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ABSTRACT
Human body produces different physiological stress reaction when
you hit a toe to a doorstep than when you panic at a job interview.
The impact for body’s homeostasis varies depending on the reac-
tion type and some reactions are harmful to our health. Currently,
stress estimation is focused on binary identification between stress
and non-stress stages. More detailed separation of stress reaction
types is needed for detecting harmful stress. In this study, the Ex-
treme Gradient Boosting algorithm was used to classify a baseline
condition and physiological and psychosocial stress, based on psy-
chophysiological signals monitored using a wrist sensor device.
Classification was robust in separating the two stress states from
baseline and from each other. The results provide support for novel
approaches utilizing fine-grained estimation of stress type from
wearable sensor data.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting; • Applied computing → Health care information systems;
Health informatics.
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1 INTRODUCTION
Recent development in stress monitoring has focused on improving
the data processing pipeline and, on the other hand, finding the
best signals and machine learning classifiers for binary (e.g. stress
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vs. non-stress [6]) state detection [8] or classifying the intensity
of stress [3]. Even when a variety of stress stimuli was used [4],
the induced stress state was considered a single state. However,
there are different types of stressors and resulting stress, and their
influence on health and well-being varies accordingly. It is obvi-
ous that a more fine-grained, yet robust and field-capable method
for classification of stress types is much needed. In this paper we
demonstrate our contribution to this challenge.

It is chronic stress that is detrimental to our well-being and
mental health. Transient stress can help us perform better in chal-
lenging situations, but when repeated with no sufficient recovery,
it can turn into chronic stress; slowly and insidiously since the
human system adapts efficiently. Different types of stress initiate
different physiological processes, with specific effects on the body’s
homeostasis and risk of chronic stress.

There are two stress-responsive axes: sympatho-adrenaline-me-
dullary (SAM) and hypothalamus-pituitary-adrenalin (HPA). The
SAM axis activation starts with the sympathetic nervous system,
which increases arousal level via adrenaline [9, 10]. The HPA axis
activity is commenced with the hypothalamus, which triggers a
chain of events that causes the release of cortisol into the blood-
stream [10]. It has been suggested that especially frequent HPA
axis activation is harmful to our health and well-being and can
cause depression, anxiety, and chronic stress [9]. The activation of
HPA and SAM axes is often measured from saliva (via biomarkers
such as cortisol and alpha-amylase) [10]. However, saliva samples
are laborious and not optimal for monitoring stress. Robust and
practical methods to detect not only the general stress but also the
type of stress in everyday life are much needed.

Maastricht Acute Stress Test (MAST) is a stress-eliciting task,
which has been developed to quickly and effectively activate the
human stress response [10]. MAST consists of alternating trials
of physical pain/discomfort (immersion of hand in ice water; cold
pressor task CPT) and psycho-social stress (mental arithmetics (MA)
task with time pressure and penalization). It has been suggested
that these two stressors have significantly different impact on the
stress response: the CPT induces strong SAM activation, while the
MA stimulates the HPA axis [10].

Acute stress is reflected in physiology and detectable in different
biosignals [8]. The type of stress makes a difference: a stress detector
trained on an arithmetic task performed worse for other types of
stress induction tasks [6]. In our recent study we used heart rate
(HR, HRV) features derived from electrocardiogram to detect rest,
CPT, and MA (i.e. MAST) in a laboratory setup and achieved 70.2%
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classification accuracy [7]. It has been suggested that electrodermal
activity (EDA) could complement HR and HRV measurements and
providemore insight into the stress physiology [1]. In recent studies,
unobtrusive, wearable devices with HR and EDA sensors have been
used successfully to assess stress or cognitive load [2, 5, 6, 11] using
machine learning methodology.

