
cDLRM: Look Ahead Caching for Scalable Training of
Recommendation Models

Keshav Balasubramanian
keshavba@usc.edu

University of Southern California
USA

Abdulla Alshabanah
aalshaba@usc.edu

University of Southern California
USA

Joshua Choe
choejd@usc.edu

University of Southern California
USA

Murali Annavaram
annavara@usc.edu

University of Southern California
USA

ABSTRACT
Deep learning recommendation models (DLRMs) are typically com-
posed of two sets of parameters: large embedding tables to handle
sparse categorical inputs, and neural networks such as multi-layer
perceptrons (MLPs) to handle dense non-categorical inputs. Cur-
rent DLRM training practices keep both these parameters in GPU
memory. But as the size of the embedding tables grow, this practice
of storing model parameters in GPU memory requires dozens or
even hundreds of GPUs. This is an unsustainable trend with severe
environmental consequences. Furthermore, such a design forces
only a few conglomerates to be the gate keepers of model training.
In this work, we propose cDLRM which democratizes recommen-
dation model training by allowing a user to train on a single GPU
regardless of the size of embedding tables by storing all embed-
ding tables in CPU memory. A CPU based pre-processor analyzes
training batches to prefetch embedding table slices accessed by
those batches and caches them in GPU memory just-in-time. An
associated caching protocol on the GPU enables efficiently updat-
ing the cached embedding table parameters. cDLRM decouples the
embedding table size demands from the number of GPUs needed
for compute. We first demonstrate that with cDLRM it is possible to
train a large recommendation model using a single GPU regardless
of model size. We then demonstrate that with its unique caching
strategy, cDLRM enables pure data parallel training. We use two
publicly available datasets to show that a cDLRM achieves identi-
cal model accuracy compared to a baseline trained completely on
GPUs, while benefiting from large reduction in GPU demand.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Recommendationmodels, efficient training, distributed data parallel
training, caching, prefetching

This work is licensed under a Creative Commons Attribution International
4.0 License.

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8458-2/21/09.
https://doi.org/10.1145/3460231.3474246

ACM Reference Format:
Keshav Balasubramanian, Abdulla Alshabanah, Joshua Choe, and Murali
Annavaram. 2021. cDLRM: Look Ahead Caching for Scalable Training of
Recommendation Models. In Fifteenth ACM Conference on Recommender
Systems (RecSys ’21), September 27-October 1, 2021, Amsterdam, Netherlands.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3460231.3474246

1 INTRODUCTION
Recommendation systems have become an integral tool for driving
user engagement in many technology platforms. From personal-
ized news recommendation [8] to job candidate recommendation
[5], these systems play an important role in improving user ex-
perience and maximizing platform viability. A variety of differ-
ent machine learning techniques have been successfully used in
constructing recommendation systems. These include statistical
learning techniques such as Bayesian modelling [4, 9], kernel meth-
ods [16], and matrix-factorization based methods [15]. The success
of deep learning frameworks such as deep neural networks has
created new avenues to improve the accuracy of recommendation
models [2, 3].

Deep learning based recommendation models are significantly
larger than traditional DNNs [11]. For instance, the open sourced
Facebook recommendation model (DLRM) [12] has a model size
that can exceed several hundreds of GB, which we detail in the
next section. Much of the DLRM parameters constitute dozens of
embedding tables that are learned using terabytes of training data.
Since the embedding tables are extremely large, accesses to these
tables are extremely sparse. Out of the millions of table entries,
only a few hundred to a few thousand entries are updated on each
training batch. While DLRM could be trained on a CPU, it also has
a high computational demand in the fully connected dense layers
where substantial parallelism exists. To exploit the computation
parallelism current recommendation model training practices rely
on GPUs to train the models. But to train the model on a GPU re-
quires storing the large embedding tables across multiple GPUs. Our
preliminary analysis showed that recommendation model training
exploits the memory distributed across GPUs but is rarely able to
fully utilize the available GPU hardware parallelism. In particular,
for large models we observe that there is a point beyond which
multiple GPUs are used merely for their memory, even though
the computational load of training does not require these GPUs.
On the other extreme, if the training is entirely done on CPUs,
where there is substantially more and relatively cheap memory,

263

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3460231.3474246
https://doi.org/10.1145/3460231.3474246
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460231.3474246&domain=pdf&date_stamp=2021-09-13


RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Balasubramanian, et al.

the performance also suffers due to the lack of sufficient parallel
hardware.

Inspired by these observations, in this work we present cDLRM,
a novel approach to decouple the memory demands of recommen-
dation models from the computational demands. cDLRM places the
embedding tables on the CPU while allowing the training process
to run on a GPU. However, instead of slowing down the training
to access the CPU-resident embedding tables, cDLRM proactively
analyzes training batches ahead of time to precisely identify the
necessary subset of embedding table entries that are needed for
a batch. Based on this analysis, it caches the embedding table en-
tries that are necessary to train an upcoming batch into the GPU
memory just-in-time before the start of that training batch, thereby
avoiding the need to access embedding tables on the CPU. cDLRM
relies on CPU threads to identify the embedding entries for caching
while enabling training of large recommendation models using
even just a single GPU. By enabling training on a single GPU our
approach makes recommendation model training affordable to even
small businesses. We then show how cDLRM can scale the training
speed with the availability of additional GPUs by supporting data
parallel training. By leveraging model caching and data parallel
training we provide a resource efficient solution that gracefully
scales performance and cost.

The primary contributions of this work are as follows:
(1)We propose a system, that we call cDLRM in which all embedding
tables are kept in CPU DRAM while only a small cache of each
table is stored in GPU memory. cDLRM is built on the concept
of lookahead caching where a CPU thread pre-processes training
batches and caches the necessary embedding table entries to GPU
memory. Training is contained entirely on the GPUs without ever
letting gradients flow back to the CPU. cDLRM is based on the
insight that only a subset of embedding table rows are required to
train for a set of samples.
(2) We demonstrate the effectiveness of cDLRM by training large
models on just a single GPU and also demonstrate how cDLRM
can scale out in a purely data parallel manner when additional
GPUs are available. To the best of our knowledge this is the first
work to demonstrate distributed data parallel training of large
recommendation models using table embedding caching as the
foundation.
(3) We quantify the impact of cDLRM by training on 2 publicly
available datasets and demonstrate that with little (< 0.02%) to no
loss in accuracy, we can train the DLRM in a highly cost efficient
manner.

