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ABSTRACT

Deep Learning and factorization-based collaborative filtering recom-
mendation models have undoubtedly dominated the scene of recom-
mender systems in recent years. However, despite their outstanding
performance, these methods require a training time proportional to
the size of the embeddings and it further increases when also side in-
formation is considered for the computation of the recommendation
list. In fact, in these cases we have that with a large number of high-
quality features, the resulting models are more complex and difficult
to train. This paper addresses this problem by presenting KGFlex: a
sparse factorization approach that grants an even greater degree of
expressiveness. To achieve this result, KGFlex analyzes the historical
data to understand the dimensions the user decisions depend on
(e.g., movie direction, musical genre, nationality of book writer).
KGFlex represents each item feature as an embedding and it models
user-item interactions as a factorized entropy-driven combination
of the item attributes relevant to the user. KGFlex facilitates the
training process by letting users update only those relevant features
onwhich they base their decisions. In otherwords, the user-item pre-
diction is mediated by the user’s personal view that considers only
relevant features. An extensive experimental evaluation shows the
approach’s effectiveness, considering the recommendation results’
accuracy, diversity, and induced bias. The public implementation of
KGFlex is available at https://split.to/kgflex.
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• Information systems → Recommender systems; Personal-
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1 INTRODUCTION

The history of automated recommendation is closely linked to the
evolution of collaborative filtering techniques. Their notable ac-
curacy has unquestionably helped Recommender Systems getting
famous. Despite their leading performance, these methods are based
on the simple idea to recommend certain items since "similar users
haveexperienced those items", or "otherusers,whohaveexperienced
the same items,havealsoexperienced those items." In thepast,Matrix
Factorization [43] and Nearest Neighbors were the main algorithms
to implement Collaborative Filtering and, over the last years, Deep
Learning models [25] have joined this shortlist. The main limitation
of these approaches is the requirement of many parameters that
further increase at least proportionally according to the dataset size.

Differently from collaborative approaches, content-based recom-
mendation techniques aim to identify the common characteristics of
items that a user liked in the past [55]. They match the user profile
against the attributes of the items and recommend new items that
share the same features. On the one hand, the use of content features
can make the model interpretable [79] while, on the other hand,
these techniques suffer from overspecialization since they fail to
recommend items that are different from the items enjoyed in the
past. In order to get the benefits of the two approaches and mitigate
their drawbacks, researchers worked to integrate into Collaborative
Filtering the side information used in content-based approaches
such as tags [81], images [11], demographic data [80], structured
knowledge [16]. However, even there, the predominant adoption
of large and dense models implies that user-item interactions are
predicted by taking into account hundreds or thousands of features.

In thiswork,we introduceKGFlex, aknowledge-awarerecommen-
dation system, that tackles this issue by exploiting a sparse embed-
dingmodelwith an evengreater degree of expressiveness. KGFlex ex-
tracts facts andknowledge frompublicly availableknowledgegraphs
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to describe the catalog items. Then, low-dimensionality embeddings
are adopted to represent the semantic item features. KGFlex models
the user-item interaction by combining the subset of item features
relevant to the user. Moreover, it analyses the user-specific decision-
making process of consuming or not consuming an item. According
to that process, the system weights feature embeddings using an
entropy-based strategy. Therefore, KGFlex computes, for each user, a
set of features their decisions arebasedon.According toaprinciple of
expertise, during training, only the features the specific user is expert
about are updated for a given user-item pair. Hence, the user profile
itself only contains apersonal representationof each relevant feature.

To evaluate the performance of KGFlex, we conduct extensive ex-
periments on three different publicly available datasets. The content-
based features have been extracted from data encoded in the DBpe-
dia1 knowledge graph, thanks to public mappings from the dataset
items to DBpedia URIs2. We evaluate the accuracy and diversity of
recommendation results and analyze whether the algorithm pro-
ducesbiasedrecommendations.Finally,westudyhowusers’decision-
making process differs from KGFlex’s one by graphically showing
the semantic shift produced in the recommendation. The results
show that KGFlex has competitive accuracy performance, and at the
same time, generates highly diversified recommendations with a
low induced bias.

2 BACKGROUND

2.1 Knowledge-aware

Recommender Systems (KaRSs)

Nowadays, modern RSs exploit various side information such as
metadata (e.g., tags, reviews) [52], social connections [18], images [11],
andusers-items contextual data [5] to buildmore in-domain [31] (i.e.,
domain-dependent), cross-domain [29], or context-aware [36, 37]
recommendation models. Among the diverse information sources,
what is, likely, themost relevant source is Knowledge Graphs (KG𝑠).
Thanks to the heterogeneous domains thatKG𝑠 cover, the design of
knowledge-based recommendation systems has arisen as a specific
research field of its own in the community of RSs, usually referred
to by Knowledge-aware Recommender Systems (KaRS [4, 12]). The
adoption ofKG𝑠 as a source of side-information has generated sev-
eral advancements in the tasks of recommendation [16], knowledge
completion [33], preference elicitation [14], user modeling [69], and
thus produced a vast literature. In recent years, the Knowledge-
aware Recommender Systems have been particularly impactful
for several recommendation tasks: hybrid collaborative/content-
based recommendation [16, 47], exploiting theKG information
to suffice the lack of collaborative information and to improve the
performance; knowledge-transfer, cross-domain recommen-

dation [29, 41, 77], where the KG𝑠 allow to find semantic sim-
ilarities between different domains; interpretable/explainable-
recommendation [6, 13, 16, 73, 76], withKG being a backbone for
understanding the recommendation model and providing human-
like explanations;user-modeling [39, 50, 54, 69], since the resource
descriptions can drive the construction of the user profile; graph-
based recommendation [27, 61, 62, 68, 70, 71],where the topology-
based techniques have met the semantics of the edges/relations, and
1http://dbpedia.org
2https://github.com/sisinflab/LinkedDatasets

the ontological classification of nodes (classes); the cold-startprob-
lem [29, 51, 60, 74], since theKG𝑠 can overcome the lack of collabo-
rative information; the content-based recommendation [15, 53]
that solely relies onKG and still produces high-quality recommen-
dations. KGFlex could be considered a Knowledge-aware hybrid
collaborative/content-based recommendation model. While recent
models of the same kind made use of Knowledge graph embeddings
or factorizationmodels, KGFlex considerably differs from them since
it introduces the sparse factorization approach and reweights the
user-feature interactions by exploiting the information gain signal.
To the best of our knowledge, it is one of the first approaches to adopt
this hybrid solution to obtain a personalized view of the embedding
matrix.

