
Towards Unified Metrics for Accuracy and Diversity for
Recommender Systems

Javier Parapar
∗

javier.parapar@udc.es

Universidade da Coruña

A Coruña, Spain

Filip Radlinski

filiprad@google.comm

Google

London, United Kingdom

ABSTRACT
Recommender systems evaluation has evolved rapidly in recent

years. However, for offline evaluation, accuracy is the de facto stan-
dard for assessing the superiority of one method over another,

with most research comparisons focused on tasks ranging from

rating prediction to ranking metrics for top-n recommendation.

Simultaneously, recommendation diversity and novelty have be-

come recognized as critical to users’ perceived utility, with several

new metrics recently proposed for evaluating these aspects of rec-

ommendation lists. Consequently, the accuracy-diversity dilemma

frequently shows up as a choice to make when creating new rec-

ommendation algorithms.

We propose a novel adaptation of a unified metric, derived from

one commonly used for search system evaluation, to Recommender

Systems. The proposed metric combines topical diversity and accu-

racy, and we show it to satisfy a set of desired properties that we

formulate axiomatically. These axioms are defined as fundamental

constraints that a good unified metric should always satisfy. More-

over, beyond the axiomatic analysis, we present an experimental

evaluation of the metric with collaborative filtering data. Our analy-

sis shows that the metric respects the desired theoretical constraints

and behaves as expected when performing offline evaluation.
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1 INTRODUCTION
Evaluation of Recommender Systems (RSs) is a research topic at-

tracting significant attention (e.g. [8, 18, 43]). When evaluating, a

sequence of decisions must be taken to determine the metrics. The

first decision is between online and offline evaluation. Online eval-

uation is the gold standard, as it directly assesses user satisfaction.

However, online evaluation of RSs imposes challenges compared to

the more common offline evaluation [25]. For instance, the personal-

ized nature of the RSs implies the need for more, many times scarce,

resources. Moreover, how the system presents recommendations

has been demonstrated to have a considerable effect [35]. Therefore,

offline evaluation is the most common evaluation framework for RS

research. When using offline evaluation, we have to make a second

decision: evaluate with error metrics for the rating prediction task

[22] or evaluate with ranking metrics for top-n recommendation

[14]. Lately, different works have pointed out the advantages of

ranking metrics over error metrics regarding the measure of user

satisfaction [5, 22, 28].

The final decision when evaluating the top-n recommendation

task on offline collaborative filtering data is to choose what to

measure. Here, the most common objective is the accuracy of the

recommendations. For that, classical ranking metrics are typically

used [43]. More recently, the need for aspects beyond pure rec-

ommendation precision has been recognized [22]. Highly related

properties such as serendipity, novelty, and diversity have been

shown to be crucial in determining user engagement with systems

[10]. Therefore new metrics for evaluating recommendation list di-

versity and novelty have been proposed [8]. This dichotomy forces

the researcher to choose which metrics to optimize.

In this paper, we try to shed some light on this dilemma by

advancing a unified evaluation of RSs. Inspired by extensive work

carried out on search results diversification [41], we adapt a unified

metric for evaluating top-n recommendations. Our metric considers

in its formulation topical (aspect) redundancy and both personalized

item and topical relevance. For validating this proposal, we extend

work on axiomatic analysis of the properties of different metrics

[16], and present experiments on collaborative filtering data. The

analysis shows that our metric, αβ-nDCG, satisfies the desired

axioms and that it also behaves well under all the experimental

scenarios.

In the next section, we place our work in the context of related

work, and provide background. Section 3 presents our proposal

for a unified metric. Then, we perform the axiomatic analysis on

Section 4 and the experimental validation on Section 5. Finally, we

conclude in Section 6.
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2 RELATEDWORK
The need of offline evaluation metrics beyond accuracy has been

pointed out repeatedly by the Recommender Systems community

[4, 15, 19, 26]. Several metrics exist for evaluating either accuracy

or diversity in RSs. On the one hand, Valcarce et al. [43] recently

reviewed the most commonly used accuracy metrics for offline

evaluation, showing how precision and nDCG behave best. On the

other hand, Castells et al. [8] review the importance of novelty

and diversity in RSs and the different existing metrics for those

properties. However, limited effort has been put into unifying these,

with Vargas et al.’s work probably the most relevant. Vargas and

Castells [48] present a framework for analysing metrics regarding

item choice, discovery, and relevance. Vargas’ thesis [47] adapted

somemetrics from search result diversification [41] for RSs diversity

evaluation.

In this paper, we focus on topical or aspect based diversity [51].

This concept refers to recommended items showing diverse aspects,

e.g., different types of products or different genres of movies. This

scenario matches the classical search results diversification task

[41], where documents may present various aspects (nuggets) for a
given information need. In that field, authors carried out extensive

work in the joint evaluation of relevance and diversity.

In search settings, Clarke et al. [12] introduced the α-nDCG
metric to evaluate aspect diversity. This metric adapts normalized

Discounted Cumulative Gain (nDCG) [24], with different aspects

(nuggets) also considered. Agrawal et al. [1] proposed a simple

intent-aware adaptation of ranking metrics as a weighted average

of isolated local aspect evaluation. Following this, Clarke et al. [13]

presented NRBP as an extension of RBP for the diversification

scenario. NRBP combines the strengths of the intent-aware metrics

[1], RBP [31] and α-nDCG [12]. In document ranking, some authors

also argue that the appearance of non-relevant documents should

penalize the metric value, as for instance with Expected Utility

(EU) [49]. Finally, we note work by Amigó et al. [3] on analyzing

an extensive set of metrics for the search results diversification

task. In particular, they present Rank-Biased Utility (RBU), a metric

informed by a set of desired axioms that the authors defined for

the search diversification scenario.