2 BACKGROUND AND MOTIVATION
Deep Learning Recommendation Model Architecture: Our
work builds on the DLRM model proposed in [12], which is a rec-
ommendation system deployed at Facebook. The DLRM model
used in this study is based on the architecture shown in Figure
1a. The model learns on data that is composed of continuous and
categorical features. Typically, the continuous features represent
user information, such as age, gender, and the categorical features
represent interaction object information. Interaction objects are
usually links that a user can click on. For example, they could be
links to product ads, news feeds etc.,. The user and interaction

object relations are learned using embedding tables that map them
to dense representations, and continuous features are learned using
through Multi-layer Perceptrons (MLPs).
Training large models: Training the DLRM is both a memory-
intensive task due to large embedding tables, and a compute-intensive
task due to MLPs. While both the MLPs and the embedding tables
make up the model’s parameter set, the total memory footprint
of the MLPs is much smaller than that of the embedding tables.
The total memory footprint of the embedding tables can be hun-
dreds of gigabytes or even terabytes, while MLPs only consume
hundreds of megabytes. Current training systems store all model
parameters in GPUmemory. Since the embedding tables can exceed
even the largest GPU memory size, typically tens or even hundreds
of GPUs are employed to distribute the model parameters [11].
Thus, recommendation models like DLRM are implemented using a
partial data-parallel and a partial model-parallel hybrid system, in
which data parallelism is used to improve the performance of the
MLPs and model parallelism is used to accommodate the memory
requirements of the embedding tables. To achieve data parallelism,
the MLPs are replicated on all the GPUs to be used in the train-
ing, whereas to achieve model parallelism the embedding tables
are split between the GPUs using different allocation strategies.
For instance, DLRM [12] uses round robin allocation, where em-
bedding table are allocated to different GPUs in a round-robin
manner.
Drawbacks of the current system: The number of GPUs needed
for training is determined primarily by the total memory needed
to store the embedding tables. The main drawback of this sys-
tem is that when the embedding tables become larger, the number
of GPUs that are needed to accommodate the embedding tables
increases. GPUs with large integrated memory are extremely ex-
pensive compared to the much cheaper discreet DRAM DIMMs
on CPUs. Hence, increasing GPU count to accommodate large
models will substantially reduce the ability of small businesses
to train large models. Even on the computing front there is a
point, which we call the compute saturation point, beyond which
increasing the number of GPUs used no longer provides any per-
formance benefit during the data parallel computation of the MLPs.
Compute saturation is reached when it is no longer feasibly to
fully utilize available parallel GPU resources due to limited avail-
able parallelism in the computation. The result is that this system
scales poorly in terms of the number of GPUs used, only using
them for model storage beyond a point. Hence this system can re-
quire very expensive compute infrastructure to be able to train the
model.

2.1 Basic approaches to addressing memory
footprint and their shortcomings

CPU-only training - The simplest approach is to train the entire
model on the CPU. The benefits of CPU-only training are that
CPU DRAM is much cheaper and all communication overhead is
eliminated. The downside to this approach is that computation
now becomes the bottleneck since the MLPs and second order
interactions are much slower on the CPU than they are on GPUs.
It is also possible to distribute training on multiple CPU sockets

264



cDLRM: Look Ahead Caching for Scalable Training of Recommendation Models RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Embedding 
Table 1

Embedding 
Table M

Embedding 
Table 2

...[ fp1 , fp2 , ... , fpC ]

Dense Features

MLP

...

Dot Product 
Summation 

Concatenation

Interactions

Continuous 
Features

Categorical 
Features

Interaction Probability

In
te

ra
ct

io
n

s
B

o
tt

o
m

 M
L

P
To

p
 M

L
P

In
p

u
t

O
u

tp
u

t

O
p

ti
o

n
al

MLPMLPMLP

MLP

DLRM Baseline (2 GPUS) Naive CPU + 1 GPU CPU Only
System

0

10

20

30

40

50

60

70

Pe
r b

at
ch

 it
er

at
io

n 
tim

e 
(m

s)

(a) (b)

Figure 1: (a) DLRMModel Architecture (b) Performance comparison of simple approaches to reduce memory

but they suffer potentially more communication bottleneck since
inter-CPU bandwidth is typically less than inter-GPU bandwidth.
Naive CPU + GPU training - A strategy that improves upon
CPU-only training is to use GPUs for MLP and second order inter-
action computation while still keeping all embedding tables in CPU
DRAM. This involves frequent communication between the CPU
and the GPU, with two major communication points - (1) during
forward propagation, embeddings are fetched from the CPU and
transferred to the GPU(s) and (2) during back propagation, gradi-
ents flow back into the embedding tables on the CPU. While this
system speeds up MLP computations and second order interactions
by performing them on the GPU, CPU to GPU data transfer is an ex-
pensive overhead. Thus, the major drawback here is the frequency
of data transfer between the CPU and GPU. Figure 1b shows the
comparison between training using 2 GPUs with the default DLRM
based hybrid parallel training (first bar), Naive CPU + GPU train-
ing (second bar), CPU-only training (third bar). There is nearly 3X
training delay when using CPU only or a naive CPU+GPU training
approaches.
Hashing - Another approach that seeks to keep all the embedding
tables on the GPU while reducing the amount of memory required
by each table is based on hashing. This is a prevalent model size
reduction strategy. The idea is to reduce the number of rows in
each embedding table and map all the indices into the reduced
table using a hash function. Naturally, this leads to entanglement
of embeddings and our experiments show that the final model
accuracy can decrease substantially as a result. This phenomenon
has also been observed in prior work [17]. This solution is often

the least used in industry since even a 0.1% decrease in accuracy
can lead to a significant reduction in revenue [19].

3 CDLRM PRELIMINARIES, TERMINOLOGY
AND NOTATION

3.1 Caching Preliminaries
In computer systems, caching is used to reduce the latency of access-
ing main memory. Caches are small amounts of on-chip memory
that is used for storing data that is frequently accessed. A copy of
this frequently accessed data is fetched from main memory and is
kept resident in the cache to speed up future accesses to the same
data. Caches by design are much smaller in capacity than that of
main memory, and hence the cache management system has to
decide what parts of the main memory data to store in the cache
and which data to remove from the cache.

Modern processors use a set-associative cache. Set-associative
caches are organized into bins, which are called sets. A memory
address is first mapped to a given set. For instance, with 1K sets
in a cache a 64-bit memory address is hashed to generate a 10-bit
set index. Each set is composed of multiple ways. Ways allows
multiple memory locations to be cached in the same set. Thus, after
a memory location is mapped to a particular cache set, it is cached
in a way in the selected set based on a way-selection algorithm.
Since the memory is much larger than main memory the hashing
process may map many memory locations to the same set. When a
set is fully occupied a way replacement may find an existing cache
way and replace that with the new data. Some example selection

265



RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Balasubramanian, et al.

and replacement heuristics are the first available way, random way,
or least recently used way.

Since multiple memory locations can map to the same set there
is a need to identify which memory locations are currently stored
in that set. For this purpose caches use a structure called a cache
tags. To access the cache, each memory location is first hashed to
find the set index. Then the cache access logic searches the cache
tags of all the ways in that set to determine if that memory location
is in fact present in that set. If it is present it is called a cache hit,
otherwise it is treated as a miss and that location is fetched from
its original memory location.

