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ABSTRACT
Modeling tap or click sequences of users on a mobile device can
improve our understandings of interaction behavior and offers
opportunities for UI optimization by recommending next element
the user might want to click on. We analyzed a large-scale dataset
of over 20 million clicks from more than 4,000 mobile users who
opted in. We then designed a deep learning model that predicts the
next element that the user clicks given the user’s click history, the
structural information of the UI screen, and the current context
such as the time of the day. We thoroughly investigated the deep
model by comparing it with a set of baseline methods based on the
dataset. The experiments show that our model achieves 48% and
71% accuracy (top-1 and top-3) for predicting next clicks based on
a held-out dataset of test users, which significantly outperformed
all the baseline methods with a large margin. We discussed a few
scenarios for integrating the model in mobile interaction and how
users can potentially benefit from the model.

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).
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1 INTRODUCTION
User interaction behaviors or flows on modern mobile devices
mainly consist of a sequence of taps (or clicks1) on UI elements
presented on the touchscreen, which result in a sequence of screen
state transitions in response to these clicks. Modeling user click
sequences is important for understanding rich mobile interaction
behaviors, e.g., how screens transition and factors that are involved
1We use "tap" and "click" interchangeably in this paper.
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in these transitions [3]. A click-sequence model that predicts which
element the user would click next on the touchscreen can create
opportunities for improving user experiences in many ways. For
example, a mobile system can pre-fetch resources needed based
on user action forecasts to reduce response latency (e.g., [15]) or
enable adaptive user interfaces (e.g., [5, 20]) by optimizing inter-
faces to facilitate next user input. In this paper, we focus on the
computational modeling of click behaviors that can underpin these
domains.

While previous work extensively investigated app-level predic-
tion [3, 8, 10, 15–18, 25], it is relatively sparse on finer-granularity
user action prediction. In this paper, we focus on predicting next UI
element the user clicks on. Prior work has attempted to address sim-
ilar problems in various domains, e.g., mobile interaction [9], web
surfing [14], advertisement [13], news [23], and shopping [4, 19, 24].
However, previous approaches are inadequate in leveraging rich
features that exist in mobile user click-through behaviors and ad-
dressing complex interactions between factors that are involved in
interaction, which we intend to address in this paper.

There are two major challenges for accurate and scalable click
sequence modeling. Firstly, there are a vast number of unique mo-
bile apps today, which come with diverse UI screens and elements.
Previous approaches rely on a predefined set of UI elements [9]
(similar to word tokens for language models [2]) so as to use conven-
tional sequence modeling techniques such as LSTM [6]. This kind
of approach is difficult to scale to address diverse, ever growing UI
elements out there. Secondly, user click behaviors can be drastically
different, depending on many factors such as each user’s usage
history and situational factors encountered. Users often switch
between apps [3] to carry out a task, which results in sequences
spanning multiple apps.

In this paper, we present a novel approach, based on the advance
of deep learning techniques [12, 21, 22], for modeling user click
sequences at scale. Our approach eliminates the need of using a
predefined vocabulary of UI elements and provides an extensible
architecture to incorporate a rich set of features, including the
user’s previous clicks and screens, the structural information of the
current screen, and the current time as well as temporal dynamics
between click events. We analyzed a large scale dataset of user click
behaviors to gain insights for model design. The dataset involves
over 20 million clicks from more than 4000 mobile users while us-
ing over 13,000 apps in their daily activity. A thorough experiment
based on the dataset shows that our model achieves 48% and 71%
for top-1 and top-3 accuracy, which significantly outperformed the
previous methods and also shows that click prediction is a challeng-
ing task. Our approach scales well as it does not involve complex
feature engineering. We discuss interaction scenarios where our
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model can help and design considerations for integrating the model
in an interaction flow. We share our insights into the model behav-
ior and limitations, and plans for future work. The paper makes the
following contributions.

• An analysis of a large-scale dataset of mobile user click se-
quences that reveals rich factors and complexity in modeling
click behaviors, which contributes new knowledge to under-
stand mobile interaction behaviors.

• A Transformer-based deep model that predicts next element
to click based on the user click history and the current screen
and time. The model does not rely on a vocabulary of prede-
fined UI elements and provides a general solution for model-
ing arbitrary UI elements for click prediction.

• A thorough experiment that compares our deep model with
multiple alternative designs and baseline models, and an
analysis of model behaviors and benefits that the model can
bring to improve mobile interaction.

2 RELATEDWORK
Previous work has investigated mobile user behaviors based on
interaction logs. Böhmer et al. discovered that multiple factors
can impact the patterns of mobile app usage [3]. For example, the
category of a mobile app and the user context such as the current
time and location can influence the usage of mobile applications.
Previous work also pointed out the average session with an app
lasts less than a minute, even through users may spend a long time
using their phones. These findings are aligned with our analyses
based on a large-scale dataset.

