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Figure 1: Left: Brainwear is compatible with the Adafruit Feather footprint. Right: aesthetical wearable for HAR and multi-modal probe.

ABSTRACT
We aim to facilitate broad use of EEG sensing in multi-modal smart
garments by developing an open-source EEG sensing module with
the state-of-the-art analog front-end that is pin/protocol-compatible
with popular ecosystems in the wearable and DIY community. The
EEG functionality is validated with the neuroscience standard n-
back memory load task. We also demonstrate the seamless integra-
tion of EEG electrodes with low-frequency Force Sensitive Resis-
tors (FSR) and high-frequency piezoelectric sensors within a single
probe. Finally, we show the embedding of the entire setup in a
textile baseball cap. We also present how signals from the different
modalities complement each other under situations such as motion
artifacts and different activities from an unobtrusive head-worn
garment. The system is available to the community through a public
GitHub repository.

CCS CONCEPTS
• Computer systems organization→ Embedded systems.
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1 INTRODUCTION
Sensing brain activity, including (but not limited to) Brain-Computer
Interfaces (BCI), is increasingly becoming an active research topic
in wearable computing. There are several initial consumer-grade
applications as explored in [23]. Most work on brain activity moni-
toring uses non-invasive EEG for its high temporal resolution, low
cost, and portability capabilities. [30]. However, most current com-
mercial wearable EEG devices have not gained high adoption due to
issues like comfort and social acceptance, especially for long-term
use. Most EEG work is constrained to laboratory environments
in which the user’s movement is restricted due to high sensitiv-
ity and motion artifacts, thus limiting the research questions that
such studies can address [23]. Hence, research and future consumer
applications towards the "Transparent EEG" concept[4] require
long-term solutions that are at the same time aesthetically appeal-
ing, easy-to-use, motion/noise-tolerant. For the latter, in particular,
close integration with additional sensors is a promising approach.
Finally, broadly accessible platforms that can be easily used and
extended by the community are needed [20]. While addressing
such usability and multi-modal issues is the forte of the collec-
tive wearable community, the current barrier encapsulating EEG
technologies has so far discouraged highly needed advancements.

In our summary of neuroscience studies regarding human ac-
tivity recognition (HAR) in Section 2, EEG proves to be a potent
sensing modality. Yet, the adaptation of EEG in wearable HAR stud-
ies has so far been limited due to the reasons explained above. Thus,
we developed an open-source EEGmodule that is hardware compat-
ible with the popular Adafruit Feather family based on the Arduino

113

https://doi.org/10.1145/3460421.3478814
https://doi.org/10.1145/3460421.3478814
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460421.3478814&domain=pdf&date_stamp=2021-09-21


ISWC ’21, September 21–26, 2021, Virtual, USA Vargas and Zhou, et al.

ecosystem. We have also demonstrated how EEG electrodes can
be seamlessly stack-integrated with FSR and piezoelectric sensors
within a single probe. This design initiative aims to bring the EEG
modality more accessible to the wearable computing community to
promote future studies with EEG-integrated garments combining
other sensing modalities.

To bridge the gap between wearable BCI and HAR, our contri-
butions are:

(1) We developed a compact, easy-to-use Arduino-based EEG
module, Brainwear, which we provide as a complete open-
source toolkit to the community1.

(2) We implemented a proof of concept application of the system
in a normal baseball cap.

(3) The EEG performance in the cap prototype was evaluated
on a standard neuroscience benchmark (n-back).

(4) We showed that additional sensing modalities, specifically
FSR (pressure sensing) and piezoelectric, can be integrated
within each single sensor probe in the cap.

(5) On a set of example signals, we demonstrate and discuss the
benefit of combining EEG with the additional sensors in a
single device.

2 BACKGROUND AND STATE OF THE ART
In the wearable HAR discipline, EEG has already shown great po-
tential [29]. As summarized in Table 1, EEG can provide information
on many psychological and cognitive aspects where physiologi-
cal sensors usually struggle. However, none of these studies has
seamlessly integrated EEG with other physiological modalities in
a single embedded system - the EEG signal is always provided by
specialized hardware with obvious barriers of garment integration.

