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F2-linear pseudorandom number generators are very popular due to their high speed, to the ease with which

generators with a sizable state space can be created, and to their provable theoretical properties. However, they

suffer from linear artifacts that show as failures in linearity-related statistical tests such as the binary-rank and

the linear-complexity test. In this paper, we give two new contributions. First, we introduce two new F2-linear

transformations that have been handcrafted to have good statistical properties and at the same time to be

programmable very efficiently on superscalar processors, or even directly in hardware. Then, we describe

some scramblers, that is, nonlinear functions applied to the state array that reduce or delete the linear artifacts,

and propose combinations of linear transformations and scramblers that give extremely fast pseudorandom

number generators of high quality. A novelty in our approach is that we use ideas from the theory of filtered

linear-feedback shift registers to prove some properties of our scramblers, rather than relying purely on

heuristics. In the end, we provide simple, extremely fast generators that use a few hundred bits of memory,

have provable properties, and pass strong statistical tests.

CCS Concepts: • Mathematics of computing → Random number generation;

Additional Key Words and Phrases: Pseudorandom number generators

1 INTRODUCTION
In the last twenty years, in particular since the introduction of the Mersenne Twister [26], F2-

linear1 pseudorandom number generators have been very popular: indeed, they are often the stock

generator provided by several programming languages. Linear generators have several advantages:

they are fast, it is easy to create full-period generators with large state spaces, and thanks to

their connection with linear-feedback shift registers (LFSRs) [13] many of their properties, such as

full period, are mathematically provable. Moreover, if suitably designed, they are rather easy to

implement using simple xor and shift operations.

The linear structure of such generators, however, is detectable by some statistical tests for

randomness: in particular, the binary-rank test [25] and the linear-complexity test [6, 9] are

failed by all linear generators.
2
Such tests are implemented, for example, by the testing framework

TestU01 [21] under the name “MatrixRank" and “LinearComp”, respectively. These tests were indeed

devised to “catch” linear generators, and they are not considered problematic by the community

working on such generators, as the advantage of being able to prove precise mathematical properties

is perceived as outweighing the failure of such tests (see [41] for a more detailed discussion).

Nonetheless, one might find it desirable to mitigate or eliminate such linear artifacts by scrambling
a linear generator, that is, applying a nonlinear function to its state array to produce the actual

output. In this direction, two simple approaches are multiplication by a constant or adding two

components of the state array. However, while empirical tests usually do not show linear artifacts

∗
This paper contains version 1.0 of the generators described therein. This work has been supported by a Google Focused

Research Award.

1
Or, with an equivalent notation, Z/2Z-linear generators; since we will not discuss other types of linear generators, we will
omit to specify the field in the rest of the paper.

2
In principle: in practice, the specific instance of the test used must be powerful enough to detect linearity.
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anymore, the lower bits are unchanged or just slightly modified by such operations. Thus, those

bits in isolation (or combined with a sufficiently small number of good bits) will fail linearity tests.

In this paper, we try to find a middle ground by proposing very fast scrambled generators with

provable properties. By combining in different ways an underlying linear engine and a scrambler

we can provide different tradeoffs in terms of speed, space usage, and statistical quality.

For example, xoshiro256++ is a 64-bit generator with 256 bits of state that emits a value in

0.86 ns on an Intel® Core™ i7-8700B CPU@3.20GHz (see Table 1 for details); it passes all statistical

tests we are aware of, and it is 3-dimensionally equidistributed. Multiple instances can be easily

parallelized using Intel’s extended AVX2 instruction set, reducing the time to 0.30 ns (for eight

instances). Similarly, xoshiro256** is 4-dimensionally equidistributed, but it has a lower linear

complexity.

However, if the user is interested in the generation of floating-point numbers only, we provide

a xoshiro256+ generator that generates a value in 0.78 ns (the value must then be converted to

float); it is just 3-dimensionally equidistributed, and its lowest bits have low linear complexity, but

since one needs just the upper 53 bits, the resulting floating-point values have no linear bias. As in

the previous case, instances can be parallelized, bringing down the time to 0.22 ns.

If space is an issue, a xoroshiro128++, xoroshiro128**, or xoroshiro128+ generator provides
similar timings and properties in less space. We also describe higher-dimensional generators, albeit

mainly for theoretical reasons, and 32-bit generators with similar properties that are useful for

embedded devices and GPUs. Our approach can even provide fast, reasonable 16-bit generators.

Finally, we develop some theory related to our linear engines and scramblers using results from

the theory of noncommutative determinants and from the theory of filtered LFSRs.

The C code for the generators described in this paper is available from the authors and it is public

domain.
3
The test code is distributed under the GNU General Public License version 3 or later.

2 ORGANIZATION OF THE PAPER
In this paper, we consider words of size𝑤 ,𝑤-bit operations, and generators with 𝑘𝑤 bits of state,

𝑘 ≥ 2. We aim mainly at 64-bit generators (i.e.,𝑤 = 64), but we also provide 32-bit combinations.

The paper is organized in such a way to make immediately available code and basic information

for our new generators as quickly as possible: all theoretical considerations and analyses are

postponed to the second part of the paper, albeit sometimes this approach forces us to point at

subsequent material.

Our generators consist of a linear engine4 and a scrambler. The linear engine is a linear trans-
formation on Z/2Z, representable by a matrix, and it is used to advance the internal state of the

generator. The scrambler is an arbitrary function on the internal state which computes the actual

output of the generator. We will usually apply the scrambler to the current state, to make it easy

for the CPU to parallelize internally the operations of the linear engine and of the scrambler.