For evaluation of our proposed metric, we rely on two different

strategies. First, we use axiomatics [16] to analyze the properties

of the metric we present. The theoretical characterization of differ-

ent research pieces has been extensively used in the past, both in

document search and RSs. For instance, axioms have been used for

the characterization of ranking models [32, 36, 42] or smoothing

methods [21, 45]. Moreover, they were also used to characterize

user expectations [29] and, therefore, metric behaviour [2, 3, 17].

Second, regarding our experimental part, we will evaluate mainly

three different aspects of the metric (1) rank correlation (2) discrim-

inative power and (3) robustness to incompleteness. These have

been widely used both in RSs and search evaluation. For instance,

Valcarce et al. [44] study the discriminative power and robustness

to incompleteness in the RSs scenario, and Sakai and Song [39]

demonstrate the importance of analyzing the discriminative power

of metrics in search result diversification.

3 A UNIFIED METRIC FOR DIVERSITY AND
ACCURACY

The α-nDCG metric was formulated in the Information Retrieval

community and further adapted by Vargas [47] for RSs. We now

reformulateα-nDCG to consider both topical diversity and accuracy

specific to top-n recommendation. Formally, a top-n recommender

produces a list of ranked item suggestions ®i = (i1, . . . , in ) selected
from the whole set of items I not belonging to the user profile Iu ,

which is the list of items with preferences already expressed by the

user u.
For item diversification, we contemplate a set of item aspects

A = {a1, . . . ,ac }. Item aspects could be any categorical classifica-

tion of items, for instance, a movie may present different genres

aaction,acomedy,adrama, . . . ,aromance. An item may exhibit one or

more aspects, e.g., ititanic exhibiting adrama and aromance. We will

use the notation aϕ ∈ i to indicate that the item i exhibits aspect aϕ .
In terms of relevance, ru,i represents the graded relevance of item

i for user u, which corresponds with the rating that the user has

given to the item. Typically, ratings are on a 5-point Likert scale:

ru,i ∈ {1 . . . 5}. We assume that aspect dependant relevance for an

item ru,i,ϕ = ru,i when i exhibits aϕ and 0 otherwise.

3.1 α-nDCG
The rationale forα-nDCG is that relevance of each document cannot

be judged in isolation from the rest of the documents ranked. Thus

α-nDCG considers dependencies among nuggets for computing an

estimation of both relevance and diversity [12]. Although Clarke

et al. proposed this metric for the search task, Vargas [46] shows

how it can be used to evaluate recommendations. Vargas’ approach

assumes that there is a binary relevance judgment for an item i
given a user u and an aspect aϕ . Following that assumption, the

probability of relevance of an item for a user is:

P(R = 1,u, i) = P(∃aϕ : aϕ ∈ u ∩ i) (1)

where aϕ is an aspect of interest to the user. Rewriting this in a

probabilistic formulation, we obtain:

P(R = 1,u, i) = 1 −

c∏
ϕ=1

1 − P(aϕ ∈ u) × P(aϕ ∈ i) (2)

where c is the number of different aspects considered in the collec-

tion. If we consider that aspects are static and known, P(aϕ ∈ i)
can be estimated as follows:

P(aϕ ∈ i) =

{
0 aϕ < i

1 otherwise

(3)

Otherwise, if we consider that items are not unequivocally as-

signed to categories but that there is some degree of uncertainty

about the assignment, then we could assign an α to that probability

when aϕ ∈ i . With this choice, we can compute a diversity metric

on the item ranking for a user.

3.2 αβ-nDCG
Two important aspects of α-nDCG that need to be reexamined

when adapted to the recommendation task:
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(1) The α parameter accounts for the possibility of the assessor
being wrong in his or her judgement. The definition assumes that

assessors’ positive judgements may be erroneous, but negative

judgements are always correct. In the item recommendation task,

the situation is quite the contrary. When using explicit feedback for

evaluation, the user produces positive ratings over items. In that

situation, the certainty of the user judgement is relatively high. On

the other hand, items not judged by the user are assumed to be non-

relevant in offline evaluations. This assumption is quite strong, and

there is significant evidence that it dramatically affects outcomes [7].

Specifically, user preferences are incomplete, so there are many

missing item preferences in the test data. So, in the case of the

recommendation, we should assume that positive judgements are

mainly correct, while accounting for the possibility that assumed

negative judgments could be wrong because of the missing ratings

in offline data.

(2) In the case of retrieval, the assessors’ judgements consider

both relevance and topicality. That is, nuggets are facets of rele-

vance to an information need. In RSs, item–aspect relations are

influenced by the user’s tastes. For example, a user may not like all

horror movies the same amount. Therefore, item aspects should be

considered conditioned on the user, instead of simply static aspect–

item relations [1]. We will have liked-aspects of items for each user,

e.g. “horror movies that user u likes". In this sense, the set of horror

movies that are relevant for a user could be {"The Texas Chain Saw
Massacre","Friday the 13th", "Halloween" } while for another it could
be {"The Exorcist", "Poltergeist", "The Omen"}.