2.2 Entropy-driven Recommender Systems

Entropy-based measures have been widely employed in recommen-
dation systems.Apopular strategy to include entropy into the recom-
mendation algorithm is to exploit it in connection with a similarity
measure. In this respect,Wang et al. [72] proposed anew information
entropy-driven user similarity-based model. They suggest measur-
ing the relative difference between ratings and develop aManhattan
distance-based model. Yalcin et al. [75] proposes two novel aggre-
gation techniques by hybridizing additive utilitarian and approval
voting methods to feature popular items on which group members
provided a consensus. They use entropy to analyze rating distribu-
tions and detect items on which group members have reached no or
little consensus. Entropy has also been used to model the purchase
probability for a given set of recommendations for a specificuser [38].
The idea is to exploit the maximum entropy principle by analyzing
features in the recommendations and user interests. Another exam-
ple of the exploitation of entropy is Lee [45], where they improve the
previous similarity measures by employing the information entropy
of user ratings to reflect the user’s global rating behavior on items.
Karimi et al. [40] proposed an innovative approach for active learn-
ing in recommender systems, aiming to take advantage of additional
information. They suggest employing entropy to drive the active
learning process and increase the system performance for new users.
Entropy has also been applied to evaluate the quality and helpfulness
of different product reviews [78]. They propose an information gain-
based model to predict the helpfulness of online product reviews
to suggest the most suitable products and vendors to consumers.
Another interesting study [22] integrates entropy more deeply into
the recommendation process. They calculate for every feature its
information gain by considering item instances that provide the fea-
ture and item instances that do not. Despite superficial similarities
with Bouza et al. [22], the two works are fundamentally different.
In fact, Bouza et al. uses the class of the features with the highest
information gain as a decision tree node, while KGFlex exploits the
information gain toweigh the single user-feature interactions.More-
over, user and feature embeddings are combined using a dot-product
similarity, showing some similarities with the former works. How-
ever, that is where the similarities end, since all thementionedworks
propose completely different models from KGFlex (e.g., distance-
based or active-learning models, feature selection techniques).

http://dbpedia.org
https://github.com/sisinflab/LinkedDatasets
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3 APPROACH

In the following, we introduce KGFlex. It exploits the knowledge en-
coded in a knowledge graph as side information to compute feature-
aware user profiles, which are eventually used to provide personal-
ized recommendation lists.

3.1 Knowledge Graph andmulti-hop predicates

The Semantic Web was initially conceived to connect documents
in theWeb and improve data retrieving and access. Over the years,
a full stack of semantic technologies emerged, leading to the Link-
ing Open Data initiative [35]. The initiative indicates the remark-
able effort of a community of researchers and practitioners to build
publicly available knowledge bases of semantically linked machine-
understandable data [20]. Thanks to the LinkedData initiative, today,
we can benefit from 1,483 differentKG𝑠 connected in the so-called
Linked Open Data Cloud3. These KG𝑠 share the same ontology
and the same schema across multiple domains, giving access to a
wide-spread knowledge at the same development cost required for
a single domain. The most appreciatedKG𝑠 of this special class un-
doubtedly are DBpedia [17, 46], Wikidata [66, 67], Yago [63] (the 4th
release [64] also supports RDF* [32]), FreeBase [21], Satori45 [49, 65],
NELL [23],Google’sKnowledgeGraph6, Facebook’s EntitiesGraph7,
Knowledge Vault [28], Bio2RDF [19]. This availability ofKG𝑠 is a
clear advantage for KaRS.

A knowledge graph KG can be represented as a set of triples
where entities are linked to each other by binary relations. Each
connection inKG is then a triple 𝜎

𝜌
−→𝜔 , where 𝜎 is a subject entity,

𝜌 is a relation (predicate), and𝜔 is an object entity. Therefore, inKG,
the edge 𝜌 connects the entity 𝜎 and the entity 𝜔 with a directed
relation. Hereinafter, we generalize the previous notion to multi-
hop predicates (i.e., considering chains of predicates that connect
two entities at a higher depth). Let 𝑛-hop predicate be defined as
𝜌 = ⟨𝜌1, ..., 𝜌𝑛⟩ if 𝜎

𝜌1−−→ 𝜔1
𝜌2−−→ ...

𝜌𝑛−−→ 𝜔𝑛 ∈ KG. For convenience,
ℎ(𝜌) = 𝑛 for 𝜌 : 𝜎

𝜌
−→ 𝜔𝑛 ∈ KG denotes the depth of the predicate

chain. When no confusion arises, from now on we will use 𝜎
𝜌
−→𝜔

to denote a generic chain withℎ(𝜌) ∈ {1,...,𝑛}.

3.2 Item and User Features in KGFlex

Given a collection of itemsI and a knowledge graphKGwe assume
each element in 𝑖 ∈ I has a mapping to a corresponding entity in
KG. Under this assumption, an item 𝑖 can be explored, at depth 𝑛,
to identify the set F (𝑛)

𝑖
of the semantic features describing it:

F (𝑛)
𝑖

= {⟨𝜌,𝜔⟩ | 𝑖
𝜌
−→𝜔 ∈KG ,ℎ(𝜌) ∈ {1,...,𝑛}}. (1)

Once the features are extracted, KGFlex handles them equally, re-
gardless of their original depth.

