
Seed Selection for Successful Fuzzing

Adrian Herrera
ANU & DST
Australia

Hendra Gunadi
ANU

Australia

Shane Magrath
DST

Australia

Michael Norrish
CSIRO’s Data61 & ANU

Australia

Mathias Payer
EPFL

Switzerland

Antony L. Hosking
ANU & CSIRO’s Data61

Australia

ABSTRACT

Mutation-based greybox fuzzingÐunquestionably the most widely-
used fuzzing techniqueÐrelies on a set of non-crashing seed inputs
(a corpus) to bootstrap the bug-finding process. When evaluating a
fuzzer, common approaches for constructing this corpus include:
(i) using an empty file; (ii) using a single seed representative of the
target’s input format; or (iii) collecting a large number of seeds (e.g.,
by crawling the Internet). Little thought is given to how this seed
choice affects the fuzzing process, and there is no consensus on
which approach is best (or even if a best approach exists).

To address this gap in knowledge, we systematically investigate
and evaluate how seed selection affects a fuzzer’s ability to find bugs
in real-world software. This includes a systematic review of seed
selection practices used in both evaluation and deployment con-
texts, and a large-scale empirical evaluation (over 33 CPU-years) of
six seed selection approaches. These six seed selection approaches
include three corpus minimization techniques (which select the
smallest subset of seeds that trigger the same range of instrumen-
tation data points as a full corpus).

Our results demonstrate that fuzzing outcomes vary significantly
depending on the initial seeds used to bootstrap the fuzzer, withmin-
imized corpora outperforming singleton, empty, and large (in the
order of thousands of files) seed sets. Consequently, we encourage
seed selection to be foremost in mind when evaluating/deploying
fuzzers, and recommend that (a) seed choice be carefully considered
and explicitly documented, and (b) never to evaluate fuzzers with
only a single seed.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; · Security and privacy→ Software and application

security.

KEYWORDS

fuzzing, corpus minimization, software testing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07.
https://doi.org/10.1145/3460319.3464795

ACM Reference Format:

Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias

Payer, and Antony L. Hosking. 2021. Seed Selection for Successful Fuzzing.

In Proceedings of the 30th ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’21), July 11ś17, 2021, Virtual, Denmark. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3460319.3464795

1 INTRODUCTION

Fuzzing is a dynamic analysis technique for finding bugs and vul-
nerabilities in software, triggering crashes in a target program by
subjecting it to a large number of (possibly malformed) inputs.
Mutation-based fuzzing typically uses an initial set of valid seed
inputs from which to generate new seeds by random mutation. Due
to their simplicity and ease-of-use, mutation-based greybox fuzzers
such as AFL [74], honggfuzz [64], and libFuzzer [61] are widely
deployed, and have been highly successful in uncovering thousands
of bugs across a large number of popular programs [6, 16]. This
success has prompted much research into improving various as-
pects of the fuzzing process, including mutation strategies [39, 42],
energy assignment policies [15, 25], and path exploration algo-
rithms [14, 73]. However, while researchers often note the impor-
tance of high-quality input seeds and their impact on fuzzer perfor-
mance [37, 56, 58, 67], few studies address the problem of optimal de-

sign and construction of corpora for mutation-based fuzzers [56, 58],
and none assess the precise impact of these corpora in coverage-
guided mutation-based greybox fuzzing.

Intuitively, the collection of seeds that form the initial corpus
should generate a broad range of observable behaviors in the target.
Similarly, candidate seeds that are behaviorally similar to one an-
other should be represented in the corpus by a single seed. Finally,
both the total size of the corpus and the size of individual seeds
should be minimized. This is because previous work has demon-
strated the impact that file system contention has on industrial-scale
fuzzing. In particular, Xu et al. [71] showed that the overhead from
opening/closing test-cases and synchronization between workers
each introduced a 2× overhead. Time spent opening/closing test-
cases and synchronization is time diverted from mutating inputs
and expanding code coverage. Minimizing the total corpus size and
the size of individual test-cases reduces this wastage and enables
time to be (better) spent on finding bugs.

Under these assumptions, simply gathering as many input files
as possible is not a reasonable approach for constructing a fuzzing
corpus. Conversely, these assumptions also suggest that beginning
with the “empty corpusž (e.g., consisting of one zero-length file)
may be less than ideal. And yet, as we survey here, the majority
of published research uses either (a) the “singleton corpusž (e.g., a
single seed representative of the target program’s input format),

230

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1145/3460319.3464795
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460319.3464795&domain=pdf&date_stamp=2021-07-11

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L. Hosking

or (b) the empty corpus. In contrast, industrial-scale fuzzing (e.g.,
Google’s OSSFuzz [6]) typically uses large corpora containing hun-
dreds of inputs. These inputs may generate similar behavior in the
target, potentially leading to wasted fuzzing effort in exhaustively
exploring mutation from all available seeds. The practice is to use
corpus minimization tools that eliminate seeds that display duplicate
behavior. However, these tools are based on heuristic algorithms
and generate corpora that vary wildly in size. It is unclear which of
these approaches (fuzzing with an empty, singleton, or minimized
corpus) is best, or even if a best approach exists.

Thus, we undertake a systematic study to better understand the
impact that seed selection has on a fuzzer’s ultimate goal: finding
bugs in real-world software. We make the following contributions:

• A systematic review of seed selection practices and corpus
minimization techniques used across fuzzer evaluations and
deployments. Our review finds that seed selection practices
vary wildly, and that there is no consensus on the best way to
select the seeds that bootstrap the fuzzing process (Section 3).

• A new corpus minimization tool, OptiMin, which produces
an optimal minimum corpus (Section 4).

• A quantitative evaluation and comparison of various seed-
selection practices. This evaluation covers three corpus min-
imization tools (including OptiMin), and finds that corpora
produced with these tools perform better than singleton and
empty seeds with respect to bug-finding ability (Section 5).

2 FUZZING

Fuzzing is the most popular technique for automatically finding
bugs and vulnerabilities in software. This popularity can be attrib-
uted to its simplicity and success in finding bugs in “real-worldž
software [16, 61, 64, 74].

How a fuzzer generates test-cases depends on whether it is gen-
eration-based or mutation-based. Generation-based fuzzers (e.g.,
QuickFuzz [29], Dharma [47], and CodeAlchemist [30]) require a
specification/model of the input format. They use this specification
to synthesize test-cases. In contrast, mutation-based fuzzers (such
as AFL [74], honggfuzz [64], and libFuzzer [61]) require an initial
corpus of seed inputs (e.g., files, network packets, and environment
variables) to bootstrap test-case generation. New test-cases are then
generated by mutating inputs in this corpus.

Perhaps the most popular mutation-based fuzzer is American
Fuzzy Lop (AFL) [74]. AFL is a greybox fuzzer, meaning that it uses
lightweight code instrumentation to gather code coverage informa-
tion during the fuzzing process. This code coverage information
acts as an approximation of program behavior. AFL instruments
edge transitions between basic blocks and uses this information
as code coverage. By feeding the code coverage information back
into the test-case mutation algorithm, the fuzzer can be driven to
explore new code paths (and hence behaviors) in the target. Despite
its popularity, AFL is no longer actively improved and is being
phased out in favor of AFL++.1 AFL++ [23] builds on AFL by incor-
porating state-of-the-art fuzzing research, including Redqeen’s
lightweight taint-tracking approximation [9], AFLFast’s Markov

1For example, AFL++ has replaced AFL in Google’s OSSFuzz: https://github.com/
google/oss-fuzz/commit/665e4898215c25a47dd29139f46c4f47f8139417.

chain model for seed scheduling [15], andMOpt’s particle swarm
optimization for selecting mutation operators [42].

3 SEED SELECTION PRACTICES

The process for selecting the initial corpus of seeds varies wildly
across fuzzer evaluations and deployments. We systematically re-
view this variation in the following sections, first considering ex-
perimental evaluations, followed by industrial-scale deployments.

3.1 In Experimental Evaluation

Remarkably, Klees et al. [37] found that “most papers treated the

choice of seed casually, apparently assuming that any seed would

work equally well, without providing particularsž. In particular, of
the 32 papers that they surveyed (authored between 2012 and 2018):
ten used non-empty seed(s), but it was not clear whether these
seeds were valid inputs; nine assumed the existence of valid seed(s),
but did not report how these were obtained; five used a random
sampling of seed(s); four used manually constructed seed(s); and
two used empty seed(s). Additionally, six studies used a combination
of seed selection techniques. Klees et al. [37] find that “it is clear
that a fuzzer’s performance on the same program can be very different

depending on what seed is usedž and recommend that “papers should
be specific about how seeds are collectedž.

We examine an additional 28 papers published since 2018, to see
if these recommendations have been adopted. Table 1 summarizes
our findings.

Unreported seeds. Three studies make no mention of their seed
selection procedure. One, FuzzGen, explicitly mentions that “stan-
dardized common seedsž [33] are key to a valid comparison, yet does
not mention the seeds used.

Benchmark and fuzzer-provided seeds. Three studies (Hawkeye,
FuzzFactory, and Entropic) evaluate fuzzers on the Google Fuzzer
Test Suite (FTS) [26], which provides seeds for 14 of its 24 targets
(FTS commit 5135606). Of these seed sets, eight contain only one or
two seeds. When no seed is provided, it is unclear which seeds these
three studies used. Similarly, four papers (AFL-Sensitive, PTrix,
Savior, and EcoFuzz) used the singleton seed sets provided by AFL.

Manually-constructed seeds. Two papers (Redqeen and Gri-

moire) use “an uninformed, generic seed consisting of different char-

acters from the printable ASCII setž [9]. However, the authors do
not justify (a) why this specific singleton corpus was chosen, and
(b) what impact this choice has on the authors’ real-world results,
particularly when fuzzing binutils, where most of the targets
accept non-ASCII, binary file formats (e.g., readelf, objdump).

Random seeds. Five papers (MOpt, Superion, FuZZan, GreyOne,
and TortoiseFuzz) randomly select seeds from either (a) a larger
corpus of seeds provided by developers of a particular target, or
(b) by crawling the Internet. Of these studies, two (Superion and
GreyOne) specifically mention using afl-cmin, AFL’s corpus min-
imization tool (discussed further in Section 4), to remove duplicate
seeds from the random seed set.

Empty seeds. Eight papers use an empty seed to bootstrap the
fuzzing process. Interestingly, both Böhme et al. [13] and Böhme
and Falk [12] explicitly removed the corpora provided by OSSFuzz

231

https://github.com/google/oss-fuzz/commit/665e4898215c25a47dd29139f46c4f47f8139417
https://github.com/google/oss-fuzz/commit/665e4898215c25a47dd29139f46c4f47f8139417

Seed Selection for Successful Fuzzing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

(discussed further in Section 3.2) because they found that “initial
seed corpora. . . are often for saturation: feature discovery has effec-

tively stopped shortly after the beginning of the campaignž.

Table 1: Summary of past fuzzing evaluation, focusing on

seed selection.We adopt the categories and notation used by

Klees et al. [37]: Rmeans randomly sampled seeds; Mmeans

manually constructed seeds; G means automatically gener-

ated seed; N means non-empty seed(s) with unknown valid-

ity; Vmeans the paper assumes the existence of valid seed(s),

but with unknown provenance; E means empty seeds; /

means different seeds were used in different programs, but

only one kind of seeds in one program; and a blank cell

means that the paper’s evaluation did not mention seed se-

lection.We introduce an additional category: V*means valid

seed(s) with known provenance. We also indicate whether

the evaluation is reproducible (łRep.ž) with the same seeds.

Paper Seed Rep.