With this in mind, we can rewrite Equation 2 as:

P(R = 1,u, i) = 1 −

c∏
ϕ=1

1 − P(aϕ |u, i) × P(aϕ |u) (4)

where the probability of item i contributing to satisfying the user’s

interest in aϕ is

P(aϕ |u, i) =


0 aϕ < i

α(u, i) � ru,i and aϕ ∈ i

β(u, ru,i ) ∃ ru,i and aϕ ∈ i .
(5)

and β(u, ru,i ) is the confidence in the user’s judgement value (we

will assume discrete rating values, ru,i ∈ {rmin . . . rmax }). This

function can be defined in several ways. We propose a simple defi-

nition where the normalized rating value for the item is smoothed

by a β factor accounting for user rating uncertainty (Equation 6).

We leave for future work how to further personalise this factor

to correct for user rating bias, rating scale or rating inconsistency

[37]. Analogously, α(u, i) represents the weight of the item i with
missing rating for the user. This factor may be personalized using

different indicators, e.g., the user profile size, the item’s freshness

in the catalogue, the average rating of i , etc. Again, we will just test
here with a small constant value α leaving personalized formulation

for future work.

β(u, ru,i ) =
ru,i
rmax

∗ β (6)

Next, we introduce redundancy and novelty by estimatingwhether

or not the user is (still) interested at position k in more items cap-

turing a given aspect after having been shown earlier items in the

ranking S = ®i[0, . . . ,k − 1]:

P(aϕ |u, S) = P(aϕ |u)
∏
i ∈S

1 − P(aϕ |u, i) (7)

By replacing P(aϕ |u) in Equation 4 by its redundancy aware

variant (Equation 7), we obtain:

P(Rk = 1,u, i, S) = 1 −

c∏
ϕ=1

1 − P(aϕ |u, i) × P(aϕ |u, S) (8)

Now, the β parameter is responsible for a secondary role beyond

its influence on the user-rating confidence. It also models the user’s

eagerness to look at items lower in the ranking. That is, the higher

β , the more the relevant items contribute to satisfying the user’s

interests, and the fewer items are needed to exhaust the user’s

interest in an aspect.

3.3 Estimation
Clarke et al. [12] cannot estimate P(aϕ |u) because there is an ab-

sence of user preference data in traditional document retrieval

offline evaluation. Instead, that work assumes that topics are inde-

pendent and equally likely to be relevant to each user: P(aϕ |u) = γ .
We argue that this may be an oversimplification in the case of rec-

ommendation: When working with explicit user preferences over

items, estimates can be computed about the degree of relevance

of an aspect to a user. The maximum likelihood estimate is the

simplest option:

P(aϕ |u) =̂

∑
i ∈Iu |aϕ ∈i ru,i∑

φ
∑
i ∈Iu |aφ ∈i ru,i

≡ γuϕ (9)

Generally speaking, the probability of relevance of an aspect to

a user can be estimated on the prevalence of that aspect among

past positive preferences from the user. For brevity, we will refer to

that probability estimate as γuϕ . Following [12], we also define the

number of ranked items up to position k − 1 judged by the user as

relevant and exhibiting aspect ϕ:

ρu,r,ϕ,k−1 =
k−1∑
j=1

{
1 aϕ ∈ i j and ru,i j = r

0 otherwise
(10)

τu,ϕ,k−1 =
k−1∑
j=1

{
1 aϕ ∈ i j and � ru,i j
0 otherwise

(11)

ρu,r,ϕ,k−1 is the number of items ranked up to position k−1 judged
by the user with rating r and showing aspect ϕ. τu,ϕ,k−1 is the

number of items up to position k − 1 belonging to aspect ϕ without

information about the user’s preference over them. Then, the inner

term of Equation 7 becomes:

k−1∏
j=1

1 − P(aϕ |u, i j ) = (1 − α)τu,ϕ,k−1
rmax∏
r=rmin

(1 − β(u, r ))ρu,r ,ϕ,k−1

(12)
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We can now rewrite Equation 8 as:

P(R = 1,u, i1, . . . , ik ) =1 −
c∏

ϕ=1

(1 − P(aϕ |u, ik ) × γuϕ × (1 − α)τϕ,k−1

×

rmax∏
r=rmin

(1 − β(u, r ))ρu,r ,ϕ,k−1 )

(13)

This probability is the gain value at the position k :G[k]. For com-

puting αβ-nDCG@k , first, we have to compute the cumulative gain

at the position k as in Equation 14:

CG[k] =
k∑
j=1

G[j] (14)

The original nDCG applies a discount factor to penalize docu-

ments lower in the ranking. We propose to use the typical search

ranking logarithmic discount function. More elaborate discount-

ing functions reflecting the particular behaviour of recommender

system users are left for future work:

DCG[k] =
k∑
j=1

G[j]/log
2
(1 + j) (15)

Finally, we normalize the Discounted Cumulative Gain by the

Ideal Discounted Cumulative Gain (IDCG). Computing the Ideal

Gain is NP-complete. As explained in [12], a good enough approxi-

mation can be computed greedily [50], based on selecting at each

position the item with the highest gain, breaking ties arbitrarily.