Example. As an example, consider theKG subgraph in Figure 1,
where a 1-depth exploration has been performed for each of five

3https://lod-cloud.net/datasets
4https://searchengineland.com/library/bing/bing-satori
5https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
6https://blog.google/products/search/introducing-knowledge-graph-things-not/
7https://www.facebook.com/notes/facebookengineering/under-the-hood-the-
entitiesgraph/10151490531588920/

items taken from a point-of-interest catalog. The formal Vondelpark
item description is:

F (1)
Vondelpark= {⟨type, Location⟩,

⟨location, Amsterdam⟩,⟨type, Urban Park⟩}. □

Wedescribe each user𝑢 ∈Uwith a setF𝑢 of features representing
the items I𝑢 ⊆I enjoyed by 𝑢. We define F𝑢 as the set of features
describing the items that user𝑢 has interacted with:

F (𝑛)
𝑢 =

⋃
𝑖∈I𝑢

F (𝑛)
𝑖

. (2)

Example. (continued) In Figure 1, we represented the items en-
joyed by two users bymarking themwith two different colors (green
and pink). To build the set F (1)

Pink, the features of all the items appreci-
ated by Pink have to be considered:

F (1)
Pink= {⟨type, Location⟩,⟨location, Amsterdam⟩,

⟨type, Urban Park⟩,⟨type, Art Museum⟩}. □

Finally, the overall setF (𝑛) of the features in the system is defined
as:

F (𝑛) =
⋃
𝑖∈I

F (𝑛)
𝑖

, (3)

with F (𝑛)
𝑖

⊆ F (𝑛) and F (𝑛)
𝑢 ⊆ F (𝑛) . Depending on the value of 𝑛

and on the size of I, the size of F (𝑛) could rapidly increase. Thus,
filtering the item features might be a reasonable choice to control
the computational and memory load and to improve the system
performance. Even though the literature about feature selection is
vast, it is worth noticing that with KGFlex also graph pruning and
semantic feature selection techniques [26] could apply. In the fol-
lowing, for convenience, the (𝑛) superscript is omitted whenever it
is not relevant in the context.

3.3 Entropy of User Features

The main assumption behind KGFlex is that users make decisions
(i.e., items to enjoy) based on a subset of item characteristics. The as-
sumption implies that not all the item features are equally important.
With KGFlex we move a step ahead in this direction by exploring
how likely a user considers a feature in her item choice process.
Taking a cue from information theory, KGFlex exploits the notion of
information gain to measure the relevance of a feature for a user in
the process of deciding to consumeor not the item. For completeness,
informationgain is not theonlymetric used to select the best variable
to partition data samples with respect to an outcome variable [59].
Nevertheless, information gain is widely adopted in a myriad of
methods since it works alsowith non-binary values of each attribute.
Moreover, for what regards the decision trees, the various informa-
tive metrics are quite consistent with each other and choosing one
or another has a limited impact on the performance [56]. For specific
reasons, some metrics could be preferred (e.g., Gini impurity is well
suited for its low computational cost [56]). However, a discussion
about the advantages of the different metrics remains beyond the
scope of thiswork. In information theory, entropy is used tomeasure
the uncertainty of a randomvariable. The entropy𝐻 (𝑉 ) of a random

https://lod-cloud.net/datasets
https://searchengineland.com/library/bing/bing-satori
https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://www.facebook.com/notes/facebookengineering/under-the-hood-the-entitiesgraph/10151490531588920/
https://www.facebook.com/notes/facebookengineering/under-the-hood-the-entitiesgraph/10151490531588920/
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Figure 1: An excerpt of a knowledge graph, showing items of a catalog (Rijksmuseum,Vondelpark, CapitolineMuseums, Piazza

Navona, and Central Park) connected to other entities by predicates. Two users, Pink and Green, have expressed positive

feedback for the items highlighted with the colors of their names.

variable𝑉 with 𝑘 possible values in {𝑣1,...,𝑣𝑘 } is defined as:

𝐻 (𝑉 )=−
𝑘∑︁
𝑖=1

𝑃 (𝑉 =𝑣𝑖 )log2𝑃 (𝑉 =𝑣𝑖 ). (4)

It is straightforward to check that a coin that always comes up
heads has zero entropy, while a fair coin equally likely to come
up heads or tails when flipped has entropy 1. Notably, if 𝑉 is a
binary random variable that is true with probability 𝑞, we have
𝐻 (𝑉 ) = 𝐵(𝑞) = −(𝑞 log2𝑞 + (1−𝑞) log2 (1−𝑞)). Therefore, given a
dataset D of training samples in the form (x,𝑦), with x ∈ R𝐹 and
𝑦 ∈ {0,1}, the entropy of the dataset is equal to𝐻 (D)=𝐵(𝑃 (𝑦=1)).

In this context, the information gain measures the expected re-
duction in information entropy from a prior state to a new state that
acquires some information.With reference to the datasetD, the new
information comes from the observation of one of the attributes 𝑥𝑑
in x. The 𝑘 distinct values {𝑥𝑑,1,...𝑥𝑑,𝑘 } that 𝑥𝑑 can assume partition
the datasetD into 𝑘 mutually exclusive subsets, thus inducing a cat-
egorical probability distribution on the values of 𝑥𝑑 . This gives the
possibility to measure the expected entropy ofD conditioned on 𝑥𝑑 :

𝐻 (D|𝑥𝑑 )=
𝑘∑︁
𝑖=1

𝑃 (𝑥𝑑 =𝑥𝑑,𝑖 )𝐻 (D|𝑥𝑑 =𝑥𝑑,𝑖 ). (5)

Then, we define the information gain 𝐼𝐺 (D,𝑥𝑑 ) obtained from the
observation of the attribute 𝑥𝑑 as:

𝐼𝐺 (D,𝑥𝑑 )=𝐻 (D)−𝐻 (D|𝑥𝑑 ). (6)

The informationgaindefined inEq. (6) returnsameasureof the im-
portanceof a single attribute indistinguishingpositive fromnegative
examples in a dataset. In KGFlex, we use the notion of information
gain to measure how relevant a feature is to a user for deciding to
consume or discard an item. In detail, to associate each feature of
the system with an information gain, KGFlex uses the workflow
described in the following.

For each user𝑢, a datasetD𝑢 is built with all the positive items
(i.e., the items the user has enjoyed) fromI𝑢 and the same amount of
negative items randomly picked up from

⋃
𝑣∈U,𝑣≠𝑢I𝑣 \I𝑢 (i.e., items

not enjoyed by the user 𝑢 but enjoyed by other users). Therefore,
following Eq. (4),𝐻 (D𝑢 )=1. Each sample is provided with a set of
binary variables corresponding to the features in F𝑢 . Each variable
indicates, for each item 𝑖 inD𝑢 , the presence (𝑓 =1) or the absence
(𝑓 =0) of the corresponding feature in the set F𝑖 .