Ad hoc EEG systems or components have been created in var-
ious studies. For example, [7] developed novel 3D-printed elec-
trodes that are located into an e-Textile headband. [20] combined
the around-the-ear electrodes (cEEGrigs) proposed by [4] and the
OpenBCI platform to create a ready-to-wear device to recognize
mental workload as well as other BCI tasks.

Recent commercial mobile EEG devices, such as Mindwave
(Neurosky), Muse (InteraXon), and EPOC (Emotiv) [30], have re-
duced the design overhead of ad hoc prototypes for BCI studies[20].
Besides the usual discomfort and fitting issues, such rigid devices
fall short as the proprietary systemmakes it impossible for the wear-
able community to integrate them into multi-modal, ergonomic,
and aesthetic designs.

Open-source toolkits such as OpenBCI provide hardware and
software suites integrating EEG Analog-Front-End (AFE) in a com-
plete embedded system, compatibility with several types of elec-
trodes, and flexibility to measure brain signals at any location on
the scalp. Yet, OpenBCI has only seen limited adaptation among
wearable researchers and smart garment designers outside the BCI
community due to the low compatibility of the processor and soft-
ware layers together with relatively high entry barrier and over-
head. Additionally, its full-stack solution also has difficulty keeping
up and integrating with the latest advancements in sectors like
microprocessors, communication, and software.

1https://github.com/jufvargasco/Brainwear2.0

The true wearable EEG enabler is the latest generations of
chips integrating EEG-level AFE, such as the ADS1299 (Texas In-
struments) that integrates the entire 8-channel AFE in a compact
package, replacing traditional cumbersome circuit assembly.2 Sev-
eral studies [11, 27, 30] have concluded that the ADS1299 reference
design provides data on par with medical-grade systems.

In neuroscience, discarding the signals contaminated by mo-
tion artifacts is a common practice[5, 17], as muscular, ocular, and
cardiac activities are coupled with electrical signals surpassing the
surface EEG magnitude. However, these signals can also be interest-
ing for HAR purposes. Facial muscular activities, for example, are
shown to be relevant for emotional control [2], motor planning [28],
emotional expressions [36], reading activities [21] and snacking
moments [29, 37]. With the latest dry and textile electrode break-
throughs such as [1, 10, 32], the combination of multiple sensors to
detect muscle movements in parallel with EEG is the apparent way
forward [13, 29].

3 COMMUNITY-ORIENTED HARDWARE
The Brainwear EEG module’s major design considerations are sim-
plicity and compatibility. Simplicity by packaging all and only the
necessary components for EEG sensing so that designers can use it
as a plug-and-play module; and compatibility with the open and
popular standards to not be locked-in by legacy technology. We po-
sitioned Brainwear as a plug-and-play part of the broader wearable
system options so that EEG-enabled devices can easily benefit from
the latest advancements such as faster processors, more efficient
wireless communication, edge computing acceleration, and beyond.

As shown in Fig. 1, enabled by ADS1299[15], the Brainwear mod-
ule handles up to 8 EEG channels and output the digital data by the
SPI bus. More channels can be achieved by either daisy-chaining on
the same SPI bus or adding modules on more SPI buses, depending
on the host microprocessor’s capability. Brainwear is designed to
be footprint and pin-compatible with the Adafruit Feather family,
which contains over 100 different modules with the same board
footprint. Feathers are programmed with the Arduino software
environment, which means a wide selection of microcontrollers
can drive the Brainwear module with the same code. Even if de-
signers choose microcontroller modules outside the Feather family,
Brainwear can still be easily integrated by plugging into the SPI
bus with minimal code modification, including OpenBCI.

The design, including technical specifications and board manu-
facturing files, together with the Arduino C library and examples,
are all available on GitHub, so the entire wearable community can
easily reproduce and integrate into their designs and studies.

4 PROTOTYPE VALIDATION
We first validated our approach with a soft EEG cap prototype 3

and the standard benchmark N-back test, through a study based on
the common approach in neuroscience [8, 16, 26].