Given all this, we use IDCG to normalize the DCG, resulting in

the following definition for αβ-nDCG@k :

αβ-nDCG@k =
DCG[k]

IDCG[k]
(16)

In summary, the changes of αβ-nDCG@k over α-nDCG@k are:

(1) the role of the α parameter now accounts for the missing rating

effect instead of the confidence in the assessor’s decision, (2) the

formulation of P(aϕ |u) allows us to estimate the aspect relevance

for each user given his or her historical data rather than assuming all

aspects are equally relevant, and (3) the added β parameter accounts

for both the confidence in the rating that the user assigned to each

item, and how fast the user is satisfied with relevant items while

exploring the ranking.

4 AXIOMATIC ANALYSIS
We now derive axioms that our metric should satisfy, following

the methodology of Amigó et al. [3]. First, we introduce common

notation assumptions for the top-n recommendation case. Let ®i

be a ranking of items; we use the notation ®ip↔q for referring to a

ranking where items in positions p and q are swapped. Analogously,

we use ®i j↔j′ for denoting a ranking where the item j is swapped in
®i with the item j ′. In both swaps, the item on the left was initially

higher on the ranking than the one on the right.w(®i,aϕ ) represents

the weight of aspect aϕ in the list items ®i . Analogously, the profile
of user u may show interest in the different aspects with a weight

w(Iu ,aϕ ) that, for the sake of legibility, we refer asw(u,aϕ ). The
sum of all aspect weights for the user u add up 1 (

∑
ϕ w(u,aϕ ) = 1).

A user is satisfied with relevant items from particular aspect aϕ in

the ranking until position p with value 0 ≤ s(®i[0, . . . ,p],aϕ ) ≤ 1.

We say that an aspect is saturated when the user is fully satisfied:

s(®i[0, . . . ,p],aϕ ) = 1.

When judging an item ranking, we assume the standard be-

haviour of exploration of the ranked list [9], i.e., the user inspects

the items in the recommendation list sequentially, from top to bot-

tom. The user will stop inspecting the ranking when (a) his or

her information need is satisfied (success) or (b) the user stops

looking after some effort without finding any good item recom-

mendations (fail). According to the Expected Reciprocal Rank user

model presented by Chapelle et al. [9], the higher the relevance of

the observed items in the ranking, the lower the need of the user

to explore more documents.

Finally, we denote the quality score given by the metric to the

top-n recommendation as Q(®i).

4.1 Axioms for Relevant and Diverse Item
Rankings

Inspired by Amigó et al. [3], we adapt the desirable axioms for a rec-

ommendation ranking. As Sakai and Zeng [40] pointed out, Amigó

et al. [3] axioms were defined in two isolated blocks (relevance and

redundancy constraints). In turn, we consider both relevance and

topical diversity jointly in the definition of the axioms:

Axiom 1 (Priority inside Aspect, Pri). Swapping two items
showing exclusively one aspect an in concordance with their relevance
value increases the ranking quality score. Given k > 0:

ru,ip+k > ru,ip ,an ∈ ip , ip+k ∧ ∀ϕ,n aϕ < ip , ip+k
=⇒ Q(®ip↔p+k ) > Q(®i)

(17)

This axiom expresses the preference for the best-rated itemwhen

there is no difference in two items’ aspects.

Axiom 2 (Deepness inside Aspect, Deep). Correctly swapping
items showing exclusively one aspect an in concordance with their
relevance value has a bigger effect at earlier positions in the ranking.
Given k > 0:

p < q, ru,ip = ru,iq < ru,ip+1ru,iq+1 ,

an ∈ ip , iq , ip+1, iq+1 ∧ ∀ϕ,n aϕ < ip , iq , ip+1, iq+1
=⇒ Q(®ip↔p+1) > Q(®iq↔q+1)

(18)

This constraint is based on the concept of top-heaviness. That is,

we prefer more relevance density at the beginning of the ranking

than at the bottom.

Axiom 3 (Non Priority on Saturated Aspects, NonPriSa-

tAsp). There is a high enough aspect satisfaction of a user over an
aspect an′ and a small enough positive difference r∆ between two
items relevance such that swapping those items showing exclusively
one aspect each, an and an′ , in concordance with their relevance value,
decreases the ranking quality score. Given k > 0:

∃r∆, s∆ ∈ R+ |ru,ip+k − ru,ip = r∆,an ∈ ip ,

an′ ∈ ip+k , s(®i[0, . . . ,p],an′) − s(®i[0, . . . ,p],an ) = s∆

=⇒ Q(®ip↔p+k ) < Q(®i)

(19)
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An example of this axioms is the case where the user is saturated

with one aspect. When offered two items to be consumed, he prefers

the one from a non-saturated aspect even when that item has a

lower rating.

Axiom 4 (Top Heaviness Threshold, TopHeav). There exists a
value n large enough such that retrieving only one relevant item at
the top of the ranking yields a higher quality score than retrieving n
relevant items with the same graded relevance r after n non-relevant
documents.

∃n ∈ N+ |Q(ir
1
, i0
2
. . . i0

2n ) > Q(i0
1
, . . . , i0n , i

r
n+1, . . . , i

r
2n ), r > 0 (20)

This constraint builds upon the Pri axiom. It says that the user

prefers to see only one relevant item at the top rather than having

to go deep on the ranking for many relevant items. Informally, this

axiom models a desire for efficiency when exploring ranked results.