The information gain for each feature 𝑓 ∈ F𝑢 can be computed
using the datasetD𝑢 . Let 𝑝𝑢𝑓 be the number of positive samples in
D𝑢 for which 𝑓 =1, 𝑛𝑢𝑓 the number of negative samples for which
the same feature is present, and 𝑡𝑢𝑓 the short form of 𝑝𝑢𝑓 + 𝑛𝑢𝑓 .
Analogously, we define 𝑝𝑢¬𝑓 = |I𝑢 |−𝑝𝑢𝑓 as the number of positive
samples with 𝑓 =0, 𝑛𝑢¬𝑓 = |I𝑢 |−𝑛𝑢𝑓 as the number of negative sam-
ples with 𝑓 =0, and 𝑡𝑢¬𝑓 as the short form of 𝑝𝑢¬𝑓 +𝑛𝑢¬𝑓 . Following
Eqs. (5) and (6):

𝐼𝐺 (D𝑢 ,𝑓 )=1−𝐻 (D𝑢 |𝑓 =1)−𝐻 (D𝑢 |𝑓 =0), (7)

𝐻 (D𝑢 |𝑓 =1)=
𝑡𝑢𝑓

|D𝑢 |

(
−
𝑝𝑢𝑓

𝑡𝑢𝑓
log2

𝑝𝑢𝑓

𝑡𝑢𝑓
−
𝑛𝑢𝑓

𝑡𝑢𝑓
log2

𝑛𝑢𝑓

𝑡𝑢𝑓

)
, (8)

𝐻 (D𝑢 |𝑓 =0)=
𝑡𝑢¬𝑓
|D𝑢 |

(
−
𝑝𝑢¬𝑓
𝑡𝑢¬𝑓

log2
𝑝𝑢¬𝑓
𝑡𝑢¬𝑓

−
𝑛𝑢¬𝑓
𝑡𝑢¬𝑓

log2
𝑛𝑢¬𝑓
𝑡𝑢¬𝑓

)
, (9)

where 𝐼𝐺 (D𝑢 , 𝑓 ) can be also merely regarded as a function in the
values of 𝑝𝑢𝑓 and 𝑛𝑢𝑓 .

In KGFlex, we associate a weight 𝑘𝑢𝑓 = 𝐼𝐺 (D𝑢 , 𝑓 ) to each pair
of user𝑢 and feature 𝑓 . It represents the influence of a feature —in
the view of the user— in the prediction of user-item interactions. To
compute the𝑘𝑢𝑓 values, the system designer can consider the whole
setof features inF𝑢 , orfilter themoutaccording toacutoffvalueof IG.

Example. (continued) To clarify the use of information gain in
KGFlex and show its effects, we consider the example in Figure 1.
We see that Pink has visited the Rijksmuseum and the Vondelpark,
both in Amsterdam. Thus KGFlex supposes she has a preference
for the Dutch city. On the other hand, all the items in the catalog
share the feature ⟨type, Location⟩, thus KGFlex assumes this latter
not to be influential in the user decision-making process. To build
DPink, KGFlex combines the set of items experienced by Pink with
a set of the same size containing items that Pink did not enjoy, e.g.,
DPink = {Rijksmusem,Vondelpark,Piazza Navona,Central Park}. Let
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us observe the feature ⟨location, Amsterdam⟩. According to the pre-
vious definitions, it has to be influent for Pink. GivenDPink, KGFlex
computes:

𝑝Pink, ⟨location,Amsterdam⟩ =2, 𝑛Pink, ⟨location,Amsterdam⟩ =0,
𝑝Pink,¬⟨location,Amsterdam⟩ =0, 𝑛Pink,¬⟨location,Amsterdam⟩ =2.

Consequently, according toEq. (7),𝑘Pink, ⟨location,Amsterdam⟩ =1,mean-
ing that Pink strongly takes into account if a place to visit is located in
Amsterdamornot. Therefore, KGFlex considers this feature to have a
high impact on generating the recommendations for Pink.Moreover,
it could be observed that 𝑘Pink, ⟨type,Art Museum⟩ ≈0.31. Since it is not
completely clear how influential this feature is in Pink’s decisions,
it will have a smaller influence on the predictions for Pink. Finally,
𝑘Pink, ⟨type,Location⟩ and 𝑘Pink, ⟨type,Urban Park⟩ have zero information
gain and no influence on the predictions. In detail, the former is com-
mon to all the items and does not bring additional information. The
latter is shared by the samenumber (i.e., one) of positive andnegative
samples inDPink. So, it makes this feature useless in distinguishing
positive from negative places for Pink. □

3.4 Model Architecture

KGFlex does not contain explicit representations for users and items.
Instead, it represents the features in F as embeddings in a latent
space R𝐸 . Moreover, KGFlex promotes the idea of having user fine-
tuned versions of the same model [8–10]. Therefore, in addition to
a global latent representation of each feature in F , it builds, for each
user𝑢, a personal viewof each feature inF𝑢 ⊆F . Eachuser combines
the global embeddings with her personal feature representation to
estimate the overall user-item interaction.

The recommendation model is structured into two distinct parts,
both containing a dense representation of dimensionality 𝐸 for each
feature 𝑓 ∈ F . On the one hand, KGFlex keeps a set G of global
trainable embeddings and biases shared among all the users (see
Section 3.5):

G= {(g𝑓 ∈R𝐸 ,𝑏 𝑓 ∈R) | 𝑓 ∈F }. (10)
On the other hand, each user in KGFlex also has her personal rep-
resentation of the features she interacted with, i.e., the features in
F𝑢 . These embeddings are collected within the set P𝑢 , defined as:

P𝑢 = {p𝑢
𝑓
∈R𝐸 | 𝑓 ∈F𝑢 }. (11)

KGFlex estimates the possible affinity of a feature 𝑓 to the user
𝑢 with the inner product between the personal representation p𝑢

𝑓

and the global representation g𝑓 , plus the global bias term 𝑏 𝑓 . To
estimate the overall affinity of user𝑢 to item 𝑖 , KGFlex combines the
features shared by𝑢 and 𝑖 and then weighs them according to their
pre-computedentropy-basedvalues. Indetail, beingF𝑢𝑖 =F𝑢∩F𝑖 the
set of common features between user𝑢 and item 𝑖 , KGFlex predicts
their interaction 𝑥𝑢𝑖 as it follows:

𝑥𝑢𝑖 =
∑︁

𝑓 ∈F𝑢𝑖
𝑘𝑢𝑓 (p𝑢𝑓 g𝑓 +𝑏 𝑓 ) . (12)

Eq. (12) encodes the strategy KGFlex exploits to handle thousands of
model features. In fact, it takesadvantageof theuserprofile to involve
only a small subset of them in the estimate of the user-item affinity.