Previous work has extensively investigated approaches for mod-
eling app usage and predicting next app that are likely to be used,
e.g., [1, 15, 18]. Particularly, prior work [7, 25] revealed that time
signals such as the hour of the day and the day of the week as
well as recent usage history are essential for predicting next app
usage. Choonsung et al. [18] developed various ways for integrating
prediction models into the mobile phone homescreen that greatly
reduced search time for apps. Li proposed app prediction as a gen-
eral service on mobile devices [10]. App prediction has become
available on a variety of mobile platforms that is frequently in use
by mobile users for daily app launches.

Compared to app prediction, there is relatively less prior work
on finer-granularity user action prediction especially for mobile
interaction. Deep learning has been broadly used in various do-
mains, which has shown promise in addressing complex problems
without extensive feature engineering. For interaction behavior
modeling, sequence models such as LSTMs (e.g., [9, 11]) have been
extensively used because of their extensive architecture and the
ability to capture long-range dependencies. Convolutional neural
networks have also been used for modeling sequences of multiple
recommendation tasks [13, 19]. Transformer [21] is a more recent
model for sequence modeling that has produced state-of-art results
on various tasks. We next focus on recent work that are particularly
relevant to our work.

Lee et al. developed a model to predict the element that the user
is likely to click on the current screen based on the user’s previ-
ous click behaviors [9]. To use conventional sequence modeling
techniques such as LSTMs [6], the prior work treated user click

behaviors as a sequence of tokens where each token is derived
from a UI element, which requires a predefined vocabulary of el-
ements. While an important contribution of the prior work was
the mechanism for identifying an element to define the vocabulary,
this approach is fundamentally limited because mobile apps are
fast growing and their UIs are quickly evolving. It is impractical
to identify every element in an ever growing collection of UIs. In
addition, the previous work only models click sequences within
each app and does not handle cross-app transitions where the latter
constitute 26% of click behavior based our data analysis. In our
work, we deliberately address the representation challenge of UI
elements. Without requiring a predefined vocabulary of elements,
rather we use neural pointers and contextual representations of
elements. Our model is also designed to easily leverage a richer set
of features than treating each click as a token, and naturally handle
both within and cross-app transitions.

Transformer is employed in previous works like Chen et al. for
shopping recommendation [4], and Wu et al. in news recommen-
dation [23]. Their model takes input of embeddings of previously
clicked items and a candidate next item, and outputs a score to rank
each candidate. Our model, which is also based on Transformer,
has several critical differences. First, our model uses a different set
of features for click prediction across arbitrary apps, instead of a
single app that the previous work focused on. Second, we use a
hierarchical Transformer to model both in the context of a screen
and a click sequence. Third, we use neural pointer to find next item
instead of using a ranking model (i.e., sigmoid output in [4] or inner
product in [23]). We extensively experimented with our model in
comparison with alternative methods including these deep models.
Lastly, in contrast to previous work (e.g., [5, 20]) on human factors
and design options for adaptive UIs, we concentrate on computa-
tional modeling of user click behaviors, which provides a predictive
model basis for adaptive UIs.

3 UNDERSTANDING MOBILE CLICK
BEHAVIORS

To develop computational models for predicting next element to
tap, we first analyze a large-scale dataset of mobile click behaviors
and gain insights into these behaviors. The analyses of the dataset
inform the design of our deep model.

3.1 Data Processing
User volunteers were sampled from a consented research panel
to be representative of the mobile user population and opted in
to participate in multi-week study. The interaction events were
collected during their regular usage of device through additional
software that captured data from app UIs.

Each event consists of the user input (e.g., a Click versus a
Swipe), the UI element that the input is applied to as well as a
structural representation of the entire screen where the event takes
place (i.e., the View Hierarchy2).

A UI element is considered actionable only if its following at-
tributes in the view hierarchy are set to true: clickable, visible,
and enable. For each UI element, we extract its text content, type,

2https://developer.android.com/reference/android/view/View.html
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and bounding box positions on the screen from the view hierar-
chy. These properties will be used for featurizing the element later
for modeling. We extract the text content of an element by look-
ing at its text property first. If it is absent or empty, we use its
content-desc attribute. The last resort is to extract text content
from the resource-id property of the element.

The click events of each user are sorted chronologically as a
sequence. Each event consists of the screen view hierarchy that the
click occurs, the element on the screen that is being clicked and
the time of the event. We filtered sequences of user participants
who had outlier behaviors, such as sporadic usage of their devices
or a large number of clicks produced in a short period of time. As
a result, the dataset consists of over 20 million clicks, which form
click sequences from more than 4,000 Android users using over
13,000 unique apps on their smartphones.

