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ABSTRACT
Computational recognition of human emotion using Deep Learning
techniques requires learning from large collections of data. How-
ever, the complex processes involved in collecting and annotating
physiological data lead to datasets with small sample sizes. Models
trained on such limited data often do not generalize well to real-
world settings. To address the problem of data scarcity, we use an
AuxiliaryConditionedWassersteinGenerativeAdversarial Network
with Gradient Penalty (AC-WGAN-GP) to generate synthetic data.
Wecompare the recognitionperformancebetween real and synthetic
signals as training data in the task of binary arousal classification.
Experiments onGSR and ECG signals show that generative data aug-
mentation significantly improves model performance (avg. 16.5%)
for binary arousal classification in a subject-independent setting.

CCS CONCEPTS
• Computing methodologies→Machine learning; •Human-
centered computing→Human computer interaction (HCI).

KEYWORDS
Dataaugmentation;GenerativeAdversarialNetworks;Physiological
signals; Arousal classification

ACMReference Format:
Andrei Furdui, Tianyi Zhang, Marcel Worring, Pablo Cesar, and Abdallah El
Ali. 2021. AC-WGAN-GP: Augmenting ECG and GSR Signals using Condi-
tional GenerativeModels for Arousal Classification. InAdjunct Proceedings of
the 2021ACM International Joint Conference on Pervasive andUbiquitous Com-
puting and Proceedings of the 2021 ACM International Symposium onWearable
Computers (UbiComp-ISWC ’21 Adjunct), September 21–26, 2021, Virtual, USA.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3460418.3479301

1 INTRODUCTION
Accurate recognition of emotions plays a crucial role in understand-
ing users’ preference for media items such as images or video clips
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Figure 1: Real and synthetic signals from high/low arousal
(ECG in blue, GSR in red)

[8]. Emotional states are accompanied by certain involuntary re-
sponses in different parts of the body, such as in the brain, heart and
skin. These responses can be measured using physiological sensors,
thus giving us an objective window into the realm of emotions. In
recent years, advances inDeepLearning (DL) techniqueshas enabled
researchers to directly model the mappings between physiological
signals (e.g., galvanic skin response (GSR) and electrocardiogram
(ECG)) and human emotions [5, 6], without resorting to crafting
features manually that require expert knowledge.

The data-hungry nature of DL-based systems require a massive
amount of information to harness their full potential. Although col-
lecting large amounts of physiological measurements from sensors
is trivial, reliably annotating these large datasets is not. The self-
report annotation process is usually performed continuously over
the course of an experiment [3]. This continuous annotation process,
which requires significant time and resources, limits the potential
size of the datasets. Thus, most widely-used datasets are collected
from a small sample of people, typically less than 50 [3], whichmake
it difficult to learn recognition models that generalize well to all
subjects (i.e., subject-independent (SI) models).

To overcome the challenge of insufficient amounts of diverse
physiological data, we propose the use of Generative Adversarial
Networks (GANs) to sample newphysiological signals (e.g., ECGand
GSR) froma learnedgenerativedistribution. Specifically,wecombine
theWasserstein GANwith Gradient Penalty (WGAN-GP) [1] with
an Auxiliary Classifier network [2] (AC-WGAN-GP) in order to in-
troduce conditioning information within the generative framework.
We use the arousal information as the conditioning variable, which
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Figure 2: The architecture of AC-WGAN-GP
allows us to sample labeled synthetic signals to use in the process
of supervised learning. Our work contributes an intelligent learning
and sampling algorithmwhich can increase the size and variety of
datasets for physiological signal-based emotion recognition.We test
the proposed algorithm on ECG and GSR signals. Our experiment
results from binary arousal classification show that synthetic data
can significantly improve the classification performance (16% and
17% using CNN and LSTM, respectively) of real data by providing a
balanced and densely distributed dataset for training DL algorithms.