Example. (continued) From the previous analysis, it is clear how
Pink’s choices (see Figure 1) are influenced by the features ⟨location,

Amsterdam⟩ and ⟨type, Art Museum⟩. Consider that the interaction
of PinkwithCapitolineMuseum is to be estimated byKGFlex. The set
of thecommonfeatures isFPink,Capitoline Museum= {⟨type,Art Museum⟩,
⟨type,Location⟩}. Accordingly to Eq. (12), the interaction ismodelled
as the summation of contributions of the common features:

𝑥Pink,Capitoline Museum=

𝑘𝑃𝑖𝑛𝑘, ⟨type,Art Museum⟩ (p𝑃𝑖𝑛𝑘⟨type,Art Museum⟩g⟨type,Art Museum⟩+
𝑏 ⟨type,Art Museum⟩)+𝑘𝑃𝑖𝑛𝑘, ⟨type,Location⟩
(p𝑃𝑖𝑛𝑘⟨type,Location⟩g⟨type,Location⟩+𝑏 ⟨type,Location⟩) .

As expected, there is no contribution of the feature ⟨type, Location⟩
because of the valueof its pre-computed entropy-basedweight. Thus,
the only contribution to the estimation is given by the embeddings
of ⟨type, Art Museum⟩. □

3.5 Learning to Rank

To learn the model parameters, KGFlex adopts the well-known
Bayesian Personalized Ranking (BPR) optimization criterion, which
is a maximum posterior estimator for personalized ranking and the
most common pair-wise Learning to Rank strategy. BPR assumes
that a user𝑢 prefers a consumed item 𝑖+ over a non-consumed item
𝑖−, and optimizes themodel bymaximizing, for each pair of 𝑖+ and 𝑖−,
a function of the difference 𝑥𝑢𝑖+−𝑥𝑢𝑖− . To update the model, KGFlex
uses stochastic gradient descent, considered that the partial deriva-
tives of the generic 𝑥𝑢𝑖 with respect to the model parameters are:

𝜕

𝜕𝜃
𝑥𝑢𝑖 =


𝑘𝑢𝑓 g𝑓 if 𝜃 =p𝑢

𝑓
,

𝑘𝑢𝑓 p𝑢𝑓 if 𝜃 =g𝑓 ,

𝑘𝑢𝑓 if 𝜃 =𝑏 𝑓 ,
0 else.

(13)

4 EXPERIMENTS

This section describes the design of the experimental setting, the
evaluationprotocol, and thebaselines. First of allwe introduce theRe-
search Questions that drove the experimental evaluation of KGFlex:

RQ1 Is KGFlex able to provide both accurate and diverse rec-
ommendation to users?

RQ2 Is KGFlex robust to popularity bias and disinclined to in-
troduce algorithmic bias?

RQ3 Whathappens ifKGFlex isdeprivedofhigh-order features?
Which are the effects on accuracy and diversity?

RQ4 Do KGFlex recommendations preserve the semantics in-
cluded in the original features?

4.1 Datasets

Wehave evaluated the performance ofKGFlex on three datasets from
different domains, namely Yahoo! Movies,MovieLens, and Facebook
Books. Each item in these datasets is provided with aDBpedia URI,
which links to the semantic description of the item as an entity of
the DBpedia knowledge graph. Yahoo! Movies contains 69,846 movie
ratings generated on Yahoo! Movies up to November 2003 on a [1,5]
scale. The ratings have been collected from 4,000 users with respect
to 2,626 items. It provides mappings toMovieLens and EachMovie
datasets. We binarize the explicit data by keeping ratings of 3 or
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higher and interpret them as positive implicit feedback. The dataset
MovieLens is a collection of users’ ratings in the movie domain: it
contains 1,000,209 ratings on a [1,5] scale from 6,040 users with
respect to 3,706 items. Similar to Yahoo! Movies, we binarize the
explicit data by keeping ratings of 3 or higher. Finally, Facebook
Books is a more sparse dataset with 18,978 positive implicit feedback
from 1,398 users about 2,933 books. To ensure a fair comparisonwith
thebaselines,weappliedan iterative10-corepreprocessingonYahoo!
Movies andMovieLens, and a 5-core preprocessing on Facebook Books.

4.2 Feature Extraction

For a fair comparison, we have used the features resulting from the
following workflow for KGFlex and for the baselines that make use
of content information, i.e., VSM and kaHFM.
ExplorationofKnowledgeGraph.The items of the datasets have
been described with a set of semantic features retrieved through a
knowledge graph exploration at depth 2 in the form of ⟨𝜌,𝜔⟩ pairs
(see Eq. 1). The semantic information has been retrieved from the
DBpedia knowledge graph8, thanks to the item-to-DBpedia-URImap-
ping providedwith the datasets. Some features (based on their 1-hop
predicate) have not been considered, since they provide auxiliar
information not useful for characterizing the content of the item
[26]. In detail, we filtered out the predicates dbo:wikiPageWikiLink,
owl:sameAs, rdf:type, gold:hypernym, rdfs:seeAlso, dbp:wordnet_type,
dbo:wikiPageExternalLink,dbo:thumbnail,prov:wasDerivedFrom, and
dbp:wikiPageUsesTemplate.
Feature Filtering based on Frequency. Irrelevant features have
been removed due to the poor information they bring and to reduce
the computational costs. Thus, we have removed the features that
are common to less than 10 items. The resulting features constitute
the common set of features for all the competing models that make
use of content features, although some of these models —including
KGFlex—may operate some further filtering operations.
Feature Filtering based on Entropy in KGFlex. As mentioned
in Section 3.3, features in the user personal representation have
been filtered as well based on their information gain. For instance,
in a 2-hop exploration of the knowledge graph, users with a large
number of transactions could reach an impressive number of nodes
of the knowledge graph. Thus, we filtered out features with little
information gain keeping, as a maximum limit for each user, the 100
most informative features from the 1-hop exploration and the 100
most informative features from the 2-hop exploration.