Such a combination is quite natural: for example, it was advocated by Marsaglia for xorshift
generators [24], by Panneton and L’Ecuyer in their survey [20], and it has been used in the design

of XSAdd [33] and of the Tiny Mersenne Twister [34]. An alternative approach is that of combining

an F2-linear generator with a linear congruential generator with large prime modulus [18].

In Section 3 we introduce our linear engines. In Section 4 we describe the scramblers we will be

using and their elementary properties. Finally, in Section 5 we describe generators given by several

3
http://prng.di.unimi.it/

4
We use consistently “engine” throughout the paper instead of “generator” when discussing combinations with scramblers

to avoid confusion between the underlying linear generator and the overall generator, but the two terms are otherwise

equivalent.

http://prng.di.unimi.it/
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combinations between scramblers and linear engines, their speed and their results in statistical

tests. Section 5.3 contains a guide to the choice of an appropriate generator.

In Section 6 and 7 we discuss the mathematical properties of our linear engines: in particular, we

introduce the idea of word polynomials, polynomials on𝑤 ×𝑤 matrices associated with a linear

engine. The word polynomial makes it easy to compute the characteristic polynomial, which is the

basic tool to establish full period. We then provide equidistribution results.

In the last part of the paper, starting with Section 9, we apply ideas and techniques from the

theory of filtered LFSRs to the problem of analyzing the behavior of our scramblers. We provide

some exact results and discuss a few heuristics based on extensive symbolic computation. Our

discussion gives a somewhat more rigorous foundation to the choices made in Section 5, and opens

several interesting problems.

3 LINEAR ENGINES
In this section we introduce our two linear engines xoroshiro (xor/rotate/shift/rotate) and xoshiro
(xor/shift/rotate). All modern C/C++ compilers can compile a simulated rotation into a single CPU

instruction, and Java provides intrinsified rotation static methods to the same purpose. As a result,

rotations are no more expensive than a shift, and they provide better state diffusion, as no bit of

the operand is discarded.
5

We denote with 𝑆 the𝑤 ×𝑤 matrix on Z/2Z that effects a left shift of one position on a binary

row vector (i.e., 𝑆 is all zeroes except for ones on the principal subdiagonal) and with 𝑅 the𝑤 ×𝑤

matrix on Z/2Z that effects a left rotation of one position (i.e., 𝑅 is all zeroes except for ones on

the principal subdiagonal and a one in the upper right corner). We will use 𝜌𝑟 (−) to denote left

rotation by 𝑟 of a𝑤-bit vector in formulae; in code, we will write rotl(-,r).

3.1 xoroshiro

The xoroshiro linear transformation updates cyclically two words of a larger state array. The

update rule is designed so that data flows through two computation paths of length two with a

single common dependency halfway, leading to good parallelizability inside superscalar CPUs.

The base xoroshiro linear transformation is obtained combining a rotation, a shift, and again a

rotation (hence the name), and it is defined by the following 2𝑤 × 2𝑤 matrix:

X2𝑤 =

(
𝑅𝑎 + 𝑆𝑏 + 𝐼 𝑅𝑐

𝑆𝑏 + 𝐼 𝑅𝑐

)
.

The general 𝑘𝑤 × 𝑘𝑤 form is given instead by

X𝑘𝑤 =

©­­­­­­­«

0 0 · · · 0 𝑅𝑎 + 𝑆𝑏 + 𝐼 𝑅𝑐

𝐼 0 · · · 0 0 0

0 𝐼 · · · 0 0 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · 𝐼 0 0

0 0 · · · 0 𝑆𝑏 + 𝐼 𝑅𝑐

ª®®®®®®®¬
(1)

Note that the general form applies the basic form to the first and last words of state, and uses the

result to replace the last and next-to-last words. The remaining words are shifted by one position.

The structure of the transformation may appear repetitive, but it has been so designed because

this implies a very simple and efficient computation path. Indeed, in Figure 1 we show the C code

implementing the xoroshiro transformation for 𝑤 = 64 with 128 bits of state. The constants

5
Note that at least one shift is necessary, as rotations and xors map the set of words 𝑥 satisfying 𝑥𝑅𝑠 = 𝑥 for a fixed 𝑠 into

itself, so there are no full-period linear engines using only rotations.
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const uint64_t s0 = s[0];
uint64_t s1 = s[1];

const uint64_t result_plus = s0 + s1;
const uint64_t result_plusplus = rotl(s0 + s1, R) + s0;
const uint64_t result_star = s0 * S;
const uint64_t result_starstar = rotl(s0 * S, R) * T;

s1 ^= s0;
s[0] = rotl(s0, A) ^ s1 ^ (s1 << B);
s[1] = rotl(s1, C);

Fig. 1. The C code for a xoroshiro128+/xoroshiro128++/xoroshiro128*/xoroshiro128** generator. The
array s contains two 64-bit unsigned integers, not all zeros.

const int q = p;
const uint64_t s0 = s[p = (p + 1) & 15];
uint64_t s15 = s[q];

const uint64_t result_plus = s0 + s15;
const uint64_t result_plusplus = rotl(s0 + s15, R) + s15;
const uint64_t result_star = s0 * S;
const uint64_t result_starstar = rotl(s0 * S, R) * T;

s15 ^= s0;
s[q] = rotl(s0, A) ^ s15 ^ (s15 << B);
s[p] = rotl(s15, C);

Fig. 2. The C code for a xoroshiro1024+/xoroshiro1024++/xoroshiro1024*/xoroshiro1024** generator.
The state array s contains sixteen 64-bit unsigned integers, not all zeros, and the integer variable 𝑝 holds a
number in the interval [0 . . 16).

prefixed with “result” are outputs computed using different scramblers, which will be discussed

in Section 4. The general case is better implemented using a form of cyclic update, as shown in

Figure 2.

