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We present a collection recommender system that can automatically create and recommend collections of items at a user level. Unlike
regular recommender systems, which output top-N relevant items, a collection recommender system outputs collections of items such
that the items in the collections are relevant to a user, and the items within a collection follow a specific theme. Our system builds
on top of the user-item representations learnt by item recommender systems. We employ dimensionality reduction and clustering
techniques along with intuitive heuristics to create collections with their ratings and titles.

We test these ideas in a real-world setting of music recommendation, within a popular music streaming service. We find that there
is a 2.3x increase in recommendation-driven consumption when recommending collections over items. Further, it results in effective
utilization of real estate and leads to recommending a more and diverse set of items. To our knowledge, these are first of its kind
experiments at such a large scale.

CCS Concepts: • Information systems→Recommender systems;Clustering and classification; •Computingmethodologies
→ Unsupervised learning.
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1 INTRODUCTION

In this paper, we present a collection recommender system that can automatically create and recommend collections of
items. A regular recommender system [6, 7, 14, 15, 17, 22, 23, 34, 35] usually outputs top-N items that are relevant to
a user. On the other hand, a collection recommender system outputs collections of items such that the items in the
collections are relevant to a user, and within a collection, the items follow a specific theme of belonging.

A concrete instance of a collection recommender system is music recommendation, where recommending playlists
(i.e., collections) is more desirable than recommending individual songs (i.e., items). A typical recommendation of top-N
relevant songs results in the songs spanning various themes, which is unsuitable for consumption. For example, users
would not want to listen to a heavy metal song after a soothing western classical. The ideal recommendation in this
setting is a handful of playlists whose content is relevant to users, and at the same time, songs within a playlist are
similar. A user can conveniently select a collection as per his/her current mood and interest, and then consume the
entire collection without abrupt theme changes.

Collection recommendation aptly fits the domain of music, and it has wider applications. For example, in movie
recommendation, we need to recommend personalized collections based on specific genres such as thriller and comedy
[8, 12]. In case of e-commerce, collections are recommended based on the product categories [20]. Search and information
retrieval is another area where collection based presentation is relatively a better approach. Here as well, we can
organize the search results in collections and a user can then dive into the desired collection. Hansen and Golbeck [13]
discuss more on the importance of collection recommendation from the perspective of usability and present several use
cases.

The problem of collection recommendation is not prominent in e-commerce and movies recommendation because
various tags of items (e.g., category and genre information) are readily available. With the availability of these tags,
∗Both authors contributed equally to this research.
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creating collections is straightforward — we just need to filter the top-N recommendations by tags to create the
respective collections. In contrast, in a setting where tags are not available, creating collections is non-trivial. Music is
one such example where tags are either unavailable or not comprehensive enough. Similarly, even in the setting of
video (user-generated content) recommendation, we may not have a comprehensive tagging, e.g., “festival” and “home
makeover” are unique tags, which might be unavailable. In such settings, a collection recommender system can output
collections of varying themes.

We present the design of a collection recommender system, which is capable of automatically creating and recom-
mending collections without the need for tagged items. Thus, our system targets a relatively general setting and would
work in most scenarios. We build it on top of regular recommender systems that are used for recommending top-N items.
Specifically, our system uses the user-item representations learnt through the training of an item recommender system.
The latter could be a matrix factorization based collaborative filtering recommender system such as ALS [15, 17, 35], or
it could very well be a deep neural network based recommender system [6, 7, 14, 34]. The only requirement is that the
underlying model exposes user-item representations (embeddings).

Our system uses these embeddings to generate top-N recommendations for each user and then clusters them. We
perform clustering on the item embeddings after reducing their dimensionality. We then form collections by picking the
relevant and representative items in each cluster. The basis for this to work is that the learnt embeddings provide the
notion of similarity between items as well as the ability to predict the relevance of an item to a user (more in Section 3).
Finally, we compute the ratings and the representative titles of the clusters after few hygiene checks.