CollAFL [25] ✗

Hawkeye [18] E/V* ✗

Qsym [73] M, V* ✓

AFL-Sensitive [69] E/V* ✓

Cerebro [40] ✗

Redqeen [9] M ✓

Grimoire [11] M ✓

MOpt [42] R ✓

Nautilus [8] G, M ✓

pFuzzer [45] E ✓

PTrix [20] V* ✓

Superion [68] R/V ✗

FuzzFactory [55] V*, M ✓

Zest [54] V ✓

Paper Seed Rep.

UnTracer [51] V ✓

Ankou [43] V* ✓

Entropic [13] E/V* ✓

[12] E ✓

Savior [19] V* ✓

FuZZan [34] E, V*, R ✓

EcoFuzz [72] V* ✓

GreyOne [24] R ✗

FuzzGen [33] ✗

FuzzGuard [75] V/E ✗

Magma [31] V* ✓

Muzz [17] V ✗

ParmeSan [53] E ✗

TortoiseFuzz [70] R ✗

A Reproduction Experiment: Redqueen. To demonstrate the im-
portance of seed selection, we reproduce an experiment from the
Redqeen evaluation. Aschermann et al. [9] fuzz a number of
programs from binutils, bootstrapping each trial with an “un-
informed, generic seedž (discussed previously). Their readelf re-
sults are particularly striking: AFLFast and honggfuzz cover lit-
tle code. We repeat this experiment, but use a variety of initial
seeds, including: (i) the original, uninformed seed; (ii) a single, valid
ELF file (from AFL’s seed set); and (iii) a collection of ELF files
sourced from the ALLSTAR [63] and Malpedia [57] datasets (re-
duced from 104,737 to 366 seeds using afl-cmin). In place of the
original Redqeen (which we were unable to build and reproduce)
we use AFL++ [23] with “CmpLogž instrumentation enabled; this
reimplements Redqeen’s “input-to-state correspondencež.

Our results appear in Fig. 1, and clearly show the impact that seed
choice has on code coverage. Similarly to the results of Aschermann
et al. [9], AFLFast bootstrapped with the uninformed seed explores
very little of readelf’s code: less than 1 %. However, this increases
to about 38 % for AFLFast bootstrapped with the valid ELF file,
making it much more competitive against both honggfuzz and
AFL++ (although AFL++ still outperforms them both by around
15 %). Finally, while the afl-cmin corpus has a negligible impact
on AFLFast and honggfuzz, it results in a significant improvement
when fuzzing with AFL++, increasing coverage to about 60 %.

0 1 2 5 10

Time (h)

0

10

20

30

40

50

60

R
eg
io
n
s
(%
)

Seed

Uninformed

Valid

Corpus

Fuzzer

AFLFast

AFL++

honggfuzz

Figure 1: Code coverage of readelfwith different initial seed

sets. The mean coverage (using llvm-cov’s region coverage

metric) and 95% bootstrap confidence interval over five re-

peated 10 h trials is shown. The 𝑥-axis uses a log scale.

At minimum, fuzzer evaluations must report the seed set used
to bootstrap the fuzzing process. To ensure reproducibility,
artifacts must provide the initial seed set (since results can
vary wildly depending on the seeds used). Ideally, fuzzer eval-
uations should experiment with different initial seed corpora
to see how varying initial seeds affects fuzzing outcomes.

3.2 In Deployment

In addition to being an active research topic, fuzzers are frequently
deployed to find bugs in real-world software [6, 16, 48, 52]. Notably,
practitioners also recognize the importance of seed selection. For
example, the developers of the Mozilla Firefox browser remark [49]:

Mutation-based strategies are typically superior to oth-

ers if the original samples [i.e., seeds] are of good qual-
ity because the originals carry a lot of semantics that

the fuzzer does not have to know about or implement.

However, success here really stands and falls with the

quality of the samples. If the originals don’t cover cer-

tain parts of the implementation, then the fuzzer will

also have to do more work to get there.

In contrast to the evaluation practices described in Section 3.1,
industrial fuzzing eschews small seed sets and the empty seed in
favor of large corpora. For example, seed corpora in Google’s con-
tinuous fuzzing service for open-source software, OSSFuzz (commit
0deeef6), range in size from a single seed (e.g., OpenThread, ICU)
to 62,726 seeds (Suricata). Of the 363 OSSFuzz projects, 135 projects
supply an initial corpus (∼37 %) for 706 fuzzable targets. The mean
corpus size is 1,083 seeds and the median is 36 seeds. More than
half of the 135 projects include more than 100 seeds.

232

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L. Hosking

We examined the Suricata corpus in more detail, because it pro-
vided the largest number of seeds (62,726). We found large redun-
dancy in these 62,726 seeds: we reduced the corpus to 31,234 seeds
(∼50 % decrease) by discarding seeds with an identical MD5 hash.
We were able to reduce the size of the corpus further (down to
145 seeds, a 99 % reduction) by again applying afl-cmin (similarly
to the readelf reproduction experiment described in Section 3.1).
This redundancy is wasteful, as it leads to seeds clogging the fuzzing
queue, which hinders and delays mutation of more promising seeds.
We discuss corpus minimization in the following section.

When deploying fuzzers at an industrial scale it is imperative
that seeds exhibiting redundant behavior be removed from
the fuzzing queue, as they will lead to wasted cycles.

4 CORPUS MINIMIZATION

Orthogonal to the seed selection practices discussed in Section 3,
many popular fuzzers (e.g., AFL [74], libFuzzer [61], honggfuzz [64])
provide corpus minimization (sometimes called distillation) tools.
Corpus minimization assumes that a large corpus of seeds already
exists, and thus a corpus minimization tool reduces this large corpus
to a subset of seeds that is then used to bootstrap the fuzzing process.
When performing corpus minimization, the primary question that
needs answering (as posed by Rebert et al. [58]) is:

Given a large collection of inputs for a particular target

(the collection corpus), how do we select a subset of

inputs that will form the initial fuzzing corpus?

Abdelnur et al. [5] first formalized this problem as an instance
of the minimum set cover problem (MSCP). The MSCP states that
given a set of elements 𝑈 (the universe) and a collection of 𝑁
sets 𝑆 = 𝑠1, 𝑠2, . . . , 𝑠𝑁 whose union equals 𝑈 , what is the smallest

subset of 𝑆 whose union still equals 𝑈 . This smallest subset C ⊆ 𝑆

is known as the minimum set cover. Moreover, each 𝑠𝑖 ∈ 𝑆 may
be associated with a weight 𝑤𝑖 . In this case, the weighted MSCP
(WMSCP) attempts to minimize the total cost of elements in C.

[W]MSCP is NP-complete [36], so Abdelnur et al. [5] used a
greedy algorithm to solve the unweighted MSCP. 𝑈 consisted of
code coverage information for the set of seeds in the original col-
lection corpus. Subsequently, code coverage has continued to be
used to characterize seeds in a fuzzing corpus due to the strong
positive correlation between code coverage and bugs found while
fuzzing [28, 38, 46, 50]. Finding C is therefore equivalent to finding
the minimum set of seeds that still maintains the code coverage
observed in the collection corpus.

A number of corpus minimization techniques have been pro-
posed since the work of Abdelnur et al. [5]. We focus on file-format
fuzzing and summarize the techniques relevant to our evaluation.

Minset. Rebert et al. [58] extended the work of Abdelnur et al.
[5] by also computing C weighted by execution time or file size.
They designed six corpus minimization techniques and both simu-
lated and empirically evaluated these techniques over a number of
fuzzing campaigns (using the BFF blackbox fuzzer). Rebert et al. [58]
found that Unweighted MinsetÐan unweighted greedy-reduced
minimizationÐperformed best in terms of minimization ability,
and that the Peach Set algorithm (based on the Peach fuzzer’s

peachminset tool [21]) found the highest number of bugs. Curi-
ously, Rebert et al. [58] also found that peachminset does not in fact
calculate C, nor a proven competitive approximation thereof. Our
work extends Rebert et al. [58] with a more extensive evaluation
based on modern coverage-guided greybox fuzzing.

afl-cmin. Due to AFL’s popularity, afl-cmin [74] is perhaps
the most widely-used corpus minimization tool. It implements a
greedy minimization algorithm, but has a unique approach to cov-
erage. In particular, afl-cmin reuses AFL’s own notion of edge
coverage to categorize seeds at minimization time, recording an
approximation of edge frequency count, not just whether the edge
has been taken. Moreover, afl-cmin bins edge counts such that
changes in edge frequency counts within a single bin are ignored,
while transitions from one bin to another are “flagged as an in-

teresting change in program control flowž [74]. When minimizing,
afl-cmin chooses the smallest seed in the collection corpus that
covers a given edge count, and then performs a greedy, weighted
minimization. We consider afl-cmin and Rebert’s Minset as rep-
resentatives of the state-of-the-art in corpus minimization tools,
and include both in our evaluation.

OptiMin. The previously-described corpus minimization tech-
niques all employ heuristic algorithms to approximate C. This is
because the underlying problem, the [W]MSCP, is NP-complete.
However, in the case of corpus minimization, we found that exact
solutions were nonetheless computable in reasonable time by en-
coding the problem as a maximum satisfiability problem (MaxSAT)
and using an off-the-shelf MaxSAT backend. Thus, we implement
OptiMin, an optimal corpus minimization tool for AFL.

OptiMin2 uses the EvalMaxSAT solver [10] to pose and solve
corpus minimization as a MaxSAT problem. Unlike the Boolean

satisfiability problem (SAT)Ðwhich determines whether the vari-
ables in a given Boolean formula can be assigned values to make
the formula evaluate to trueÐthe maximum satisfiability problem

(MaxSAT) divides constraints into hard and soft constraints, and
aims to satisfy all hard constraints and maximize the total num-
ber (or weighted total) of satisfied soft constraints. Here, OptiMin

treats edge coverage as a hard constraint, while not including a
particular seed in the solution is treated as a soft constraint. This ap-
proach ensures that the solution covers all edges with the minimal
number of seeds, and is optimal in the sense that the solution C is
guaranteed to be exact (rather than an approximation). This process
is illustrated in Fig. 2: the program in Fig. 2a is executed with three
seeds, producing the traces in Fig. 2b. These traces are translated
into a set of (weighted) constraints (Fig. 2c) which are solved by
EvalMaxSAT.

OptiMin is not the first tool to generate optimal solutions to min-
imization problems in software testing. For example,MINTS [32]
and Nemo [41] both use integer linear programming (ILP) solvers to
perform test-suite minimization; i.e., eliminate redundant test cases
from a test suite “based on any number of criteria [e.g., statement

coverage, time-to-run, setup effort]ž [32]. When developing Opti-

Min, we explored the use of mixed integer programming solvers
(which are more general than ILP solvers), but found that these
solvers were orders-of-magnitudes slower than EvalMaxSAT.

2Available at https://github.com/HexHive/fuzzing-seed-selection.

233

https://github.com/HexHive/fuzzing-seed-selection

Seed Selection for Successful Fuzzing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

A

B C

D

E

FG

HI

J

(a) Program control-flow graph.

S1 A B E G D

S2 A B E F H

S3 A B D

J E F I D
2x

(b) Seed traces.