Axiom 5 (TopHeaviness ThresholdComplementary, TopHeav-

Comp). There exists a valuem small enough such that retrieving only
one relevant item at the top of the ranking yields a lower quality score
than retrievingm relevant items with the same graded relevance r
afterm non-relevant documents.

∃m ∈ N+ |Q(ir
1
, i0
2
. . . i0

2m ) < Q(i0
1
, . . . , i0m , i

r
m+1, . . . , i

r
2m ), r > 0

(21)

Complementarily to the previous axiom, this axiom refers to

the existence of a lower bound for the user’s effort for ranking

exploration.

Axiom 6 (Aspect Relevance, AspRel). Given two equally rele-
vant items j and j ′ showing exclusively and respectively two aspects
an and an′ , where neither aspect has been observed earlier in the
ranking (s(®i,an ) = s(®i,an′) = 0), then the item exhibiting the aspect
with higher user weightw(u,aϕ ) yields higher quality score.

ru, j = ru, j′ > 0,an ∈ j,an′ ∈ j ′,

∀ϕ,n aϕ < j,∀ϕ,n′ aϕ < j
′,w(u,an ) > w(u,a′n )

=⇒ Q(®i j↔j′) < Q(®i)

(22)

This axiom reflects the importance of one aspect over another.

The user favours the item exhibiting the preferred aspect given two

equally liked items.

Axiom 7 (PreferMoreAspectContribution,MoreAsp). Given
two equally relevant items for the user both showing non-saturated as-
pects, s(u,aϕ ) < 1, of interest to the user,w(u,aϕ ) > 0, then the pres-
ence of the item with higher remaining interest from non-saturated
aspects yields higher quality score than the other one.

ru, j = ru, j′ ,
∑
aϕ ∈j

w(u,aϕ ) −w(®i,aϕ ) <
∑
aϕ ∈j′

w(u,aϕ ) −w(®i,aϕ )

=⇒ Q(®i j↔j′) < Q(®i)
(23)

Given two equally relevant items, the user tends to favour the

one showing aspects that are still of interest. In other words, the

item with less aspect-level redundancy will get a higher score.

Axiom 8 (Missing over Non-Relevant, MissOverNon). Given
two items j and j ′, where r (u, j) = 0 but the user’s rating over j ′ is
unknown yet j ′ exhibits a non-saturated aspect, then swapping j with
j ′ yields a higher quality score.

ru, j = 0,�ru, j′ ,∃aϕ ∈ j ′ |s(u,aϕ ) < 1 =⇒ Q(®i j↔j′) > Q(®i) (24)

This constraint models the missing rating effect: Intuitively the

user would favour an unknown item rather than an item that he or

she is known to dislike.

4.2 Metric Analysis
This section analyzes whether our proposed metric, or previous

diversity aware metrics for document ranking, satisfy the desired

axioms. A summary of that analysis is presented in Table 1. Due to

space limitations, we restrict the analysis to the translation of some

of the diversity-aware metrics from [3] to the recommendation set-

ting. In particular, we do not comment on pure accuracy metrics as

they do not satisfy most of the axioms. We also note that although

intent-aware (IA) counterparts [1] solve some of the limitations of

pure accuracy metrics, those variants suffer from two important

limitations. First, their maximum value is not 1: it is highly improb-

able that a single ranked list is ideal for every aspect. Second, and

arguably more difficult to resolve, they tend to under-represent

the performance for minor aspects [11]. Therefore we leave the

analysis of those variants to future work.

As noted above, α-nDCG@k does not consider item aspects

conditioned on the user [46]. If we adapt it to graded relevance

(the rating value), it satisfies Pri, Deep, NonPriSatAsp, TopHeav-

Comp and MoreAsp. Due to the redundancy factor, it also satisfies

TopHeav. α-nDCG does not consider user overall interest on the dif-

ferent aspects, therefore, it does not satisfy AspRel orMoreAsp. As

it does not consider the difference between a missing rating and an

item rated with 0 by the user, it also does not satisfyMissOverNon.

Zhai et al. [50] presented sub-topic recall (S-Recall) and sub-

topic reciprocal rank (S-RR). Both are aspect level variants of the

original metrics. S-Recall@k only computes the coverage of each

of the aspects in the first k positions, i.e., how many of the possible

aspects the top k items show. In that way, S-Recall@k is agnostic

to the user’s interest both on item relevance and topic preferences,

so it does not satisfy Pri, Deep, TopHeav, TopHeavComp, AspRel

nor MissOverNon. It would only partially satisfy NonPriSatAsp,

andMoreAsp in the case of binary user satisfaction over aspects

and with no other items exhibiting those aspects in the top k. The

value of S-RR@k is the inverse of the first position where every

possible aspect appeared on the ranking if that position is higher

than k , 0 otherwise. Consequently, S-RR@k behaves similarly to

S-Recall@k in terms of the axiomatic properties.

Clarke et al. [13] presented Novelty- and Rank-Biased Precision

(NRBP). Contrary to most of the metrics, it does not work with

cut-offs. In practical terms, that means that we theoretically need

judgments values over the entire collection for computing the ideal

gain vector. NRBP is essentially a combination of α-nDCG@k and

Rank Biased Precision (RBP) [31] where both α and β penalize

the user interest as he or she goes down the ranking. In NRBP,
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Table 1: Properties of accuracy-diversity metrics ( = axiom satisfied, #= axiom not satisfied).