3.2 Embedding table cache structure
To reduce the overall memory footprint of the embedding tables
in the GPU, cDLRM uses an embedding table cache structure that
occupies a much smaller memory footprint in GPU DRAM. The
embedding table cache structure in the GPU is organized much
like a CPU cache described above. For a recommendation model
with embedding table set E = {e1, ...., em }, in which table ei ∈

Rri×d , where ri is the number of rows in table ei , and d is the
dimensionality of the embeddings, the embedding cache is the set
of smaller embedding tables C = {c1, ...., cm }, ci ∈ Rsi×w×d . Here
si is the number of sets andw the number of ways in cache ci , in
line with standard terminology from memory caches. The number
of sets is chosen based on a hyperparameter L. If ri ≤ L then the
entire table is stored on GPU, i.e. si = ri , otherwise we use a simple
hashing function to map the embedding table entry to a cache set
as follows: si = NextPrime(L) 1. Note that the reason for using the
NextPrime hashing function is to reduce potential collisions when
two embedding table entries may map to the same set. The number
of waysw is also a hyperparameter that is empirically selected. E
resides in CPU DRAM, while C resides in GPU DRAM.

3.3 Lookahead Windows
A lookahead window of size n is a set of n consecutive batches that
appear in the training set. For training set Dtrain and batch size b,
the number of lookahead windows of size n that Dtrain can be split
into is ⌈ |Dtrain |

bn ⌉. Each lookahead window is made up ofbn training
examples. We refer to this as the span of the lookahead window.
The span is the upperbound on the number of unique indices that
are being looked up in any table in any given lookahead window,
and is much smaller than the number of rows in the table. This
observation is especially true when embedding tables are large,
which is the case for many of the production recommendation
models. In the training datasets that we have studied, we find in
practice that the number of unique indices accessed in a lookahead
window tends to be even smaller than the span.

Based on this observation, we conclude that maintaining an
entire table on the GPU, when only a part of it is being accessed
and updated over the nextn batches, is wasteful. If we can find away
to fetch the embeddings for the indices that are going to be looked
up over the next n batches from E and move these embeddings
into C just-in-time as training on the next n batches starts, we can
significantly reduce thememory usage on the GPU. The prefetching,
1NextPr ime(x ) computes the smallest prime number ≥ x efficiently by leveraging
Bertrand’s postulate.

caching+training, and eviction processes, described next, work in
unison to achieve this goal and enable training of a recommendation
model with minimal overhead.

4 CDLRM OVERVIEW
The block diagram in figure 2 illustrates the different components
of the cDLRMworking together. cDLRM consists of three processes:
prefetching, caching+training, and eviction. Each process relies on
a set of queues to move embeddings between the CPU and GPU.
At the start of training, the prefetching process reads a set of n
training batches, where n is the size of the lookahead window. The
selection of this lookahead window parameter is based on multiple
factors as will be discussed. The goal of the prefetching process is
to extract all the unique indices accessed in the lookahead window
for each table. It then fetches the embeddings associated with these
unique indices and pushes them into a queue labeled Qlookahead .
Concurrently, the caching+training process reads the embedding
entries stored in the Qlookahead queue and uses a hash algorithm
to place each of these embeddings into the table caches resident in
GPU DRAM. This process handles the complexities associated with
cache management. After placing the entries fromQlookahead into
the table caches, the caching+training process performs forward
and backward propagation. This training is completely contained
in the GPU, with gradients never flowing back into the primary
embedding tables on the CPU. The last process, the eviction process,
is responsible for writing the updated embedding vectors back to
the CPU embedding tables.

The prefetching process must stay ahead of the caching+training
process so that the caching+training process is not stalled wait-
ing for embeddings. The selection of the lookahead parameter is
primarily determined by this consideration. Since the speed of
the prefetching and caching+training processes can vary based on
the underlying hardware configuration, we use a profiling tool to
measure the training speed for a given model and batch size on
the selected GPU configuration. We also measure the speed of the
prefetching process in identifying and extracting unique indices
of a single batch from the CPU-resident embedding tables. The
ratio of the training speed over the prefetching guides the choice
of lookahead window size. If these profiled measurements change
dynamically due to bandwidth and other runtime bottlenecks, train-
ing may occasionally stall. If such a stall occurs, our approach can
be adapted to dynamically increase the lookahead window. In our
experiments we did not have to change the lookahead window
since the speed ratios are quite stable.

5 TRAINING CDLRM ON A SINGLE GPU
A unique feature of cDLRM is that is that it only ever needs a
single GPU to accommodate the model. Since only caches of the
embedding tables are stored in GPUmemory, we can always choose
a cache size to fit within the limits of a single GPU’s memory
regardless of the actual size of the whole embedding tables. We first
describe the details of the various processes and how they cooperate
to achieve training cDLRM on a single GPU before presenting how
cDLRM scales out to multiple GPUs in a purely data parallel fashion.

266



cDLRM: Look Ahead Caching for Scalable Training of Recommendation Models RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

CPU DRAM GPU GDDR

....wi

c1

wi

cm

Qwriteback

Pprefetching 

Pcache+train

Peviction 

victim table 1 victim table m

....

Pcache+train 

Pcache+train 

Pspawned

Pspawned

Pspawned

MLPs

wi

c2

forward + backward + parameter update

BufferSSD

Preader 

....
occupancy

table 1
occupancy

table m Miss?

e1 em

....

Q lookahead Pcache+train

Preader 

Figure 2: cDLRM Block Diagram

Algorithm 1 Prefetching
Input: training set: Dtrain, lookahead window size: n, training

batch size: b, embedding tables: E = {e1, ...., em } shared lookahead
window queue: Qlookahead

1: while LW ← NextLookaheadWindow(Dtrain ,b,n) do
2: unique_embeds← []
3: for i ← 1 tom do
4: Ui ← ComputeUniqueIndices(LW , i)
5: Pi ← ei [Ui ]
6: unique_embeds.append(Pi )
7: end for
8: Qlookahead .push(unique_idx_embeds)
9: end while

5.1 Prefetching Process
The fundamental role of the prefetching process is to identify the
embedding vectors needed to train on the next window of batches
and feed these embeddings to the caching+training process. It does
so by pre-processing a set of training batches that are read from a
training dataset. The training dataset may be present in a remote
storage, and a separate reader process may fetch these batches
into a buffer and forward them to the prefetching process (figure 2
shows the buffering of the reader process). For every embedding
table, the prefetching process computes the unique indices in a
lookahead window of batches and fetches the embeddings corre-
sponding to these unique indices from E. The fetched embeddings
are buffered in Qlookahead , which the caching+training process
will pull from. Algorithm 1 outlines this procedure. In practice, the
outer while loop is parallelized using a number of processes that
are spawned from a process pool by the prefetching process. Each
of the processes spawned from the pool is responsible for executing
the body of the loop on a single lookahead window. This ensures
that the caching+training process that consumes the entries from
Qlookahead , is never stalled as a result of a prefetching bottleneck.
Popular machine learning frameworks such as PyTorch [13] and
TensorFlow [1] use a similar approach in their dataloaders.

Note that it is possible that some embedding vectors corre-
sponding to a subset of unique indices may already have been
transferred to GPU cache in a prior training window. But the
prefetching process does not try to prevent loading such vectors

into the Qlookahead queue. Instead, we leave this responsibility to
the caching+training process to provide a consistent view as we
describe next.