The aim of this work is to detect harmful stress. Psychophysiol-
ogy during rest and two stressors (activation of the SAM and HPA
stress-responsive axis) was recorded using a wearable wristband,
the stress types (rest, CPT, and MA) were classified, and a reduced
set of physiological parameters were found with a feature elimi-
nation process. This research is the first attempt to detect SAM
and HPA stress reactions with a wrist device. The objective is to
explore the possibilities for more detailed acute stress classification
in daily-life monitoring context and further in the prevention of
chronic stress.

2 METHODS
Study participants were healthy volunteers (n=17, 7 male, age mean
and standard deviation 26.2 ± 6.2 years). The experimental protocol
consisted of 2 min baselines (BL) in the beginning and in the end
of the protocol and a stress induction. The MAST stress protocol
consisted of 10 minutes of alternating phases of physical (CPT) and
psycho-social (MA) stress, with each lasting from 45 s to 90 s [10].

Psychophysiology was monitored using the Empatica E4 wrist-
band (Empatica Inc, MA, USA) providing EDA and blood volume
pulse (BVP), sampled at 4 Hz and 64 Hz, respectively. After MAST,
the experienced stress in CPT and MA phases and the maximum
pain experienced during CPT was rated from 1 to 9.

Data processing consisted of preprocessing, feature extraction,
and classification. All EDA and BVP data were analyzed in segments
of 45 s with 15 s window slide, selected according to alternating
phase lengths in the MAST. The EDA signal was preprocessed by fil-
tering with a sliding mean filter, decomposing into phasic and tonic
component, and detecting the skin conductance responses (SCR).
The BVP signal was first filtered with a third order Butterworth
bandpass filter with cutoff frequencies 0.5 Hz and 8 Hz, and then
heartbeats were detected from the filtered signal. Interbeat intervals
(IBIs) were extracted by computing the time between heartbeats
and heart rate (HR) was computed from IBIs. Feature extraction
followed [7, 11] and all extracted features are listed in Table 1.

To account for subjective physiological responses, the features
were normalized by person-specific z-score standardization which
was shown to perform better than other normalization strategies
in [2]. The model was validated with leave-one-subject-out (LOSO)
cross-validation as recommended in [8]. The data were classified
with the Extreme Gradient Boosting (XGB) classifier since it has
shown good performance earlier in similar contexts [2, 7].

The classification task was to classify between BL, CPT and MA.
To eliminate subjectivity in the assessment of current state, the
task labels were used as ground truth instead of the subjective
ratings. The BL class data consisted of the two baseline periods.
Classification performance was estimated with accuracy, the per-
centage of correct classifications, and F1-score, the harmonic mean
of precision and recall, weighted according to class distribution.

Table 1: Extracted features.

Type Feature Specification
EDA Statistics of the signal, the tonic

(ton) and the phasic (phas) com-
ponent and the first derivative
(d1)

mean, median (med), standard devia-
tion (std), minimum (min), maximum
(max), upper and lower quartile (uq,
lq) and coefficient of variation (cv)

Phasic: scr npeaks, scr height
mean, scr amplitude mean, scr
rise time mean, scr recovery time
mean, power

Number of SCR peaks, their mean
height and amplitude and mean ris-
ing and recovery time, signal power in
five bands between 0.1Hz - 0.6Hz

Tonic: cortim Correlation with time
HR Statistics of the signal and the

first derivative (d1)
same as above for EDA along with
range and slope

HRV mean nni, median nni, range nni normal-to-normal interval mean, me-
dian, range

SDNN, SDSD Std of IBIs and successive differences
(p)NN20, (p)NN50 Percentage and number of IBIs differ-

ing more than 20ms/50ms
RMSSD Root mean square of successive differ-

ences
CVNNI, CVSD Ratio of SDNN and mean IBI, and

RMSSD and mean IBI
VLF, LF, HF, TotPow Power in very low, low, high frequency

bands, and total power
LF/HF Ratio of LF and HF
LFNU, HFNU Normalised LF and HF
HRVTI HRV triangular index
CVI, CSI, modified CSI (modified) cardiac sympathetic index,

cardiac vagal index
SD1, SD2, SD2/SD1 Poincaré plot std perpendicular and

along the identity line, their ratio
Feature naming later in text and figures: type_feature_statistic.
Abbreviations used later are in parenthesis.