3.2 Data Analysis
3.2.1 Sequence Lengths & Time Spans. The length of these se-
quences varies from 100 to 25,000 clicks with the time span of
each sequence ranging from 2 to 6 weeks (Mean=4.12 and Std=0.62).
One factor that contributed to the variance in click numbers is the
difference between power users versus novice users, which ranges
from 19 clicks to over 5000 clicks per week (Median 833). These
results showed that the dataset covers a wide range of user click
behaviors that provide a solid basis for developing and evaluating
machine learning models.

3.2.2 UI Complexity. The dataset involves a diverse set of UI ele-
ments with 24 types (see Figure 1). Overall, for all the actionable UI
elements that we analyzed, the number of clicks that each type of
element received is well aligned with the total number of elements
of each type that exist in the UI screens in the entire dataset, with
a few exceptions. For example, TextView received relatively few
clicks and TabWidget received none, which is based on the usage
of the set of user participants during the period of data collection.

There are often a large number of actionable elements on each
screen in this dataset: Mean=18, Std=12 (see Figure 2). The number
of actionable elements on a screen determines how challenging it
is for a model to predict the next element to be clicked by the user
from these candidates.

3.2.3 Temporal Patterns. The time analysis of click events involves
two aspects: one is the temporal dynamics between events, and
the other is the temporal regularity. For the temporal dynamics,
we analyzed the time intervals between events (see Figure 3). We
can see most event transitions have a short time span. Intuitively,
the shorter a time span is for an transition, the more relevant the
two adjacent events are. For analyzing the temporal regularity, we
computed the hour of the day and the day of the week when an
event occurred using both the raw timestamp and the timezone
information of an event. Figure 4 shows how events are distributed
across hours of a day and days of a week. As expected, there are
fewer events on the weekends than on the weekdays. Across hours
of a day, there is a heavier usage of phones in the late afternoons
and evenings. These results show that the dataset sufficiently covers
users’ daily usage of mobile devices. The example in Figure 5 shows

that click behaviors can be highly time-dependent. We intend to
use both temporal signals in our deep model.

3.2.4 Click Transitions. A click event triggers the transition from
one screen to another, which can be a popup menus overlaying
the current screen or a completely new screen. About 30% of these
events were generated from popular apps such as Chrome, SMS
and YouTube. However, there are a vast number of long-tail apps
that play a vital role in users’ daily mobile usage. While many of
these transitions occur within an app, i.e., the current screen and
the next screen after an click both belong to the same app, 26% of
transitions do occur across apps, (see Figure 6 for an example). This
observation is aligned with previous findings [3] that users tends to
transition across apps frequently. This implies that it is important
for the model to be able to handle cross-app transitions.

4 MODELING CLICK BEHAVIORS
With the analytical understanding of mobile user click behaviors,
we first formulate our modeling task, and then describe the design
of our deep model.

4.1 Problem Formulation
As stated in the previous section, a click event consists of a tuple of
attributes, including the screen, the element being clicked on the
screen, the time that the event occurs, and the app that the screen
belongs to. The ith event in a click sequence is formulated as the
following (see Equation 1).

ei = [si , ci , ti ,ai ] (1)

where si is the screen that contains a collection of UI elements
oi, j ∈ si where 1 ≤ j ≤ |si | and |si | represents the number of ele-
ments in the screen si . ci denotes the index position of the element
being clicked on the screen, in the pre-order traversal of the view hi-
erarchy tree (sibling elements are spatially ordered). Consequently,
the element being clicked is represented as the following.

oi,ci = Preorder_Traversal(si )[ci ] (2)

ti represents the temporal information of the event that consists
both temporal regularity, i.e., the hour of the day, ri , and the day of
the week,wi , and temporal dynamics, i,e., how distant the event is
with respect to the prediction time, denoted as vi . ai identifies the
app that the screen belongs to. A click sequence of a user is thus
represented as a sequence of these tuples.

e1:n = {(s1, c1, t1,a1), (s2, c2, t2,a2), ..., (sn , cn , tn ,an )}

So the click prediction problem is defined as the following.

cn+1 = f (sn+1, rn+1,wn+1,an+1, e1:n ) (3)

Given a sequence of previous events e1:n and the current context
(i.e., the current screen sn+1, the current hour and day rn+1 and
wn+1, the current app an+1), we want to predict which element on
the screen, cn+1, is likely to be clicked by the user next, i.e., at the
(i + 1)th step. In this work, we intend to use a deep model to realize
function f .
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Figure 1: The distribution of the total number of elements versus the clicked ones for each UI type, based on the dataset. The
count of UI elements (the Y axis) is displayed at the Loд scale.

Figure 2: The number of action-
able elements on each screen.

Figure 3: The distribution of time
intervals between click events.

Figure 4: The distribution of click events
based on the day of a week and the hour
of a day when an event occurred.