5.2 Caching+Training Process
The computation performed by the caching+training process is
split up into three phases 2: (1) preloading / caching, (2) forward
propagation and (3) backpropagation and parameter update.

5.2.1 Preloading. In the preloading phase, the process pulls the
embeddings corresponding to the unique indices in the next n
batches from the Qlookahead queue and caches them in C. The set
index for original index j in table ei is computed using the modulo
operator (Specifically jset = j % si ).

Handling coherence. Before placing an embedding vector into
GPU cache ci , the caching+training process must make sure that
this indexwas not already cached in a prior caching step. If the index
is already in ci , then the prefetched embedding vector from CPU
DRAM is stale. Rather than search ci for a cache hit, which takes
up GDDR bandwidth, we maintain a separate data structure on
the CPU called the occupancy table. There arem occupancy tables,
each one corresponding to one ci . An occupancy table stores which
embedding table entries are currently resident in GPU. As such, the
occupancy table is essentially a tag structure for the embedding
table caches and is stored in CPU DRAM to enable the CPU to
manage the caching process.

To find out if the embedding corresponding to index j in table ei
is resident in ci , the caching+Training process needs to compute the
set index of j and lookup the occupancy table for ci . Thus, the set
of unique indices for table ei that has been pulled fromQlookahead
can be split up into two disjoint subsets: J ihit , the set of indices
whose embeddings are already in ci , and J imiss , the set of indices
whose embeddings need to be moved into ci . Any set+way that
stores an index ∈ J ihit is considered a pinned entry so it will not be
evicted until it is used by the training pipeline.

Caching missing indices. The second step is to cache embed-
dings for indices in J imiss . For each j ∈ J imiss we compute its set
index S as described above. The way within the set S into which
its embedding will be moved is chosen uniformly at random from
2For simplicity, we describe the phases by focusing on a single embedding table ei .
The description generalizes for all embedding tables.

267



RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Balasubramanian, et al.

Algorithm 2 Single GPU Training
Input: training set: Dtrain, lookahead window size: n, training
batch size: b, embedding table caches: C = {c1, ...., cm }, victim
tables V = {v1, ...,vm }, DLRM MLPs:Mbot ,Mtop , shared

lookahead window queue: Qlookahead, eviction queue: Qwriteback,
number of epochs: num_epochs,

1: for epochs ← 1 to num_epochs do
2: while bk ← NextBatch(Dtrain ,b) do
3: if k % n == 0 then
4: unique_embeds ← Qlookahead .pull()
5: CacheEmbeds(C,unique_embeds,Qwriteback )

6: end if
7: Forward(Mbot ,Mtop ,C,V ,bk )

8: Backward(Mbot ,Mtop ,C,V )
9: Update(Mbot ,Mtop ,C,V )
10: FlushVictimTables(V ,Qwriteback )

11: end while
12: end for

any unpinned entries in that set. The reason for choosing ways at
random is performance. Our implementation is heavily parallelized.
If we were to choose an alternate policy such as the next available
way, the caching procedure would have to be serial, making the
entire process slower. Thus, random way selection allows multiple
indices to randomly and concurrently pick an available way in a
set. Multiple original indices that map to the same set could end
up choosing the same way to cache their embedding in. By using
different random seeds one can minimize such overlap. But in the
worst case, to resolve a conflict when two indices map to the same
index within the set, we once again choose one of the colliding in-
dices at random to occupy the way. The embeddings corresponding
to all the other colliding indices are considered conflict victims of
the caching procedure. These conflict victims are unable to stay
within a given set and are handle differently.

In practice, such a collision is extremely rare. This is because two
unique indices from J imiss can only have a potential collision if they
map to the same set. We evaluated different policies on handling
conflict victims, but given the rarity of this scenario we simply
do not place a conflict victim into the GPU cache. Instead, during
training we re-fetch the missing embedding vector (conflict victim)
from the CPU directly into a victim buffer as we describe in section
5.2.2.

Evicted Embeddings. Any way in a set that is evicted to make
room for embeddings of indices in J imiss needs to be written back
to the CPU to update ei . The caching+training process works with
the eviction process (section 5.3) to orchestrate this writeback. The
caching+training process simply pushes the evicted embeddings
into an eviction queue,Qwriteback , fromwhich the eviction process
will pull the evicted embeddings and write them to ei .

5.2.2 Forward Propagation. The phase that follows the caching
phase is the forward propagation phase. In this phase, the caching+
training process performs a forward propagation on a single batch
of training examples. The continuous features in the batch are
transformed through the MLPs, while the categorical feature vector
consists of indices for which embeddings need to be obtained.

Indices that hit in ci. After the caching phase, the embeddings
for most indices needed over the current lookahead window of n
batches will be resident in ci . The reason we cannot guarantee that
the embedding for every index in every batch in the lookahead
window will be in ci is because some of them might be conflict
victims as explained in section 5.2.1. The hitting indices can simply
lookup their embeddings in ci by computing the set and the way.
Indices that miss in ci. While indices that miss in a cache are
rare, we still require the conflict victim embeddings on the GPU to
enable GPU-contained training. To address this issue, we maintain
a victim table vi ∈ Rb×d , similar to a victim cache [7], in GPU
DRAM, into which the conflict victim embeddings will be cached
on demand during forward propagation. This involves a CPU to
GPU data copy step that adds overhead. An important note about
the size of the victim table is that the number of rows need only be
as large as b, the size of the batch. This is because in a batch of size
b, there can only be at most b indices that miss in ci . In practice
we find that hit rates in the primary cache are very high and that
we rarely use more than a few rows in the victim table to handle
conflicts. Once the conflict victims have been placed into the victim
table, all of the required embeddings for the current batch are in
GPU memory, and the GPU-contained forward propagation can
proceed.

5.2.3 Backpropagation and Parameter Update. Backpropagation,
gradient computation, and parameter updates happen entirely in
GPU memory. Embeddings of hitting indices are updated in ci , and
embeddings of conflict victims are updated in vi . All MLPs are
updated in GPU memory as well. After updating all the parameters,
the conflict victims that are buffered invi are explicitly flushed into
the eviction queue while the cache resident embeddings are left as
is where they may be evicted later. Algorithm 2 outlines the entire
training procedure.

5.3 Eviction Process
The last of the three processes is the eviction process. Its role is
simply to pull embeddings that have been pushed into the eviction
queue by the training process and write them back to the original
embedding tables in CPU DRAM, namely, E. It is computationally
the least intensive process of the three.