The reader should note that after the first xor, which represents the only data dependency

between the two words of the state array, the computation of the two new words can continue in

parallel, as depicted graphically in Figure 3.

3.2 xoshiro

The xoshiro linear transformation uses only a shift and a rotation. Since it updates all of the state

at each iteration, it is sensible only for moderate state sizes. We will discuss the 4𝑤 × 4𝑤 and
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s0 s1

s0 s1

Ra

Rc
Sb + I

Fig. 3. The dependency paths of the xoroshiro128 linear engine. Data flows from top to bottom: lines
converging to a box are xor’d together, and labels represent𝑤 ×𝑤 linear transformations applied to the data
flowing through the line. Note that the linear transformation 𝑆𝑏 + 𝐼 is a xorshift.

const uint64_t result_plus = s[0] + s[3];
const uint64_t result_plusplus = rotl(s[0] + s[3], R) + s[0];
const uint64_t result_starstar = rotl(s[1] * S, R) * T;

const uint64_t t = s[1] << A;
s[2] ^= s[0];
s[3] ^= s[1];
s[1] ^= s[2];
s[0] ^= s[3];
s[2] ^= t;
s[3] = rotl(s[3], B);

Fig. 4. The C code for a xoshiro256+/xoshiro256++/xoshiro256** generator. The state array s contains
four 64-bit unsigned integers, not all zeros.

8𝑤 × 8𝑤 transformations

S4𝑤 =

©­­­«
𝐼 𝐼 𝐼 0

𝐼 𝐼 𝑆𝑎 𝑅𝑏

0 𝐼 𝐼 0

𝐼 0 0 𝑅𝑏

ª®®®¬ S8𝑤 =

©­­­­­­­­­­­«

𝐼 𝐼 𝐼 0 0 0 0 0

0 𝐼 0 0 𝐼 𝐼 𝑆𝑎 0

0 𝐼 𝐼 0 0 0 0 0

0 0 0 𝐼 0 0 𝐼 𝑅𝑏

0 0 0 𝐼 𝐼 0 0 0

0 0 0 0 𝐼 𝐼 0 0

𝐼 0 0 0 0 0 𝐼 0

0 0 0 0 0 0 𝐼 𝑅𝑏

ª®®®®®®®®®®®¬
.

The layout of the matrices above might seem arbitrary, but it is just derived from the implemen-

tation. In Figure 4 and 5 is it easy to see the algorithmic structure of a xoshiro transformation: the

second word of the state array is shifted and stored; then, in order all words of the state array are

xor’d with a different word; finally, the shifted part is xor’d into the next-to-last word of the state

array, and the last word is rotated. The shape of the matrix depends on the order chosen for the

all-words xor sequence. Figure 6 shows that also for xoshiro256 dependency paths are very short,

and similarly happens for xoshiro512.
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const uint64_t result_plus = s[0] + s[2];
const uint64_t result_plusplus = rotl(s[0] + s[2], R) + s[2];
const uint64_t result_starstar = rotl(s[1] * S, R) * T;

const uint64_t t = s[1] << A;
s[2] ^= s[0];
s[5] ^= s[1];
s[1] ^= s[2];
s[7] ^= s[3];
s[3] ^= s[4];
s[4] ^= s[5];
s[0] ^= s[6];
s[6] ^= s[7];
s[6] ^= t;
s[7] = rotl(s[7], B);

Fig. 5. The C code for a xoshiro512+/xoshiro512++/xoshiro512** generator. The state array s contains
eight 64bit unsigned integers, not all zeros.

s0 s1 s2 s3

s0 s1 s2 s3

Sa

Rb

Fig. 6. The data dependencies of the xoshiro256 linear engine.

Note that xoshiro is not definable for a state of 2𝑤 bits, and it is too slow for a state of 16𝑤 bits,

because of the large number of write operations required at each iteration.

4 SCRAMBLERS
Scramblers are nonlinear mappings from the state of the linear engine to a𝑤-bit value, which will

be the output of the generator. The purpose of a scrambler is to improve the quality of the raw

output of the linear engine: since in general linear transformations have several useful provable

properties, this is a practical approach to obtain a fast, high-quality generator.

4.1 Sum
The + scrambler simply adds two words of the state array in Z/2

𝑤Z. The choice of words is relevant
to the quality of the resulting generator, and we performed several statistical tests to choose the

best pair depending on the underlying engine. The idea appeared in Saito and Matsumoto’s XSadd

generator [33], and was subsequently used by the xorshift+ family [40].

Note that the lowest bit output by the + scrambler is just a xor of bits following the same linear

recurrence, and thus follows, in turn, the same linear recurrence. For this reason, we consider
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+ a weak scrambler. As we consider higher bits, there is still a linear recurrence describing their

behavior, but it becomes quickly of such a high linear complexity to become undetectable. We

will discuss in more detail this issue in Section 9. In the sample code, the result_plus output is
computed using the + scrambler.