2OpenBCI Cyton and [7] both use ADS1299 with the chipmaker’s reference design
3To validate the soft EEG cap with a cognitive study while performing in parallel the
printed circuit board design process. In this prototype, we used Cyton (OpenBCI),
which uses the same reference design as the ADS1299. The later signal level comparison
showed no distinguishable difference between Brainwear and Cyton
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Table 1: Summary of recent studies using mobile EEG for psychological studies and Human Activity Recognition
Application Activities Sensors and biosignals Classifier Accuracy

Emotions

valence, arousal, happiness, fear, and excitement OpenBCI (EEG)
Empatica4 (EDA, skin temp, PPG)

k-means clustering 67% valence
70% arousal

[22]

valence, arousal, and dominance Emotiv EPOC (EEG)
SHIMMER (ECG)

SVM 62 average [18]

Anxiety (3 different levels) MindWave Mobile (EEG)
PPG-fitted glasses (PPG)

KNN 62.5% [35]

Stress MindWave Mobile (EEG)
SHIMMER (EDA)
BioHarness 3 (ECG)

SVM 86% [3]

Cognition
Mental workload (0,1,2,3 - back) Emotiv EPOC (EEG) SVM 81% (0 vs 1/2/3-back) [34]

Drowsiness and Fresh state Muse (EEG, IMU) SVM 92% [24]

Emotion/
cognition

Success in a learning task Emotiv EPOC (EEG)
Tobii Tx300 (Eye movement)
FaceReader 6.0 (Expression)

Logistic regression 66% [12]

Motion Hand movement speed and position
(fast-right, fast-left, slow-right, slow left)

Emotiv EPOC (EEG)
V120 Duo (Limb motion)

LDA
SVA

73.72% Only speed
69% left/right movement

[28]

Daily activities Reading, speaking, watching TV Muse (EEG) FCEA framework 94.60% [29]

Dancing Neutral, think, and do
Laban efforts (17 classes)

BrainAmpdDC (EEG)
OPAL (Body kinematics)

LFDA +
GMM

59.4% 3 classes
88.2% 17 classes

[9]

Cognitive +
motor tasks

Relax, visual task, auditive task + 7 motor tasks (organiz-
ing books, standing up, salute motions, clapping, etc.)

Enobio (EEG)
Rokoko (IMU)

Random Forest
Gradient boost

96% [13]

Figure 2: Soft EEG cap and electrode placement.

4.1 Validation Method
Based on the analysis performed in [25] about the regions involved
in memory workload and the 10-20 system [19], we located the
dry electrodes at approximately evenly spaced locations at the
prefrontal cortex (FP1, FP2, and FPz), the premotor cortex (Cz), and
intersections between the temporal and occipital lobes with the
parietal lobe (TP8, TP7, PO8, and PO7). Flat electrodes for hairless
regions and comb electrodes of 2 or 5 mm long prongs for hairy
regions are used depending on the participant’s hairstyle. 4 The
integrated cap and the electrode placement is shown in Fig. 2.

Five healthy participants with university education (2 females,
3 males) between 23 and 30 years of age (mean age 26) took part
in the experiment. All subjects were right-handed, had a normal
or corrected-to-normal vision, and were naive to the nature of the
experiment.

The experiment goal is to classify five different levels of memory
workload: resting state with eyes closed (EC) and eyes opened (EO),
and three states with increasing memory load: 1-, 2-, and 3-back.
The single n-back task (Brain Workshop) with visual stimuli was
used to induce cognitive load and benchmark working memory.
4Such dry electrodes are available from Florida Research Instruments Inc, Unicorn-BI,
Neurospec, etc.

Figure 3: Experiment procedure and result.

Fig. 3 shows the time course of the experimental procedure, con-
taining five pseudo-randomized iterations of the three n-back levels.
Each participant finished two sessions with a total of 4 minutes for
each resting state and 21 minutes for each n-back level. The experi-
ment was presented on a 24-inch monitor located at about 50 cm
distance from participants and took place in one of the experimental
rooms of the DFKI.

The signal processing andmachine learning pipeline are based on
the mature consensus and state-of-the-art in neuroscience [34]. The
8-channel 250 Hz raw signal was upsampled to 256 Hz by applying
an FIR anti-aliasing filter. Then, the DC offset was removed by a
high-pass filter with a cutoff frequency at 0.5 Hz. Moreover, a notch
filter was used to remove the line noise at 50 Hz. The processed
data was segmented into non-overlapping 2s windows. For n-back
states, only the windows in the Capturing Stage (Figure 3) are used
as the participants are properly engaged.