Several of the cDLRM design choices were made in favor of high
performance rather than strictly enforcing an identical behavior of
a baseline uncached system, that performs forward passes on em-
beddings that have been updated only after the previous backward
pass. For example, consider the following illustrative scenario: let j
be a unique index that is needed during lookahead windoww and
w + 2, but not in w + 1. If the prefetching process is prefetching
data for window w + 2 it may fetch embedding vector for j from
the CPU and place it in Qlookahead . But during window w + 1, j
may be evicted and pushed back to CPU. Finally during window
w + 2 the caching+training process may simply read the data from
Qlookahead , which may be a stale embedding. While such cases
occur rarely, it is important to note them to understand their im-
pact on accuracy. The only way to avoid this race condition is to
use locks, which would make the whole system slower. Hence, for
performance reasons, we opt to allow rare stale embeddings. We

268



cDLRM: Look Ahead Caching for Scalable Training of Recommendation Models RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Algorithm 3Multi GPU Training (process perspective)
Input: training set: Dtrain, lookahead window size: n, training
batch size: b, embedding table caches: Cr = {cr1 , ...., c

r
m }, victim

tables Vr = {vr1 , ...,v
r
m }, DLRM MLPs:Mbot

r ,M
top
r , lookahead

window queue: Qlookahead, eviction queue: Qwriteback, number of
epochs: num_epochs, process rank: r, communication world:W,

cache aggregate granularity: λ
1: for epochs ← 1 to num_epochs do
2: while brk ← NextBatch(Dtrain ,b) do
3: if k % n == 0 and r == 0 then
4: unique_embeds ← Qlookahead .pull()
5: CacheEmbeds(C0,unique_embeds,Qwriteback )

6: BroadcastCacheState(C0,W )
7: end if
8: Forward(Mbot

r ,M
top
r ,Cr ,V r ,brk )

9: Backward(Mbot
r ,M

top
r ,Cr ,V r )

10: AддreдateMLPs(Mbot
r ,M

top
r ,W )

11: Update(Mbot
r ,M

top
r ,Cr ,V r )

12: if k % λ == 0 then
13: AддreдateCaches(Cr ,W )
14: end if
15: FlushVictimTables(V r ,Qwriteback )

16: end while
17: end for

show empirically that the allowance of this staleness does not hurt
model accuracy.

6 DATA PARALLEL TRAININGWITH
CACHING

While cDLRM enables the training of DLRM on a single GPU regard-
less of embedding table sizes, when multiple GPUs are available it
is possible to improve the training speed by using data parallelism
in MLPs to speed up the overall computation. In such cases, cDLRM
can easily scale out to multiple GPUs in a purely data parallel fash-
ion by replicating the embedding table caches as well as MLPs on
all participating GPUs. While prior approaches used model repli-
cation for data parallel training, our approach is unique in that
we cache the necessary model parameters across multiple GPUs
thereby emulating data parallelism on top of model caching.

6.1 Maintaining Cache Coherency in Data
Parallel Training

When training in a data parallel fashionwith replicated caches on all
GPUs, cache coherency needs tomaintained. Such a situation occurs
when two GPUsmay need to access the same embedding table index
in different training samples. cDLRM enforces coherency at two
places in the training pipeline: at the beginning of a lookahead
window when caches are loaded with the contents of the upcoming
batches; and after each GPU individually updates its replicas of the
embedding tables and MLPs.
Coherency at the beginning of a lookahead window: Recall
from section 5.2.1 that caches are preloaded/warmed up at the be-
ginning of every lookahead window. In the case of single GPU
training, the cached table entries reside on the singular GPU used

to train and hence there are no consistency issues across different
caches. However, when training in a data parallel fashion on mul-
tiple GPUs, the caches on all GPUs need to have the same state
after caching. We facilitate this through a broadcast of cache state.
More specifically, the process with rank 0 is the only process that
interfaces with the prefetching process. It caches the embeddings
for the upcoming lookahead window on GPU0 as described in sec-
tion 5.2.1 and broadcasts the cache state to all other GPUs over a
high bandwidth NVLink interconnect. For aggregation simplicity
the broadcast process replicates the cache across all GPUs, even
though some of the embedding table entries may only be needed on
a single GPU. Through this broadcast we guarantee that all GPUs
see a consistent copy of any shared embedding entry before they
start the next training batch.
Coherency after individual parameter updates: Since each pro-
cess involved in data parallelism is training on their own batches,
the individual updates to the parameters (bothMLPs and embedding
tables) in each process will once again lead to a lack of consistency
between the parameters on each GPU. Note that this inconsistency
is similar to traditional data parallel training where each GPU may
have its own model updates locally first. These updates must be
aggregated for a global model. cDLRM employs the following prac-
tices to synchronize parameters:

MLP aggregation. MLPs are synchronized by the standard prac-
tice of gradient averaging. At the end of every minibatch, the gra-
dients for the MLPs across all GPUs are averaged via an all-reduce.
The resulting gradient is used to update parameters on all GPUs.

Embedding Table Cache aggregation. Synchronizing embed-
ding table caches in a similar manner is infeasible. Despite being
much smaller than whole embedding tables, accesses to the caches
in a per batch granularity is still sparse, thereby making the gradi-
ents sparse. Performing an all-reduce on sparse gradients can only
be accomplished using at least two communication calls: one to
aggregate non-zero elements first and another to aggregate values.
This is an artifact of the current PyTorch implementation. To avoid
this overhead, we choose to average the caches post parameter
update via a single all-reduce. Recall that GPU0 broadcasts the en-
tire cache to all GPUs, even though only some of these embedding
indices are actually shared. But by sharing the entire cache the
aggregation process is simplified. Gradients of shared embedding
table entries will be produced by multiple GPUs and these are ag-
gregated to create a single weight update for all the shared entries.
On the other hand, if an embedding table entry is only used on a
single GPU only that GPU produces the update for that model pa-
rameter and all other GPUs produce a zero gradient update. Hence,
our approach lets each GPU first update its own cache with the
gradients it computed. Once the local caches are updated these
caches are then averaged to create a global model update.

Interestingly, since only a few cached entries are truly shared
across GPUs the sparse model update of each GPU is sufficient to
update its local cache. Hence, averaging the caches across multiple
GPUs can be donemuch less frequently than theMLPs. cDLRM thus
tracks the fraction of sparse updates across caches and waits until
the fraction of cache updates across all GPUs exceeds a threshold.
The granularity at which we average caches is a hyperparameter
of the optimization process. Algorithm 3 illustrates how Algorithm
2 changes in the multi-gpu setting from the perspective of each

269



RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Balasubramanian, et al.

process. AggregateMLPs and AggregateCaches are collective com-
munication calls in which all ranks participate.

7 EXPERIMENTAL EVALUATION
We implemented cDLRMon top of Facebook’s open sourceDLRM [12]
using PyTorch for cache management.
Datasets:Weuse two publicly available datasets to evaluate cDLRM
relative to the baseline open source DLRM: the Criteo AI Labs Ad
Kaggle and Terabyte datasets. Both datasets consist of click logs
for ad click-through-rate prediction. To our knowledge, these are
the only publicly available datasets in this domain, a sentiment
reiterated by [12]. The dataset details are outlined in Table 1(a).
Each datapoint in both datasets contains 13 dense features (C) and
26 sparse features (M). The model architecture used to train on each
dataset is also listed in the table. All performance results reported
are on the Terabyte dataset.
Experimental Setup: All our experiments are run on a server
machine with 4 Intel(R) Xeon(R) Gold 5220R CPUs, each with 24
cores, and 8 Nvidia Quadro RTX 5000 GPUs, each equipped with
16GB of GDDR6 high bandwidth memory.