Metric
Axioms

Pri Deep NonPriSatAsp TopHeav TopHeavComp AspRel MoreAsp MissOverNon

α -nDCG@k      # # #
S-Recall@k # # # # # # # #
S-RR@100% # # # # # # # #
NRBP      # # #
EU        #
RBU@k        #

α β -nDCG@k         

α accounts for how fast a user gets bored of items from one as-

pect, while β models how willing he or she is to look for relevant

documents down in the ranking. Thanks to those two discounting

factors, when considering probabilistic relevance, NRBP satisfies

Pri, Deep, NonPriSatAsp, TopHeav and TopHeavComp. However,

again this metric does not consider personalized user interests on

aspects. Therefore, it does not satisfy AspRel orMoreAsp. The pro-

posed probabilistic relevance model considers missing judgments

as zero relevance, so MissOverNon is also not satisfied.

Amigó et al. [3] included Expected Utility (EU) [49] in their anal-

ysis as the only metric penalizing non-relevant documents at the

end of the ranking. This factor enables the satisfaction of their Conf

axiom [3]. This axiom is not desirable in top-n recommendation;

many non judged documents are relevant but with missing prefer-

ences. This explains why EU does not satisfyMissOverNon. Apart

from that, EU is quite similar to NRBP, satisfying Pri, Deep, Non-

PriSatAsp, TopHeavComp andMoreAsp. It also satisfies AspRel

andMoreAsp as it considers the weights of aspects.

Amigó et al. [3] proposed a new metric informed by their axioms

on document ranking. Rank-Biased Utility is, again, a combination

of existing metrics. It combines the exploration model of RBP [31]

with the redundancy penalization of the intent-aware version of

Expected Reciprocal Rank [9] (ERR-IA) with the user effort factor

from EU. As a combination of those three metrics, RBU satisfies

Pri, Deep (with p<1), NonPriSatAsp, TopHeav TopHeavComp

(with p<1), MoreAsp, AspRel, and MoreAsp (with e<1) but not

MissOverNon.

Finally, αβ-nDCG@k satisfies every axiom, as it was designed

with them in mind. It keeps the α-nDCG@k properties that allow

it to satisfy Pri, Deep, NonPriSatAsp, TopHeavComp,MoreAsp

andTopHeav. Due to the consideration of users overall interest

in different aspects through the formulation of P(aϕ |u) (see Equa-
tion 9), it also satisfies AspRel orMoreAsp. The inclusion of the

α(u, i) factor (see Equation 4) enables the satisfaction of MissOver-

Non.

5 EXPERIMENTS
In this section, we further evaluate our unified metric proposal.

In Section 4, we defined a set of theoretical properties for the be-

haviour of the quality metrics. However, as commented by Sakai

and Zeng [40], axiomatic analysis has its limitations. As an alterna-

tive, in online experiments, user preferences over rankings could

be obtained and assessed as to how observations correlate with the

defined metrics. That is quite challenging in recommender system

setting: When evaluating documents under explicit information

needs, relevance can be judged rapidly by assessors with strong

agreement. However, for RSs, relevance is user-dependent, and the

information need is not explicit. Rather, it is indirectly reflected by

users’ past preferences over items. Therefore, producing a rigorous

user study for the different metrics would require a massive number

of users and significant time for the users to consume and evaluate

suggestions. We therefore present an intermediate approach and

leave the online user validation for future work. For doing so, we

use the collaborative filtering information from the Movielens 20M

collection [20]. Specifically, we take the users preferences from a

20% random test split. The dataset categorizes movies among 19

genres (e.g. action, adventure, drama, etc.).

When defining the axioms, we had in mind a desirable item rank-

ing order for the users. Now we can use this concept to define an

ideal item ordering when considering both accuracy and diversity.

We acknowledge that this simplifies the actual RS scenario: in RSs,

different users, even with the same past preferences, may favour

slightly different orderings. However, when limited to offline eval-

uation, this conceptualization of an ideal ordering may serve us to

observe the behaviour of the metrics. Of course, alternative and

more complex idealizations of the item ranking may be proposed.

The following aims to reflect the same ideas as those reflected in

the axioms.

5.1 Ideal Ordering
For computing the ideal ordering for a user ®ιu , we use the actual
user preferences (the ground truth for the user). The ideal ranking

of size k is a particular ordering of the items judged by the user

greedily obtained following these steps:

• We create asmany ideal per-aspect rankings ®ιuaϕ as different

items aspect aϕ in the ground truth for the user. Each of them

contains all the items in the user’s preferences exhibiting

that aspect.

• We sort the items in each of the per-aspect rankings follow-

ing two criteria: first, we sort the items by the user expressed

rating, and secondly, for breaking ties, we sort items based

on the number of aspects they exhibit.

• We compute the aspect weights for the userw(u,aϕ ) using
the maximum likelihood estimate over the user profile in the

ground truth data (as in Equation 9).
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Figure 1: Values of αβ-nDCG for 10 cutoff for different num-
ber of bottom-to-top swaps.