WOPT

Edges:
(𝐴, 𝐵) : 𝑆1𝑆1𝑆1 ∨𝑆2𝑆2𝑆2 ∨𝑆3𝑆3𝑆3
(𝐵, 𝐸) : 𝑆1𝑆1𝑆1 ∨𝑆2𝑆2𝑆2
(𝐵,𝐷) : 𝑆3𝑆3𝑆3
(𝐸, 𝐹), (𝐹,𝐻), (𝐹, 𝐼),
(𝐻, 𝐽), (𝐼 , 𝐷), and (𝐽 , 𝐸) : 𝑆2𝑆2𝑆2

(𝐸,𝐺), and (𝐺,𝐷) : 𝑆1𝑆1𝑆1

Hard constraint:
(𝑆1𝑆1𝑆1 ∨𝑆2𝑆2𝑆2 ∨𝑆3𝑆3𝑆3) ∧ (𝑆1𝑆1𝑆1 ∨𝑆2𝑆2𝑆2)
∧ 𝑆3𝑆3𝑆3 ∧𝑆2𝑆2𝑆2 ∧𝑆1𝑆1𝑆1

weight = ⊤

Soft constraints:
¬𝑆1𝑆1𝑆1 weight =𝑊1

¬𝑆2𝑆2𝑆2 weight =𝑊2

¬𝑆3𝑆3𝑆3 weight =𝑊3

WMOPT

Edges:
(𝐵, 𝐸) : 𝑆1𝑆1𝑆1 ∨𝑆2𝑆2𝑆2
(𝐴, 𝐵) : 𝑆1𝑆1𝑆1 ∨𝑆2𝑆2𝑆2 ∨𝑆3𝑆3𝑆3
(𝐵,𝐷) : 𝑆3𝑆3𝑆3
(𝐸, 𝐹), (𝐹,𝐻), (𝐹, 𝐼),
(𝐻, 𝐽), (𝐼 , 𝐷),
(𝐽 , 𝐸)1, and (𝐽 , 𝐸)2 : 𝑆2𝑆2𝑆2

(𝐸,𝐺), and (𝐺,𝐷) : 𝑆1𝑆1𝑆1

Hard constraint:
(𝑆1𝑆1𝑆1 ∨𝑆2𝑆2𝑆2 ∨𝑆3𝑆3𝑆3) ∧ (𝑆1𝑆1𝑆1 ∨𝑆2𝑆2𝑆2)
∧ 𝑆3𝑆3𝑆3 ∧𝑆2𝑆2𝑆2 ∧𝑆1𝑆1𝑆1

weight = ⊤

Soft constraints:
¬𝑆1𝑆1𝑆1 weight =𝑊1

¬𝑆2𝑆2𝑆2 weight =𝑊2

¬𝑆3𝑆3𝑆3 weight =𝑊3

(c) Weighted CNF constraints. Each edge is encoded as a disjunction of seeds that cover that edge.

The final constraints are a conjunction of seed disjunctions (the hard constraint, assigned the

maximum weight ⊤) and a set of soft constraints (the negation indicates a minimization), each

with a weight𝑊𝑖 (for 𝑖 ∈ {1, 2, 3}). For an unweighted minimization,𝑊𝑖 = 1, while for a weighted

minimization𝑊𝑖 = the file size of 𝑆𝑖 .

The left constraints are for a weighted minimization (WOPT in Section 5.1.5), while the right

constraints are for a weighted minimization that takes into account edge frequencies (WMOPT

in Section 5.1.5). In the latter, the loop backedge (𝐽 , 𝐸) has been split into two edges (the number

of times that backedge was taken).

Figure 2: Corpusminimization withOptiMin. The program in Fig. 2a is executed with seeds 𝑆1, 𝑆2, and 𝑆3, producing the traces

in Fig. 2b. These traces are then translated into one of the constraint sets in Fig. 2c, which are solved by aMaxSAT solver. If the

solver finds a solution where soft constraints ¬𝑆𝑖 , ¬𝑆 𝑗 . . . are part of a satisfying assignment, the seeds 𝑆𝑖 , 𝑆 𝑗 . . . can be omitted

from the corpus.

5 EVALUATION

We perform a large-scale evaluation to understand the impact of
seed selection on fuzzing’s ultimate goal: finding bugs in real-world
software. In particular, we aim to answer the following questions:

RQ1 How effective are corpus minimization tools at producing a
minimal corpus? (Section 5.2)

RQ2 What effect does seed selection have on a fuzzer’s bug find-
ing ability? Do fuzzers perform better when bootstrapped
with (a) a small seed set (e.g., empty or singleton set), or
(b) a large corpus of seeds, derived from an even larger col-
lection corpus after applying a corpus minimization tool?
(Section 5.3)

RQ3 How does seed selection affect code coverage? Does start-
ing from a corpus that executes more instrumentation data
points result in greater code coverage, or does a fuzzer’s
mutation engine naturally achieve the same coverage (e.g.,
when starting from an empty seed)? (Section 5.4)

Notably, we find that while corpus minimization has a big impact
on fuzzing campaigns, the underlying minimization tool is itself
less important, as long as some form of minimization occurs. All
experimental data is available at https://osf.io/hz8em/.

5.1 Methodology

5.1.1 Target Selection. Weuse targets fromMagma [31], the Google
Fuzzer Test Suite (FTS) [26], and six popular open-source programs

(spanning 14 different file formats) to test different seed selection
approaches. Table 2 details these targets.

We exclude some FTS targets, because: (i) they contain only mem-
ory leaks (e.g., proj4-2017-08-14), which are not detected by AFL
by default, or (ii) we were unable to find a suitably-large collection
corpus for a particular file type (e.g., ICC files for lcms-2017-03-21).
This left us with 10 of the original 24 targets. Similarly, two Magma
targets were excluded (openssl and sqlite3) because we were unable
to find a suitably large corpus, leaving us with five targets.

We selected the six real-world targets to be representative of
popular programs that are commonly fuzzed and that operate on a
diverse range of file formats (e.g., images, audio, and documents).

5.1.2 Sample Collection. For each file type in Section 5.1.1, we
built a Web crawler using Scrapy [60] to crawl the Internet for 72 h
to create the collection corpus. For image files, crawling started
with Google search results and theWikimedia Commons repository.
For media and document files, crawling started from the Internet
Archive and Creative Commons collections. We used the regular
expressions from regexlib [4], and sourced OGG files from old video
games [1ś3] (in addition to the Internet Archive). We sourced PHP
files from test suites for popular PHP interpreters (e.g., Facebook’s
HipHop Virtual Machine) and from popular GitHub repositories
(e.g., WordPress). Finally, we found TIFF files to be relatively rare,
so we generated 40 % of the TIFF seeds by converting other image
types such as JPEG and BMP using ImageMagick (v6.9.7).

We preprocessed each collection corpus to remove duplicates
identified by MD5 checksum, and files larger than 300 KiB. The

234

https://osf.io/hz8em/

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L. Hosking

cutoff file size of 300KiB is our best effort to conform to the AFL
authors’ suggestions regarding seed size, while still having enough
eligible seeds in the preprocessed corpora. We split audio files
larger than 1MiB into smaller files using FFmpeg (v3.4.8). In total,
we collected 2,899,208 seeds across 14 different file formats. After
preprocessing our collection corpus we were left with a total of
1,019,688 seeds. Our collection corpus is available at https://osf.io/
hz8em/.

5.1.3 Experimental Setup. We run the Magma experiments on a
cluster of AWS EC2 machines with 36-core Intel® Xeon® E5-2666
v3 2.9GHz CPUs and 60GiB of RAM. We conduct the FTS and
real-world experiments on a pair of identically configured Dell
PowerEdge servers with 48-core Intel® Xeon® Gold 5118 2.30GHz
CPUs and 512GiB of RAM. All machines run Ubuntu 18.04.

5.1.4 Fuzzer Setup. We run one fuzzing campaign per target/file-
type per initial corpus. Each fuzzing campaign consists of thirty
independent 18 h trials. We emphasize the large number of repeated
trials here because we found (consistent with Klees et al. [37]) that
individual fuzzing trials vary wildly in performance. Therefore,
reaching statistically meaningful conclusions requires many trials
(and many fields of science use thirty trials [7]). The length of each
trial and the number of repeated trials satisfy the recommendations
of Klees et al. [37].

Our real-world fuzzing campaigns use AFL (v2.52b) in greybox
mode, while our Magma and FTS campaigns also include AFL++
with (a) CmpLog instrumentation enabled and (b) a 250 KiB cov-
erage map. We configure both fuzzers for single-system parallel
execution with one main and one secondary node; the main node
focuses on deterministic checks while the secondary node proceeds
straight to havoc mode.

For FTS and the real-world targets we compile using AFL’s
LLVM (v8) instrumentation for 32-bit x86 and Address Sanitizer
(ASan) [62]. We chose LLVM instrumentation over AFL’s assembler-
based instrumentation because LLVM’s offers the best level of in-
teroperability with ASan. We compile Magma targets using their
default build configuration (i.e., for x64 without ASan).

We tune AFL’s timeout and memory parameters for each target
to enable effective fuzzing.3 When fuzzing the FTS we configure
the target process to respawn after every iteration (due to stability
issues that we encountered when fuzzing in parallel execution
mode). All other parameters are left at their default values.

5.1.5 Experiment. We evaluate the following six seed selection
approaches against the previously-described targets and fuzzers:

FULL The collection corpus without minimization, preprocessed
to remove duplicates and filtering for size (as per Section 5.1.2).

EMPTY A per-target corpus comprising just an “emptyž seed. For
six filetypes (JSON, MP3, REGEX, TIFF, TTF, and XML) this
seed is an empty file. For the remaining eight filetypes, the
seed is not merely a zero-length input, but rather a small
file handcrafted to contain the bytes necessary to satisfy
file header checks (the readelf experiments in Section 3.1
demonstrate how poorly AFL performs when these header
checks are not satisfied by the initial corpus). These files

3Per-target settings are available at https://osf.io/hz8em/.

range in size from 11 B (SVG) to 13 KiB (OGG), with a median
size of 51 B. We follow Klees et al. [37], who reported that
“despite its use contravening conventional wisdomž, the empty
seed outperformed (in terms of bug yield) a set of valid non-
empty seeds for some targets [37].

PROV The corpus provided with the benchmark (if any). This
approach is only applicable for the two fuzzer benchmarks
(Magma and FTS).

MSET The corpus obtained using the Unweighted Minset tool.
We present Unweighted Minset (as opposed to Time or
Size Minset) because it finds more bugs than other Minset

configurations [58].
CMIN The corpus produced using AFL’s afl-cmin tool.
WOPT The optimal minimum corpus weighted by file size.
WMOPT The weighted optimal minimum corpus that takes into

account edge frequencies. WMOPT attempts to minimize

file sizes while maximizing an edge’s frequency count. We
originally tried to implement an “optimal afl-cminž (i.e.,
minimizing file size while treating the same edge with dif-
ferent hit counts as distinct constraints), but EvalMaxSAT
was unable to find a solution (after 6 h) for many targets.
Maximizing the total hit count for a given edge is a compro-
mise, and one that we hypothesize results in deeper program
exploration.

We excluded Redqeen’s uninformed, generic seed due to its poor
performance in Section 3.1. We also explored an unweighted opti-
mal minimum corpus, but found that MaxEvalSAT produced the
same corpora asWOPT for all but three targets (libpng fromMagma,
libarchive from FTS, and the real-world poppler target). Thus, we
exclude unweighted minimal corpora from our results.

We compare the performance of each seed selection approach
across three measures:

Bug count: The ultimate aim of fuzzing is to find bugs in soft-
ware. Thus, we use a direct bug count for comparing fuzzer
effectiveness (as recommended in previous work [31, 37]).
To this end, we perform manual triage for all crashes in
the real-world targets, isolating the bugs that cause those
crashes. This is in contrast to much of the existing litera-
ture [37, 40, 58, 69], which uses stack-hash deduplication to
determine unique bugs from crashesÐa technique known to
both over- and under-count bugs [31, 37].