4.2 Multiplication
The * scrambler multiplies by a constant a chosen word of the state array, and since we are updating

more than a word at a time, the choice of the word is again relevant. Its only parameter is the

multiplier. The multiplier must be odd, so that the scrambling is a bijection; moreover, if the second-

lowest bit set is in position 𝑏, the lowest 𝑏 bits of the output are unmodified, and the following bit

is a xor of bit 0 and bit 𝑏, so it follows the same linear recurrence as the lower bits, as it happens

for the lowest bit of the + scrambler. For this reason, we consider also * a weak scrambler.

We will use multipliers close to 𝜑2
𝑤
, where 𝜑 is the golden ratio, as 𝜑 is an excellent multiplier

for multiplicative hashing [15]. To minimize the number of unmodified bits, however, we will

adjust the lower bits in such a way that bit 1 is set. In the sample code, the result_star output is

computed using the * scrambler.

4.3 Sum, rotation, and again sum
The ++ scrambler uses two words of the state array: the two words are summed in Z/2

𝑤Z, the sum
is rotated to the left by 𝑟 positions, and finally we add in Z/2

𝑤Z the first word to the rotated sum.

Note that the choice and the order are relevant—the ++ scrambler on the first and last word of state

is different from the ++ scrambler on the last and first word of state. Besides the choice of words,

we have to specify the amount 𝑟 of left rotation. Since the rotation moves the highest bits obtained

after the first sum to lower bits, it is easy to set up the parameters so that there are no bits of low

linear complexity in the output. For this reason, we consider ++ a strong scrambler. In the sample

code, the result_plusplus output is computed using the ++ scrambler.

4.4 Multiplication, rotation, and again multiplication
The ** scrambler is given by a multiply-rotate-multiply sequence applied to a chosen word of the

state array (again, since we are updating more than a word at a time, the choice of the word is

relevant). It thus requires three parameters: the first multiplier, the amount of left rotation, and the

second multiplier; both multipliers should be odd, so that the scrambling is a bijection. As in the

case of the ++ scrambler, it is easy to choose 𝑟 so that there are no bits of low linear complexity in

the output, so ** is a strong scrambler.

We will mostly use multipliers of the form 2
𝑠 + 1, which are usually computed very quickly, and

which have the advantage of being alternatively implementable with a left shift by 𝑠 and a sum

(the compiler should make the right choice, but one can also benchmark both implementations). In

the sample code, the result_starstar output is computed using the ** scrambler.

5 COMBINING LINEAR ENGINES AND SCRAMBLERS
In this section we discuss several interesting combinations of linear engines and scramblers, both

for the 64-bit and the 32-bit case, and report results of empirical tests. We remark that all our

generators, being based on linear engines, have jump functions that make it possible to move ahead

quickly by any number of next-state steps. Please refer to [11, 40] for a simple explanation.

Part of our experiments use the BigCrush test suite from the well-known framework TestU01 [21].

We follow the protocol described in [39], which we briefly recall. We sample generators by executing

BigCrush starting from several different seeds, using the same setup of [39] (in particular, for 64-bit

generators we generate uniform 32-bit values by returning first the lower and then the upper 32 bits
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of each output). We consider a test failed if its 𝑝-value is outside of the interval [0.001 . . 0.999]. We

call systematic a failure that happens for all seeds, and report systematic failures (a more detailed

discussion of this choice can be found in [39]). Note that we run our tests both on a generator and

on the generator obtained by reversing the order of the 64 bits returned.

Moreover, we ran a new test we designed, aimed at detecting Hamming-weight dependencies [1],

that is, dependencies in the number of zeros and ones in each output word, which are typical of

linear generators with sparse transition matrices. We ran the test until we examined a petabyte (10
15

bytes) of data, or if we obtained a 𝑝-value smaller than 10
−20

, in which case we reported the amount

of data at which we stop. The test is failed by several generators for which the Hamming-weight

tests in TestU01 are unable to find any bias [1], even using several times more data than for the

BigCrush suite.

Not all the generators we discuss are useful from a practical viewpoint, but discussing several

combinations and their test failures brings to light the limitation of each component in a clearer

way. If the main interest is a practical choice, we suggest to skip to Section 5.3.

5.1 The 64-bit case
We consider engines xoroshiro128, xoshiro256, xoshiro512 and xoroshiro1024; parameters

are provided in Table 2. However, xoshiro yields generators that have better behavior with respect

to the tests reported in the first eight lines of Table 1. All linear engines have obvious linear

artifacts, but the xoroshiro engines require an order of magnitude less data to fail our Hamming-

weight dependency test. Note that this is not only a matter of size, but also of structure: compare

xoshiro512 and xoroshiro1024. Analogously, the + scrambler deletes all bias detectable with our

test from the xoshiro generators, but it just improves the resilience of xoroshiro+ by almost three

orders of magnitudes.

We then present data on the xoroshiro generators combined with the * scrambler: as the reader

can notice, the * scrambler does a much better job at deleting Hamming-weight dependencies,

but a worse job at deleting linear dependencies, as xoroshiro128* still fails MatrixRank when

reversed. In Section 9 we will present some theory explaining in detail why this happens. Once we

switch to the ++ and ** strong scramblers, we are not able to detect any bias.

The parameters for all scramblers are provided in Table 3. The actual state words used by the

scramblers are described in the code in Figure 1, 2, 4 and 5. Note that the choice of word for the

64-bit engine xoroshiro128 applies also to the analogous 32-bit engine xoroshiro64, and that the
choice for xoshiro256 applies also to xoshiro128.
Our speed tests have been performed on an Intel® Core™ i7-8700B CPU @3.20GHz using

gcc 8.3.0. We used suitable options to keep the compiler from unrolling loops, or extracting loop

invariants, or vectorizing the computation under the hood.