We test our ideas in a real-world setting within a music streaming service. We qualitatively show that collections
created with our system are rich and personalized to a user. On manually inspecting the collections, we found that
our system has been able to create nuanced collections with themes such as “religious”, “movie themes”, and “pop
songs of the 90s”. Annotating tags of such nature is hard and laborious especially when labelling items individually.
Moreover, new items keep coming in the catalogue and manual labelling is impractical. Finally, we quantitatively
report that the collection based recommendation approach can be extremely effective and lead to a 2.3x increase in
recommendation-driven consumption (more in Section 4.4) over the approach of item recommendation. Further, it
results in effective utilization of real estate and leads to recommending a more and diverse set of items.

Our work makes the following contributions: 1) We present the design of a system that can create and recommend
collections of items. The system does not require additional training data, and it works with the same data that is needed
to train item recommender systems. 2) We present comparative results between item and collection recommendation in
a real-world setting of music recommendation. To our knowledge, these are first of its kind experiments at such a large
scale.

2 PROBLEM FORMULATION

We are given a set of items 𝐼 and a set of users𝑈 along with the interaction data {(𝑢, 𝑖, 𝑟𝑢𝑖 )}, where 𝑖 ∈ 𝐼 , 𝑢 ∈ 𝑈 and 𝑟𝑢𝑖
represents the implicit or explicit rating derived from the historical consumption of item 𝑖 by user 𝑢. Additionally, we
can also have side information such as user attributes, item attributes and contextual information depending upon the
scope of the item recommender system that we use to learn the representations.

Using this data, our goal is to recommend up to 𝑁 collections 𝐶𝑢 = [𝐶𝑢
1 ,𝐶

𝑢
2 , ...,𝐶

𝑢
𝑁
] to user 𝑢. A collection 𝐶𝑢

𝑘
, 𝑘 ∈

[1, 𝑁 ], is defined as (title𝑢
𝑘
, 𝑅𝑢

𝑘
, {(𝑖𝑢

𝑘
, 𝑟𝑢
𝑘
) : 𝑖𝑢

𝑘
∈ 𝐼 }), where title𝑢

𝑘
is a textual representation of the collection, which can

be shown to the user; 𝑅𝑢
𝑘
is the overall rating of the collection with respect to user 𝑢; 𝑖𝑢

𝑘
refers to an item present in the
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collection, and 𝑟𝑢
𝑘
denotes the rating of the respective item for the user 𝑢 as predicted by the recommender system.

Each collection contains a fixed number of items.
The desired properties of the collections are as follows: 1) The two kinds of ratings predicted (𝑅𝑢

𝑘
and 𝑟𝑢

𝑘
) should

be such that they ensure that the collection, as well as the items within a collection, are relevant to the user. 2) Two
different items within a collection should be similar to each other based on a given similarity criteria. 3) Two collections
should be different from each other so that a diverse set of collections is recommended. 4) The title of the collection
should be representative of the items present in the collection.

3 SOLUTION

Our system builds on top of the capability of existing recommender systems of learning user and item representations.
We first train an item recommender system to learn these representations and then use them to create and recommend
collections.

3.1 Learning user and item representation

We train an item recommender system on user-item interaction data {(𝑢, 𝑖, 𝑟𝑢𝑖 )} derived from historical consumption.
Our goal of training a recommender system is to learn the representations of users and items. These representations
are typically exposed as embeddings (or the activations of the penultimate layers in case of deep networks), which are
mathematically represented as low dimensional vectors. These embeddings of users and items are mapped to the same
vector space and are trained to predict the rating/similarity (𝑟𝑢𝑖 ) between a user and an item.

Formally, the vectors for an item 𝑖 and a user 𝑢 are represented as 𝑖𝐸𝑚𝑏 and 𝑢𝐸𝑚𝑏 , respectively. We train the
recommender system to learn embeddings by minimizing the difference between 𝑟𝑢𝑖 and (𝑢𝐸𝑚𝑏 · 𝑖𝐸𝑚𝑏 ), where · denotes
the dot product. The result of the training is that we learn representations of items and users that can be used to compute
the ratings between them by taking dot products of the respective embeddings. More importantly, two different items
that have the same behaviour in the training data, i.e., similar user-item interaction (or otherwise consumed by the
same set of users), would result in their embeddings that are close to each other in the Euclidean space. It implies that
the representations are generalized to predict item-to-item similarity also [18].