Bug survival time: As previously discussed, fuzzing is a highly
stochastic process, and individual trials vary wildly in bug-
finding performance. Following recommendations of Böhme
and Falk [12], we statistically analyze and compare time-to-
bug; or how long a bug “survivesž in a fuzzing campaign.
Following previous work [7, 31, 66], applying survival anal-

ysis to time-to-bug events allows us to handle censoring:
individual trials where a given bug is not found. For each
fuzzing campaign (i.e., set of 30 repeated 18 h trials with a
particular fuzzer/corpus combination on a given target) we
model a bug’s survival functionÐthe probability of a bug be-
ing found over timeÐusing the Kaplan-Meier estimator [35].
Integrating this survival function with an upper-bound of
18 h gives a bug’s restricted mean survival time (RMST) for
a particular fuzzing campaign. Smaller bug survival times

235

https://osf.io/hz8em/
https://osf.io/hz8em/
https://osf.io/hz8em/

Seed Selection for Successful Fuzzing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

indicate better performance. We report the RMST and 95 %

confidence interval (CI) across each campaign. We also use
the log-rank test [44] to statistically compare bug survival
times. The log-rank test is computed under the null hypothe-
sis that two corpora share the same survival function. Thus,
we consider two corpora to have statistically equivalent bug
survival times if the log-rank test’s 𝑝-value > 0.05.

Code coverage: Coverage is often used to measure fuzzing effec-
tiveness, as “covering more code intuitively correlates with

finding more bugsž [37]. We use region coverage as reported
by llvm-cov, generated by replaying each trial’s fuzzing
queue through a CoverageSanitizer-instrumented [65] target.
Region coverage is the most granular of CoverageSanitizer’s
coverage metrics, is accurate (compared to AFL/AFL++’s no-
tion of edge coverage, which is prone to hash collisions [25]),
and allows us to normalize coverage across the two fuzzers.4

We report both the mean and 95 % bootstrap CI of the per-
centage of code regions executed across each campaign. Re-
gion coverage is compared across corpora using the Mann-
Whitney𝑈 -test; a 𝑝-value > 0.05means that one fuzzer/corpus
combination yields a statistically equivalent result compared
to another. We use the Mann-Whitney𝑈 -test for the same
reasons given by Klees et al. [37]; specifically, that it is non-
parametric and makes no assumption on the underlying
distribution.

5.2 Minimization (RQ1)

Table 2 shows the sizes of 14 collection corpora minimized across
21 target programs based on the code coverage measured by AFL.
We reapplied the four corpus minimizers when fuzzing Magma
with AFL++, as AFL++’s larger coverage map (250KiB, compared
to AFL’s 64 KiB) theoretically results in a more fine-grained cov-
erage view. Indeed, we saw small variations (up to 10 %) between
the AFL and AFL++ minimized corpora, due to both the different-
sized coverage maps and hash collisions that are inherent to AFL’s
method for computing edges.

Across both fuzzers, corpora produced by CMIN are significantly
larger than that produced by MSET (mean 8× larger), WOPT (mean
9× larger), and WMOPT (mean 4× larger). This can be attributed to
CMIN distinguishing seeds with different edge frequency counts:
MSET andWOPT only look at edges executed, ignoring the number
of times these edges are executed, while WMOPT maximizes an
edge’s frequency count. In comparison, MSET was only at most
37 seeds larger than WOPT (php-parser), and on average only five
seeds larger than WOPT. WMOPT corpora were (on average) twice
as large as WOPT corpora. Finally, the minimized php-exif corpora
are notable because they discard 99 % of the full JPEG corpus, due to
a lack of diverse EXIF data. The small minimized php-exif corpora
demonstrate the importance of selecting a diverse range of initial
inputs and minimizing large corpora.

In addition to generating smaller corpora, W[M]OPT incur lower
runtime costs during minimization (compared to CMIN). We ex-
clude the time required to trace the target and collect coverage
data for each seed. WOPT’s minimization times range from 12ms

4Google FuzzBench [27] also uses region coverage to normalize coverage across several
fuzzers.

(freetype2) to 23min (libjpeg-turbo), with a mean minimization
time of 141 s. WMOPT takes a similar amount of time: between
31ms (freetype2) and 24min (php-exif), with a mean minimization
time of 143 s. In comparison, CMIN’s minimization times range
from 12 s to 130min, with a mean time of 25min. Despite CMIN’s
significantly slower minimization times, it is important to remem-
ber that (a) afl-cmin is a BASH script, while our optimal solver is
written in C++, and (b) corpus minimization is a one-time upfront
cost.

What ultimately matters is if the minimized corpora lead to bet-
ter fuzzing outcomes. To this end, the following section discusses
the bug-finding ability of the different corpus minimization tech-
niques across our three benchmark suites (Magma, FTS, and a set of
real-world targets) and two fuzzers (AFL and AFL++). We analyze
these results with respect to the performance measures outlined in
Section 5.1.5.

OptiMin produces significantly smaller corpora compared
to existing state-of-the-art corpus minimization tools, while
also incurring lower runtime costs.

5.3 Bug Finding (RQ2)

Table 3 summarizes the bugs found in our Magma and FTS cam-
paigns. Space constraints prevent us from providing the same level
of detail for our real-world campaigns, so we instead summarize
the seven CVEs assigned to us (for bugs found in these campaigns)
in Table 4. In total, 78 (26 Magma, 15 FTS, and 33 real-world) bugs
were found.

5.3.1 FTS Coverage Benchmarks. While the remainder of this sec-
tion focuses on the bug-finding ability of each corpus, we first
discuss six FTS “bugsž that are not actual bugs, but are instead

code locations that the fuzzer must reach (marked with 2 in Ta-
ble 3b). Notably, two of these locations are reached instantaneously
(i.e., seeds in the fuzzing corpora reach the particular line of code
without requiring any fuzzing) by most corpora except EMPTY.
Naturally, EMPTY takes some time to reach the target locations,
as AFL must construct valid inputs from “nothingž. Nevertheless,
EMPTY reaches four of the six target locations within two hours (on
average). A libpng location and the freetype2 locations are never
reached by EMPTY, because: (i) freetype2 requires a valid composite
glyph, which EMPTY never synthesizes in the given timeframe, and
(ii) libpng requires a specific chunk type (sRGB), which is difficult
to synthesize without any knowledge of the PNG file format.

The only coverage benchmark that is not reachedwithinminutesÐ
libjpeg-turboÐis reliably reached by all corpora except FULL within
the first five hours (on average) of each trial. The FULL corpus is
highly unreliable on this target: it only reaches the target location
in 10 % of trials, and when it does, it takes double the time of the
other corpora. This results in a high survival time of 17.19 h.

5.3.2 The EMPTY Seed. Of the 41 (14 Magma, 8 FTS, and 19 real-
world) bugs that EMPTY was able to find, it was the (equal) fastest
to do so for 21 of these (5 Magma, 3 FTS, and 13 real-world). This
result is particularly striking on SoX (both MP3 and WAV), where
EMPTY found the most bugs with the lowest RMSTs (including
three of the CVEs in Table 4). However, EMPTY also suffers from

236

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L. Hosking

Table 2: Targets and corpora. Each corpus is summarized by the number of files containedwithin (ł#ž) and total size (łSž, inMiB

unless stated otherwise). The smallestminimized corpus for both ł#ž and łSž are highlighted in green and blue, respectively.

FULL PROV MSET CMIN WOPT WMOPT

Target (driver) Version File type # S # S # S # S # S # S

libpng (libpng_read_fuzzer) PNG 66,512 7,773.60 4 1.22KiB 36 2.69 172 9.61 33 2.01 51 5.37
libtiff (tiff_read_rgba_fuzzer) TIFF 99,955 446.63 21 0.20 35 0.14 115 0.39 33 0.13 55 0.23
libxml2 (libxml2_xml_reader_for_file_fuzzer) XML 79,032 205.64 1,268 3.90 42 0.38 132 0.82 42 0.40 56 0.51
php-exif (exif) JPEG 120,000 222.86 60 0.26 2 0.01 2 0.01 2 0.01 2 0.01
php-json (json) JSON 19,978 76.46 55 4.23KiB 17 0.72 212 4.29 17 0.85 30 1.91
php-parser (parser) PHP 75,777 224.51 2,934 0.92 606 1.94 2,229 11.43 569 1.71 1,187 7.86

M
ag
m
a

poppler (pdf_fuzzer) PDF 99,986 6,085.07 392 18.39 237 28.11 2,273 119.27 222 26.70 510 66.89

freetype2 2017 TTF 466 35.50 2 2.83KiB 43 5.40 246 20.92 37 5.04 53 6.95
guetzli 2017-3-30 JPEG 120,000 222.86 2 544 B 17 0.04 463 0.60 13 0.03 51 0.10
json 2017-02-12 JSON 19,978 76.46 1 14 B 17 0.95 149 2.56 16 1.21 27 1.77
libarchive 2017-01-04 GZIP 108,558 850.64 1 500 B 41 1.05 180 2.80 40 0.94 57 1.52
libjpeg-turbo 07-2017 JPEG 120,000 222.86 1 413 B 3 0.01 93 0.11 3 0.01 13 0.02
libpng 1.2.56 PNG 66,512 7,773.60 1 1.23KiB 22 1.91 107 4.05 19 1.71 28 2.85
libxml2 2.9.2 XML 79,032 205.64 0 − 97 2.23 440 7.71 89 1.40 175 4.50
pcre2 10.00 Regex 4,520 0.46 0 − 183 0.04 691 0.13 175 0.03 321 0.09
re2 2014-12-09 Regex 4,520 0.46 0 − 56 0.01 155 0.01 55 0.01 84 0.01

G
o
o
g
le
FT

S

vorbis 2017-12-11 OGG 99,450 8,902.70 1 2.54KiB 8 0.33 237 12.06 8 0.27 20 1.88

freetype2 (char2svg) 2.5.3 TTF 466 35.50 − − 23 3.04 73 8.68 23 3.02 33 4.70
librsvg (rsvg-convert) 2.40.20 SVG 71,763 744.59 − − 173 4.34 881 17.05 159 3.80 333 10.47
libtiff (tiff2pdf) 4.0.9 TIFF 99,955 446.63 − − 23 0.10 67 0.27 23 0.10 33 0.14
libxml2 (xmllint) 2.9.0 XML 79,032 205.64 − − 103 1.67 505 9.04 95 1.60 196 6.70
poppler (pdftotext) 0.64.0 PDF 99,986 6,085.07 − − 189 22.70 1,318 121.90 177 22.04 381 50.30
sox-mp3 (sox) 14.4.2 MP3 99,691 4,094.22 − − 9 0.17 137 3.75 6 0.30 15 0.64R

ea
l-
w
o
rl
d

sox-wav (sox) 14.4.2 WAV 74,000 2,490.61 − − 10 0.39 68 1.65 9 0.27 14 0.49

the highest “false negativež rate: it is the most likely corpus to miss
a bug when one exists (as evident from the number of ⊤ entries in
Table 3, the most of any corpus).

We hypothesize that the low RMST is due to the reduced search
space when mutating the empty seed, but that the mutation engine
is less likely to “get luckyž in generating a bug-inducing input when
starting from nothing. Indeed, for the three FTS bugs where EMPTY
statistically outperforms the other corpora (libjpeg-turbo, libpng’s
bug C, and libxml2’s bug B), EMPTY finds the bug with the lowest
number of mutations (on average, half the number of mutations
compared to the other corpora on these three bugs) while also
achieving a comparable (and sometimes, slightly slower) iteration
rate than the other corpora (in particular, WOPT achieves a higher
iteration rate than EMPTY on these three targets).

5.3.3 PROVided Seeds. The FTS PROV seeds are selected (by the
FTS developers) based on their ability to trigger the target bug(s)
within a few hours. For example, the json bug is “usually found in

about 5 minutes using the provided seedž [26] (which our results
confirm). Moreover, half of the FTS PROV seeds are singleton seeds.
However, this is not indicative of fuzzing in practice, as (a) the
location of bugs is unknown a priori, and (b) large seed sets are
used in practice (per Section 3.2). Given the former, it is notable that
the minimized corpora (CMIN, MSET, WOPT, and WMOPT) also
successfully found the same FTS bugs that PROV found, and even
outperform the PROV corpus in half of these targets (freetype2,
libarchive, and libpng).