Figure 1: Detected accuracy and 95% bootstrap confidence in-
terval during the feature elimination experiment.

Features were selected with an iterative procedure where the
least important feature was eliminated until just one feature was left.
Feature importance was estimated as relative impurity reduction:
the importance of a feature was the normalized total reduction
of Gini impurity brought by that feature in the XGB model. We
report the most important features affecting classification, but a
more thorough analysis of each feature’s relation to SAM and HPA
activation is left for future work.

3 RESULTS AND DISCUSSION
Fig. 1 shows the accuracies obtained during feature elimination.
Starting at 99 features, the accuracy was rather stable until around
twenty features were left, after which it started to decline. The
maximum accuracy of 0.703 ± 0.152 was reached with 46 features,
with F1-score of 0.705 ± 0.144 (values mean ± std).

The confusion matrix obtained during LOSO validation is shown
in Table 2. Baseline was confused with CPT more often than MA.
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Table 2: Confusion matrix with the best feature set.

Predicted
BL CPT MA

Tr
ue

BL 135 23 14
CPT 25 97 31
MA 5 29 68

Figure 2: Relative importances of top-20 features with the
best performing feature set.

This is in line with subjective reports of stress: 5.6 ± 2.0 for MA
and 3.7 ± 1.8 for CPT (mean ± std, scale 1-9). The CPT task is also
more dynamic than MA, as the biosignal response to the initial cold
sensation settles during the first 10 seconds (data not shown) and
the pain sensation builds up gradually. Averaging over the window
duration is likely to dilute some of the effect.

Subjective preferences and skills influence the intensity and
even the type of stress induced by MAST. The physical pain felt
during cold immersion varies, and people familiar with mental
arithmetics and/or presenting in public tend to experience less
anxiety while counting. According to subjective ratings, stress was
experienced more in the arithmetic task, but the cold immersion
clearly succeeded in inducing pain (maximum pain 5.1 ± 1.7; mean
± std, scale 1-9). Also the inter-individual psychophysiological
responsivity varies greatly which has likely decreased the accuracy
in the leave-one-out validation. The small number of participants
contributes to the issue, but as persons are inherently different,
also in larger data sets, the predictive power of models tends to
remain low. One solution to this problem in long-term monitoring
is personal optimization of the underlying model, built during a
period when the users annotate their cognitive state.

Fig. 2 displays the top-20 feature importances of the best per-
forming combination. The statistical features of the EDA signal and
its tonic component were predominant in each task but some HR
and HRV were also among the most important. This observation is
contrary to [11], where HR and HRV features were more important
than EDA features in binary cognitive load detection. However, the
wearable device and the tasks employed were different which has
probably affected the importance scores. Moreover, the tasks in the
current study probably induced stronger stress response than in
[11], which is reflected as higher activation of EDA.

The classification performance in this study was comparable to
earlier multi-level stress detection studies with mobile wearable
devices, e.g. 0.73 accuracy in classifying the intensity of stress [3]
and class-wise F1-score between 0.50 and 0.82 in classifying three
stress types but excluding the rest state from classification [5].

However, the performance was lower than achieved using a more
involved sensing solution, e.g. up to 0.86 accuracy in [7]. Our next
step is to try and improve the performance by leveraging transfer
learning to utilize data collected in other similar studies.

4 CONCLUSIONS
Hit your toe or panic at a work? Here, we demonstrate a method
for separating potentially harmful acute stress from benign stress,
based on data from single wrist-worn device with reasonable accu-
racy. This capability enables a variety of new options for monitoring
human mental state in everyday life. Applications e.g. in workplace
well-being (detection of bad stress and recovery), private wellness
monitoring (insights into daily activities and annoyances) and hu-
man technology interfaces (adapting to user’s mental mode) are
potential adapters of this approach.
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