We use these notions of similarities to construct collections of similar items and determine their relevance (𝑅𝑢 ) to
a user. Thus, we require a recommender system that exposes these embeddings. Most of the common recommender
systems [27, 34, 35] satisfy our requirements. We test our ideas with two different types of recommender systems,
namely collaborative filtering and deep neural network based. Section 4.3 presents more details of our experiments
with different recommender systems.

Algorithm 1 presents the entire algorithm of our system. The function call TrainItemRecSys() represents the step
of learning representations. The size of the embeddings in our experiments is set to 100 for both items and users.

3.2 Creating and recommending collections

Collection creation and recommendation operate on a per user level (𝑢 ∈ 𝑈 ). Within the foreach loop, it first generates
top numRecItems item recommendations by calling GetTopNItems(). The function takes the specific user embedding
𝑢𝐸𝑚𝑏 , item embeddings 𝐼𝐸𝑚𝑏 and numRecItems. We optimize the operation by indexing the item embeddings and
doing an approximate nearest neighbour lookup [4]. The value of numRecItems depends on the use case; specifically, it
depends on the number of collections to be created and the number of items per collection. For instance, in our case, we
set it to 1000 for creating up to 5 playlists (collections) each with 30 songs (items).

3



Sanidhya Singal, Piyush Singh, and Manjeet Dahiya

Algorithm 1: Collection recommender system
Input: User-item interaction data 𝐷 ← {(𝑢, 𝑖, 𝑟𝑢𝑖 ) : ∀𝑢 ∈ 𝑈 and

∀𝑖 ∈ 𝐼 }
Output: Collections 𝐶𝑢 for each user 𝑢

𝑈 Emb, 𝐼Emb ← TrainItemRecSys(𝐷)
foreach 𝑢 ∈ 𝑈 do

recItemsEmb ← GetTopNItems(𝑢Emb, 𝐼Emb, numRecItems)
recItemsReducedEmb ← UMAP(recItemsEmb, reducedDimSize)
𝐺𝑢 ← HDBSCAN(recItemsReducedEmb)
𝐶𝑢 ← 𝜙

for 𝐺𝑢
𝑘
in 𝐺𝑢 do

{(𝑖𝑢
𝑘
, 𝑟𝑢
𝑘
)} ← GetTopRelevantItems(𝐺𝑢

𝑘
, numItemsPerCluster)

𝑅𝑢
𝑘
← GetClusterRating({(𝑖𝑢

𝑘
, 𝑟𝑢
𝑘
)})

title𝑢
𝑘
← GetClusterTitle({𝑖𝑢

𝑘
},Metadata)

𝐶𝑢
𝑘
← (title𝑢

𝑘
, 𝑅𝑢

𝑘
, {(𝑖𝑢

𝑘
, 𝑟𝑢
𝑘
)})

𝐶𝑢 ← 𝐶𝑢 ∪ {𝐶𝑢
𝑘
}

end
𝐶𝑢 ← GetTopNClustersByRating(𝐶𝑢 , 𝑁 )

end

Fig. 1. Output after UMAP step

Fig. 2. Output after HDBSCAN step. La-
bels 0-9 are valid clusters and -1 repre-
sents noisy points.

In the next step, we reduce the dimensionality of the embeddings of recItems from 100 to 3 (reducedDimSize). We
use the Uniform Manifold Approximation and Projection (UMAP) [26] algorithm, which is a non-linear technique of
dimensionality reduction. Next, we use the Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) [25] algorithm to create clusters of recItems in the reduced dimension space, which returns groups of
items 𝐺𝑢 for the current user. We discuss our choice of the combination of UMAP and HDBSCAN for creating clusters
in Section 4.