The PROV corpus is the best performer at finding bugs inMagma:
it triggers the most bugsÐ21 of the 25 bugs found by all fuzzersÐ
and achieves the (equal) lowest RMST for 15 of these bugs. Simi-
larly to freetype2 and libpng in FTS, all three php-exif bugs were
found without any mutation of the PROV seeds. Closer inspec-
tion of this corpus reveals why: PROV contains images that serve

as regression tests for each of these three bugs (bug77753.tiff,
bug77563.jpg, bug77950.jpg, corresponding to bugs MAE008,
MAE014, and MAE016, respectively). These regression tests im-
mediately trigger their respective bugs, but with Magma’s ideal
sanitizationÐ“in which triggering a bug immediately results in a

crashž [31]Ðdisabled by default, these seeds do not cause a crash
and hence are not excluded by AFL.5

5.3.4 Iteration Rates. Low iteration rates (i.e., the number of test-
case executions per second) coupled with large corpora have a
detrimental effect on a fuzzer’s ability to find bugs. For example,
with FULL, guetzli achieves mean iteration rates of 0.84 execs/s
and 0.74 execs/s for AFL and AFL++, respectively. At the other
end of the spectrum, EMPTY achieves mean iteration rates of
229.23 execs/s and 167 execs/s (for AFL and AFL++, respectively),
while the minimized corpora achieve iteration rates between 2
and 5 execs/s. FULL’s low iteration rate has a severe impact: both
AFL and AFL++ fail to complete an initial pass over the 120,000
seeds in this corpus (in an 18 h trial), let alone perform any muta-
tions and discover the bug. In comparison, the guetzli bug is found
by all minimized corpora (CMIN, MSET, WOPT, and WMOPT) and
PROV. We encounter similar results with poppler, where again nei-
ther AFL nor AFL++ can complete a full pass over the collection
corpus (resulting in no bugs triggered).

We find that iteration rates vary significantly between fuzzers.
For example, fuzzingMagma’s libpngwithAFL and EMPTY achieves
a mean iteration rate of 693 execs/s, while AFL++ achieves a mean
iteration rate of 2,508 execs/s. Conversely, fuzzing the same target
with AFL andWOPT achieves a mean iteration rate of 4,575 execs/s,
compared to AFL++ at 351 execs/s. These results correlate with
the bug survival times in Table 3a (where AFL++ outperforms

5At the time of writing, this is a known issue flagged by the Magma developers, per
https://github.com/HexHive/magma/issues/54.

237

https://github.com/HexHive/magma/issues/54

Seed Selection for Successful Fuzzing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 3: Bug-finding results, presented as the RMST with 95% CI (in hours). Bugs that are never found have an RMST of ⊤

(to distinguish bugs with an RMST of 18 h). The best performing corpus (corpora if the bug survival times are statistically

equivalent per the log-rank test) for each target (smaller is better) is highlighted in green.

(a) Magma bugs found by AFL and AFL++. We only report the RMST for bugs triggered. Bugs that are not triggered by any corpus are omitted

(irrespective of whether the bug was reached or not). The php-json and php-parser targets are omitted because no bugs were found.

FULL EMPTY PROV MSET CMIN WOPT WMOPT

Target Bug AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++

⊤ ⊤ 16.83 ⊤ 16.96 ⊤ 17.95 ⊤ ⊤ ⊤ 17.54 ⊤ 17.47 ⊤
AAH001

±4.30 ±3.82 ±0.33 ±2.83 ±3.25

1.93 8.67 ⊤ 0.12 0.0042 0.0050 0.01 0.01 0.02 0.10 0.01 0.04 0.01 0.34
AAH003

±0.07 ±3.45 ±0.05 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.08 ±0.01 ±0.01 ±0.01 ±0.13

⊤ ⊤ ⊤ 17.96 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
AAH007

±0.26

17.04 ⊤ ⊤ 17.41 6.85 17.56 11.03 ⊤ 12.26 ⊤ 10.65 ⊤ 10.04 ⊤

libpng

AAH008
±3.53 ±3.61 ±2.53 ±2.69 ±3.46 ±3.68 ±3.26 ±3.54

17.77 ⊤ ⊤ ⊤ ⊤ ⊤ 15.98 ⊤ 15.81 ⊤ 13.93 ⊤ 15.20 ⊤
AAH009

±0.96 ±3.23 ±2.85 ±3.64 ±2.55

16.85 16.48 17.65 ⊤ 15.29 17.21 16.39 17.20 12.81 17.46 14.09 16.40 14.50 ⊤
AAH010

±2.97 ±4.03 ±1.17 ±2.77 ±2.93 ±2.73 ±3.10 ±2.73 ±3.27 ±3.32 ±4.25 ±2.84

0.34 7.33 1.27 0.42 0.05 0.05 0.03 0.01 0.03 0.13 0.03 0.01 0.04 0.02
AAH015

±0.07 ±4.14 ±0.66 ±0.25 ±0.02 ±0.03 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

16.96 ⊤ 17.02 ⊤ 16.23 ⊤ 12.53 13.36 7.91 17.43 8.68 ⊤ 9.39 ⊤
AAH016

±1.07 ±2.94 ±2.81 ±2.23 ±3.85 ±2.24 ±3.50 ±2.29 ±2.18

3.64 12.24 2.45 9.04 0.47 7.65 0.65 7.84 0.53 9.85 0.68 9.33 0.70 9.83
AAH020

±1.81 ±3.66 ±1.24 ±3.93 ±0.17 ±2.79 ±0.21 ±3.03 ±0.12 ±3.31 ±0.18 ±3.04 ±0.14 ±3.11

0.76 11.34 1.87 0.73 0.88 6.46 1.38 3.08 1.56 5.16 1.45 2.60 1.66 1.39

libtiff

AAH022
±0.15 ±3.97 ±1.19 ±0.55 ±0.36 ±3.23 ±0.78 ±1.68 ±0.72 ±2.31 ±0.35 ±1.16 ±0.51 ±1.13

17.87 ⊤ ⊤ ⊤ 17.42 ⊤ ⊤ ⊤ 17.25 ⊤ ⊤ ⊤ ⊤ ⊤
AAH024

±0.82 ±2.49 ±2.10

8.69 14.94 ⊤ ⊤ 14.93 14.74 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
AAH026

±2.00 ±2.89 ±4.32 ±3.69

0.69 0.85 0.01 0.02 0.05 0.02 0.77 0.08 0.61 0.15 1.21 0.77 0.63 0.80
AAH027

±0.12 ±0.08 ±0.01 ±0.01 ±0.01 ±0.01 ±0.30 ±0.05 ±0.29 ±0.08 ±0.41 ±0.26 ±0.27 ±0.34

15.99 16.42 17.94 15.00 16.44 17.09 17.55 17.50 15.33 17.07 15.51 16.91 14.31 16.89
AAH032

±3.58 ±3.26 ±0.36 ±2.75 ±3.64 ±2.93 ±1.69 ±2.19 ±3.22 ±2.58 ±3.55 ±2.39 ±3.16 ±2.01

5.96 7.77 ⊤ ⊤ 3.07 11.22 9.37 9.98 7.76 10.29 6.64 11.49 5.50 9.53
AAH037

±2.38 ±1.73 ±1.26 ±2.82 ±1.96 ±1.92 ±1.91 ±2.42 ±1.66 ±2.66 ±1.16 ±2.01

0.63 1.32 16.88 2.60 0.06 0.38 0.09 0.09 0.11 0.07 0.11 0.07 0.09 0.08

libxml2

AAH041
±0.12 ±0.11 ±2.66 ±1.22 ±0.02 ±0.15 ±0.01 ±0.01 ±0.03 ±0.01 ±0.01 ±0.01 ±0.01 ±0.01

⊤ ⊤ ⊤ ⊤ 0.00 16.20 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
MAE008

±0.01 ±5.28

⊤ ⊤ ⊤ ⊤ 0.00 0.00 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
MAE014

±0.01 ±0.01

11.79 7.76 8.68 0.05 0.00 13.74 9.66 0.05 7.40 0.06 8.43 0.06 9.76 0.05

php-exif

MAE016
±2.09 ±3.78 ±2.32 ±0.01 ±0.01 ±2.40 ±2.67 ±0.01 ±2.16 ±0.01 ±1.97 ±0.02 ±2.77 ±0.01

⊤ ⊤ ⊤ ⊤ 17.43 ⊤ 17.86 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
AAH043

±3.45 ±0.82

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 17.46 ⊤ 17.18 ⊤ 16.93 ⊤ 15.40 ⊤
AAH047

±3.28 ±3.01 ±2.92 ±3.38

⊤ ⊤ ⊤ ⊤ 0.83 7.66 4.06 17.42 5.54 17.65 4.51 ⊤ 8.07 ⊤
AAH052

±0.64 ±4.15 ±0.74 ±3.54 ±0.62 ±1.13 ±0.48 ±1.49

⊤ ⊤ 0.0042 0.0066 0.08 0.09 0.14 2.19 1.11 3.13 0.14 2.48 0.30 2.51
JCH207

±0.01 ±0.01 ±0.01 ±0.02 ±0.01 ±0.14 ±0.04 ±0.17 ±0.01 ±0.17 ±0.01 ±0.16

⊤ ⊤ ⊤ ⊤ 6.17 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤
JCH209

±2.62

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 17.61 ⊤ 17.67 ⊤ ⊤ ⊤ ⊤ ⊤
JCH212

±2.37 ±2.00

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 17.79 ⊤ ⊤ ⊤ 17.90 ⊤ ⊤ ⊤

poppler

JCH214
±0.57 ±0.48

AFL on the EMPTY seed, while AFL outperforms AFL++ with the
WOPT corpus), suggesting that higher iteration rates contribute to
a fuzzer’s bug-finding ability (and at the very least, allow a fuzzer
more quickly to discard inputs that are not worth exploring).

When fuzzing with non-empty corpora, AFL achieves a higher
iteration rate than AFL++. This is likely due to a combination of

(a) more complex target instrumentation (where more of this instru-
mentation is being exercised with valid inputs), and (b) a coverage
map that is ∼ 4× larger than AFL’s (which has L2 cache implica-
tions). These results further reinforce the need for corpus minimiza-
tion when starting with a large collection corpus, particularly as
fuzzer complexity increases.

238

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L. Hosking

(b) Bug-finding results (cont.). FTS bugs found by AFL and AFL++. IDs are derived from the order in which the bugs are presented in the

target’s README (from the FTS repo). Bugs marked with 2 denote benchmarks that attempt to verify that the fuzzer can reach a known

location. Results with − indicate that the FTS does not contain seeds for that target (see Table 2), and so we ignore it. The vorbis target is

omitted because none of its three bugs were found.