• At each position we take the top item for the selected aspect

anext by popping ®ιuanext
• The selection of anext on the position k for the ®ιu is made

iteratively. At each point, we choose the aϕ with the highest

weight difference between the user aspect and the of the

aspect in the ongoing ideal ranking.

next = argmax

ϕ

(
w(u,aϕ ) −w( ®ιu ,aϕ )

)
5.2 Experiment 1: Rank Correlation with Ideal

Ordering
A crucial aspect of a metric is how good it is in ranking systems

according to the expected quality order. To assess that is not com-

monly possible in offline evaluation because the user’s actual quality

order is unknown. In practice, when possible, online evaluation

is carried out [23]. Classical online experiments check if the rank-

ing of systems produced by a metric correlates with user-assigned

preferences over systems. However, given our notion of ideal item

ordering, we may produce a similar experiment with offline data.

In that way, we can assess which of the compared metrics produces

a ranking of systems that correlates best with the actual order of

systems under the ideal ordering assumption. For that purpose, we

produce simulated systems as gradual perturbations of the ideal or-

dered system. The correct order of systems should be ranking them

by how far they are from the ideal ranking (i.e. how much perturba-

tion was applied). Here we consider three perturbation models that

affect the three factors that we focus on: item relevance, diversity,

and aspect relevance. Regarding the metric configurations, if not

stated otherwise, we report the following configurations α = 0.005

and β = 0.5 for αβ-nDCG, p = 0.99 β = 0.9 and α = 0.25 for NRBP,

e = 0.05 and α = 0.25 for EU and p = 0.99 and e = 0.05 for RBU,

following the best values reported in [3].

5.2.1 Swapping items bottom to top. Any swap of an item from the

bottom of the ideal ranking to the top of it should yield a worse

ranking. If we incrementally increase the number of swaps, we may

create incrementally worse item rankings. A good metric should

observe those differences and produce incrementally lower values.

Formally we produce 1-perturbed bottom-top for an ideal ranking

®ιu of sizek , as ®ιu
1↔k and an s-perturbed as, ®ιu

1↔k,2↔k−1, ...,s↔k−s .

This perturbation should produce a gradual reduction in the system

performance as shown in Figure 1 for different configurations on

the αβ-nDCG@10. For this experiment, we generated 50 gradually

perturbed systems.

5.2.2 Swapping items from redundant aspect. We produce pertur-

bations of the ideal ranking for tackling aspect redundancy. We

want to observe if the metrics react adequately to an excess of

redundancy for an aspect in the ranking. Departing from the ideal

ranking, if we add an item from the same category when the algo-

rithm for computing the ideal ranking says to add an item from

another category, it should produce an excess of redundancy on

that part of the ranking. We can produce different variations by

including not one but s redundant items in that category. Formally,

let acurrent and anext be the aspect of the last item added to the

ideal ranking and the aspect to pop an item from next respectively.

Let p be the first position on the ranking where acurrent , anext.
We produce 1-perturbed redundant aspect from an ideal ranking

®ιu at p as ®ιup↔pop( ®ιua
current

)
. Analogously, the s-perturbed redun-

dant aspect ranking would contain s additional items exhibiting

aspect acurrent. For this experiment, we also generated 50 gradually

perturbed systems.

5.2.3 Swapping aspects. We produce perturbations of the ideal

ranking for tackling aspect relevance. The objective is to check if

the metrics can assess whether the ranking presents the aspects in

the order preferred by the user. Departing from the ideal ranking,

we select the first item for the user not from her most liked movie

category but from the next category in order of preference, where

the item from the favourite category is not present. We can produce

an s-perturbed ranking by selecting from the (s+1)th most preferred

category (if it exists). Formally, we produce 1-perturbed aspect

relevance from an ideal ranking ®ιu where amost is the aspect most

liked by the user and a
second

the second most liked aspect that

®ιu
1
does not show as ®ιu

1↔pop( ®ιua
second

)
. We only produced 1 to 10

perturbations, limited by the number of different genres that users

tend to rate in the Movielens dataset.

5.2.4 Results. When analyzing the correlation of the system rank-

ings of the different metrics with the actual system ranking (see

Figure 2), there are various clear conclusions. First, as expected,

subtopic metrics (S-Recall and S-RR) cannot produce a correct rank-

ing of systems when systems diverge on relevance order (left).

Instead, they produce a negatively correlated ranking. This nega-

tive correlation is observed because in swapping non-relevant items

into the top of the ranking, we are speeding up sub-topic coverage.

Second, RBU, NRBP, EU, and our proposal are perfectly correlated

on system ranking for the item relevance perturbed systems.

Third, when the system differences are due to an excess of aspect

redundancy (centre), we can see how RBU and EU perform more

poorly. They fail to produce the expected ranking of systems due to

their inability to detect homogeneous excess of aspects’ redundancy

in parts of the ranking (all aspects have the same excess). This

an example of the need for experimental evaluation beyond the

idealized axiomatic analysis [40].

When considering the ability of the metrics to assess the correct

order of aspect relevance (right), we see that in this case, NRBP,
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Figure 2: Experiment 1. Correlation between the gradually perturbed systems’ ranking for the swapping items bottom to top
(left), swapping items from redundant aspect (center), and swapping aspects (right) scenarios.
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Figure 3: Experiment 2. P-values obtained by the significance testwhen comparing the performance of graduallyworse systems
for different metrics against the ideal system, under the three perturbation scenarios: swapping items bottom to top (left),
swapping items from redundant aspect (center), and swapping aspects (right).

following the axiomatic analysis, behaves worse than the metrics

that explicitly consider aspect weight in their formulation. We also

note how other metrics do not have perfect correlation. This is

because not all users rated items from 10 aspects, which introduces

some noise in the experiment.

