Hashemi et al. [1].
The goal of the coloring algorithm is to reduce the number of instruction cache conflict misses that
occur during the execution of a program. The basic idea behind the algorithm is to place procedures in
the cache in such a way that, the procedures that interact with each other frequently will not overlap
in the cache address space.

For each procedure in the code, the algorithm keeps track of the colors assigned to that procedure
and the unavailable color set of the procedure. This set is defined as the cache lines occupied by
the neighbors of the procedure in the call graph. When mapping a procedure, this unavailable set is
checked to see if the new mapping is creating a cache line conflict. If such a conflict is found, the
procedure under consideration may be shifted in the cache address space, until cache conflicts do not
occur. The algorithm uses heuristics to fill the gaps that are created in the code.

1While this is a goal of our work, we chose not to evaluate compilation time, given that this metric is not one of the
design objectives of the Alto framework.
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For cache line coloring, the algorithm first starts by building the procedure call graph. The edges
of the graph are undirected, and their weights are determined by summing up the calls that occur
between the procedures connected by the edges.

The next step is to determine the edges that will be processed by the algorithm. To do this,
the algorithm uses heuristics to classify the edges as popular or unpopular, based on their execution
frequency.

After this classification, the algorithm processes each popular edge, starting from the most fre-
quently executed edge. During this phase, the algorithm can encounter four different cases:

Case I: The first case occurs when both procedures that are connected by the edge are unmapped.
In this case, the algorithm forms a compound node and places these two procedures in the compound
node next to each other. The first procedure in the compound node will be the larger of the two
procedures. By creating such a compound node, we guarantee that the procedures will stay close to
each other in the layout.

Case II: In the second case, the edge that is being processed is between two procedures that are
in two different compound nodes. In this case, the two compound nodes are merged together into a
single compound node. The smaller compound node is appended to the larger one. The algorithm
uses heuristics to decide on how to order the procedures in the compound node. After the procedures
are placed, the compound node is examined for any cache conflicts. If the algorithm finds a cache
conflict, the smaller compound node is shifted away from the larger compound node until there are
no conflicts. If the cache conflicts can not be avoided by shifting the compound node, the original
mapping is restored.

Case ITI: Another possible case is when the edge connects two procedures, where one procedure is
in a compound node and the other has not yet been mapped. In this case, the algorithm appends the
unmapped procedure to the compound node. The new procedure is placed to the left or right side of
the compound node, depending on the distance to the procedure that is in the compound node. After
the new procedure is placed, the algorithm checks for color conflicts and moves the procedure in the
cache address space to avoid conflicts.

Case IV: The last case occurs when the edge under consideration connects two procedures that
are mapped in the same compound node. In this case, the algorithm checks for color conflicts in
the compound node. If any color conflicts are found, the procedure that is closer to either end of
the compound node is moved past the end of the compound node, creating a gap. If color conflicts
still exist, the algorithm tries to shift this procedure away, until all color conflicts disappear. If no
conflict-free mapping can be found, the original mapping is restored.

All the popular edges® are processed by this algorithm in this manner. After this step of the
algorithm is complete, we may have a set of one or many disconnected compound nodes. To fill in
the gaps between these nodes, the unpopular procedures® are used. Cache conflicts are not considered
for the unpopular procedures, simply because they are executed very infrequently compared to the
popular procedures.

IV. Variations of the coloring algorithm

The layout algorithm described in Section III. keeps the procedure bodies intact. We have also im-
plemented a variation of this algorithm, which allows splitting procedures. The algorithm operates as
follows:

1. Before building the undirected procedure call graph, our algorithm analyses the basic blocks of
each procedure in the layout. Based on profile information, the algorithm marks each basic block

2edge popularity is defined by the frequency a graph edge is traversed
3these include infrequently activated or unactivated procedures in the profile
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as hot or cold. In our current implementation, all the activated basic blocks of a procedure are
marked as hot and the remaining ones are marked as cold.

2. Next, we divide the procedure into two regions, one containing all the hot basic blocks, and the
other containing the remaining cold basic blocks. At this point, some procedures might still be
kept intact, if all of its basic blocks were marked as all hot or all cold during the analysis.