In the nested for loop, we iterate over groups𝐺𝑢 . A group may contain items more than we require, and we need to
carefully select the desired number of items from it. The function GetTopRelevantItems() is called for each group𝐺𝑢

𝑘

to select numItemsPerCluster items. For our case, the value of numItemsPerCluster is 30. Here, we have to select the
items that are most relevant to the user at the same time they are most representative of the cluster. We use the following
heuristic: we first select the most relevant item (item with highest rating 𝑟𝑢 , i.e., highest user-to-item similarity) in
the group; and then, we select the rest of the (numItemsPerCluster - 1) items that are most similar to the first
selected item based on item-to-item similarity. This results in a collection that has items relevant to the user as well as
maintains the notion of similarity within a collection. Finally, the function returns the items with their ratings {(𝑖𝑢

𝑘
, 𝑟𝑢
𝑘
)},

which will be used to create the collection𝐶𝑢
𝑘
. Note that the groups that have items less than numItemsPerCluster are

ignored (not shown in the algorithm).
GetClusterRating() computes the rating of the collection 𝐶𝑢

𝑘
. It does so by averaging the ratings of the individual

items. The title of the collection is determined by calling GetClusterTitle() with its arguments as items and the
Metadata of the items. The definition of this function is specific to the domain in consideration. In our case, we select
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the top three artists (by frequency) present in a collection. This is a very simple method, however, because of the
familiarity of the users with the artists, it turns out to be very effective. Showing the top three artists conveys multiple
properties of a collection. First and foremost, it tells that it is a collection (mix). Second, it tells the language of the
collection. Finally, it communicates the genre and the type of songs in the collection.

We collect all the collections in set 𝐶𝑢 , and in the end, we call GetTopNClustersByRating() to select the most
relevant 𝑁 collections (by cluster rating 𝑅𝑢

𝑘
) for the user.

4 EXPERIMENTS AND EVALUATION

We conduct our experiments in the domain of music recommendation, within a music streaming service. This service
caters to a diverse population with its consumption spanning over 10 international and 31 regional languages. To
perform our experiments, we took a subset of our data, containing 43 million users, 5.1 million songs, and 3.8 billion
interaction points between them to learn user-item representations. For training representations with side information
(refer to Section 4.3), we additionally took item attributes such as artist, language and year of release.

To measure the quality of the collections (playlists) created and recommended, we define multiple offline and online
metrics. We use offline metrics to develop the algorithm and tune the hyperparameters, and we use online metrics to
measure the user engagement.

We measure the following offline metrics: 1) The average number of collections generated per user. 2) The percentage
of collections containing language noise. A collection is said to contain language noise if more than 20 % of its items are
of different languages. Though a lower language noise is desired, manual inspection revealed that few pairs of languages
frequently come together, as songs of these languages are commonly streamed together in a session. This sort of noise
is good to have, to a certain extent, because we want to create collections as per the user consumption patterns. 3) The
percentage of collections with intra-cluster noise. A collection is said to contain intra-cluster noise if it contains more
than 20 % anomalies. An item in a collection is an anomaly if its item-to-item similarity from the most relevant item in
the collection (refer to Section 3.2) is lower than a threshold of 0.2. Having a lower intra-cluster noise is desirable. 4) The
percentage of users observing overlap of artists across the titles of their collections. In an ideal scenario, there should
not be an overlap, but it is also found that certain overlap is good. For example, two collections may have common
artists with their songs spanning multiple eras, i.e., different themes from the same artists. Because of this reason, the
overlap is reported only when four or more collections have common artists in their titles. 5) Artist relevancy is the
average percentage of songs in the collections with artists that the user has listened to in the past. High artist relevancy
suggests that the songs in the collections are mostly from artists familiar to the user; conversely, it also suggests that
exploration of new artists is limited. 6) Average rank is a measure of relevancy which represents the average position
given by the recommender system to the items which make the collections. In a list of recommended items, more
relevant items are present at the top, so, a lower average rank suggests that more relevant items are contained in the
collections.

A careful reader would notice that some of these metrics are domain-specific and metadata-dependent. However,
all of these could be easily ported to a new domain. Also, note that these metrics are not precise and just give us a
coarse measure of the performance. Thus, we also relied on manual inspections for a set of diverse users. It helped us
significantly in generating insights and improving the algorithm.