4.3 Baselines

To assess the effectiveness of KGFlex, we compare it with various
baselines. In particular, we are interested in comparing KGFlex with
other latent factormodels and other state-of-the-art baselines which
helps to position the model with respect to some of the best recom-
mendation approaches in the literature.
Non-competing Algorithms. Random andMost Popular are two
non-personalized recommenders used for reference.Amongcontent-
basedalgorithms,wehave chosen theVector SpaceModel (VSM) [53]
whereuser and itemprofileshavebeengeneratedwithTF-IDFandco-
sinesimilaritiesbetweenthemhavebeencomputed.Ascollaborative-
filteringbaselines,wehave considered Item-kNN[42] (an item-based
8https://www.dbpedia.org

implementation of the k-nearest neighbors algorithm) and Mul-
tiVAE [48], a non-linear probabilistic model taking advantage of
Bayesian inference to estimate the parameters.
CompetingAlgorithms.WecompareKGFlexagainst factorization-
based algorithms, both non-neural and neural. Among them, we
consider i) BPR-MF [57], a latent factor model based on the same
pair-wise optimization criterion used inKGFlex, ii) the neuralMatrix
Factorization in the version of Rendle et al. [58], iii) NeuMF [34], and
iv) kaHFM [16], another factorization-based model making use of
knowledge graphs for model building and initialization.

4.4 Reproducibility,

Evaluation Protocol andMetrics

We have chosen the all unrated items protocol to compare the dif-
ferent algorithms. In all unrated items, for each user we consider as
recommendable items all the items not yet rated by that user. We
have split the datasets using hold-out 80-20 splitting strategy, retain-
ing for each user the 80% of her ratings in the training set and the
remaining 20% in the test set [30]. All the models have been tested
in 10 different configurations of hyperparameters, according to the
Bayesian hyperparameter optimization algorithm. For the sake of
reproducibility, we provide our code and a working configuration
file for the framework Elliot [7], with complete and ready-to-use
information about the experiments we have run. We have measured
the recommendation accuracy by exploiting nDCG [44]. It has been
also used for validation and choosing the best hyperparameter con-
figurations.Wehave also evaluated the diversity of recommendation,
adopting ItemCoverage [3] andGini Index [24] (higher is better). The
former provides the overall number of diverse recommended items,
and it highlights the degree of personalization. The latter measures
how unequally a system provides users with different items, with
higher values corresponding tomore tailored lists. Finally, three bias
metrics have been used to evaluate how KGFlex and the baselines
behave on the underrepresentation of items from the long-tail. To
this aim we have used ACLT (higher is better), which measures the
fraction of the long-tail items the recommender has covered [1].
Moreover, we have also evaluated PopREO and PopRSP (smaller is
better, in [0,1]), which are specific applications of RSP and REO [82].
Notably, PopREO estimates the equal opportunity of items, encour-
aging the true positive rate of popular and unpopular items to be
same. PopRSP is ameasure of statistical parity, assessingwhether the
ranking probability distributions for popular and unpopular items
are the same in recommendation.

5 DISCUSSION

In the following, we discuss the main insights coming from the
performed experiments, with the aim of answering the Research
Questions posed in Section 4.

5.1 Accuracy and Diversity:

an Analytical and Qualitative Study (RQ1)

The first analysis aims to answer RQ1. In fact, the purpose of this
evaluation is to assesswhether KGFlex is capable to provide accurate
and diverse recommendation. Tables 1a, 1b and 1c show an analysis
of the accuracy and diversity performance comparing KGFlex with
the other baselines in terms of nDCG and Gini Index. The best and

https://www.dbpedia.org
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Table 1: Comparison of KGFlex with competing baselines (names in boldface) and other reference baselines on Yahoo! Movies,

Facebook Books, and MovieLens 1M. The best result among the competing baselines is in boldface, the second-best result is

underlined.

a) Yahoo! Movies

nDCG ItemCoverage Gini Index ACLT PopREO PopRSP

@10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1

Random 0.00960 0.00842 1050 811 0.84956 0.56591 5.52026 0.54727 0.09847 0.53357 0.00980 0.00341
Most Popular 0.15850 0.13666 49 11 0.01263 0.00103 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
VSM 0.04777 0.04534 370 93 0.05245 0.01388 3.11768 0.22701 0.49588 0.54432 0.45751 0.61122
Item-kNN 0.30739 0.34715 745 297 0.15826 0.09853 0.98842 0.08617 0.70585 0.70651 0.83466 0.85618
MultiVAE 0.23696 0.24547 399 152 0.09136 0.04187 0.23473 0.01222 0.85433 0.82931 0.96127 0.97988
BPR-MF 0.18571 0.17098 151 35 0.02191 0.00412 0.00064 0.00000 0.99543 1.00000 0.99989 1.00000
MF 0.28971 0.29987 455 177 0.09024 0.04640 0.08232 0.00257 0.87345 0.93531 0.98645 0.99577
NeuMF 0.09184 0.08549 50 13 0.01134 0.00094 0.00064 0.00000 1.00000 1.00000 0.99989 1.00000
kaHFM 0.30055 0.32383 757 290 0.16591 0.09875 0.46238 0.03344 0.76103 0.74940 0.92339 0.94472
KGFlex 0.24640 0.31218 851 370 0.28015 0.13612 2.14469 0.11447 0.44768 0.62916 0.63355 0.80797

b) Facebook Books

nDCG ItemCoverage Gini Index ACLT PopREO PopRSP

@10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1

Random 0.00690 0.00587 782 646 0.86167 0.58782 5.26045 0.53705 0.09794 0.11591 0.00749 0.00877
Most Popular 0.09393 0.08291 16 4 0.01265 0.00065 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
VSM 0.03617 0.02128 523 203 0.18874 0.08392 3.80558 0.30668 0.22616 0.76175 0.29958 0.44088
Item-kNN 0.12903 0.09244 769 338 0.37520 0.16060 2.22524 0.21056 0.48852 0.43001 0.59861 0.62075
MultiVAE 0.11914 0.08291 620 197 0.18279 0.06344 0.46368 0.02715 0.77695 0.87226 0.91818 0.95221
BPR-MF 0.09473 0.08291 17 4 0.01318 0.00066 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
MF 0.09557 0.08437 87 16 0.02376 0.00118 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
NeuMF 0.07142 0.07557 17 4 0.01245 0.00062 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
kaHFM 0.12667 0.08584 540 174 0.13866 0.06071 0.32942 0.02494 0.87663 0.93678 0.94197 0.95610
KGFlex 0.08526 0.06530 606 288 0.30703 0.15876 3.02641 0.24578 0.15210 0.13150 0.44852 0.55535