4.2 The Design of the Deep Model
There are three tasks for designing the prediction model. First, we
need to derive a semantic representation of the clicked element of
each event in the context of its screen. Second, we need to model
a sequence of click events so as to encode the user’s history. Last,
based on the encoding of previous events and the current context,
we want to design the model to select the element that is most likely
to be clicked from all the actionable elements on the current screen.
We design our deep model as hierarchical transformers coupled
with neural pointers (see Figure 7).

4.2.1 Encoding a UI Element in the Context of its Screen. We use
Transformer [21], a neural attention-based model that has led to
state-of-the-art results for many problems. Specifically, we use the
Transformer Encoder to encode each element in the screen in a sim-
ilar way to previous work [12] (see Equation 4). The self-attention
in Transformer Encoder allows each element to be represented in
the context of all the elements on the screen (see [21] for more
details about self attention).

hi,1: |si | = Transformer_Encoder(Embedo (oi,1: |si |),θ ) (4)

θ is the trainable parameters. For all the elements on screen si ,
we first compute the embedding of each element, Embed(oi,1: |si |),
based on its text content, the type attribute, and the bounding
box (position and size) on the screen. The text content and the
type attribute form the content embedding of an element while
the bounding box positions form the positional embedding of the
element.

Each word in the text content of an element is represented via a
regular word embedding, and the text content of an object, which
can contain more than one word, is represented as the average
embedding of all the words, similar to a bag of words. The type is
a categorical value and also represented as an embedding vector,
which is combined with the text embedding to form the content
embedding of the element.

The positional embedding of an element is computed based on
the bounding box positions of the element: [left, top, right,
bottom]. We simply normalized each coordinate value to an integer
in the range of [0, 100), which is then represented as an trainable
embedding vector. The sum of positional and content embeddings
forms the input of the Transformer Encoder model.

The embeddings of all the elements on the screen are then fed
to a Transformer Encoder (Equation 4), which results in a latent
fixed-dimensional representation for each element,hi, j ∈ Rd where

476



Large-Scale Modeling of Mobile User Click Behaviors Using Deep Learning RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

Figure 5: The click-transition sequences show that a user clicked on
different elements of the Clock screen in a different hour and day.
The toggle buttons of alarms are mostly used in the nights Sunday
through Thursday, when the following day is a workday. But the
stopwatch is used evenly through the week.

Figure 6: An example of cross-apps click tran-
sitions. The "text" and "email" elements in Con-
tacts will lead the user to theMessaging app and
the Gmail app respectively.

Figure 7: The architecture for our deepmodel for predicting the element to be clicked on a given screen. App IDs ai are optional
in our model, and our model is app agnostic and provides a general solution for modeling clicks from arbitrary UIs.

1 ≤ j ≤ |si | as defined earlier, and d is the depth of the latent vector.
In particular, hi,ci contextually represents the UI element being
clicked on at step i . Such a representation of a clicked element is
contextual because the self attention in Transformer Encoder learns
to relate an element to all other elements on the screen based on
both their content similarity and spatial adjacency.

4.2.2 Encoding a Click Sequence. With each clicked element se-
mantically represented as hi,ci , we next describe how we model
a sequence (history) of click events, e1:n (see Equation 1). For this
task, we again design our model using Transformer Encoder.

As revealed in our data analysis, the temporal information, ti ,
is an important factor for mobile click behaviors, and there are
two aspects to it: temporal regularity and dynamics. For temporal
regularity features, i.e., the hour of the day, ri , and the day of
the week,wi , of an event, we represent them as a one-hot vector
of size 7 (for 7 days of a week), and 24 (for 24 hours of a day)
respectively, from which we acquire a trainable embedding vector
for each feature. Similarly, we represent the app the screen belongs
to, ai , via an embedding vector as well. Along the clicked element
representation, hi,ci , we form the embedding of a click event as the
following (Equation 5).
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cEi = [hi,ci ;Embedr (ri );Embedw (wi );Embeda (ai )]Wc (5)

We first concatenate all these embedding vectors with the clicked
element encoding. The concatenation is then linearly projected via
trainable parameters,Wc , to a dimension d , which results in the
click event embedding, cEi ∈ Rd .

For temporal dynamics, specifically the time interval between
an event in the past and the prediction time, vi , we use the in-
formation to derive the positional encoding of each event in the
history sequence. Notice that this differs from the positional en-
coding schema in the original Transformer case where events are
evenly distributed along the time dimension. As shown in Figure
3, the time interval between click events can vary drastically. The
temporal positional encoding of an event should capture how re-
cent the event is for the current step. We compute this elapsed
time-based positional encoding as the following.

vEi = Embedv (Floor(loд(vi ))) (6)

where we first take the logarithm of vi , the elapsed time from
the ith step to the current (n+ 1)th step, and then discretize it using
its floor value. This again is represented using a vector through
the learnable embedding function Embedv . Finally, we combine
both the click event embedding (Equation 5) and its time positional
encoding to form the input to the Transformer Encoder by adding
them: eEi = c

E
i +v

E
i . We then feed the event embeddings to another

Transformer Encoder to generate the latent representation of each
click event, ĥi,1: |si | . β is trainable parameters in the Transformer
Encoder model.