FULL EMPTY PROV MSET CMIN WOPT WMOPT

Target Bug AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++

0.00 0.00 ⊤ ⊤ 6.78 6.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
freetype2 A2

±0.00 ±0.00 ±2.12 ±2.73 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

⊤ ⊤ ⊤ ⊤ 10.25 17.48 15.88 17.45 17.78 ⊤ 15.45 ⊤ 16.92 ⊤
guetzli A

±2.33 ±1.38 ±2.09 ±3.37 ±1.07 ±2.82 ±2.83

⊤ ⊤ ⊤ 16.41 0.09 0.28 17.64 ⊤ 16.93 17.57 17.68 ⊤ 17.90 ⊤
json A

±4.24 ±0.08 ±0.27 ±2.17 ±3.92 ±2.60 ±1.43 ±0.62

⊤ ⊤ ⊤ 15.31 ⊤ 9.08 4.44 11.86 9.39 11.97 12.50 6.78 7.38 13.50
libarchive A

±1.76 ±0.90 ±0.21 ±1.74 ±1.42 ±1.90 ±0.50 ±0.44 ±0.05 ±1.75

17.19 ⊤ 1.92 10.43 3.00 14.14 3.36 16.57 3.82 15.62 4.71 16.91 3.68 15.70libjpeg-

turbo
A2

±2.37 ±0.45 ±2.73 ±0.95 ±2.47 ±0.98 ±2.70 ±1.19 ±2.75 ±1.52 ±2.70 ±0.93 ±2.11

2.41 0.0043 0.03 0.11 0.08 0.21 0.0051 0.09 0.0072 0.0041 0.0025 0.0049 0.0038 0.08
A2

±0.01 ±0.0020 ±0.01 ±0.02 ±0.08 ±0.03 ±0.0029 ±0.01 ±0.0036 ±0.0027 ±0.0017 ±0.0032 ±0.0025 ±0.01

0.00 0.00 ⊤ 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B2

±0.00 ±0.00 ±0.04 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00 ±0.00

2.42 0.0089 0.0003 0.07 0.0008 2.47 0.0046 0.0049 0.0070 0.0054 0.0023 0.0062 0.0036 0.0040

libpng

C2

±0.02 ±0.0092 ±0.0004 ±0.14 ±0.0007 ±0.85 ±0.0029 ±0.0025 ±0.0035 ±0.0033 ±0.0017 ±0.0034 ±0.0022 ±0.0032

4.46 17.84 ⊤ 16.46 − − 0.54 3.10 0.79 4.72 0.66 4.70 0.85 7.81
A

±0.32 ±0.58 ±2.48 ±0.06 ±0.09 ±0.12 ±0.96 ±0.07 ±0.51 ±0.23 ±2.23

16.46 ⊤ 5.32 13.43 − − 13.35 ⊤ 10.57 17.85 8.93 17.95 14.46 ⊤
B

±1.27 ±1.22 ±2.26 ±1.95 ±2.20 ±0.91 ±1.81 ±0.28 ±2.09

⊤ ⊤ ⊤ ⊤ − − ⊤ ⊤ 17.53 ⊤ ⊤ ⊤ ⊤ ⊤

libxml2

C
±2.89

2.57 4.56 1.88 2.70 − − 2.15 5.43 2.07 3.10 1.59 4.83 1.39 3.34
A

±0.39 ±0.36 ±0.25 ±0.44 ±0.24 ±0.74 ±0.23 ±0.46 ±0.16 ±0.47 ±0.18 ±0.44

2.04 5.34 3.25 5.71 − − 2.01 3.83 2.29 3.98 1.42 3.47 1.61 3.39
pcre2

B
±0.73 ±1.58 ±0.70 ±0.88 ±0.68 ±0.73 ±0.65 ±1.36 ±0.42 ±0.96 ±0.72 ±1.22

0.82 2.91 1.72 9.72 − − 0.74 3.30 0.52 3.85 0.50 7.52 0.42 3.35
A2

±0.16 ±0.52 ±0.31 ±1.61 ±0.52 ±0.53 ±0.12 ±0.70 ±0.16 ±2.88 ±0.09 ±1.14

16.20 16.41 17.66 17.69 − − 11.52 15.69 11.85 16.97 12.19 17.08 12.36 15.91
re2

B
±3.83 ±2.49 ±1.48 ±1.87 ±2.70 ±2.53 ±3.22 ±2.35 ±3.07 ±2.62 ±3.18 ±2.55

Table 4: New bugs assigned CVEs in the real-world targets.

Target CVE Description

libtiff 2019-14973 Elision of integer overflow check by compiler

poppler 2019-12293 Heap buffer overread

2019-8354 Integer overflow causes improper heap allocation
2019-8355 Integer overflow causes improper heap allocation
2019-8356 Stack buffer bounds violation
2019-8357 Integer overflow causes failed memory allocation

sox

2019-13590 Integer overflow causes failed memory allocation

5.3.5 Comparison to Previous Magma Evaluations. Our results im-
prove on those originally presented by Hazimeh et al. [31]. Nine
of the bugs triggered during our 18 h trials (AAH007, AAH009,
AAH024, AAH026, AAH043, AAH047, JCH209, JCH212, and JCH214)
were never triggered by AFL/AFL++ in the original 24 h campaigns.
Furthermore, two of these bugs (poppler’s AAH047 and JCH214)
were never found by any of the seven fuzzers originally evaluated
by Hazimeh et al. [31]. These two bugs were only found by the dis-
tilled corpora fuzzed with AFL and never with FULL, EMPTY, PROV,
or AFL++. This is significant because over 200,000 CPU-hours were
spent fuzzing Magma targets (across many 24 h and 7 d trials).

5.3.6 CVEs. Our real-world fuzzing campaigns led to the assign-
ment of seven CVEs across three targets, summarized in Table 4
(our campaigns uncovered another 26 bugs, but these were already
under investigation). Of these bugs, libtiff’s CVE-2019-14973 is par-
ticularly interesting: discovered by all corpora, but found the fastest
and most reliably by EMPTY (with an RMST of 6.02 h), this bug is
only evident because we build our real-world targets for 32-bit x86.
The libtiff maintainers report that the undefined behavior at the
root of this bug does not manifest on 64-bit targets.

Our campaigns also uncovered an already-known uncontrolled
resource consumption bug in libtiff (CVE-2018-5784). This bug is
caused by an infinite loop in the TIFF image directory linked list and
is again found most frequently by EMPTY (11 out of 30 trials, result-
ing in an RMST of 12.37 h). In comparison, this bug is never found
by FULL and MSET and only once by the other corpora. Notably,
the initial EMPTY seed does not contain any image file directories,
while all of the TIFF files in our minimized corpora do. We suspect
that AFL’s mutations break existing directory structures (leading to
parser failures), whereas EMPTY is able to construct a (malformed)
directory list from scratch. These mutations eventually lead to a
loop in the list, causing the uncontrolled resource consumption.

239

Seed Selection for Successful Fuzzing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Seed selection has a significant impact on a fuzzer’s abil-
ity to find bugs. Both AFL and AFL++ perform better when
bootstrapped with a minimized corpus, although the exact
minimization tool is inconsequential. While both AFL and
AFL++ find a similar number of bugs, AFL is generally faster
to do so (and with less variance in bug-finding times).

5.4 Code Coverage (RQ3)

Table 5 summarizes the coverage achieved over all Magma and FTS
campaigns. For the majority of targets, EMPTY explores less code
than the other corpora: on average, half as much code (although
this difference decreases slightly when fuzzing with AFL++). In par-
ticular, on targets that accept highly-structured input formats (e.g.,
libxml2 and poppler), EMPTY explores less than half as much of the
program’s code compared to the four minimized corpora. EMPTY’s
results improve slightly when fuzzing with AFL++, likely due to the
additional CmpLog instrumentation (reflecting our readelf results
in Section 3.1). However, even with this improvement, EMPTY’s
performance remains inferior to any of the other seed selection
approaches.

After an 18 h trial, little distinguishes the code coverage achieved
by the non-EMPTY corpora, and once again the four minimized
corpora with AFL produced the best results. Curiously, the cov-
erage gains that AFL++ saw when fuzzing readelf with CMIN
(Section 3.1) did not manifest in any of the five Magma targets: both
AFL and AFL++ achieved similar levels of code coverage.

Seed selection has a significant impact on a fuzzer’s ability
to expand code coverage. When fuzzing with the empty seed,
more-advanced fuzzers (such as AFL++) are able to cover
more code. However, this advantage all but disappears when
bootstrapping the fuzzer with a minimized corpus, as faster
iteration rates become more critical. The exact minimzation
tool remains inconsequential.

5.5 Discussion

Selecting a corpus minimization tool. We evaluated three corpus
minimization tools:Minset, afl-cmin, and our own OptiMin. Our
results do not reveal a “bestž minimization tool; while minimized
corpora sizes varied markedly between tools, stochastic fuzzing
variability means that this ultimately has no statistically-significant
impact on fuzzing outcomes (with respect to both bug finding and
code coverage). However, a minimized corpus is always better due
to the faster iteration rate, and while our results show that this may
not necessarily find more bugs in a given trial, it still means that the
fuzzer is able to more quickly discard inputs that are not worth ex-
ploring. We therefore recommend the adoption of OptiMin, given
the considerably smaller corpora that it produces.

When to use the empty seed. While our results demonstrate that
corpus minimization achieves best results, there were nine occa-
sions (three in each of the Magma, FTS, and real-world benchmarks)
where EMPTY performed as well as or better than the minimized
corpora. These occasions correspond to when coverage is at its

lowest, suggesting that these are shallow bugs. Thus, where pos-
sible, we recommend that an additional campaign with the empty
seed be conducted to quickly weed out shallow bugs. However,
when conducting industrial-scale fuzzing campaigns, the empty
seed should never be used.

Corpus minimization as lossy compression. Previous work [59, 69]
demonstrates that different coverage metrics can affect fuzzing re-
sults in practice. Similarly, corpus minimization can also make use
of coverage metrics that are not solely based on code coverage
(or, in AFL’s case, approximate edge coverage). Corpus minimiza-
tion based solely on code coverage is effectively a form of lossy
compression [22]: program states may be discarded if they do not
expand code coverage. Indeed, we saw this in Section 5.2, where the
AFL/AFL++ corpus sizes differed due to different-sized coverage
maps. We leave it to future work to explore how corpus minimiza-
tion generalizes to different coverage metrics.

Generalizing to other fuzzers. We limit our experiments to two
coverage-guided, mutational greybox fuzzers: AFL and AFL++. We
selected AFL because it is widely evaluated and deployed, while
AFL++ is an updated and maintained version of AFL that incorpo-
rates broad improvements from recent fuzzing research and reg-
ularly outperforms all other fuzzers on Google’s FuzzBench [27].
While it is unclear how our results might generalize to other fuzzers
(e.g., honggfuzz [64] and libFuzzer [61], both of which provide cor-
pus minimization capabilities), we believe that our AFL++ resultsÐ
which demonstrate how seed selection practices impact a range
of recent advances in fuzzing researchÐare generalizable to other
mutation-based greybox fuzzers. We leave it to future work to
confirm this.

6 CONCLUSIONS

We present here, to the best of our knowledge, the first in-depth
analysis of the impact that seed selection has on mutation-based
greybox fuzzing. Our premise is that the choice of fuzzing cor-
pus is a critical decisionÐoften overlookedÐmade before a fuzzing
campaign begins. Our results provide ample confirmation of this
criticality, and demonstrate that fuzzing outcomes can vary signifi-
cantly depending on the initial seeds used to bootstrap the fuzzer.

Intuitively, bootstrapping a fuzzing campaignwith a single, small,
representative seed would seem to be a fair baseline for comparison
of fuzzers. After all, fuzzing is already a highly-stochastic process, so
simplifying the initial seed choice seems uncontroversial. However,
we argueÐand our results showÐthat this can lead to unfair per-
formance comparisons and high variance in results. Furthermore,
it is not representative of how fuzzing is performed in the “real
worldž, where large seed corpora are typically used. We therefore
recommend that large, diverse corpora be collected and minimized
(e.g., with OptiMin, which produces significantly smaller corpora
than the current state-of-the-art) to maximize fuzzing yield. Seed
selection is a critical step that must be considered prior to launching
any fuzzing campaign.

240

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L. Hosking

Table 5: Code coverage, expressed as the mean region coverage with 95% bootstrap CI. The best performing corpus (corpora

if the code coverages are statistically equivalent per the Mann-Whitney𝑈 -test) for each target (larger is better) is highlighted

in green.

(a) Magma code coverage with AFL and AFL++.