3. The undirected procedure call graph is built next. An edge E in the UPCG can be of four
different types. For two procedures A and B in the layout, an edge E can connect (Apot — Acotd),
(Ahoi - Bcold)a (Ahot - Bhot) or (Acold - Bhot)-

4. Finally, the remainder of the algorithm operates as described in Section III., except in this case,
there is an extra step for fixup of the branch instructions, since the layout was changed in the
previous step.

The idea behind our splitting algorithm is to have a denser group of hot regions in the layout.
Splitting the procedures by using basic block count information causes the procedure size to decrease
most often the time%. This decrease in the procedure size allows the coloring algorithm to work with
smaller units, which is likely to result in a reduced executable size. This is because the chance of
having a gap created by the coloring algorithm increases with large procedure sizes (assigning cache
line colors to procedures becomes increasingly hard with larger procedure sizes). Eliminating some
procedures increases the probability of excluding the largest procedures. :

Splitting a procedure can also have a negative effect on performance. If the training input does not
accurately characterize a program’s general runtime behavior (i.e., independent of input), splitting can
hurt performance. If the analysis done for a layout generated by a training input marks some basic
blocks of a procedure as cold and those basic blocks are frequently activated with the test input, there
is an increased chance of instruction cache misses during execution. This happens since the algorithm
will ignore attention to the color conflicts that might occur between the cold sets of the procedures.
We actually observe this side effect of splitting the procedures in our results. This is always an issue
for any profile-driven algorithm.

One final version of procedure coloring that we implemented performs basic block layout within
the hot blocks of each procedure. This layout is performed after each procedure is split into hot and
cold regions. The basic block layout algorithm (also described in [2]) operates as follows:

1. We build a call graph of basic blocks. The edges of this call graph are then sorted by decreasing
edge weights.

2. For each edge (E) encountered, the algorithm may encounter three different cases:

Case I: If the basic blocks at the head and tail of the edge are both unmapped, we create a
compound node containing these two basic blocks.

Case II: If one of the basic blocks is mapped and the other unmapped, the algorithm checks
the position of the mapped basic block b in its corresponding compound node. If the mapped
basic block b is the head of its compound node C and the tail of the processed edge E, then
the algorithm prepends the unmapped basic block to the compound node C. Similarly, if the
mapped basic block is the tail of its compound node C and the head of the processed edge, then
the algorithm appends the unmapped basic block to the compound node C.

Case III: If the basic blocks of the edge being processed are both mapped into compound nodes,
the algorithm checks for their position in their compound nodes. If the head basic block b; of
the edge being processed is the tail of its comnpound node C; and the tail basic block b; of the

4This actually depends on the training input that is used to gather profile information
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edge being processed is the head of its compound node Cj, then the compound nodes are merged
into a single compound node C;Csy.

3. After processing all edges in the graph, there might be several independent compound nodes,
which are then merged together into a single compound node. The algorithm then processes the
layout to enforce the new ordering. After this step, the algorithm patches the new layout, by
creating and/or removing unconditionals and branches where necessary.

Performing this layout algorithm within the hot blocks guarantees that the outcome of the fre-
quently executed branch instructions will most likely follow their fall-thru paths.

To summarize, we have implemented three different approaches to coloring. The first algorithm only
applies procedure coloring, using the procedures as the granule for reordering. The second algorithm
divides procedures into hot and cold set, and uses these smaller blocks as the reordering granule as
input to the coloring algorithm. Finally, the third algerithm performs a basic block layout algorithm
within the hot region, extending the procedure splitting and coloring optimizations done in previous
algorithms.

V. Implementation

We have implemented our cache line coloring algorithm in Alto [12]. Alto takes an executable and
execution profile information as inputs, and then performs various optimizations and produces an
optimized executable.

The particular optimizations of interest in to us in Alto are inlining and code reordering. When
performing inlining, Alto uses the following heuristics:

e inline if this procedure is very small (i.e., if the call and return instructions will take up more
space than the procedure’s body),

o inline if the call site being processed is the only call site for this procedure, or

e inline if the call site is activated very frequently and the resulting cache footprint does not exceed
the instruction cache size.

The decrease in execution time achieved with inlining alone with Alto is reported to be as much as
4.3%.

Alto also performs interprocedural basic block layout which can be guided by profile information.
If profile information is available, Alto tries to avoid cache conflicts by grouping the basic blocks into
hot, cold and zero sets and applying the bottom-up positioning approach described by Pettis and
Hansen [6]. Muth et al. report that using this basic block layout algorithm can decrease execution by
17% [12].