c) MovieLens 1M

nDCG ItemCoverage Gini Index ACLT PopREO PopRSP

@10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1

Random 0.00961 0.00894 3203 2701 0.86573 0.60357 6.57351 0.65662 0.07153 0.04044 0.00560 0.00200
Most Popular 0.19836 0.25124 69 19 0.00540 0.00061 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
VSM 0.04761 0.03726 170 34 0.00618 0.00114 1.53328 0.36291 0.83004 0.34127 0.82635 0.53954
Item-kNN 0.36897 0.48029 980 395 0.05838 0.03180 0.06656 0.00414 0.96059 0.97073 0.99299 0.99565
MultiVAE 0.34244 0.40030 1794 856 0.13805 0.09207 0.44553 0.04139 0.76521 0.76053 0.95220 0.95566
BPR-MF 0.36755 0.46787 1141 527 0.07654 0.04491 0.06325 0.00182 0.95507 0.99326 0.99334 0.99809
MF 0.18325 0.20785 100 35 0.00751 0.00292 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
NeuMF 0.13741 0.14955 70 18 0.00458 0.00040 0.00000 0.00000 1.00000 1.00000 1.00000 1.00000
kaHFM 0.32218 0.42034 955 337 0.04818 0.02193 0.04503 0.00166 0.97196 0.98877 0.99526 0.99826
KGFlex 0.19820 0.27542 1403 492 0.08436 0.03271 0.86126 0.04801 0.82072 0.93842 0.90570 0.94841

the second-best values are highlightedwithboldface and underline,
respectively. Although several baselines are considered (to position
themethods), a thorough comparison ismainlymadewith respect to
the latent factor models, highlighted in boldface in the first column
of tables. The results in Tables 1a, 1b and 1c have been statistically
validated with Student Paired t-test and Wilcoxon test, with a 𝑝-
value level of 0.05. The complete significance hypothesis test tables
are available in the KGFlex repository. The general behavior that can
be observed at first glance fromTable 1a is that KGFlex exhibits a sat-
isfactory performance regarding the accuracy, being outperformed
only by kaHFM andMF in the top-10 recommendation. Moreover, it
behaves even better in the top-1 task, where its nDCGvalue becomes
comparable to the accuracy result of kaHFM, which shows the best
accuracy performance. KGFlex significantly outperforms BPR-MF,
although both are learned with a pair-wise BPR optimization, sug-
gesting the useful role of the extracted knowledge. When looking

at the diversity performance represented by the item coverage and
Gini values, we note the high degree of personalization provided by
KGFlex.We link this result to thepersonalizedviewof theknowledge
granted by the framework. Moreover, in KGFlex the collaborative
signal on explicit user interests ensures to recommend diverse items
among the ones sharing characteristics of interest for the user. The
behavior pointed out so far is not entirely confirmed in Facebook
Books (see Table 1b). Indeed, here the accuracy results remain below
the performance of other factorization-based approaches. However,
the diversity results show how BPR-MF, MF and NeuMFmay have
been completely flooded by popularity signal, which led them to per-
form poorly regarding the item coverage and Gini metrics. Instead,
KGFlex approaches the superior performance of Item-kNN in terms
of diversity, and even here it shows an improvement in top-1 rec-
ommendation, where the gap is reduced. Furthermore, we analyze
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Figure 2: Accuracy vs. distributional diversity. The plots

show the value of HR@10 against SE@10: the closer to the

top-right corner the better.

Table 1c, showing the performance onMovieLens 1M. BPR-MF per-
forms superbly on this dataset, while the other factorization-based
approaches—butkaHFM—remainsignificantlybelowits capabilities.
This downward trend seems to be caused by the strong popularity
signal, which is prevailing in MF and NeuMF. Instead, KGFlex does
not suffer from this problem and it is the best model in terms of
diversity, while providing still meaningful recommendations.

What we have analytically observed is confirmed in Figure 2.
These graphs show the joint behavior of KGFlex on accuracy and
distributional diversity, by analyzing the value of Hit Ratio (HR)
on the top-10 recommendation lists with respect to the Shannon
Entropy (SE) statistics. Among factorization-based approaches (la-
belled in the plots), KGFlex approaches the right-top margin to a
greater extent. The kaHFMmodel usually is the second-best model,
but, on MovieLens 1M, BPR-MF shows its best performance. The
other approaches seem to perform very poorly in at least one di-
mension or do not have a stable position when varying the dataset.
This confirms the previous findings, and gives KGFlex the merit of
providing highly personalized recommendations, thanks to the joint
operation of the global and the personal views of the same features.

5.2 Induction

and Amplification of the Bias (RQ2)

ThebehaviorofKGFlex ledus toanalyze thequalityof the recommen-
dation in terms of popularity bias, a frequent problem causing pop-
ular items to be more and more recommended and less popular ones
to remain underrepresented [2]. This algorithmic bias may cause a
fairness issue from the item point of view, but also an inappropriate
recommendation for users who do not prefer very popular items. Ta-
bles 1a, 1b and 1c provide the values of three metrics to measure the
bias. KGFlex always outperforms all the other factorization-based
approaches and generally outperforms the other approaches. Re-
garding KGFlex, the Average Coverage of Long-Tail items, measured
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Figure 3: Ablation study on MovieLens 1M of KGFlex eval-

uated with respect of accuracy and diversity, which shows

that features from the second hop significantly improves

the model. KGFlex
(∅)

does not use features from knowl-

edge graph, KGFlex
(1)

only uses 1-hop features, KGFlex
(2)

only uses 2-hop features. The colors represent different

embedding sizes used for training.

by ACLT (the higher the better), is comparable with the value ob-
tained by VSM. This result is supported by the values of PopREO and
PopRSP (the smaller the better), which encourage the ranking prob-
ability distributions and the true positive rates of popular and less
popular items to be the same. Indeed, KGFlex and VSM grant the less
biased recommendations. Interestingly, while both exploit the same
optimization criterion, we notice howKGFlex consistently improves
BPR-MF, which is known to be vulnerable to imbalanced data and to
produce biased recommendations [82]. To conclude, we can easily
assert that the personalized representation of content information
gives KGFlex the push to provide satisfactory and diverse recom-
mendations without being negatively affected by popularity bias.

