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ABSTRACT
The mobile psychomotor vigilance task (PVT) has been found to be
a valid predictor of cognitive fatigue. However, absolute reaction
time (RT) recorded by mobile PVT is inaccurate. This is concerning
as participant RTs are used in the analysis of PVT results. This
paper aims to characterise this problem and assess the margin of
error across common iOS software frameworks. A novel Arduino
test instrument was developed to simulate a user’s reaction, provid-
ing a ground truth for the RT. We found in our experiments that
there is between a 29.57% and 48.58% increase over the ground
truth RT in the iOS implementations tested. These are significant
overestimations that will affect the validity of the outcome metrics
for any mobile PVT study participants.

CCS CONCEPTS
•Human-centered computing→ Smartphones; •Applied com-
puting → Life and medical sciences.
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1 INTRODUCTION
The psychomotor vigilance task (PVT) is a test commonly used
to assess cognitive fatigue [10, 12]. The test measures participant
reaction times (RT) over a number of trials. Resulting RTs are in-
dicative of participant alertness, where RT increases as cognitive
performance decreases [18]. The display presents a stimulus to the
participant after a randomised interval [3]. Participants must detect
the presence of the stimulus, recognise the stimulus and react to the
stimulus. Each of these three phases contribute to the participant
reaction time for an individual trial. Existing implementations use
the preferred touch down gesture to respond to the stimulus [10],
which is also used in our implementations.
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Originally designed to be undertaken in a lab based setting [5],
there have been a number of mobile implementations studied to
create a more ecologically valid assessment [2, 4, 10]. Although
mobile PVT has been found to be an accurate predictor of cognitive
fatigue [16], smartphones introduce a significant margin of error
when measuring the absolute RTs1. Modern smartphones are not
real-time systems and do not comply with hard deadlines [14].

There are a number of potential sources of latency on smart-
phone devices [2]. This is shown in Section 3 and 4 where mobile
PVT can overestimate by up to 121.43ms . The PVT-192 is the gold
standard device with an error of ±1ms [11] and is used in numer-
ous studies [2, 13]. Therefore, absolute RTs from mobile devices
are significantly more inaccurate compared to conventional PVT
devices.

This is especially concerning when assessing the PVT outcome
metrics in which accurate RTs are required. This includes the mean
RT, the median RT, the standard deviation of the RT, the fastest 10%
RT, the slowest 10% RT, number of lapses [6]. Therefore, researchers
need to be aware of the quality of RTs produced by smartphone
devices and the potential effects on any conclusions drawn from
these results.

One method used to offset the less accurate timing is by increas-
ing the trial count [17]. However, this comes with the disadvantage
of increasing participant burden [1]. By aiming to produce RTs with
a precision on a par with traditional hardware devices, mobile PVT
may become a more unobtrusive method of measuring cognitive
fatigue. This paper makes the following contributions:

• In Section 2, an accurate and accessible method of automated
testing for touchscreen based mobile PVT implementations
is described. This will allow researchers to provide a guar-
antee of the accuracy of the RTs that their implementation
produces for a chosen device(s).

• Although mobile PVT implementations may be valid at eval-
uating fatigue, the absolute RTs measured by smartphone
devices will have a significant margin of error due to sources
of latency. We analyse the latency of three PVT algorithm
iOS implementations in Section 3.

• Furthering on this, in Section 4 we analyse the impact of the
CPU usage (one of the possible sources of latency) on the
MetalKit implementation.

2 METHODS
Three implementations for the PVT were created for iOS (MetalKit,
UIKit, and WebKit)2. MetalKit is a framework which provides near
direct access to the GPU on iOS [7]. The UIKit framework allows
1Where RT is the reaction time measured in milliseconds (ms).
2https://github.com/arthursmel/pvt-demo
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Figure 1: Two periods of microphone input, corresponding to two trials of the iOS-PVT

Figure 2: The circuit diagram of the Arduino test instrument

developers to create graphical event driven user interfaces on iOS.
TheWebKit framework offers a native solution to support Javascript
on iOS. The following definitions are used in this paper:

(1) CPU to Display Latency is the time taken to execute a
graphical update on the screen.

(2) PVT Reaction Time is the reaction time measured by the
smartphone’s PVT implementation.

(3) Input Latency is the time taken to register the user’s touch
on the screen and call the touchesBegan method.

(4) Timestamp Recording Latency is the latency caused by
accessing the Date object to get the current unix timestamp
and to update the PVT state.

(5) Microphone Interval is the time between the sound of the
relay touching the screen and the sound of the relay releasing
from the screen.

(6) PVT Interval is the duration between two trials. It is decided
by a pseudorandom number generator with a range from
2000ms to 3000ms .