ĥi,1: |si | = Transformer_Encoder(eEi,1: |si | , β) (7)

4.2.3 Predicting Next Element via Neural Pointer. With the click
history represented, we now discuss how we can find the element
that is most likely to be clicked on the current screen, sn+1, given the
current hour and day rn+1 andwn+1 as well as the app the screen
belongs to,an+1. First of all, we compute a contextual representation
of each element on the current screen, hn+1,1: |sn+1 | , which is the
same way as howwe compute the representation of each element in
the previous screens (see Equation 4). We then compute a "pointer"
to point into the current screen—that evaluates how likely each
element would be clicked next. The "pointer" is realized via a M-
layer perceptron that takes the current hour and day, rn+1 and
wn+1, as well as the app, an+1, as the input, and at the same time
attends to the latent representation of each event in the history,
ĥi,1: |si | , via multi-head attention [21].

q0n+1 = [Embedr (rn+1);Embedw (wn+1);Embeda (an+1)] (8)

qm+1n+1 = MultiHead_Attention(qmn+1, ĥi,1: |si |),θ
q ) (9)

where m denotes the layer index and 0 ≤ m ≤ M . The final
output of the pointer generator is thus qMn+1. We then compute
how well the pointer vector qMn+1 matches the latent representation
vector of each element on the current screen using a typical neural
alignment mechanism.

αn+1, j = q
M
n+1W

q · hn+1, j (10)

where we first linearly project the pointer vector qMn+1 viaW
q

(learnable parameters), and then perform dot product between the
linear projection of the pointer and the latent representation vector
of each element. The alignment score αn+1, j is a scalar value, which
can then be used to calculate the probability of each element to be
clicked using a softmax.

Probj =
exp(αn+1, j )∑

1≤k≤ |sn+1 | exp(αn+1,k )
(11)

With Equation 11, we can find the element that is most likely to
be clicked, i.e., cn+1 = argmaxjProbj , which realizes the Equation 3.
The entire model can be trained end to end by minimizing the cross
entropy loss between the probability distribution of next element
to click (Equation 11), and the element that is actually being clicked
on the screen—the groundtruth.

Note that our model does not rely on app specific information,
except the app identifierai . Aswewill discuss later, our experiments
revealed that using the app identifier, ai , does not significantly
improve our accuracy. As a result, the design of our entire model
can be app independent, which means that it can handle UIs from
arbitrary, unseen apps.

5 EXPERIMENTS
To evaluate the accuracy of our model, we conducted a thorough
experiment by comparing our model with multiple baselines based
on a set of evaluation metrics.

5.1 Dataset
We randomly split the dataset into 80% of the sequences for training,
10% for validation to tune hyper parameters of the models and 10%
for testing. Several baseline methods that we compare with require
each screen to be uniquely identified via a static ID. To this end,
we compute a hash ID for each screen. To generate a hash ID for a
screen, we concatenate the features of each UI element sequentially
according to the preorder traversal of the screen’s view hierarchy
tree. We then map the concatenation to a hash signature using the
MurmurHash3 algorithm3.

5.2 Baselines
We compare our model with 9 alternative methods in our experi-
ment. 3 of these methods are heuristics-based, which offer a baseline
for understanding the difficulty of the task. 3 other methods are
based on classic ML methods that have been widely used in the rec-
ommendation/prediction tasks. We also included 3 recent methods
that used deep learning models for click prediction.

5.2.1 Heuristic Methods. Recency is a strong heuristics that has
been constantly used in commercial products, e.g., recently used
apps or recent calls. We implemented recency to predict next el-
ement to click according to the recently clicked elements on the
screen. To do so, each unique screen needs to maintain a history
of previous clicks. Frequency is another commonly used heuristics
in suggesting user actions. The method predicts the element to be
clicked based on how often the element has been clicked on in the

3https://guava.dev/releases/snapshot/api/docs/com/google/common/hash/Hashing.
html#murmur3_128--

478

https://guava.dev/releases/snapshot/api/docs/com/google/common/hash/Hashing.html#murmur3_128--
https://guava.dev/releases/snapshot/api/docs/com/google/common/hash/Hashing.html#murmur3_128--


Large-Scale Modeling of Mobile User Click Behaviors Using Deep Learning RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

past. There are two design options: one based on personal frequency
that is specific to the user, the other using the global frequency
based on the aggregated frequency across users.