2 METHOD: AC-WGAN-GP
To generate synthetic physiological signals, we combine WGAN-
GP [1] and Auxiliary Classifier (AC) to create AC-WGAN-GP [7].
We fuse the two structures to generate physiological signals which
correspond to the distribution of specific emotion categories (e.g.,
high/low arousal). Thus, the synthetic signals can be used for train-
ing emotion classificationmodels. A schematic representation of the
AC-WGAN-GP framework is shown in Figure 2. For the generator
input, we concatenate the noise vector (Gaussian noise, initialization
for the synthetic signals) z of length 128with the one-hot encoded
arousal class labels. The critic, parameterized byw takes as input a
real or a synthetic data point andoutputs twovalues: a scalarDw :f (x )
which is the critic score corresponding to the 1-Lipschitz function,
a probability distribution P(Cjx) over the arousal classC (hereon de-
noted asDw :c(x)). The whole network is trained end-to-end, using
an objective function that combines theWasserstein loss [1] with
the Gradient Penalty and classification loss.

3 RESULTS ANDDISCUSSION
We test AC-WGAN-GP for generating ECG and GSR signals using
the CASE [3] dataset as it has continuous annotations (cf., [4]) taken
during video watching. Continuous annotation is important, espe-
cially here where window segmentation (5 sec) is applied to the
data, and arousal labels have to be assigned to each individual signal
segment (instance). We generate synthetic signals using one-hot
encoded conditional labels, which means synthetic instances corre-
spond to low or high arousal categories. A visual comparison of real
and synthetic signals is shown in Figure 1.

A binary classification task is implemented by training both with
real signals and synthetic signals. A complete Leave-One-Subject-
Out Cross-Validation (LOSOCV) would involve alternatively swap-
ping out each subject to be used as test set data, amounting, in our
case, to 120 individual models for all 30 subjects in the CASE dataset.
For practical reasons, we restrict our experimentation to 20% of the
search space. We randomly sampled 6 (subjects 4, 6, 11, 18, 22 and
25) out of the 30 subjects to be used as test subjects for LOSOCV.
For the classification task, we use a Convolutional Neural Network

Table 1: The ACC and W-F1 score for the arousal classifica-
tion using real (-R) and synthetic (-S) data.

S4 S6 S11 S18 S22 S25 AVG

CNN-R
ACC
W-F1

0.42
(0.37)

0.55
(0.49)

0.73
(0.46)

0.46
(0.49)

0.49
(0.38)

0.50
(0.34)

0.53
(0.42)

CNN-S
ACC
W-F1

0.68
(0.80)

0.53
(0.51)

0.73
(0.49)

0.52
(0.49)

0.59
(0.70)

0.43
(0.49)

0.58
(0.58)

LSTM-R
ACC
W-F1

0.41
(0.34)

0.59
(0.45)

0.73
(0.47)

0.50
(0.38)

0.49
(0.38)

0.47
(0.27)

0.53
(0.38)

LSTM-S
ACC
W-F1

0.56
(0.65)

0.55
(0.49)

0.71
(0.49)

0.49
(0.37)

0.62
(0.71)

0.45
(0.57)

0.56
(0.55)

(CNN) and Long Short-TermMemory network (LSTM) to compare
the performance trained on real (-R) and synthetic (-S) data.

Table 1 shows the accuracy (ACC) andWeighted F1 (W-F1) score
for all 6 subjects as testing data, respectively. While average (AVG)
ACC improves by a small amount, we see a significant increase of
W-F1 by 16% and 17% for the CNN and LSTM, respectively. This indi-
cates that models trained on real data tend to over-classify one of the
two classes. Using synthetic data, however, leads to more balanced
classifiers.This fact appears evenmoreclearly ifwe lookat theperfor-
mance for individual subjects.Wesee large improvements inW-F1 for
subjects 4 and22,which are themost imbalanced subsets at 27.5%and
37.5%minority class, respectively. For these subjects,W-F1 increases
by upwards of 43%, which is a significant improvement. The in-
creased ACC for SI testing shows that amount of data is sufficient for
generating signals correspond to thedistributionof high/lowarousal.

4 CONCLUSION
We present AC-WGAN-GP to generate synthetic ECG and GSR sig-
nals which can be used as training data to enhance the generalizabil-
ity of emotion recognition algorithms. The synthetic data generated
by ourmethod significantly improves the classification performance
in subject-independent testing by providing more balanced classifi-
cation results for different arousal categories. We provide our initial
steps towards further investigatinghowgenerativemodels canbe ap-
plied to diverse physiological signals for the task of physiologically-
driven emotion recognition.
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