Our procedure reordering algorithm starts after Alto completes basic block layout, and before the
scheduler is invoked. Since Alto performs interprocedural basic block reordering, a procedure’s basic
blocks can be spread out all over the image space.

However, one of the procedure mapping algorithm that we have implemented requires that proce-
dures are kept as a whole. So, before our cache coloring algorithm starts, we first examine the layout
created by Alto and merge all basic blocks associated with a single procedure together. After this
phase, we have a sequence of procedures, with the basic blocks rearranged within a procedure, and
with the hottest basic blocks at the beginning of each procedure in the image.

The procedure splitting algorithm that we implemented, if activated, starts processing the layout
at this point. The algorithm analyses each procedure by using the profile information and brings the
activated and unactivated basic blocks together in the layout.
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Similarly, if we activate our basic block reordering algorithm described in Section IV., it starts
processing at this point, after the splitting phase. Therefore, the hot blocks that are fed into the pro-
cedure reordering algorithm will already have their basic blocks reordered by our basic block reordering
algorithm described in Section IV.

The rest of the algorithm proceeds as follows:53

1. The first step is to produce an undirected procedure call graph (UPCG), using Alto’s represen-
tation of edges between basic blocks. To do this, our algorithm checks all edges for each basic
block in Alto’s call graph. Whenever we encounter a edge between two basic blocks, we update
the UPCQG, creating new edges when necessary.

2. The algorithm generates additional information about each procedure in the layout. Since our al-
gorithm uses the cache parameters as input (i.e., cache size, line size, associativity), we determine
the number of cache lines needed to hold each procedure in the final layout.

3. Next, we sort the UPCG edges in descending order. It is important that we process the edge
with the highest execution count first, since our goal is to keep frequently executed procedures
together.

4. We select the popular edges in the UPCG, using a simple heuristic. First, we sum up all the
edge weights of all the UPCG edges. The popular edge set includes all the edges whose total
execution count makes up 95% of all edge weights contained in the call graph. By using this
heuristic, we include enough procedures for our algorithm to map intelligently, and yet we do not
perform unnecessary work trying to map procedures with low execution counts. The unpopular
procedures will be important later, since they are used to fill in the gaps created by the reordering
algorithm.

For the implementation of the algorithm, we created new data structures in Alto. The first structure
maintains a list of the compound nodes. Each compound node keeps a pointer to the first and last
procedure and the number of procedures in this compound node. Each compound node also maintains
information on the starting cache line address and the total number of cache lines needed to hold it.

We also maintain a list of procedures, in addition to the internal procedure representation already
present in Alto. All dynamically allocated procedure nodes have a pointer to the compound node that
it belongs to, and pointers to the previous and next procedures in its compound node. Procedure nodes
also have the starting cache line color and size information. We map our representation of procedures
to Alto’s representation by use of a hash table.

After building these data structures, the algorithm starts processing the popular UPCG edges, and
applies cache line coloring. After all popular edges are processed, we use the unpopular procedures to
fill in gaps in the layout.

To do this, we generate a list of gaps in the layout by examining each compound node and procedure.
We then sort the gaps, and use a best fit placement algorithm for placing unpopular procedures into
those gaps. We form a new compound node for the unpopular procedures that were not used to fill in
gaps.

In the final step, our algorithm reads the compound node list, analyzing the mapping data. For
each compound node, it looks at the procedures in the compound node, starting from the first. If the
algorithm decides that a procedure’s position should be adjusted in the cache, we compute the necessary
alignment in terms of the number of instructions, and update the mapping to enforce alignment. This
way, we generate an offset for each basic block in the final layout. This offset information is then used
by the code generator for alignment purposes, as necessary.

5The cache line coloring algorithm is described by using procedures as the basic units of processing. If our splitting
algorithm is active, then the units of processing should be interpreted as hot blocks or cold blocks of procedures instead
of procedures as a whole.
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[ Benchmark [ Functions | Basic blocks |
gee 2465 | 77839
li 722 9213
go 945 16035
compress 316 5092

Table 1: Characteristics of the benchmarks used

I] Benchmark I Tec I no. inlined | Tato—snt | TAlto—cc1 Talto—cc2 | TAtto—cea
gcc 240.81 1143 197.55 188.82 194.63 193.09
li 263.39 173 238.79 238.16 236.92 236.65
go 144 44 359 137.93 129.19 132.18 131.12
compress 342.21 113 329.13 326.41 32841 326.81

Table 2: Ezecution times of SPEC95 benchmarks with four different types of optimization

VI. Results

We have integrated our version of the procedure coloring algorithm into Alto and have evaluated
its ability to remap applications compiled with aggressive inlining. We use four of the SPECint95
benchmarks to test the performance of our cache line coloring implementation. Table 1 summarizes
the characteristics of the benchmarks that we have used.