2.1 Measuring CPU to Display Latency
This metric was analysed in the Instruments profiling application
on macOS[8]. The iPhone device was connected to the MacBook
for profiling as described in Section 2.3.

2.2 Measuring Input Latency
The Input Latency caused by registering and handling touches using
this method was measured using the ATI3. The idea behind this test
is to send periodic touches from the Arduino (every 250ms) to the
touch screen. The timestamps of when the touches were received
are then recorded by the iOS device. Any variance from the period
in the timestamps could then be attributed to the latency caused by
the device in registering and handling the touches.

2.3 Devices
All experimentswere performed on an iPhone 7 running iOS version
14.4.2. Wi-Fi and mobile data were switched off, Bluetooth disabled,
low power mode disabled, and a battery level of 100%. Brightness
was set to 100% and the device was charging via USB cable. The
version of Instruments used to profile this application was 12.4
(12D4e). Profiling was only performed on the experiments when
stated. The MacBook used to profile the application was a MacBook
Pro 13 inch, early 2015 running macOS Big Sur v11.2.3 (20D91).

2.3.1 Arduino Test Instrument (ATI) Setup. The ATI exploits a non-
latching relay’s armature to simulate a finger touch. When a touch
is to be simulated, 0V is applied to the copper tape on the screen by
setting the relay’s input to low for a short period of time (500ms).
This distorts the screen’s electrostatic field and registers a touch.

3Arduino Test Instrument.
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Figure 3: The modified non-latching relay (side view & bot-
tom view)

Figure 4

A square of copper tape (1.2cm x 1.2cm) was affixed to the touch-
screen to simulate a user’s fingertip. The state of the PVT must be
known to decide when to apply a touch. The stimulus state and the
interval state can be identified based on the brightness of the dis-
play. An LDR measures this screen brightness to decide if stimulus
is being displayed - simulating the participant’s eye. The LDR and
relay circuit is described in Figure 2

An Arduino Uno R34 was used to implement the touch logic. An
Arduino program simulates a touch when the screen brightness
is over a certain value5. The program ensures only a single touch
occurs when the screen brightness is over this value. By using a
delay function in the program, a delay in the response of 250ms is
applied to simulate an average human visual RT [9].

The LDR was secured to the iPhone screen using electrical tape
as shown in Figure 4. The square of copper tape was affixed to the
screen. The relay was secured on top of the copper tape square
using electrical tape as shown in Figure 4.

2.3.2 Modified Non-Latching Relay. An Omron G5LE-1-DC5 SPDT
non-latching relay was modified to simulate a finger touch. The
outer casing was removed from the component to expose the ar-
mature. A plastic card (5.5cm x 1.8cm) was used as base to secure
the component to the touch screen. This card was hot glued to the
relay legs as shown in Figure 3. A strand of silver plated copper
wire of length 2.5cm was bent into a hook shape as shown in Figure
3. It is important to note that this hook should not touch the screen
when the input voltage is high and should be touching the copper
tape when the input voltage is low. This wire was then soldered
to the armature. The accuracy of the 500ms Arduino delay was
verified using a lavalier microphone (model: X0011G1FBN). This is
shown in Figure 1, where the amplitude peaks are caused by the
relay touching the screen.

4https://store.arduino.cc/arduino-uno-rev3
5Value varies across devices; a value of 500was used for the iPhone with the maximum
screen brightness enabled in the device settings.

Figure 5: The LDR housing (top view & bottom view)

Figure 6: The PVT Reaction Time (ms) for 100 Trials of Each
Implementation

2.3.3 LDR Housing. A through hole LDR (NSL-19M51) was housed
to allow for the attachment to the device’s screen. The LDR was
hot glued to a piece of plastic card (3cm x 1.5cm). A clear plastic
card with the same dimensions was hot glued to the underside of
the previous card to protect the LDR as shown in Figure 5. A hole
�0.5cm was punched through the card as a frame for the LDR.

3 THE EFFECT OF SOFTWARE
FRAMEWORKS ON PVT RESULTS

The software framework used to implement the PVT algorithm
affects the participant RTs. This paper compares the RTs measured
by the MetalKit, UIKit, and WebKit PVT implementations on iOS. A
valid smartphone based PVT aims to minimize the margin of error
to produce accurate RTs.

The PVT test instrument described in Section 2.3.1 was used to
periodically simulate a reaction to the stimulus with a 250ms delay
over 100 trials. The PVT Reaction Time was collected for each trial.
This experiment was repeated with each implementation.