5.2 The 32-bit case
We consider engines xoroshiro64 and xoshiro128. Most of the considerations of the previous

section are valid, but in this case for xoroshiro we suggest * as a weak scrambler: the + scrambler,

albeit faster, in this case is too weak. As in the previous case, the lowest bits of the generators using

a weak scrambler are linear: however, since the output is just 32 bits, BigCrush detects this linearity

(see failures in the reverse test).
6

6
We remark that testing subsets of bits of the output in the 64-bit case can lead to analogous results: as long as the subset

contains the lowest bits in the most significant positions, BigCrush will be able to detect their linearity. This happens,

for example, if one rotates right by one or more positions (or reverses the output) and then tests just the upper bits, or if

one tests the lowest 32 bits, reversed. Subsets not containing the lowest bits of the generators will exhibit no systematic



9

Table 1. Results of tests for 64-bit generators and three additional popular generators. The columns “S” and
“R” report systematic failures in BigCrush (MR=MatrixRank, i.e., binary rank; LC=LinearComp, i.e., linear
complexity). The column “HWD” reports the number of bytes generating a 𝑝-value smaller than 10

−20 in
the test described in [1]; no value means that the test was passed after 10

15 bytes. The time to emit a 64-bit
integer and the number of clock cycles per byte (reported by PAPI [37]) were computed on an Intel® Core™
i7-8700B CPU @3.20GHz.

Generator

Failures

ns/64 b cycles/B

S R HWD

xoroshiro128 MR, LC MR, LC 1 × 10
10

0.81 0.32

xoshiro256 MR, LC MR, LC 6 × 10
13

0.72 0.29

xoshiro512 MR, LC MR, LC — 0.83 0.39

xoroshiro1024 MR, LC MR, LC 5 × 10
12

1.05 0.42

xoroshiro128+ — — 5 × 10
12

0.72 0.29

xoshiro256+ — — — 0.78 0.31

xoshiro512+ — — — 0.88 0.35

xoroshiro1024+ — — 4 × 10
13

1.05 0.42

xoroshiro128* — MR — 0.87 0.37

xoroshiro1024* — — — 1.11 0.44

xoroshiro128++ — — — 0.95 0.38

xoshiro256++ — — — 0.86 0.34

xoshiro512++ — — — 0.99 0.39

xoroshiro1024++ — — — 1.17 0.47

xoroshiro128** — — — 0.93 0.42

xoshiro256** — — — 0.84 0.33

xoshiro512** — — — 0.99 0.39

xoroshiro1024** — — — 1.17 0.47

SplitMix [36] — — — 1.14 0.46

MT19937-64 [26, 30] LC LC — 2.19 0.94

WELL1024a [31] MR, LC MR , LC — 8.22 3.30

Again, once we switch to the ** and ++ scrambler, we are not able to detect any bias (as for the +
scrambler, we do not suggest to use the ++ scrambler with xoroshiro64). The parameters for all

scramblers are provided in Table 6.

failures of MatrixRank or LinearComp. In principle, the linearity artifacts of the lowest bits might be detected also simply by

modifying the parameters of the TestU01 tests. We will discuss in detail the linear complexity of the lowest bits in Section 9.
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Table 2. Parameters suggested for the 64-bit linear engines used in Table 1. See Section 6 for an explanation
of the “Weight” column.

Engine A B C Weight

xoroshiro128 24 16 37 53

xoroshiro128++ 49 21 28 63

xoshiro256 17 45 — 115

xoshiro512 11 21 — 251

xoroshiro1024 25 27 36 439

Table 3. Parameters suggested for the 64-bit scramblers used in Table 1.

Scrambler S R T

* 0x9e3779b97f4a7c13 — —

** 5 7 9

xoroshiro128++ — 17 —

xoshiro256++ — 23 —

xoshiro512++ — 17 —

xoroshiro1024++ — 23 —

Table 4. Results of tests for 32-bit generators. The column labels are the same as Table 1.

Generator

Failures

S R HWD

xoroshiro64 MR, LC MR, LC 5 × 10
8

xoshiro128 MR, LC MR, LC 3.5 × 10
13

xoroshiro64* — MR, LC —

xoshiro128+ — MR, LC —

xoshiro128++ — — —

xoroshiro64** — — —

xoshiro128** — — —

Table 5. Parameters suggested for the 32-bit linear engines used in Table 4.

Engine A B C Weight

xoroshiro64 26 9 13 31

xoshiro128 9 11 — 55

Table 6. Parameters suggested for the 32-bit scramblers used in Table 4.

Generator S R T

xoroshiro64* 0x9E3779BB — —

xoroshiro64** 0x9E3779BB 5 5

xoshiro128++ — 7 —

xoshiro128** 5 7 9
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5.3 Choosing a generator
Our 64-bit proposals for an all-purpose generator are xoshiro256++ and xoshiro256**. Both sport
excellent speed, a state space that is large enough for any parallel application,

7
and pass all tests

we are aware of. In theory, xoshiro256++ uses simpler operations and can be easily parallelized

using Intel’s extended AVX2 instruction set; however, it also accesses two words of state. Moreover,

even if the ** scrambler in xoshiro256** is specified using multiplications, it can be implemented

using only a few shifts, xors, and sums. Another difference is that xoshiro256** is 4-dimensionally

equidistributed (see Section 7), whereas xoshiro256++ is just 3-dimensionally equidistributed,

albeit this difference will not have any effect in practice. On the other hand, as we will see in

Section 9, the bits of xoshiro256++ have higher linear complexity.