The following sections present ablation and variation experiments over 10k randomly selected users. In an experiment,
we remove or change a single component and measure the aforementioned metrics to check the efficacy. For each
experiment, we tune the hyperparameters and pick the best performing configuration. Given the unsupervised nature
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of our approach and the lack of ground truth to test the resulting collections, these metrics allowed us to experiment
quickly and achieve our final algorithm.

Representation learning ALS ALS ALS ALS ALS ALS ALS DNN

Dim. reduction UMAP None PCA t-SNE UMAP UMAP UMAP UMAP

Clustering method HDBSCAN HDBSCAN HDBSCAN HDBSCAN k-means Spectral DBSCAN HDBSCAN

average # of collections

generated per user
4.5 2.5 3.2 4.3 4.8 4.5 4.6 4.1

language noise 2.7 % 4.9 % 5.1 % 3.6 % 2.9 % 3.3 % 2.3 % 3.6 %

intra-cluster noise 4.2 % 4.1 % 10.3 % 8.2 % 6.3 % 5.3 % 3.5 % 1.5 %
% users with title overlap

in 4 or more collections
7.7 % 0.0 % 1.5 % 8.3 % 12.7 % 9.4 % 8.7 % 3.9 %

artist relevancy 61.8 % 55.9 % 58.2 % 60.7 % 61.6 % 61.3 % 61.6 % 60.5 %
average rank 173.7 208.4 197.2 175.6 174.0 173.8 174.1 184.8

Table 1. Offline experiments. Second column onwards represent a specific experiment; e.g., the fourth column represents the experiment
with ALS, PCA and HDBSCAN as the representation learning, dimensionality reduction and clustering methods, respectively. The
rows represent different metrics.

4.1 Need and choice of dimensionality reduction algorithm

Dimensionality reduction transforms data from a high-dimensional space to a lower dimension. In our case, we use it
to transform item embeddings from a vector of 100 dimensions to 3 dimensions. It reduces the sparsity of our data,
overcoming the curse of dimensionality [28], and the next step of clustering is able to create better collections. We
conduct four experiments: one without dimensionality reduction and the rest with three different algorithms, namely
UMAP [26], PCA [10] and t-SNE [29]. Columns {ALS, None, HDBSCAN }, {ALS, UMAP, HDBSCAN }, {ALS, PCA, HDBSCAN }
and {ALS, t-SNE, HDBSCAN } of Table 1 present the metrics for these four experiments, respectively.

We draw the following conclusions: 1) Dimensionality reduction leads to an increase in the number of collections
created no matter which algorithm is used. 2) Non-linear approaches to dimensionality reduction (UMAP and t-SNE)
perform significantly better than the linear approach of PCA. Among those, UMAP performs better in our case.

Note that we do not show the experiments for choosing the number of dimensions of the reduced space. Nevertheless,
we found 3 to be the optimal value.

4.2 Choice of clustering algorithm

Figure 1 shows the data points after reducing to a 2-dimensional space using UMAP. We can see that the clusters can
potentially be of arbitrary shapes and with variable densities.

We try four different clustering algorithms, namely k-means clustering [24], spectral clustering [30], DBSCAN [9] and
HDBSCAN [25]. k-means clustering can only find convex/spherical clusters in a dataset, while others can find clusters
of arbitrary shapes. Unlike k-means and spectral clustering methods, DBSCAN and HDBSCAN use density-based
clustering and do not require the number of clusters to be specified. HDBSCAN can additionally identify variable
density clusters. Figure 2 shows the application of HDBSCAN on the output of UMAP.

The results of these four experiments are shown in the columns {ALS, UMAP, k-means}, {ALS, UMAP, Spectral},
{ALS, UMAP, DBSCAN } and {ALS, UMAP, HDBSCAN } of Table 1. We make the following conclusions: 1) DBSCAN and
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HDBSCAN have lower noise and title overlaps in comparison to k-means and spectral clustering methods, as desired. 2)
DBSCAN performs marginally better than HDBSCAN in the average number of collections generated per user, language
noise and intra-cluster noise, whereas HDBSCAN does so in the remaining metrics.