7.1 Experimental Results
We evaluate cDLRM on the following criteria: (1) model accuracy
on a single GPU; (2) sensitivity of computational performance on
cache parameters when training on a single GPU; and (3) accu-
racy and scalability when using multiple GPUs. In all cases, we
use the original DLRM [12] as the baseline for comparison, using
the same hyperparameters and no hyperparameter tuning or opti-
mization. We use a bottom MLP arch of 13-512-256-64, a top MLP
arch of 512-512-256-1, an embedding table dimension of 64 and a
16-way associative cache to evaluate (1) and (2). For (3) we use the
model architecture used in the MLPerf [10] benchmark in which
the only difference is a bottom MLP arch of 13-512-256-128 and an
embedding table dimension of 128.

Model Accuracy on a single GPU.As mentioned earlier, there
are rare cases when the embedding vectors may be stale. The com-
parison of test accuracy between the final DLRM model and the
cDLRM model obtained at convergence shows that accurracy ob-
tained by cDRLM is within 0.02%. These results are shown in Table
1(b). Both cDLRM and DLRM were trained with the same batch size
of 2048 for 2 epochs.

Caching overheads and training speed on a single GPU. To
analyze the impact of caching on the training speed of cDLRM, we
split the training time into two components: (1) the time it takes to
execute lines 7, 8, 9 and 10 in Algorithm 2 - batch computation time.
(2) The time it takes to execute lines 4 and 5 - caching overhead.
The amortized caching overhead, is the average per batch overhead
due to caching incurred by every batch in the lookahead window.
It is computed by dividing the caching overhead by the lookahead
window size. The total per batch execution time is the sum of the
batch computation time and the amortized caching overhead.

cDLRM is heavily parallelized with vector operations. Hence,
caching overhead costs can be amortized when using large looka-
head windows. By using a larger lookahead window there are more
training examples to pre-process concurrently which benefit from
vectorization. On the other hand, using a larger lookahead window

requires more memory forQlookahead , and larger embedding table
cache sizes in GPU DRAM to hold more embeddings. Hence, there
is a tradeoff in amortizing caching overhead vs. reducing cache size.
As shown in Figure 3a, with a large cache size of up to 50,000 sets per
table, the total per batch computation time decreases with increase
in the lookahead window size. In general, the larger the lookahead
window, the smaller the per-batch amortized caching overhead.
This rule holds up to the maximum available hardware parallelism
to execute vectorized code. Figure 3b shows the amortized caching
overhead gradually decreasing with increasing lookahead window
size. In fact, the amortized caching overhead decreases independent
of the cache size on GPU DRAM.

However, as mentioned above there is a tradeoff between looka-
head window size and cache size, even when sufficient hardware
parallelism is available. Figure 3a also demonstrates the detrimental
effects of smaller cache sizes when using larger lookahead windows.
As explained before, when using a larger lookahead window more
embedding vectors need to be brought into the GPU cache. This
results in a higher probability of there being more unique indices in
the lookahead window than there are empty cache slots available.
This leads to more conflict victims. Thus, the forward propagation
becomes the bottleneck as a result of having to fetch these conflict
victims into the victim tables. This fact is corroborated by Figure
3c which shows the cache hit rate for different cache sizes and
lookahead windows. The cache hit rate measures the number of
embedding vectors that are already cached in GPU DRAM and
those that miss in the cache are conflict victims. When the cache
size is small increasing the lookahead window causes more conflict
victims. Hence, the total per batch execution time increases with
lookahead window size when the cache size is not properly config-
ured to account for the lookahead window size. This result shows
that the cache size and lookahead window size selection must be
coordinated for optimal performance.

Accuracy and Scalability of cDLRM on multiple GPUs. As
explained in section 6 cDLRM can leverage multiple GPUs when
they are available by training in a purely data parallel fashion. As
a result, cDLRM shows strong scaling when using multiple GPUs.
Figure 4(a) illustrates the benefit of using multiple GPUs when
they are available. The model architecture used is the same model
architecture used in the MLPerf training benchmark. We use a
cache size of 150,000 sets with 16-way set associativity. We use
a lookahead window size of 3000 for batch sizes upto 8192. For
a batch size of 16384 we use a lookahead window size of 1500
and for a batch size of 32768 we use 500. These values give us the
best performance for the respective batch sizes. As we can see,
larger batch sizes warrant the use of additional GPUs much more
so than smaller batch sizes. Unlike the DLRM baseline, cDLRM can
select the number of GPUs based on optimal batch sizes as opposed
to being constrained by embedding table memory requirements.
Another effect of more data parallelism is that caching overhead
starts to become a larger percentage of the total computation time.
Figure 4(b) illustrates this phenomenon. Caching can add over
25% overhead to the total computation time. We believe that this
overhead can be reduced or even eliminated with some additional
software engineering. But we leave this to future work. Recall
that for performance reasons that cDLRM aggregates caches at
a granularity specified by the hyperparameter λ due their sparse

270



cDLRM: Look Ahead Caching for Scalable Training of Recommendation Models RecSys ’21, September 27-October 1, 2021, Amsterdam, NetherlandsRecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Balasubramanian, et al.

Dataset C M Training/Test Examples

Kaggle 13 26 39,291,958 / 3,274,330

Terabyte 13 26 645,753,353 / 13,760,492

(a) Dataset dimensions and split

Dataset DLRM cDLRM

Kaggle 78.967±0.01 78.971±0.01
Terabyte 81.07±0.01 81.06±0.01

(b) Accuracies at convergence

Table 1. Dataset Details

10 50 100 200 400
Lookahead window size

30

35

40

45

50

55

60

To
ta

l p
er

 b
at

ch
 e

xe
cu

tio
n 

tim
e 

(m
s) (a)

Cache Size = 50,000
Cache Size = 10,000
Cache Size = 1000

10 50 100 200 400
Lookahead window size

2
4
6
8

10
12
14

Am
or

tiz
ed

 c
ac

hi
ng

 o
ve

rh
ea

d 
(m

s) (b)
Cache Size = 50,000
Cache Size = 10,000
Cache Size = 1000

50,000 10,000 1000
Cache size

70

75

80

85

90

95

100

Ca
ch

e 
hi

t r
at

e

(c)

Lookahead = 10
Lookahead = 50
Lookahead = 100
Lookahead = 200
Lookahead = 400

Fig. 3. (a) Single GPU cDLRM Performance (b) Caching cost (c) Cache Performance (All data from Terabyte dataset, Bot MLP:
13-512-256-64, Top MLP: 512-512-256-1, Embedding Dim: 64)

Experimental Setup: All our experiments are run on a server machine with 4 Intel(R) Xeon(R) Gold 5220R CPUs, each

with 24 cores, and 8 Nvidia Quadro RTX 5000 GPUs, each equipped with 16GB of GDDR6 high bandwidth memory.