If, however, one has to generate only 64-bit floating-point numbers (by extracting the upper 53

bits), or if the mild linear artifacts in its lowest bits are not considered problematic, xoshiro256+
is a faster generator with analogous statistical properties.

8

There are however some cases in which 256 bits of state are considered too much, for instance

when throwing a very large number of lightweight threads, or in embedded hardware. In this case,

a similar discussion applies to xoroshiro128++, xoroshiro128**, and xoroshiro128+, with the

caveat that the latter has mild problems with our Hamming-weight dependency test: however, bias

can be detected only after 5 TB of data, which makes it unlikely to affect applications in any way.

Finally, there might be cases that we cannot foresee in which more bits of state are nec-

essary: xoshiro512++, xoshiro512**, and xoshiro512+ should be the first choice, switching

to xoroshiro1024++, xoroshiro1024**, or xoroshiro1024* if even more bits are necessary.

In particular, if rotations are available xoroshiro1024* is an obvious better replacement for

xorshift1024* [39]. As previously discussed, however, it is very difficult to motivate from a

theoretical viewpoint a generator with more than 256 bits of state.
9

Turning to 32-bit generators, xoshiro128++, xoshiro128**, and xoshiro128+ have a role cor-

responding to xoshiro256++, xoshiro256**, and xoshiro256+ in the 64-bit case: xoshiro128++
and xoshiro128** are our first choice, while xoshiro128+ is our choice for 32-bit floating-point

generation. For xoroshiro64 we suggest however a * scrambler, as the + scrambler turns out to be

too weak for this simple engine.

The state of a generator should be in principle seeded with truly random bits. If only a 64-bit

seed is available, we suggest using a SplitMix [36] generator, initialized with the given seed, to fill

the state array of our generators, as research has shown that initialization must be performed with

a generator radically different in nature from the one initialized to avoid correlation on similar

seeds [27].
10

Since SplitMix is an equidistributed generator, the resulting initialized state will

never be the all-zero state. Notice, however, that using a 64-bit seed only a minuscule fraction of

the possible initial states will be obtainable. In any case, the seed must be stored for repeatability.

6 POLYNOMIALS AND FULL PERIOD
One of the fundamental tools in the investigation of linear transformations is the characteristic
polynomial. If𝑀 is the 𝑛 ×𝑛 matrix representing the transformation associated with a linear engine

7
With 256 bits of state, 2

64
sequences of length 2

64
starting at 2

64
random points in the state space have an overlap probability

of less than 2
−64

, which is entirely negligible [28, 42]. One can also use jumping to guarantee the absence of overlap.

8
On our hardware, generating a floating-point number with 53 significant bits takes 1.15 ns. This datum can be compared,

for example, with the dSFMT [32], which using extended SSE2 instructions provides a double with 52 significant bits only in

0.90 ns, but fails linearity tests and our Hamming-weight dependency test [1].

9
We remark that, as discussed in Section 6, it is possible to create xoroshiro generators with even more bits of state.

10
It is immediate to define a 32-bit version of SplitMix to initialize 32-bit generators.
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the characteristic polynomial is

𝑝 (𝑥) = det(𝑀 − 𝑥𝐼 ) .
The associated linear engine has full period (i.e., maximum-length period 2

𝑛 − 1) if and only if 𝑝 (𝑥)
is primitive over Z/2Z [23], that is, if 𝑝 (𝑥) is irreducible and if 𝑥 has maximum period in the ring of

polynomials over Z/2Z modulo 𝑝 (𝑥). By enumerating all possible parameter choices and checking

primitivity of the associated polynomials we can discover all full-period linear engines.

In particular, every bit of a linear engine satisfies a linear recurrence with characteristic poly-

nomial 𝑝 (𝑥). Different bits emit different outputs because they return sequences from different

starting points in the orbit of the recurrence.

The weight of 𝑝 (𝑥) is the number of terms in 𝑝 (𝑥), that is, the number of nonzero coefficients. It

is considered a good property for a linear engine of this kind
11
that the weight is close to half the

degree, that is, that the polynomial is neither too sparse nor too dense [8].

6.1 Word polynomials
A matrix 𝑀 of size 𝑘𝑤 × 𝑘𝑤 can be viewed as a 𝑘 × 𝑘 matrix on the ring of 𝑤 × 𝑤 matrices.

At that point, some generalization of the determinant to noncommutative rings can be used to

obtain a characteristic polynomial 𝑝𝑤 (𝑥) for𝑀 (which will be a polynomial with𝑤 ×𝑤 matrices

as coefficients): if the determinant of 𝑝𝑤 (𝑥) on the base ring (in our case, Z/2Z) is equal to the

characteristic polynomial of𝑀 , then 𝑝𝑤 (𝑥) is a word polynomial of size𝑤 for𝑀 .

The main purpose of word polynomials is to make easier the computation of the characteristic

polynomial of𝑀 (and thus of the determinant of𝑀), in particular for large matrices. Characteristic

polynomials can be computed also by applying the Berlekamp–Massey algorithm to a bit of the the

linear engine: in our experience, on large matrices the word-polynomial approach, if applicable, is

faster. The difference in speed is not relevant, however, as the primitivity check is by far the most

expensive step.