FULL EMPTY PROV MSET CMIN WOPT WMOPT

Target 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + +

28.71 25.56 15.26 19.10 25.19 26.55 30.00 29.53 29.98 29.60 30.03 29.39 29.08 28.81
libpng

±0.09 ±1.51 ±0.06 ±0.97 ±0.29 ±0.74 ±0.05 ±0.06 ±0.05 ±0.06 ±0.04 ±0.12 ±0.05 ±0.14

44.37 44.76 35.10 27.41 44.77 41.72 45.40 44.45 46.09 44.38 45.70 44.38 45.86 43.90
libtiff

±0.39 ±0.30 ±2.23 ±2.05 ±0.25 ±0.43 ±0.23 ±0.22 ±0.23 ±0.39 ±0.26 ±0.26 ±0.29 ±0.32

21.10 20.39 10.60 14.99 22.47 22.74 19.47 19.84 20.75 20.64 19.53 19.14 20.06 19.07
libxml2

±0.29 ±0.31 ±0.29 ±0.44 ±0.22 ±0.37 ±0.14 ±0.20 ±0.21 ±0.32 ±0.22 ±0.10 ±0.14 ±0.07

2.24 2.34 2.28 2.36 2.37 2.37 2.25 2.36 2.30 2.36 2.29 2.36 2.26 2.36
php-exif

±0.04 ±0.01 ±0.04 ±0.00 ±0.00 ±0.00 ±0.04 ±0.00 ±0.03 ±0.00 ±0.03 ±0.00 ±0.04 ±0.00

35.96 35.95 1.49 1.76 41.12 38.35 41.40 36.74 41.13 37.92 41.30 36.69 41.44 36.85
poppler

±0.00 ±0.00 ±0.00 ±0.01 ±0.05 ±0.06 ±0.06 ±0.30 ±0.06 ±0.32 ±0.07 ±0.27 ±0.07 ±0.33

(b) FTS code coverage with AFL and AFL++.

FULL EMPTY PROV MSET CMIN WOPT WMOPT

Target 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + + 𝐴𝐹𝐿 𝐴𝐹𝐿 + +

48.01 44.65 17.31 33.85 34.99 45.41 47.58 44.84 47.84 44.11 47.82 43.24 47.73 45.12
freetype2

±0.12 ±0.41 ±0.16 ±0.78 ±0.17 ±0.59 ±0.14 ±0.34 ±0.15 ±0.42 ±0.20 ±0.24 ±0.16 ±0.21

67.34 67.34 31.05 30.31 75.55 73.61 72.95 69.84 73.12 70.76 72.93 70.16 72.79 69.92
guetzli

±0.00 ±0.00 ±0.14 ±0.14 ±0.12 ±0.08 ±0.14 ±0.10 ±0.11 ±0.07 ±0.10 ±0.07 ±0.11 ±0.08

90.29 90.87 90.00 90.18 90.32 90.74 90.60 90.96 90.62 91.14 90.82 90.96 90.79 91.05
json

±0.08 ±0.11 ±0.34 ±0.31 ±0.26 ±0.22 ±0.06 ±0.06 ±0.07 ±0.08 ±0.10 ±0.07 ±0.08 ±0.06

17.14 16.67 17.84 23.09 18.04 24.63 18.51 20.14 18.54 22.18 18.65 21.55 18.36 21.61
libarchive

±0.12 ±0.47 ±0.46 ±0.77 ±0.63 ±0.68 ±0.19 ±0.39 ±0.22 ±0.24 ±0.10 ±0.21 ±0.20 ±0.27

16.31 15.38 18.56 18.01 18.84 18.13 20.53 19.24 20.54 19.50 20.47 19.25 20.41 19.01
libjeg-turbo

±0.30 ±0.08 ±0.09 ±0.07 ±0.24 ±0.07 ±0.11 ±0.32 ±0.11 ±0.24 ±0.12 ±0.30 ±0.11 ±0.38

32.81 34.87 19.30 29.66 25.40 33.83 34.92 36.62 35.09 36.82 34.97 36.95 34.94 36.63
libpng

±0.12 ±0.10 ±0.00 ±0.23 ±0.00 ±0.21 ±0.09 ±0.18 ±0.06 ±0.13 ±0.06 ±0.15 ±0.07 ±0.12

14.90 14.49 6.77 8.12 − − 15.81 15.08 15.91 14.95 16.01 15.06 15.76 15.29
libxml2

±0.09 ±0.03 ±0.09 ±0.49 ±0.15 ±0.12 ±0.13 ±0.03 ±0.02 ±0.15 ±0.15 ±0.18

60.81 63.97 59.65 63.13 − − 60.94 63.21 61.04 63.64 61.09 63.03 61.00 62.92
pcre2

±0.16 ±0.14 ±0.15 ±0.20 ±0.16 ±0.22 ±0.22 ±0.24 ±0.23 ±0.16 ±0.16 ±0.22

59.00 58.96 59.26 58.13 − − 59.05 59.03 59.08 59.00 59.10 57.40 59.05 59.00
re2

±0.07 ±0.06 ±0.16 ±0.53 ±0.06 ±0.05 ±0.04 ±0.06 ±0.05 ±0.83 ±0.08 ±0.07

ACKNOWLEDGMENTS

The authors would like to thank: Arlen Cox, for his initial ideas on
applying SAT solvers to corpus minimization; Felix Friedlander and
Maggi Sebastian, for building the collection corpora and triaging
crashes; and Liam Hayes and Jonathan Milford, for their early
work on MoonLight. This work was supported by the Defence
Science and Technology Group Next Generation Technologies Fund
(Cyber) program via the Data61 Collaborative Research Project
Advanced Program Analysis for Software Vulnerability Discovery and

Mitigation, and has also been supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No. 850868).

REFERENCES
[1] 2020. Kenney. https://www.kenney.nl/
[2] 2020. The Motion Monkey. https://www.themotionmonkey.co.uk/
[3] 2020. Open Game Art. https://opengameart.org/
[4] 2020. Regular Expression Library. http://regexlib.com
[5] Humberto Abdelnur, Radu State, Obes Jorge Lucangeli, and Olivier Festor. 2010.

Spectral Fuzzing: Evaluation & Feedback. Research Report RR-7193. INRIA. https:
//hal.inria.fr/inria-00452015

[6] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith
Whittaker. 2016. Announcing OSS-Fuzz: Continuous fuzzing for open source
software. https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-
continuous-fuzzing.html

[7] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In ACM/IEEE
International Conference on Software Engineering (ICSE). 1ś10. https://doi.org/10.
1145/1985793.1985795

[8] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In Network and Distributed System Security Symposium
(NDSS). https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-
deep-bugs-with-grammars

241

https://www.kenney.nl/
https://www.themotionmonkey.co.uk/
https://opengameart.org/
http://regexlib.com
https://hal.inria.fr/inria-00452015
https://hal.inria.fr/inria-00452015
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/1985793.1985795
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars

Seed Selection for Successful Fuzzing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

[9] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,
and Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State
Correspondence. In Network and Distributed System Security Symposium
(NDSS). https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-
input-to-state-correspondence/

[10] Florent Avellaneda. 2020. A short description of the solver EvalMaxSAT. In
MaxSAT Evaluations. http://florent.avellaneda.free.fr/dl/EvalMaxSAT.pdf

[11] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Abbasi, Sergej Schu-
milo, Simon Wörner, and Thorsten Holz. 2019. GRIMOIRE: Synthesizing Struc-
ture While Fuzzing. In USENIX Security Symposium (SEC). 1985ś2002. https:
//www.usenix.org/system/files/sec19-blazytko.pdf

[12] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the Exponential Cost of
Vulnerability Discovery. In Joint European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
713ś724. https://doi.org/10.1145/3368089.3409729

[13] Marcel Böhme, Valentin J.M. Manès, , and Sang Kil Cha. 2020. Boosting Fuzzer
Efficiency: An Information Theoretic Perspective. In Joint European Software En-
gineering Conference and ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). 678ś689. https://doi.org/10.1145/3368089.3409748

[14] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed Greybox Fuzzing. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). 2329ś2344. https://doi.org/10.1145/3133956.
3134020

[15] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
BasedGreybox Fuzzing asMarkov Chain. InACMSIGSACConference on Computer
and Communications Security (CCS). 1032ś1043. https://doi.org/10.1145/2976749.
2978428

[16] Oliver Chang, Abhishek Arya, Kostya Serebryany, and Josh Armour. 2017. OSS-
Fuzz: Five months later, and rewarding projects. https://opensource.googleblog.
com/2017/05/oss-fuzz-five-months-later-and.html

[17] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li,
Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware Grey-box Fuzzing for
Effective Bug Hunting in Multithreaded Programs. In USENIX Security Sympo-
sium (SEC). 2325ś2342. https://www.usenix.org/conference/usenixsecurity20/
presentation/chen-hongxu

[18] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,
and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-Box Fuzzer.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
2095ś2108. https://doi.org/10.1145/3243734.3243849

[19] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,
Tao Wei, and Long Lu. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing. In
IEEE Symposium on Security and Privacy (S&P). 1580ś1596. https://doi.org/10.
1109/SP40000.2020.00002

[20] Yaohui Chen, Dongliang Mu, Jun Xu, Zhichuang Sun, Wenbo Shen, Xinyu Xing,
Long Lu, and Bing Mao. 2019. PTrix: Efficient Hardware-Assisted Fuzzing for
COTS Binary. In ACM Asia Conference on Computer and Communications Security
(ASIACCS). 633ś645. https://doi.org/10.1145/3321705.3329828

[21] Deja Vu Security. [n.d.]. PeachMinset. http://community.peachfuzzer.com/
minset.html

[22] Brandon Falk. 2021. Fuzzing: Corpus Minimization. https://youtu.be/947b0lgyvJs
[23] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:

Combining Incremental Steps of Fuzzing Research. In USENIX Workshop on
Offensive Technologies (WOOT). https://www.usenix.org/conference/woot20/
presentation/fioraldi

[24] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In USENIX
Security Symposium (SEC). 2577ś2594. https://www.usenix.org/conference/
usenixsecurity20/presentation/gan

[25] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and
Zuoning Chen. 2018. CollAFL: Path Sensitive Fuzzing. In IEEE Symposium on
Security and Privacy (S&P). 679ś696. https://doi.org/10.1109/SP.2018.00040

[26] Google. 2016. Google Fuzzer Test Suite. https://github.com/google/fuzzer-test-
suite

[27] Google. 2020. FuzzBench. https://google.github.io/fuzzbench/
[28] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite

Evaluation by Developers. In ACM/IEEE International Conference on Software
Engineering (ICSE). 72ś82. https://doi.org/10.1145/2568225.2568278

[29] Gustavo Grieco, Martín Ceresa, Agustín Mista, and Pablo Buiras. 2017. QuickFuzz
testing for fun and profit. Journal of Systems and Software 134 (Dec. 2017), 340ś354.
https://doi.org/10.1016/j.jss.2017.09.018

[30] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript
Engines. In Symposium on Network and Distributed System Security (NDSS).
https://www.ndss-symposium.org/ndss-paper/codealchemist-semantics-
aware-code-generation-to-find-vulnerabilities-in-javascript-engines/

[31] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2021. Magma: A Ground-
Truth Fuzzing Benchmark. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 3 (March 2021). https://doi.org/10.1145/3428334

[32] Hwa-YouHsu and Alessandro Orso. 2009. MINTS: A General Framework and Tool
for Supporting Test-Suite Minimization. In ACM/IEEE International Conference
on Software Engineering (ICSE). https://doi.org/10.1109/ICSE.2009.5070541

[33] Kyriakos Ispoglou, Daniel Austin, Vishwath Mohan, and Mathias Payer. 2020.
FuzzGen: Automatic Fuzzer Generation. In USENIX Security Symposium (SEC).
2271ś2287. https://www.usenix.org/conference/usenixsecurity20/presentation/
ispoglou

[34] Yuseok Jeon, WookHyun Han, Nathan Burow, and Mathias Payer. 2020. FuZZan:
Efficient Sanitizer Metadata Design for Fuzzing. In USENIX Annual Technical Con-
ference (ATC). 249ś263. https://www.usenix.org/conference/atc20/presentation/
jeon