5.2.2 Traditional Machine Learning Methods. For this category of
methods, we experiment with Logistic Regression, SVM, and Naive
Bayesian. These methods have been commonplaces for machine
learning models before deep models became mainstream. They
have been widely used in the HCI field. One challenge to apply
these methods in our problem is that they cannot easily accommo-
date variable-length input, which is the case for both click history
and the number of objects on the screen. In our experiment, we
pair the previously clicked element on,cn with each candidate UI
element on the current screen on+1,1:m . We featurize an element
by concatenating the one-hot vector of each of these UI features:
text, type, left, top, right, bottom, day-of-week, hour-of-day, and
app name. We then concatenate the feature representation of both
the previous and the candidate element along the one-hot encoding
of the current hour and day. This forms xn+1, j , where 1 ≤ j ≤ |si |,
a long binary vector that is the input to, Φ, either a Logistic Regres-
sion (LR), a Naive Bayesian (NB), or a SVM. The target function,
Φ∗, that we want to learn for each model is the following, where N
is 0 for LR and NB and −1 for SVM.

Φ∗(xn+1, j ) =

{
1, if j = ci
N, otherwise

5.2.3 Recent Deep Learning Methods. We compared our method
with three recent approaches that used deep learning methods for
click prediction. Liu et al [13] leverage CNN in click prediction.
Embedding of elements in history compose a 2D array then apply
1-D row-wise convolution, a flexible p-max pooling, and tanh as
activation function. We apply a similar approach on our dataset.
Lee et al. [9] employed LSTM [6] to model mobile click sequences.
A critical step in the previous approach is to tokenize each element
by identifying the element using its features. Based on the previ-
ous paper [9], we tried our best to replicate the approach in our
experiment. Each UI element is represented as a string identifier
by concatenating its features such as the text content, type (as a
string), and the name of the app the element belongs to. The string
identifier is then treated as a token and mapped to an integer ID.
With each element tokenized and represented an integer ID, it is
straightforward to apply an LSTM tomodeling a sequence of tokens.
In addition, we compare our method with the approach introduced
by Chen et al. [4] that used a Transformer-based model for user
click prediction in a shopping app. It has several critical differences
with our method as we have elaborated in the Related Work section.
We replicate this previous method for next click prediction in our
context.

5.3 Evaluation Metrics
We compute multiple metrics to evaluate the prediction quality of
each method.

Top-K Accuracy. Similar to a typical model evaluation setting,
we compute the top-K accuracy based on how often the target
element is within the top-K predictions of a model. Particularly, we
report top-1 and top-3 accuracy of each model in the experiments.
For these measure, the larger the better.

Absolute & Relative Ranking Position. Another important
indicator of prediction quality is the ranking position of the tar-
get item, referred as Absolute Ranking. As we will discuss later,
for accessibility scenarios such as Android Switch access4, which
requires a user to sequentially iterate over candidate items, the
ranking position would greatly affect user experience. However,
Absolute Ranking can be misleading as the difficulty to predict
a target item varies based on the number of UI elements on the
screen (see Figure 2). It is easier for a model to acquire a smaller
Absolute Ranking on screens with few elements than on those with
many elements. So we propose another measure Relative Ranking
by normalizing Absolute Ranking by the total number of elements
on the screen, which is in the range of [0, 1). Relative Ranking for
a random model is expected to be 0.5. For both ranking measures,
the smaller the better.

5.4 Model Configurations and Training
We implemented all the models using Python and TensorFlow5. For
Logistic Regression, SVM or Naive Bayes, we randomly sample a
pair of adjacent screens from a click sequence in the training data to
feed to the model. The LR model is trained by minimizing the cross
entropy loss using GradientDescentOptimizer in TensorFlow. The
SVM model uses SGDRegressor and the Naive Bayesian model uses
BernoulliNB of the sklearn library6, which provides partial_fit()
for training on a large-scale dataset in batches. We observed that
positive and negative examples are unbalanced because each screen
pair only produces one positive example, since only one element is
clicked, but |sn+1 | − 1 negative examples. To address this issue, we
gave a larger weight (5 in our experiments) to positive examples
during training.

Both the CNN baseline, LSTM baseline and our Transformer-
based models take variable-length click history as the input to the
model. Because the length of a sequence can vary drastically, it is
not memory efficient to batch train on these sequences directly,
which incurs a large number of padding. To address this issue,
for the training data, we split each sequence into segments of a
fixed size of 100. We used a batch size of 128 and a hidden size of
128 for these models. We also tune the hyper parameters of these
models such as the number of layers and the learning rate. We
chose to use 2 layers for Transformer Encoder models as well as our
pointer generator model (Equation 9). Adding more layers or using
a larger hidden size does not significantly improve the accuracy but
slows down training. All the neural models including Transformer
are trained using the Adam optimizer, with a variable learning
rate involving a linear warm-up followed by a exponential decay.
We used a dropout ratio of 10%. Each deep model was trained to
convergence on a single Nvidia Tesla V100 GPUwith 80GBmemory,
which took roughly 1 day to complete.