7.1 Experimental Results

We evaluate cDLRM on the following criteria: (1) model accuracy on a single GPU; (2) sensitivity of computational

performance on cache parameters when training on a single GPU; and (3) accuracy and scalability when using multiple

GPUs. In all cases, we use the original DLRM [12] as the baseline for comparison, using the same hyperparameters and

no hyperparameter tuning or optimization. We use a bottomMLP arch of 13-512-256-64, a top MLP arch of 512-512-256-1,

an embedding table dimension of 64 and a 16-way associative cache to evaluate (1) and (2). For (3) we use the model

architecture used in the MLPerf [10] benchmark in which the only difference is a bottom MLP arch of 13-512-256-128

and an embedding table dimension of 128.

Model Accuracy on a single GPU. As mentioned earlier, there are rare cases when the embedding vectors may be

stale. The comparison of test accuracy between the final DLRM model and the cDLRM model obtained at convergence

shows that accurracy obtained by cDRLM is within 0.02%. These results are shown in Table 1(b). Both cDLRM and

DLRM were trained with the same batch size of 2048 for 2 epochs.

Caching overheads and training speed on a single GPU. To analyze the impact of caching on the training speed

of cDLRM, we split the training time into two components: (1) the time it takes to execute lines 7, 8, 9 and 10 in

Algorithm 2 - batch computation time. (2) The time it takes to execute lines 4 and 5 - caching overhead. The amortized

caching overhead, is the average per batch overhead due to caching incurred by every batch in the lookahead window. It

is computed by dividing the caching overhead by the lookahead window size. The total per batch execution time is the

sum of the batch computation time and the amortized caching overhead.

cDLRM is heavily parallelized with vector operations. Hence, caching overhead costs can be amortized when using

large lookahead windows. By using a larger lookahead window there are more training examples to pre-process

12

Table 1: Dataset Details

10 50 100 200 400
Lookahead window size

30

35

40

45

50

55

60

To
ta

l p
er

 b
at

ch
 e

xe
cu

tio
n 

tim
e 

(m
s) (a)

Cache Size = 50,000
Cache Size = 10,000
Cache Size = 1000

10 50 100 200 400
Lookahead window size

2
4
6
8

10
12
14

Am
or

tiz
ed

 c
ac

hi
ng

 o
ve

rh
ea

d 
(m

s) (b)
Cache Size = 50,000
Cache Size = 10,000
Cache Size = 1000

50,000 10,000 1000
Cache size

70

75

80

85

90

95

100

Ca
ch

e 
hi

t r
at

e

(c)

Lookahead = 10
Lookahead = 50
Lookahead = 100
Lookahead = 200
Lookahead = 400

Figure 3: (a) Single GPU cDLRMPerformance (b) Caching cost (c) Cache Performance (All data fromTerabyte dataset, BotMLP:
13-512-256-64, Top MLP: 512-512-256-1, Embedding Dim: 64)

1024 2048 4096 8192 16384 32768
Batch Size

0

50

100

150

200

Pe
r b

at
ch

 c
om

pu
ta

tio
n 

tim
e 

(m
s /

 it
)

(a)
2 GPUs
4 GPUs
8 GPUs

2 4 8
Number of GPUs

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f o
ve

ra
ll 

co
m

pu
te

(b)

Caching Overhead
Total Batch Execution

0 25 50 75 100 125 150 175 200
Lambda

80.98

81.00

81.02

81.04

81.06

Co
nv

er
ge

nc
e 

Ac
cu

ra
cy

(c)

Batch Size = 32768
Batch Size = 16384
Batch Size = 8192

Figure 4: (a) cDLRM multigpu scaling; (b) Caching overhead with 32K batch size; (c) Sensitivity of convergence accuracy on
cache aggregation frequency λ. Cache Size=150,00 ways / 16 sets. Lookahead size=500

nature. Figure 4c illustrates the effect of lambda on convergence
accuracy for different batch sizes. The takeaway is that for a fixed
cache and lookahead size, λ can be larger for smaller batch sizes
without incurring significant penalty in convergence accuracy.

8 RELATEDWORK
The problem of large recommendation systems have been recog-
nized in previous work. [18] proposes a hierarchical parameter
server distributed between NVMe, CPU and GPU memory to alle-
viate the demands on GPU memory for storing model parameters.
Their approach is centered around a distributed hash table, split be-
tween multiple GPUs, as well as an execution pipeline involving the
SSD, CPU and GPU. Our approach takes an orthogonal approach
of reducing the need for many GPUs to start with using caching.
However, when a cached system still needs to be distributed across

many GPUs we believe [18] can be applied on top of cDLRM for
cached parameter aggregations. AIBox [19] takes a similar approach
to [18]. They seek to keep model parameters in NVMe and train on
GPUs while using CPU memory as a cache for frequently accessed
parameters. The key difference between cDLRM and AIBox is that
AIBox doesn’t proactively identify the necessary model parameters
for a given window of batches and instead caches parameters in
CPU memory. They use various storage access optimizations to
reduce I/O overhead. As we described earlier the locality of em-
bedding table accesses is very poor in DLRM like models. Hence,
pre-processing batches and prefetching the unique indices is an
efficient way to get near 100% cache hit rate. We also address how
we deal with various consistency issues with caching embeddings.
Other approaches to reducing GPU memory usage such as [14] are
tailored for models whose intermediate activations require large

271



RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Balasubramanian, et al.

amounts of GPU memory. DLRM intermediate activations are fairly
small compared to embedding table size. Hence such approaches are
ill-suited to DLRM like models. Other pipelined approaches such as
[6] are designed for models in which sparse parameters and dense
parameters are never part of the same layer of computation. These
are models that lend themselves to efficient pipelining. DLRM on
the other hand contains layers with both sparse and dense parame-
ters, hence designing pipelined systems that do not degrade model
performance can be very challenging. We would like to stress that
the objective of cDLRM is not to be the fastest recommendation
model training system, but to democratize recommendation model
training to the point where it does not require hundreds of thou-
sands of dollars of hardware and GPUs to be able to just fit the
model.

9 CONCLUSION
cDLRM is a recommendation model training system that enables
cost efficient training by storing the large embedding tables entirely
on a CPU. It is based on the key insight that only a small subset
of embedding table entries are updated by each training batch.
Furthermore, these small subset of entries can be identified by
looking ahead in the training batches. As such, cDLRM uses a CPU
based lookahead thread that pre-processes many training batches
ahead of their training and prefetches the set of unique embedding
vectors needed for training these batches into GPU DRAM. cDLRM
decouples the memory demands of the recommendation model
from its computational demands and thus enables the training of
large models on a single GPU. When multiple GPUs are available,
cDLRM shows strong scaling across GPUs and enables pure data
parallelism, all while preserving model accuracy. More importantly,
by eliminating the need for hundreds of thousands of dollars of
hardware and GPUs just to store recommendation models, cDLRM
takes an important step in the direction towards democratizing
recommendation model training.