[35] Edward L Kaplan and Paul Meier. 1958. Nonparametric estimation from in-
complete observations. J. Amer. Statist. Assoc. 53, 282 (June 1958). https:
//doi.org/10.2307/2281868

[36] Richard M. Karp. 2011. Computational Complexity of Combinatorial and Graph-
Theoretic Problems. In Theoretical Computer Science, F. Preparata (Ed.). CIME
Summer Schools, Vol. 68. Springer, 97ś184. https://doi.org/10.1007/978-3-642-
11120-4_3

[37] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS). 2123ś2138. https://doi.org/10.1145/3243734.3243804

[38] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. 2015. Code coverage
and test suite effectiveness: Empirical study with real bugs in large systems. In
IEEE International Conference on Software Analysis, Evolution, and Reengineering
(SANER). 560ś564. https://doi.org/10.1109/SANER.2015.7081877

[39] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: Program-state Based Binary Fuzzing. In Joint
European Software Engineering Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE). 627ś637. https://doi.org/10.
1145/3106237.3106295

[40] Yuekang Li, Yinxing Xue, Hongxu Chen, Xiuheng Wu, Cen Zhang, Xiaofei Xie,
Haijun Wang, and Yang Liu. 2019. Cerebro: Context-Aware Adaptive Fuzzing for
Effective Vulnerability Detection. In Joint European Software Engineering Confer-
ence and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE). 533ś544. https://doi.org/10.1145/3338906.3338975

[41] Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek. 2018. Nemo:
Multi-Criteria Test-Suite Minimization with Integer Nonlinear Programming. In
ACM/IEEE International Conference on Software Engineering (ICSE). 1039ś1049.
https://doi.org/10.1145/3180155.3180174

[42] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and Ra-
heemBeyah. 2019. MOPT: OptimizedMutation Scheduling for Fuzzers. InUSENIX
Security Symposium (SEC). 1949ś1966. https://www.usenix.org/conference/
usenixsecurity19/presentation/lyu

[43] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. 2020. Ankou: Guiding
Grey-Box Fuzzing towards Combinatorial Difference. In ACM/IEEE International
Conference on Software Engineering (ICSE). 1024ś1036. https://doi.org/10.1145/
3377811.3380421

[44] Nathan Mantel. 1966. Evaluation of survival data and two new rank order
statistics arising in its consideration. Cancer Chemotherapy Reports 50, 3 (1966),
163ś170.

[45] Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias
Höschele, and Andreas Zeller. 2019. Parser-Directed Fuzzing. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 548ś560.
https://doi.org/10.1145/3314221.3314651

[46] Charlie Miller. 2008. Fuzz By Number: More Data About Fuzzing Than You
Ever Wanted To Know. In CanSecWest. https://cansecwest.com/csw08/csw08-
miller.pdf

[47] Mozilla. 2015. Dharma: A Generation-based, Context-Free Grammar Fuzzer.
https://blog.mozilla.org/security/2015/06/29/dharma/

[48] Mozilla. 2018. Introducing the ASan Nightly Project. https://blog.mozilla.org/
security/2018/07/19/introducing-the-asan-nightly-project/

[49] Mozilla. 2020. FuzzingÐTest Samples. https://firefox-source-docs.mozilla.org/
tools/fuzzing/index.html

[50] Ben Nagy. 2010. Prospecting for Rootite: More Code Coverage, More Bugs, Less
Wasted Effort. In Ruxcon. https://2010.ruxcon.org.au/presentations/#pfr

[51] Stefan Nagy and Matthew Hicks. 2019. Full-Speed Fuzzing: Reducing Fuzzing
Overhead through Coverage-Guided Tracing. In IEEE Symposium on Security and
Privacy (S&P). 787ś802. https://doi.org/10.1109/ISTAS48451.2019.8937885

[52] Timothy Nosco, Jared Ziegler, Zechariah Clark, Davy Marrero, Todd Finkler,
Andrew Barbarello, and W. Michael Petullo. 2020. The Industrial Age of Hacking.
In USENIX Security Symposium (SEC). 1129ś1146. https://www.usenix.org/
conference/usenixsecurity20/presentation/nosco

[53] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.
ParmeSan: Sanitizer-guided Greybox Fuzzing. In USENIX Security Sympo-
sium (SEC). 2289ś2306. https://www.usenix.org/conference/usenixsecurity20/
presentation/osterlund

[54] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In ACM SIGSOFT International

242

https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
http://florent.avellaneda.free.fr/dl/EvalMaxSAT.pdf
https://www.usenix.org/system/files/sec19-blazytko.pdf
https://www.usenix.org/system/files/sec19-blazytko.pdf
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1145/3321705.3329828
http://community.peachfuzzer.com/minset.html
http://community.peachfuzzer.com/minset.html
https://youtu.be/947b0lgyvJs
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://doi.org/10.1109/SP.2018.00040
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://google.github.io/fuzzbench/
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1016/j.jss.2017.09.018
https://www.ndss-symposium.org/ndss-paper/codealchemist-semantics-aware-code-generation-to-find-vulnerabilities-in-javascript-engines/
https://www.ndss-symposium.org/ndss-paper/codealchemist-semantics-aware-code-generation-to-find-vulnerabilities-in-javascript-engines/
https://doi.org/10.1145/3428334
https://doi.org/10.1109/ICSE.2009.5070541
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://www.usenix.org/conference/atc20/presentation/jeon
https://www.usenix.org/conference/atc20/presentation/jeon
https://doi.org/10.2307/2281868
https://doi.org/10.2307/2281868
https://doi.org/10.1007/978-3-642-11120-4_3
https://doi.org/10.1007/978-3-642-11120-4_3
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1109/SANER.2015.7081877
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3338906.3338975
https://doi.org/10.1145/3180155.3180174
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://doi.org/10.1145/3377811.3380421
https://doi.org/10.1145/3377811.3380421
https://doi.org/10.1145/3314221.3314651
https://cansecwest.com/csw08/csw08-miller.pdf
https://cansecwest.com/csw08/csw08-miller.pdf
https://blog.mozilla.org/security/2015/06/29/dharma/
https://blog.mozilla.org/security/2018/07/19/introducing-the-asan-nightly-project/
https://blog.mozilla.org/security/2018/07/19/introducing-the-asan-nightly-project/
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://firefox-source-docs.mozilla.org/tools/fuzzing/index.html
https://2010.ruxcon.org.au/presentations/#pfr
https://doi.org/10.1109/ISTAS48451.2019.8937885
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and Antony L. Hosking

Symposium on Software Testing and Analysis (ISSTA). 329ś340. https://doi.org/10.
1145/3293882.3330576

[55] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Simon, and Hayawardh
Vijayakumar. 2019. FuzzFactory: Domain-Specific Fuzzing with Waypoints.
Proceedings of the ACM on Programming Languages 3, OOPSLA (Oct. 2019), 174ś
1749. https://doi.org/10.1145/3360600

[56] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing
OS Fuzzer Seed Selection with Trace Distillation. In USENIX Security Sympo-
sium (SEC). 729ś743. https://www.usenix.org/conference/usenixsecurity18/
presentation/pailoor

[57] Daniel Plohmann, Martin Clauss, Steffen Enders, and Elmar Padilla. 2018. Malpe-
dia: A Collaborative Effort to Inventorize the Malware Landscape. Journal on
Cybercrime & Digital Investigations 3, 1 (2018). https://doi.org/10.18464/cybin.
v3i1.17

[58] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In USENIX Security Symposium (SEC). 861ś875. https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/rebert

[59] Christopher Salls, Aravind Machiry, Adam Doupe, Yan Shoshitaishvili, Christo-
pher Kruegel, and Giovanni Vigna. 2020. Exploring Abstraction Functions in
Fuzzing. In IEEE Conference on Communications and Network Security (CNS). 1ś9.
https://doi.org/10.1109/CNS48642.2020.9162273

[60] Scrapinghub. 2020. Scrapy. https://scrapy.org/
[61] Kosta Serebryany. 2016. Continuous Fuzzing with libFuzzer and AddressSanitizer.

In IEEE Cybersecurity Development (SecDev). 157. https://doi.org/10.1109/SecDev.
2016.043

[62] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX An-
nual Technical Conference (ATC). 309ś318. https://www.usenix.org/conference/
atc12/technical-sessions/presentation/serebryany

[63] JHU/APL Staff. 2019. Assembled Labeled Library for Static Analysis Research
(ALLSTAR) Dataset. https://allstar.jhuapl.edu/

[64] Robert Swiecki. 2016. honggfuzz. http://honggfuzz.com/
[65] The Clang Team. 2020. Source-based Code Coverage. https://clang.llvm.org/

docs/SourceBasedCodeCoverage.html

[66] Jonas Benedict Wagner. 2017. Elastic Program Transformations Automatically
Optimizing the Reliability/Performance Trade-off in Systems Software. Ph.D. Dis-
sertation. EPFL. http://infoscience.epfl.ch/record/228899

[67] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In IEEE Symposium on Security and Privacy (S&P).
579ś594. https://doi.org/10.1109/SP.2017.23

[68] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing. In ACM/IEEE International Conference on Software Engi-
neering (ICSE). 724ś735. https://doi.org/10.1109/ICSE.2019.00081

[69] JinghanWang, Yue Duan,Wei Song, Heng Yin, and Chengyu Song. 2019. Be Sensi-
tive and Collaborative: Analyzing Impact of CoverageMetrics in Greybox Fuzzing.
In International Symposium on Research in Attacks, Intrusions and Defenses (RAID).
1ś15. https://www.usenix.org/conference/raid2019/presentation/wang

[70] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,
and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization. In Network and Distributed System
Security Symposium (NDSS). https://www.ndss-symposium.org/ndss-paper/not-
all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-
input-prioritization/

[71] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. 2017. Designing
New Operating Primitives to Improve Fuzzing Performance. In ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2313ś2328. https:
//doi.org/10.1145/3133956.3134046

[72] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou.
2020. EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a Variant of the
Adversarial Multi-Armed Bandit. In USENIX Security Symposium (SEC). 2307ś
2324. https://www.usenix.org/conference/usenixsecurity20/presentation/yue

[73] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM:
A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In USENIX
Security Symposium (SEC). 745ś761. https://www.usenix.org/conference/
usenixsecurity18/presentation/yun

[74] Michał Zalewski. 2015. American Fuzzy Lop (AFL). http://lcamtuf.coredump.cx/
afl/

[75] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-box
Fuzzing through Deep Learning. In USENIX Security Symposium (SEC). 2255ś2269.
https://www.usenix.org/conference/usenixsecurity20/presentation/zong

243

https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3360600
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://www.usenix.org/conference/usenixsecurity18/presentation/pailoor
https://doi.org/10.18464/cybin.v3i1.17
https://doi.org/10.18464/cybin.v3i1.17
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://doi.org/10.1109/CNS48642.2020.9162273
https://scrapy.org/
https://doi.org/10.1109/SecDev.2016.043
https://doi.org/10.1109/SecDev.2016.043
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://allstar.jhuapl.edu/
http://honggfuzz.com/
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
https://clang.llvm.org/docs/SourceBasedCodeCoverage.html
http://infoscience.epfl.ch/record/228899
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081
https://www.usenix.org/conference/raid2019/presentation/wang
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046
https://www.usenix.org/conference/usenixsecurity20/presentation/yue
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/conference/usenixsecurity20/presentation/zong

	Abstract
	1 Introduction
	2 Fuzzing
	3 Seed Selection Practices
	3.1 In Experimental Evaluation
	3.2 In Deployment

	4 Corpus Minimization
	5 Evaluation
	5.1 Methodology
	5.2 Minimization (RQ1)
	5.3 Bug Finding (RQ2)
	5.4 Code Coverage (RQ3)
	5.5 Discussion

	6 Conclusions
	Acknowledgments
	References