5.5 Test Results & Analysis
5.5.1 Experimental Results. We evaluate each model on the test
dataset, by testing on every click event in each test sequence. The
results are shown in Table 1. Overall, our models outperformed

4https://support.google.com/accessibility/android/answer/6122836
5https://www.tensorflow.org
6https://scikit-learn.org/stable
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Model Top-1 Accuracy Top-3 Accuracy Absolute Ranking Relative Ranking

Recency .2167 .3573 7.732 .4023
Frequency .2314 .3684 7.648 .3970
Global Frequency .1179 .2633 8.777 .4667
Logistic Regression .2704 .5327 4.839 .2514
SVM .2196 .3925 7.250 .3684
Naive Bayes .2599 .4905 4.916 .2503
LSTM .3453 .5402 5.099 .2663
CNN [Liu et al.] .3847 .6562 3.441 .1777
Transformer [Chen et al.] .3761 .6463 3.404 .1780
Our Model .4828 .7140 2.607 .1397

Our Model (all features) .4817 .7119 2.630 .1407
Our Model (without text) .2865 .5370 4.447 .2370
Our Model (without type) .4777 .7087 2.673 .1428
Our Model (without position) .4828 .7140 2.607 .1397
Our Model (without time) .4711 .7037 2.728 .1452
Our Model (without app name) .4780 .7077 2.682 .1431
Our Model (without in-screen attn) .4373 .6747 3.028 .1560

Table 1: The accuracy of each model on the four metrics. For Top-1 and Top-3 accuracy, the larger the better, and for
Absolute and Relative Ranking, the smaller the better. The results of the champion model is highlighted in bold.

all the baseline methods with a significant margin across all the
metrics. Our model predicts the target element as the top choice 48%
of time and, within the top-3 predictions 71% of time. The ranking
position is improved from above 7 of heuristic methods to less than
3.

The method using personal click frequency (Frequency) is consis-
tently better than the one using click frequency aggregated across
users (Global Frequency), which indicates that click behaviors are
often personal. Recency and Frequency acquired a similar accu-
racy across the metrics. Machine learning-based methods gener-
ally outperformed heuristics-based ones, and deep models such as
LSTM and Transformer-based approaches further outperformed
traditional methods including Logistic Regression, SVM, and Naive
Bayes.

Compared with the previous Transformer-based method [4],
our model shows improvement across all the metrics. These re-
sults indicate that screen encoding enhances the learning of user
behavior—Instead of only considering the clicked items, all the UI
elements in the context contribute to the prediction. To further
compare our model with this previous method [4], we split the
dataset by time that was done in [4]: for each user, the first 80%
of the sequence is used for training, the next 10% for evaluation
and the last 10% for testing. Splitting by time yields slightly better
performance for both methods than splitting by users, because a
model has an opportunity to learn specific behavior of each indi-
vidual user. Our model achieves 51% and 74% for top-1 and top-3
accuracy and 2.38 and 0.12 for absolute and relative rankings. Chen
et al.’s model achieves 42% and 68% for top-1 and top-3 accuracy
and 3.18 and 0.14 for absolute and relative rankings. Our model still
substantially outperformed the previous method.

5.5.2 Model Behavior Analysis. As expected, the more elements
there are on a screen the more difficult it is for a model to achieve

good accuracy. As shown in Figure 8 , the top-K accuracy decreases
and the ranking position is worsen as the number of elements
increases on the screen. For UIs with at most 10 elements (28%
of screens), our model achieves 61% and 90% for top-1 and top-3
accuracy. The Absolute Ranking grows as the number of elements
on the screen increases. However, the Relative Ranking remains
stable regardless of the screen complexity.

To understand how the model accuracy varies across different
apps, we analyzed the top-1 and top-3 accuracy for the top 20
popular apps in the dataset (see Figure 9). The dashed lines show
the average of all apps. These 20 apps contributes 56% of all the
screens in the dataset. 13 of them show better accuracy on top-
1 than the average and 16 for top-3, which indicates that model
performs better on popular apps. Among these apps, the model
performed the worst for the Calculator app, which is expected
because the user can enter arbitrary sequences (e.g., a multi-digit
number) in the Calculator that is hardly predictable.

In 26% cross-app scenarios, i.e. an+1 , an , the model achieves
49.6% and 73.1% in top-1 and top-3 accuracy, which is slightly better
than the overall accuracy. This result shows that the model has
robust performance in both in-app and cross-app scenarios. There’s
still room for improvement in prediction of in-app categories.