5.3 The impact

of Knowledge Graph exploration (RQ3)

In the previous experimental setting (see Section 4.2), the personal
user knowledge was represented by her 100 most informative 1-hop
features and her 100 most informative 2-hop features. To give an
intuition of how beneficial is the exploitation of these features in
KGFlex, we performed an ablation study onMovieLens 1M in which
we force KGFlex not to use features from the first hop exploration, or
from the second hop exploration, or both. Figure 3 shows the accu-
racy and diversity performance of KGFlex, and its ablated versions
KGFlex(1), using only features from the first hop, KGFlex(2), using
only features from the second hop, and KGFlex(∅), which eliminates
both. Moreover, we also plot how each version performs based on
the embedding size, to understand whether it can affect the model
variants. As expected, KGFlex(∅) performed in an unsatisfactoryway
on the recommendation task, since it cannot establish common con-
tent between users and items. With 100 first-hop features per user
(KGFlex(1)), the system provides accurate recommendation, but its
diversity performance remains low. In this configuration, changing
the embedding size is not beneficial neither for diversity nor for accu-
racy. When exploiting only features from the second hop KGFlex(2)
the situation changes: these features enable KGFlex to catch more
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(a) Original dataset

(b) Recommended lists

Figure 4: Twoword clouds showing the 100most informative

features for the users in Yahoo! Movies on the original

dataset and on the recommendation lists. The word clouds

suggest thatKGFlex is able topreserve theoriginal semantics

included in the dataset.

information about the content of the items and their relation, with
a beneficial effect for the diversity of the recommendation. The in-
formation carried by the second-hop features has more probability
of embodying the actual reason why a user decides to enjoy an item
(e.g., a usermaywatch a TV shownot strictly for the director himself
but rather for his nationality). Finally, with the addition of the first-
hop features, the complete version of KGFlex overcomes KGFlex(2)
in accuracy, regardless of the embedding size. This latter slightly
penalizes the diversity, very likely due to increased awareness re-
garding item popularity. This aspect requires further investigation
and suggests room to increase the KGFlex performance further. The
study definitely answers RQ3. As expected, the lack of a piece of
knowledge negatively impacts the system. However, interestingly,
the combination of first- and second-hop features positively impacts
on accuracy and diversity performance of KGFlex.

5.4 Preservationof theOriginal Semantics (RQ4)

KGFlexmakes extensive use of side information and takes advantage
of it in various training phases. Nevertheless, there are no guarantees
that KGFlex is really able to catch the semantic information encoded
and use it to propose coherent recommendations. To investigate
this aspect, we have analyzed the features characterizing the rec-
ommended items and we have compared those features with the
features derived from the user’s historical interactions.We have con-
ducted a graphical experiment, showing the information gain of each
feature in the system before and after the recommendation. Figure 4

Table 2: Percentage of preserved top-𝑘 user features after

the recommendation. The first (𝑄1), the second (𝑄2), and
the third (𝑄3) quartile (over all the population of users) of

per-user percentages are shown.

𝑘 =∞ 𝑘 =100 𝑘 =50 𝑘 =10 𝑘 =5

𝑄1 14.5% 11% 12% 20% 20%
𝑄2 21.5% 21% 26% 30% 40%
𝑄3 31.5% 37% 48% 60% 60%

depicts the word clouds of the features that could be involved in user
decision-making gathered from all the users in Yahoo! Movies. In
detail, Figure 4a represents the prominence of each feature, in terms
of information gain, in the original dataset. Instead, in Figure 4b, the
same analysis is performed on the recommendation lists provided
byKGFlex. For the sake of readability, both theword clouds visualize
the 100 most informative features. We observe that topics related
to science fiction persist at the top, including the interest for the
director Steven Spielberg and for JohnWilliams (also bymeans of his
spouseBarbaraRuick) and the interest in fantasyfilmsaward-winner
movies. More precisely, 79% of the top 100 informative features from
the dataset are associated with items in the recommendation list.
Additionally, for each user, we have computed the percentage of
her 𝑘 most informative features that have been retained in her rec-
ommendation list, with 𝑘 ∈ {5,10,50,100,∞}. Table 2 shows, for
each column, the first, the second (median), and the third quartile
of such percentages over all the population of users. It is remarkable
how KGFlex provides a higher coverage of the original semantic
when considering features more important to the users (i.e., lower
𝑘). Finally, with the support of Figure 4 and Table 2, we answer to
RQ4. Overall, it could be easily observed that KGFlex preserves the
mainusers’ interests involved in decision-making. This suggests that
KGFlex is able to preserve the original semantics, deeply integrating
the content-based information into its recommendations. Finally,
this evidence suggests that we could be a step closer to providing
users with items that they would have chosen autonomously.

5.5 Limitations of KGFlex

Section 4.1 explicitly refers to datasets linking to a knowledge graph
such asDBpedia. Nonetheless, the approach behind KGFlex works
independently of the type of side information. In fact, a dataset with
each item linked to a generic set of features or attributes would suf-
fice KGFlex. However, the quality of the side informationmay have a
profound impact on the final performance of the method. Moreover,
if the side information is structured as a graph, also the depth of the
exploration may impact the performance. In this work, we exploited
knowledge graphs as side information since they are recognized to
provide high-quality information. Nevertheless, their unavailability
does not preclude the use of KGFlex.

6 CONCLUSION

This paper has introduced KGFlex for producing knowledge-aware
recommendations from implicit feedback.KGFlex takes thebest from
content-based and factorization-based recommendation approaches
for building a sparse model, where features extracted from a knowl-
edge graph are embedded in a latent space. The interactions between
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users and items in KGFlex are combinations of users’ feature repre-
sentations and global feature representations, weighted according to
the importance of each feature. KGFlex showed its superior behavior
in terms of item diversity on three datasets while being very accu-
rate and resilient to algorithmic bias. We have also shown the role a
knowledge graph may play in feeding KGFlex with side information
and how the extracted features preserve their semantics in the rec-
ommendation lists. This newmethod seems to be highly flexible and
suited to practical applications. As future work, we plan to extend
the approach with a finer feature selection, new types of feedback,
alternatives to information gain, other types of side information, and
other losses. Finally, we will further investigate feature embeddings
to achieve an even more precise representation of features.
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