3.1 MetalKit Software Latency
It is expected that the MetalKit implementation would result in the
most accurate PVT Reaction Time out of the implementations tested,
with a 29.57% increase over the ground truth RT (250ms) as shown
in Table 1. The Metal framework offers direct communication with
the device GPU which reduces overhead in rendering on-screen
graphics, providing a high level of performance [7].
6The sum of CPU to Display Latency, Input Latency, and Timestamp Recording Latency.
7CPU to Display Latency may only be profiled when using MetalKit graphical
operations.
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Framework PVT Reaction Time Implementation Latency6 CPU to Display Latency Input Latency
MetalKit 323.93ms (SD=10.91ms, n=100) 73.93ms 19.00ms (SD=11.74, n=100) 0.34ms (SD=4.38ms, n=100)
UIKit 332.59ms (SD=11.83ms, n=100) 82.59ms Unknown7 0.34ms (SD=4.38ms, n=100)
WebKit 371.43ms (SD=13.13ms, n=100) 121.43ms Unknown 0.19ms (SD=5.05ms, n=100)
Table 1: Software Latencies of the PVT Algorithm Using Common iOS Software Frameworks with Arduino Delay of 250ms

CPU Usage PVT Reaction Time Implem. Latency
Normal 324.96ms (SD = 12.21ms, n=100) 74.96ms
High 334.76ms (SD = 13.88ms, n=100) 84.76ms

Table 2: Comparison of the MetalKit Implementation La-
tency with ‘normal’ CPU usage and ‘high’ CPU usage

The MetalKit graphic updates significantly contributes to the
overall Implementation Latency, with 25.70% of this latency caused
by the CPU to Display Latency.

The MetalKit Input Latency does not impact the PVT Reaction
Time as significantly as the CPU to display latency, with only 0.50%
of the latency attributed to this source.

3.2 UIKit Software Latency
It is expected that the UIKit average Implementation Latency will
be greater than the MetalKit Implementation Latency, with a 33.04%
increase over the ground truth RT. This is likely as it does not have
the advantage of hardware acceleration that MetalKit provides
[14]. The UIKit implementation displays the stimulus by setting
the background colour of the UIView that the controller manages.
Similarly to the MetalKit implementation, touches are handled in
the view controller by overriding the touchesBegan method, which
is reflected in the Input Latency in Table 1.

3.3 WebKit Software Latency
Finally, the WebKit implementation has the greatest average Im-
plementation Latency with an increase of 48.58% over the ground
truth RT. This may be due to using a WKWebView to render the
HTML and execute the Javascript code, which adds an extra layer
to the software stack. Latency increases are commonly caused by
issues with the software stack [15].

4 EFFECTS OF DEVICE CONFIGURATION ON
METALKIT IMPLEMENTATION

Mobile PVT suffers from a number of potential sources of vari-
ability. These include device CPU usage, Wi-Fi configuration, the
Bluetooth configuration, mobile data status, battery percentage,
power saving configuration, the OS version, background tasks or
running applications. The effect of these sources may vary across
different devices, resulting in the need to repeat these experiments
on the participant’s devices. It is also necessary to either standardize
the device configuration during the PVT or to note the device con-
figuration during the PVT. Using the ATI, it is possible to measure
the effects of these sources caused by the device configuration.

Figure 7: An Illustration of ‘Normal’ CPU Usage (Blue) and
‘High’ CPU Usage (Red)

In this paper, the effect of the device’s CPU usage on the touch
response latency was evaluated. The device was connected to the
MacBook described in Section 2.3 for profiling. The CPU usage was
analyzed using the Instruments application. The application was
extended upon to include functionality to raise the CPU usage. This
was achieved by executing an inefficient prime generating function
in a thread with a high priority. The CPU usage for this experiment
is outlined in Figure 7.

Using the ATI, 100 PVT trials (n = 100) with the CPU operating
at a maximum of 70% usage were executed. The duration of this
experiment was 5min 6s. The experiment was repeated with the
CPU usage raised using the functionality described in Section 4. The
CPU usage for this experiment is outlined in Figure 7. The duration
of this experiment was 5min 16s. The results for both of these
experiments are shown in Table 2. Using a MetalKit implementation
of the PVT, there is a 3.01% increase in the average PVT Reaction
Time with CPU usage at 99%.

5 DISCUSSION
We can conclude from our findings that the absolute RTs measured
by mobile PVT are significantly overestimated. In this paper we
demonstrated that the software implementation and CPU usage
affect the absolute RT measurements. As discussed in Section 1,
PVT metrics are based on absolute RTs. Although mobile PVT
may be valid in assessing participant fatigue, it is concerning that
potentially invalid RTs are used to analyse participant results.

For researchers currently using mobile PVT, we have provided
an accessible method of measuring the latency and variability. Us-
ing the ATI, researchers can provide latency guarantees for any
device(s) used to run their PVT implementation.
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