4.3 Varying representation providers

We try two different recommendation systems to learn user-item representations, namely a collaborative filtering (CF)
model and a two-tower deep neural network model (DNN). The CF model is a parallelized version of matrix factorization
with alternating least squares optimizer (ALS) [35]. The DNN model [34] consists of a user tower and an item tower.
The former contains a single dense layer of 100 units, while the latter contains a dense layer of 110 units (the additional
10 units are for item metadata, namely artists, language and release year) followed by the dense layer of 100 units. We
train both the recommendation models to learn user-item embeddings. In case of ALS, these are the embedding values
in the user and item matrices, whereas in DNN, these are the activations of the penultimate layers of the model (i.e., the
final layer of each tower).

Columns {DNN, UMAP, HDBSCAN } and {ALS, UMAP, HDBSCAN } of Table 1 report the results for the two kinds of
representations. It is interesting to note that the same configuration of our algorithm works for both the models and
produces similar metrics, we just marginally tuned the hyperparameters of HDBSCAN. Some of the differences that we
see are due to the fact that the representations learnt by DNN model are much more accurate — it uses the information
about the artists of the items — and it leads to a lesser overlap noise.

4.4 Online experiments

Based on the above experiments, we select UMAP as our dimensionality reduction technique and HDBSCAN as
our clustering method. Specifically, we finalize the following hyperparameters: for UMAP1, 𝑛_𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 15,
𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 3, 𝑚𝑖𝑛_𝑑𝑖𝑠𝑡 = 0.0, and for HDBSCAN2, 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 8, 𝑚𝑖𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑠𝑖𝑧𝑒 = 30. With our al-
gorithm fixed, we conduct online experiments to measure user engagement. The recommendation system for learning
user-item representations is ALS. We compare the results between the settings of recommending individual items
versus recommending collections of items. We do so through an A/B experiment over randomly distributed, equally
sized userbases. We show item recommendations to userbase A and collection recommendations to userbase B at the
same top-most position on the homepage. More concretely, in the former, we show the top 15 songs. In the latter, we
show the top 5 collections, where each collection can be clicked to see the 30 songs inside it.

The results are as follows: 1) On an average, the userbase A consumes 2.94 songs per day through item recommenda-
tion, whereas the userbase B consumes 6.83 songs per day through collection recommendation – a 2.3x increase in
recommendation-driven song consumption. Here, the consumption of a song is defined as at least 30 seconds stream
of the song. 2) Of the total songs a user consumes on the music streaming service, 16.7 % of them are from item
recommendation in setting A, while 36.5 % of them are from collection recommendation in setting B. Thus, users start
relying more on recommendations. 3) The users have an average click-through rate (CTR) of 18.9 % in setting A as
compared to 15.2 % in setting B. Here, CTR is defined as the ratio of the users who click on an entity (a tile on real
estate) to the number of users who see it. A lower value of CTR in setting B is expected because we show only 5 entities
(collections) in setting B in comparison to 15 entities (items) in setting A. 4) Although the consumption driven by
recommendation increased significantly, but the total consumption, i.e., from recommendation as well as the other

1UMAP Python API: https://umap-learn.readthedocs.io/en/latest/api.html (Visited on April 29, 2021)
2HDBSCAN Python API: https://hdbscan.readthedocs.io/en/latest/api.html (Visited on April 29, 2021)
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sources, only increased marginally by 0.07 songs per day per user. It implies that users’ consumption shifted to the
recommendation source from the other sources such as user library, albums, and editorials.

The above results are extremely encouraging and highlight the significance of providing collections of relevant songs
to our customers. It is evident that once a user selects a theme (collection), he/she tends to play the entire playlist, thus
resulting in a more engaged user. More so, since collections are hierarchical in nature, we now recommend a total of
150 songs across 5 distinct themes in contrast to only 15 songs individually, thus improving the utilization of the same
real estate. Essentially, it enables us to recommend more and diverse content in an organized manner.