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16). 265–283. https://www.usenix.org/system/files/conference/
osdi16/osdi16-abadi.pdf

[2] M. T. Ahamed and S. Afroge. 2019. A Recommender System Based on Deep
Neural Network and Matrix Factorization for Collaborative Filtering. In 2019
International Conference on Electrical, Computer and Communication Engineering
(ECCE). 1–5.

[3] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[4] Carsten Felden and Peter Chamoni. 2007. Recommender Systems Based on an
Active Data Warehouse with Text Documents. In Proceedings of the 40th Annual
Hawaii International Conference on System Sciences (HICSS ’07). IEEE Computer
Society, USA, 168a. https://doi.org/10.1109/HICSS.2007.460

[5] Sahin Cem Geyik, Qi Guo, Bo Hu, Cagri Ozcaglar, Ketan Thakkar, Xianren Wu,
and Krishnaram Kenthapadi. 2018. Talent Search and Recommendation Systems
at LinkedIn: Practical Challenges and Lessons Learned. In The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval (Ann
Arbor, MI, USA) (SIGIR ’18). Association for Computing Machinery, New York,
NY, USA, 1353–1354. https://doi.org/10.1145/3209978.3210205

[6] Biye Jiang, Chao Deng, H. Yi, Zelin Hu, Guorui Zhou, Y. Zheng, Sui Huang, X.
Guo, D. Wang, Y. Song, Liqin Zhao, Z. Wang, P. Sun, Y. Zhang, Di Zhang, Jin hui
Li, Jian Xu, Xiaoqiang Zhu, and Kun Gai. 2019. XDL: an industrial deep learning
framework for high-dimensional sparse data. Proceedings of the 1st International
Workshop on Deep Learning Practice for High-Dimensional Sparse Data (2019).

[7] Norman P. Jouppi. 1990. Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers. In Proceedings
of the 17th Annual International Symposium on Computer Architecture (Seattle,
Washington, USA) (ISCA ’90). Association for Computing Machinery, New York,
NY, USA, 364–373. https://doi.org/10.1145/325164.325162

[8] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized News
Recommendation Based on Click Behavior. In Proceedings of the 15th International
Conference on Intelligent User Interfaces (Hong Kong, China) (IUI ’10). Association
for Computing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/
1719970.1719976

[9] M. Marović, M. Mihoković, M. Mikša, S. Pribil, and A. Tus. 2011. Automatic
movie ratings prediction using machine learning. In 2011 Proceedings of the 34th
International Convention MIPRO. 1640–1645.

[10] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Mi-
cikevicius, David A. Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Vic-
tor Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim M.
Hazelwood, Andrew Hock, Xinyuan Huang, Bill Jia, Daniel Kang, David Kan-
ter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak Narayanan, Tayo Ogun-
tebi, Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie,
Tom St. John, Carole-Jean Wu, Lingjie Xu, Cliff Young, and Matei Zaharia. 2019.
MLPerf Training Benchmark. CoRR abs/1910.01500 (2019). arXiv:1910.01500
http://arxiv.org/abs/1910.01500

[11] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Andrew Tulloch, Srinivas
Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo, et al.
2021. High-performance, Distributed Training of Large-scale Deep Learning
Recommendation Models. arXiv preprint arXiv:2104.05158 (2021).

[12] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean
Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherni-
avskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kon-
dratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang
Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommendation Model
for Personalization and Recommendation Systems. CoRR abs/1906.00091 (2019).
arXiv:1906.00091 http://arxiv.org/abs/1906.00091

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703 [cs.LG]

[14] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W.
Keckler. 2016. Virtualizing Deep Neural Networks for Memory-Efficient Neural
Network Design. CoRR abs/1602.08124 (2016). arXiv:1602.08124 http://arxiv.org/
abs/1602.08124

[15] Sebastian Schelter, Christoph Boden, Martin Schenck, Alexander Alexandrov, and
Volker Markl. 2013. Distributed Matrix Factorization with Mapreduce Using a Se-
ries of Broadcast-Joins. In Proceedings of the 7th ACM Conference on Recommender
Systems (Hong Kong, China) (RecSys ’13). Association for Computing Machinery,
New York, NY, USA, 281–284. https://doi.org/10.1145/2507157.2507195

[16] Y. Wang, S. C. Chan, and G. Ngai. 2012. Applicability of Demographic Recom-
mender System to Tourist Attractions: A Case Study on Trip Advisor. In 2012
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology, Vol. 3. 97–101.

[17] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Ming-
ming Sun, and Ping Li. 2020. Distributed Hierarchical GPU Parame-
ter Server for Massive Scale Deep Learning Ads Systems. In Proceed-
ings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and
V. Sze (Eds.). Vol. 2. 412–428. https://proceedings.mlsys.org/paper/2020/file/
f7e6c85504ce6e82442c770f7c8606f0-Paper.pdf

[18] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Ming-
ming Sun, and Ping Li. 2020. Distributed Hierarchical GPU Parame-
ter Server for Massive Scale Deep Learning Ads Systems. In Proceed-
ings of Machine Learning and Systems, I. Dhillon, D. Papailiopoulos, and
V. Sze (Eds.). Vol. 2. 412–428. https://proceedings.mlsys.org/paper/2020/file/
f7e6c85504ce6e82442c770f7c8606f0-Paper.pdf

[19] Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping Li.
2019. AIBox: CTR prediction model training on a single node. In Proceedings of the
28th ACM International Conference on Information and Knowledge Management.
319–328.

272

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1109/HICSS.2007.460
https://doi.org/10.1145/3209978.3210205
https://doi.org/10.1145/325164.325162
https://doi.org/10.1145/1719970.1719976
https://doi.org/10.1145/1719970.1719976
https://arxiv.org/abs/1910.01500
http://arxiv.org/abs/1910.01500
https://arxiv.org/abs/1906.00091
http://arxiv.org/abs/1906.00091
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1602.08124
http://arxiv.org/abs/1602.08124
http://arxiv.org/abs/1602.08124
https://doi.org/10.1145/2507157.2507195
https://proceedings.mlsys.org/paper/2020/file/f7e6c85504ce6e82442c770f7c8606f0-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f7e6c85504ce6e82442c770f7c8606f0-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f7e6c85504ce6e82442c770f7c8606f0-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f7e6c85504ce6e82442c770f7c8606f0-Paper.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Basic approaches to addressing memory footprint and their shortcomings

	3 cDLRM Preliminaries, Terminology and Notation
	3.1 Caching Preliminaries
	3.2 Embedding table cache structure
	3.3 Lookahead Windows

	4 cDLRM Overview
	5 Training cDLRM on a single GPU
	5.1 Prefetching Process
	5.2 Caching+Training Process
	5.3 Eviction Process

	6 Data Parallel Training with Caching
	6.1 Maintaining Cache Coherency in Data Parallel Training

	7 Experimental Evaluation
	7.1 Experimental Results

	8 Related Work
	9 Conclusion
	References