We employed a CNN-based deep neural network model com-
monly used in EEG signal classification: the Shallow ConvNet [31].
5 Leave-one-session-out cross-validation was performed. Weight-
assignment was used to tackle the data imbalance between idle
states and engaged states.
5The model was taken from the Army Research Laboratory (ARL) EEGModels project
https://github.com/vlawhern/arl-eegmodels, adapted to our data.
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Figure 4: Person wearing the multi-modality cap while performing head movements and facial expressions with eyes closed and eyes open.

Table 2: Comparison with the neuroscience related work

Studies Device
Memory
workload
levels

Classification
method

Accuracy
2s window

Grimes
et al. [14]

Biosemi
activetwo
(32-ch)

0 to 3-back
(letter, image,
spatial tasks)

Naïve Bayes
(2-classes,
4-classes)

30%
(4-classes)

Brouwer
et al. [6]

g.tec
USBamp
(7-ch)

0 to 2-back
letter task

SVM
(binary)

68%
(2-classes)
(0 vs. 2-back)

Wang
et al. [34]

Emotiv
EPOC
(14-ch)

0 to 3-back
(letter, spatial
tasks)

SVM
(binary)

81%
(2-classes)
(0- vs. 1/2/3-back)

Proposed
method

DIY cap
(8-ch)

EC, EO,
1 to 3-back
spatial task

Shallow
ConvNet [31]
(5-classes)

63% (5-classes)
> 83% binary
(rest vs. 1/2/3-back)

4.2 Results and discussion
The results are shown in Fig. 3 as confusion matrix and compared
with other neuroscience literature in Table 2. The proposed method
exhibits performance matching or exceeding the related works. The
resting state (EO, EC) and cognitively engaging state (1/2/3- back)
are well separated. EO and EC are also well distinguished. Although
there are more misclassifications among 1/2/3-back levels, the result
agrees with the neuroscience observations.

Overall, we can conclude that the EEG sensing system based on
the ADS1299 reference design in the form of a daily garment - a soft
cap, achieves similar levels of recognition as other neuroscience
studies with dedicated instruments.

5 FURTHER GARMENT INTEGRATION
To demonstrate how easily Brainwear can be integrated with other
sensing modalities, we expanded the prototype with two more
sensing modalities at two sensing nodes (FP1/2) in Fig. 2.

With the Brainwear module, the improved cap is built around
a Feather Huzzah32 module with the ESP32 microcontroller. An
FSR and a piezoelectric sensor are stacked with the EEG electrode
as shown in Fig. 1. A separate quad-channel ADC (TI-ADS1015)
drives the FSR and Piezo sensors at 125 Hz and communicates with
the microcontroller with the I2C bus.

A brief recording of a person wearing the multi-modality cap per-
forming various head movements and facial expressions is shown
in Fig. 4. The cap can detect well-known neural processes such as
the "Berger effect" [20] that exhibits an increase in the posterior
alpha frequency power (8 - 12 Hz) when closing the eyes. The figure
also shows that the FSR and piezo reveal Ballistocardiogram (BCG)
activity on the forehead together with gross motion characteristics
such as nodding, shaking the head, yawning, and squeezing the eyes.
These results agree with previous studies in which piezoelectric
sensors were used to detect BCG and subtle movements or mus-
cle contractions in the face [5, 33]. The latter study demonstrated
how such activity can be decoupled from neural signals employ-
ing an adaptive filter. As [36] discovered, such forehead muscle
mechanomyography can detect different expressions such as sur-
prise, sadness, anger, among others. In our example, we can also
observe distinct characteristics with different expressions, which
could offer information on the wearer’s facial expression, whereas
the EEG data would have been discarded as a motion artifact in
neuroscience.
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6 CONCLUSION AND OUTLOOK
To conclude, we consider EEG to be a plug-and-play part of a
more extensive customizable multi-modal wearable system. We
developed an open-source, transparent EEG sensing module that is
pin-compatible with the Feather family and protocol-compatible
with an even broader scope of embedded processors. A garment
prototype validation taken from the standard neuroscience and
BCI literature shows that a soft EEG cap achieves performance on
par with neuroscience state-of-the-art. Further integration with
mechanomyography shows how EEG and other sensing modali-
ties can be integrated into one wearable system, even at the same
sensing location, to provide complementary information about the
wearer’s neural and physiological activities.

We believe our approachwill enablemore out-of-the-lab research
opportunities that combine neural and physical activities, such as
cognitive processes during sports activities.
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