5 RELATEDWORK

We have categorized related literature into four areas, namely the work that focuses on the idea and usability of
collection recommendation, the work on automatic collection recommendation, the work on semi-automatic collection
recommendation, and finally, a somewhat related area of topic modeling and clustering.

Concept and usability: Hansen and Golbeck conceptualized the idea of the collection recommender systems from
the point of view of significance and usability [11, 13]. The authors presented the need for collection recommendation
instead of individual item recommendations and discussed the challenges and design decisions around algorithm
development, preference elicitation, evaluation techniques, and user interface. They also discussed different types
of collections and the notions of similarities between the items to form a collection. There are more related papers
that conceptualized collection recommendations in various settings [1, 31]. However, none of the aforementioned
works [1, 11, 13, 31] provides a concrete implementation and tests the ideas on a real-world problem. In contrast, we
present the design and implementation of a system that can automatically recommend collections in a setting of music
recommendation.

Automatic collection recommendation: A recent work from Netflix [8] presented a method to recommend
existing collections. That is, given a set of collections already available, the method predicts the ratings of the collections
(𝑅𝑢 ) as well as the ratings of the items (𝑟𝑢 ) within a collection w.r.t. a user (𝑢). This enables them to decide which
collections to recommend and the order of the items within a collection. Our work also falls in the category of automatic
collection recommendation, however, we do not make the assumption of the availability of collections in advance. In
fact, our algorithm creates the collections as well.

Semi-automatic collection recommendation: Semi-automatic collection recommendation systems require user
input to recommend collections. The input could be the constraints on a collection, e.g., the total time of a playlist [32]
or the total cost of a trip consisting of places to visit in one or more cities [33]; it could also be the seed songs in case
of music, which are used by the system to create playlists using item-item similarity based on item embeddings or
metadata [3, 5, 16, 32, 33]. Clearly, our work is more general than this class of collection recommenders, as we do not
require any manual input from a user in the process of recommending collections.

Topic modeling and clustering: Although there is no notion of users and recommendation in the problem of
topic modeling (natural language processing), it comes close to the idea of clustering. Top2Vec [2] uses doc2vec [21] to
generate document embeddings, UMAP to reduce their dimensionality, and finally, HDBSCAN to create clusters in the
smaller dimension space. We too use UMAP to reduce embeddings dimensions and HDBSCAN to cluster, however, we
differ in the way we detect the top items in a cluster. Moreover, we predict the ratings of the clusters and that of the
items within, which is not the case with topic modeling. In fact, there is no notion of users in topic modeling.

ClusterExplorer [19] uses the idea of clustering of item embeddings learnt through a matrix factorization (user-item
interaction) recommender system. The objective of the work is to provide “related recommendations” of items and
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topics based on a selected item. It uses k-means clustering along with DBSCAN to create topics. In contrast, our goal
is to recommend personalized collections whereas their objective is to predict similar items and topics without any
personalization.

6 CONCLUSION AND FUTUREWORK

We presented a collection recommender system that can automatically create and recommend collections of items. Unlike
regular recommender systems, which output top-N relevant items, a collection recommender system outputs collections
of items such that the items in the collections are relevant to a user, and items within a collection follow a specific
theme. Our system is built on top of the user-item representations learnt by item recommender systems. We employed
dimensionality reduction and clustering techniques along with intuitive heuristics to create collections with their
ratings and titles. We tested these ideas in a real-world setting of music recommendation, within a popular music
streaming service. We found that there is a 2.3x increase in recommendation-driven consumption when recommending
collections over items. Moreover, it also resulted in effective utilization of real estate and lead to recommending a more
and diverse set of items in an organized manner.

We believe our work is just a beginning in the direction of perfecting collection recommendation. There is a lot of
ground to be explored, including applications in other domains, building better methods, experimenting with different
types of datasets, devising new metrics for measuring the performance of collections, and taking user feedback for
improving the algorithm. We hope that our work brings attention to this problem and induces more studies around this
problem.
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