In all our examples𝑤 is the intended output size of the linear engine, but in some cases it might

be necessary to use a smaller block size, say,𝑤/2, to satisfy commutativity conditions: one might

speak, in that case, of the semi-word polynomial. For blocks of size one, the word polynomial is

simply the characteristic polynomial; the commutation constraints are trivially satisfied.

If all𝑤 ×𝑤 blocks of𝑀 commute as elements of the ring of𝑤 ×𝑤 matrices, a very well-known

result from Bourbaki [3] shows that computing the determinant of𝑀 in the commutative ring 𝑅 of

𝑤 ×𝑤 matrices generated by the𝑤 ×𝑤 blocks of𝑀 one has

det(Det(𝑀)) = det(𝑀), (2)

where “det” denotes the determinant in the base ring (in our case, Z/2Z) whereas “Det” denotes the
determinant in 𝑅. This equivalence provides a very handy way to compute easily the determinants

of large matrices with a block structure containing several zero blocks and commuting non-zero

blocks: one simply operates on the blocks of the matrix as if they were scalars.

However, if𝑀 is the matrix associated with a linear engine, Det(𝑀) can be used also to charac-

terize how the current state of the linear engine depends on its previous states. Indeed, since we

are working in a commutative ring the Cayley–Hamilton theorem holds, and thus𝑀 is a root of its

characteristic polynomial: if we let 𝑝𝑤 (𝑥) = Det(𝑀 − 𝑥𝐼 ), then 𝑝𝑤 (𝑀) = 0. In more detail, if

𝑝𝑤 (𝑥) = 𝑥𝑘 +𝐴𝑘−1𝑥
𝑘−1 + · · · +𝐴1𝑥 +𝐴0,

11
Technically, the criterion applies to the linear recurrence represented by the characteristic polynomial. The behavior of a

linear engine, however, depends also on the relationships among all its state bits, so the degree criterion must always be

weighed against other evidence.
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where the 𝐴𝑖 ’s are𝑤 ×𝑤 matrices of the ring 𝑅 generated by the blocks of𝑀 , then

𝑀𝑘 +𝑀𝑘−1𝐴𝑘−1 + · · · +𝑀𝐴1 +𝐴0 = 0.

Note that in the formula above we are multiplying 𝑘 × 𝑘 matrices on 𝑅 by scalar coefficients in

𝑅 (i.e., as usual a scalar coefficient represents a diagonal matrix containing the scalar along the

diagonal).

Thus, given a sequence of states 𝒔0, 𝒔1 = 𝒔0𝑀 , 𝒔2 = 𝒔0𝑀
2
, . . . , 𝒔𝑘 = 𝒔0𝑀

𝑘
we have

𝒔𝑘 = 𝒔𝑘−1𝐴𝑘−1 + · · · + 𝒔1𝐴1 + 𝒔0𝐴0 . (3)

This recurrence makes it possible to compute the next state of a linear engine knowing its previous

𝑘 states. Note that in the equation above in practice we are multiplying each of the 𝑘 blocks of

length𝑤 of the 𝒔𝑖 ’s by the 𝐴𝑖 ’s.

This consideration may seem trivial, as we already know how to compute the next state given

the previous state—a multiplication by𝑀 is sufficient—but the recurrence is true for every𝑤-bit

block of the state array. Said otherwise, no matter which word of the state array we choose as

output, we can predict the next output using the equation above knowing the last 𝑘 outputs (i.e.,

the previous 𝑘 states of the chosen word). Another way of looking at the same statement is that the

word polynomial expresses the linear engine described by𝑀 using Niederreiter’s multiple-recursive
matrix method [29], much like the characteristic polynomial expresses a single output bit as a linear

recurrence.

Recurrence (3) will work not only in the commutative case, but also whenever a sufficiently

powerful extension of the Cayley–Hamilton has been proved for the class of matrices under

examination (e.g., see Theorem 14 of [7], which can be used to prove (3) for xorshift linear

engines with multiple-word state [39]).

6.2 The noncommutative case
The observations of the previous section cannot help us in computing the characteristic polynomials

of xoroshiro or xoshiro, because their matrices contain non-commuting blocks. There are two

issues in generalizing the arguments we made about the commutative case: first, we need a notion

of noncommutative determinant; second, we need to know whether (2) generalizes to our case.

Both issues are addressed by recent results by Sothanaphan [35]. One starts by defining a

(standard) notion of determinant for noncommutative rings by fixing the order of the products in

Leibniz’s formula. In particular, we denote with Det
r
the row-determinant of an 𝑛 × 𝑛 matrix𝑀 on

a noncommutative base ring:

Det
r (𝑀) =

∑︁
𝜋 ∈𝑆𝑛

sgn(𝜋)𝑀0,𝜋 (0)𝑀1,𝜋 (1) · · ·𝑀𝑛−1,𝜋 (𝑛−1) (4)

Note that the definition is based on Leibniz’s formula, but the order of the products has been fixed.