To evaluate performance, we first compiled the benchmark with the native Compaq cc compiler,
with all optimizations turned on. Once an image is generated, we further optimize the code using
Alto. We use different training and testing input, to look for sensitivity in our algorithms (as will be
discussed later). We then run our cache line coloring algorithms and measure the execution times for
the generated executables for each algorithm. For each benchmark, we ran the executables 10 times
and recorded the best run time.

Since Alto-generated executables can not be instrumented with a tool like ATOM, we were not
able to measure instruction cache misses. We plan on using DCPI in the future to assess the number
of instruction cache misses that actually occur in our executable.

All compilations and execution run time tests were performed on a Compaq Alpha workstation
with a 433 MHz Alpha 21164 processor (8K L1 instruction cache and 96K on-chip L2 cache) running
Compaq Unix.

Results are presented in Table 2 and Figure 1. In Table 2, the second column shows the execution
time of the output file when compiled with Compaq cc compiler, the third column lists the number of
procedures that were inlined by Alto, the fourth column shows the execution time when Alto applies
inlining and interprocedural basic block reordering, the fifth column shows the execution time when
Alto is run with our procedure coloring algorithm, the sixth column shows the execution time when
Alto is run with our coloring and procedure splitting algorithms activated, and the seventh column
shows the execution time of the output executable when Alto is run with coloring, procedure splitting,
and intra-procedural basic block reordering (within hot blocks) activated.

In Figure 1, we plot the percent decrease in execution time for our algorithms. All improvements are
relative to execution time shown in Table 2 The bars labeled inter-bb show the reduction in execution
time for Alto’s interprocedural basic block layout algorithm (computed as the ratio of column four over
column two in Table 2) . The bars labeled cc show the decrease in execution time obtained by applying
the procedure coloring algorithm. Cc/split shows the percent decrease in execution time obtained by
using procedure coloring and splitting algorithms. Finally, the bars labeled cc/split/intra-bb show the
performance obtained by applying all optimizations.
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Figure 1: Percent execution time decrease for our algorithms

As can be seen from Figure 1, both Alto’s basic block reordering and our cache line coloring
implementations provide a substantial benefit over the Compaq cc compiler8. We see also see that all
of our procedure reordering algorithms always perform better than the aggressive interprocedural basic
block layout algorithm of Alto. The maximum decrease we obtained is 6.4% in the go benchmark.
The 4.5% improvement in gcc runtime is also significant.

Notice that our splitting algorithm, when combined with procedure coloring, does not always
outperform procedure coloring performed at a coarser granularity. This is due to the reasons that we
explain in Section IV.. The main reason is the significant differences in the distribution of basic block
and edge counts between the training and test inputs.

To verify this, we performed additional experiments. For go and compress’, we reran our optimiza-
tions using the same training and test inputs to see the effects on performance. For the go benchmark,
we obtained an execution reduction of 88.8% when using splitting, which is better than any of the other
algorithms. Similarly, when we used the same training and test input with compress, we obtained a
runtime reduction of 95.1% when using splitting, again better than any other result. We conclude from
this that procedure splitting is highly sensitive to the characteristics of the training input, and should
only be applied if the distribution of basic block and edge counts that are obtained by the training
inputs will resemble those of the actual program inputs.

VII. Conclusions

Recent research has demonstrated that code reordering increases system performance significantly. We
have showed how cache line coloring can be applied along with procedure inlining, to resolve some of
the negative side-effects introduced by inlining.

Swe have compiled all benchmarks with O4 level optimization
7go and compress are two benchmarks that lost some performance when we used splitting
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We have demonstrated the ability of the cache coloring algorithm to efficiently map the procedures
to cache line colors, so that they will not conflict with each other during execution.

The performance of the procedure reordering algorithm we have implemented improves runtime
performance by as much as 21% over using an optimized native compiler and as much as 6.4% over
using an interprocedural basic block layout algorithm.
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