5.3 Experiment 2: Discriminative power
Apart from correctly ranking systems, researchers use metrics to

assess whether their method is better than the state of the art.

That improvement is usually considered by regarding statistical

significance. By using statistical tests, researchers have a degree of

confidence in the improvement, rather than that it was only due to

chance on the data used in the offline evaluation. A good metric

should allow us to spot a significant difference easily. To assess

this property, we follow the approach that Sakai [38] presented

for studying the p-value that the tests produce. However, instead

of checking the p-value of all system pairs, we just compute the

test p-value for different types of system improvements
1
. Then, we

compare incrementally worse rankings (swapping items as in the

three scenarios of Experiment 1) and check the p-value returned

by the metric’s statistical test. In that way, we may expect a curve

similar to a power curve for a helpful metric.

In Figure 3, we observe the behaviour of the metrics on spotting

statistical differences when the ideal order is altered. In general,

the subtopic metrics behave worse than the other ones. Moreover,

1
We use a one-sided (null hypothesis corresponding with ’perturbed system perfor-
mance’ is lower than original one’s performance’) Wilcoxon Signed-Rank Test on the

paired per-user metric values [33, 34].

αβ-nDCG, RBU, NRBP, and EU perform quite well on the item

swapping and the redundant items scenarios. The aspect swapping

scenario seems to be the most challenging. Here, only αβ-nDCG
performs optimally (monotonic fast increment); the other metrics

show erratic behavior. This result points that for some users, the

metrics cannot detect negative performance variations, making it

harder to identify (non) significance.

5.4 Experiment 3: Robustness to
Incompleteness

A particularly important property for RSs metrics is robustness

to data incompleteness [27]. Missing ratings in offline evaluation

have been found to affect the ranking of systems greatly [6]. That

is one of the reasons why offline metrics often favour popularity

biased methods: Popular items have a higher chance of having

user ratings in offline data. The property of a metric to maintain

the same system ranking in those situations is called robustness.

Valcarce et al. [43] recently studied the robustness of different

ranking metrics to missing preferences (sparsity bias). They explore

how different metrics behave when gradually removing items from

the test split. In this experiment, we follow a similar approach: We

gradually remove items from the test split at random, and observe

how the systems’ ranking evolves. For doing so, we use 50 systems

produced by random shuffles of the ideal ranking. When removing

ratings, we use proportional random removal by category, i.e., we

distribute the item removals among the categories proportionally

to the category presence in the original ranking. We produce 50

different removals and report averaged values.
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Figure 4: Experiment 3. Correlation between the systems’ ranking (50 systems) computed with the whole test set and over
gradually smaller test sets for αβ-nDCG with cutoffs 100 (left) and 10 (right), averaged over 50 different removals of ratings.

After Experiments 1 and 2, only our proposed metric behaves

as desired for item and aspect relevance, redundancy, and discrim-

inative power. Therefore, in Figure 4, we only show the results

of how our metric correlates with itself (noting that a metric that

produces no information, e.g. return always 1, would still correlate

with itself).

We see that αβ-nDCG is robust to the missing rating effect,

even accounting from both item and aspect relevance and aspect

redundancy. It still shows a high correlation with itself when a

significant proportion of preferences is missing for shallow and

deeper cut-offs. This behaviour may be explained not only by the

firm foundation of the normalized discounting model, as shown

in [43], but also by explicitly considering the missing preferences

in its formulation. As commented previously, we just used a small

constant factor α for modelling the missing rating effect. In this

experiment, we see the importance of that factor. With α being a

constant, the lower the β parameter, the greater the influence of

accounting for the missing rating. In the case of cutoff 100 (left), the

lower the β , the higher the correlation of rankings. This observation
suggests the need for further work on properly estimating the

missing rating factor.

5.5 Discussion
The results of the experiments show that under our model for

the ideal ranking, the adapted αβ-nDCG performs well in all the

scenarios. The proposed perfect ordering follows the principles of

ranking exploration models previously proposed for the search task

[30]. The metric is good at detecting non-optimal item order, aspect

distribution and ranking, and topical redundancy accumulations.

Moreover, it also behaves well in terms of discriminative power

and robustness to incompleteness.

We showed the merits and drawbacks of other metrics designed

for search results diversification. In particular, when used in the

RSs field, those metrics’ performance is affected by how they model

aspect weights over user preferences. The results also point out

the importance of jointly considering item and topical relevance

together with topical redundancy. Metrics that fail to do so tend to

underperform in the tested scenarios.

6 CONCLUSIONS
This paper has further explored the problem of finding a unified

metric for item relevance and aspect redundancy.We have proposed

an adaptation of the existing redundancy aware version of nDCG

for the particular needs of evaluating RSs. Further, we have defined

a set of axioms that a useful unified metric should follow and have

shown how αβ-nDCG satisfies themwhile other adapted metrics do

not. Moreover, we have analyzed the behaviour of the metrics over

actual collaborative filtering data, complementing the theoretical

analysis.

Our metric accounts for a particular user exploration model

derived from the original nDCG. As future work, we will explore

other discount approaches based on a better understanding of user

behaviour on RSs. Moreover, we will also further study the capacity

of the α parameter to reflect different scenarios of missing ratings,

including factors such as how popular or how liked a given item is

in the collection. Finally, the most challenging next step is to design

and execute a detailed user study to validate our metric in terms of

the user’s perceived value.
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