To further understand the behavior of our model, we look into
how our model predicts elements on specific screens. Our testing
dataset contains nearly 2 millions screens, and Figure 11 shows
the behavior of our model with respect to a specific screen that
occurs 105 times. The screen has 12 UI elements, and 6 of these
elements were clicked by users on different days and at different
hours. These clicks are visualized by the heatmap in Figure 11. As
shown in the table on the right, the user clicked on different UI
elements at different or the same times and our model is able to
handle the variability of user behavior reasonably well. The Top-1
and Top-3 accuracy for this screen is 74% and 97% respectively. By
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Figure 8: Top-1 and Top-3 accuracy decrease as the number of elements on the screen increases. The Absolute
Ranking increases as the number of elements on the screen increases while the Relative Ranking remains stable.

Figure 9: Top-1 and Top-3 accuracy for the top 20 popular apps in the dataset.

breaking down the prediction by elements, we observe that obj_2
was clicked for 13 times and our model gives perfect prediction
for all of these cases. For obj_5, our model outputs the correct
prediction as the top-1 choice for 3 times out of 4 cases in total, and
is able to cover all 4 cases within the top-3 predictions.

5.6 Ablation Study
We seek to understand how each UI feature and context affects
the model performances by building variants that: 1) exclude one
feature for each, 2) access different lengths of history as model
input.

We experiment model variants by picking out each of these fea-
tures: element text, element type, element position, time, app name.
The results (at bottom part of table 1) shows that most features
contribute to the performance, in which element text makes the
biggest difference. Element position helps very little in our experi-
ment on the validation dataset, and even decreases performance in
the testing dataset, as shown in the table. A suspicion is that various
devices and app versions cause UI layout differences, thus provid-
ing few info for model learning. We also test a variant that uses
clicked element embedding directly without the Screen Encoder
(see Figure 7), the decreased performance shows that attention to
other unclicked elements on screen do help in understanding the
user click behavior.

The performance of the models varies by history size. The pre-
diction is less effective without any history (as seen in Figure 10.

Access of recent screens significantly improves the performance
for all metrics, while longer history provides more improvement in
performance. We choose 9 as the history size for our model by the
memory limit.

6 DISCUSSION
We have deployed our model to Android devices using TF-Lite7,
and the optimized model size is 27MB, which is within a good range
for serving on a mobile device. As a proof of concept, we created
a prototype feature named Next Click Overlay that presents the
UI element that is mostly likely to be clicked at the bottom of the
screen. This design does not alter the layout of an existing interface,
and introduces a small amount of cognitive overload for the user
to glance over the predicted item. If the prediction is correct, the
user can reach the next click single-handedly. For screens that the
model tends to have low accuracy, e.g., Calculator, the overlay will
not been shown.

While the feature is targeted for a general mobile interaction
scenario, it is particularly relevant to accessibility. Existing accessi-
bility services such as Android Switch Access8 allows a user with
dexterity impairments to "click" on a target by iterating through
the actionable elements on the UI one by one via an external device.
The traversal is typically based on the spatial ordering of the ele-
ments on the screen in a top-down and left-right manner and the

7https://www.tensorflow.org/lite
8https://support.google.com/accessibility/android/answer/6122836
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Figure 10: Performance of our Transformer model
variants with different history size in model input.
The model with access to the most recent screen (his-
tory_size=1) performs 4% better in top-1 accuracy than
without history info (history_size=0), and other met-
rics have similar increasement.

Figure 11: An analysis of click behaviors on a specific test screen
that contains 12 UI elements. 6 of them were clicked by users:
obj_2, obj_3, obj_4, obj_5, obj_8, and obj_10, which account for
a total of 105 clicks on different days and hours. The heatmap
on the left visualizes the distribution of these clicks across days
and hours, with the color intensity corresponding the number
of clicks. The table on the right elaborates on a few dense spots.

average number of traversal needed is 9.04 based on our dataset.
With the Next Click Overlay, the number can be potentially reduced
to 2.61. The estimated gain can be validated via a user study, which
is beyond the scope of the paper.

7 CONCLUSION
We presented a novel approach for modeling mobile user click be-
haviors using deep learning. We analyzed a large-scale dataset of
over 20 million clicks from more than 4,000 users, which involved
using over 13,000 unique apps in their daily life. Our model predicts
the UI element that is likely to be clicked by the user based on
the user’s click history and the current context, and it provides
a general solution for modeling click behaviors on arbitrary UIs.
Based on a thorough experiment that compares our approach with
multiple alternative methods in the literature, our model signifi-
cantly outperformed all the baselines. Our experiments also show
click prediction is a challenging task. We present our preliminary ef-
forts for integrating the model into mobile interfaces, which shows
promises to substantially decrease user effort needed for acquir-
ing next element. The design of our model, our analysis and the
experiments provide valuable findings for further investigating the
topic.
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