Then, Theorem 1.2 of [35] shows that

det(Detr (𝑀)) = det(𝑀), (5)

provided that blocks in different columns, but not in the first row, commute. In other words, one can

compute the characteristic polynomial of𝑀 by first computing the “row” characteristic polynomial

of𝑀 by blocks and then computing the determinant of the resulting matrix. By the definition we

gave, in this case Det
r (𝑀 − 𝑥𝐼 ) is a word polynomial for𝑀 .
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The row-determinant is (trivially) antisymmetric with respect to the permutation of columns.
12

Moreover, a basic property of row-determinants depends on a commutativity condition on the

matrix entries (blocks): if𝑀 has weakly column-symmetric commutators, that is, if

𝑀𝑖 𝑗𝑀𝑘𝑙 −𝑀𝑘𝑙𝑀𝑖 𝑗 = 𝑀𝑖𝑙𝑀𝑘 𝑗 −𝑀𝑘 𝑗𝑀𝑖𝑙 whenever 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙 ,

then the row-determinant is antisymmetric with respect to the permutation of rows [5].

Dually, we can define the column-determinant

Det
c (𝑀) =

∑︁
𝜋 ∈𝑆𝑛

sgn(𝜋)𝑀𝜋 (0),0𝑀𝜋 (1),1 · · ·𝑀𝜋 (𝑛−1),𝑛−1. (6)

All recalled properties can be easily dualized to the case of the column-determinant: in particular,

det(Detc (𝑀)) = det(𝑀), (7)

provided that blocks in different rows, but not in the first column, commute; if 𝑀 has weakly
row-symmetric commutators, that is, if

𝑀𝑖 𝑗𝑀𝑘𝑙 −𝑀𝑘𝑙𝑀𝑖 𝑗 = 𝑀𝑘 𝑗𝑀𝑖𝑙 −𝑀𝑖𝑙𝑀𝑘 𝑗 whenever 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙 ,

then the column-determinant is antisymmetric with respect to the permutation of columns [5].

Finally, if𝑀 is weakly commutative [5], that is,𝑀𝑖 𝑗 and𝑀𝑘𝑙 commute whenever 𝑖 ≠ 𝑘 and 𝑗 ≠ 𝑙

(i.e., noncommuting blocks lie either on the same row or on the same column) the two determinants

are the same, as all products in (4) and (6) can be rearranged arbitrarily.
13

6.2.1 xoroshiro. Our first try is to check the conditions for (5) on the transition matrix X𝑘𝑤 ,

but there is no easy way to modify the X𝑘𝑤 to satisfy them. However, it is easy to check that X𝑘𝑤

has weakly row-symmetric commutators, so we can move its next-to-last column to the first one,

and then the resulting matrix falls into the conditions for (7). We thus obtain a word polynomial

based on the column-determinant:

Det
c
(
X𝑘𝑤 − 𝑥𝐼

)
= Det

c

©­­­­­­­«

𝑅𝑎 + 𝑆𝑏 + 𝐼 𝑥𝐼 0 · · · 0 𝑅𝑐

0 𝐼 𝑥𝐼 · · · 0 0

0 0 𝐼 · · · 0 0

· · · · · · · · · · · · · · · · · ·
𝑥𝐼 0 0 · · · 𝐼 0

𝑆𝑏 + 𝐼 0 0 · · · 0 𝑅𝑐 + 𝑥𝐼

ª®®®®®®®¬
=
(
𝑅𝑎 + 𝑆𝑏 + 𝐼

) (
𝑅𝑐 + 𝑥𝐼

)
+ 𝑥

(
𝑅𝑐 + 𝑥𝐼

)
𝑥𝑘−2 +

(
𝑆𝑏 + 𝐼

)
𝑅𝑐

= 𝑥𝑘 𝐼 + 𝑥𝑘−1𝑅𝑐 + 𝑥
(
𝑅𝑎 + 𝑆𝑏 + 𝐼

)
+ 𝑅𝑎+𝑐 .

Since X𝑘𝑤 is noncommutative (and it does not satisfy currently known extensions of the Cayley–

Hamilton theorem), it is unlikely that the polynomial above can express the linear transformation

as in (3): and indeed it cannot. This lack of commutativity, however, does not hamper our ability

to use the word polynomial to compute the characteristic polynomial: simply, we cannot obtain

directly a recurrence like (3).

Nonetheless, we can check empirically whether some of the bits of the output are predictable
using the word polynomial (i.e., whether they satisfy the linear constraints it expresses). Empirically

12
In our case, that is, on the base field Z/2Z there is no difference between “symmetric” and “antisymmetric” as sign change

is the identity. For the sake of generality, however, we will recall the properties we need in the general case.

13
We remark that if the only aim is to compute easily the characteristic polynomial, one can rearrange columns and rows at

will until (5) or (7) is true, because these operations cannot change the value of the determinant on Z/2Z.
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Table 7. Number of xoroshiro primitive polynomials depending on word size and state size.

State size in bits

64 128 256 512 1024 2048 4096

16 26 21 7 3 1 0 0

𝑤 32 250 149 59 41 16 5 6

64 1000 491 261 129 42 25

Table 8. Maximum weight of a xoroshiro primitive polynomial depending on word size and state size.

State size in bits

64 128 256 512 1024 2048 4096

16 37 45 73 35 41

𝑤 32 39 67 115 201 187 195 143

64 75 139 263 475 651 653

4/5 of the bits of each word of state can be predicted using the polynomial above when 𝑘 = 2

(xoroshiro128), and the ratio becomes about 1/2 for 𝑘 = 16 (xoroshiro1024).14

6.2.2 xoshiro. In this case, we have to perform an ad hoc maneuver to move S4𝑤 and S8𝑤

into a form amenable to the computation of a word polynomial by row-determinant: we have

to exchange the first two rows. It is very easy to see that this operation cannot modify the row-

determinant because every element of the first row commutes with every element of the second

row: thus, in the products of (4) the first two elements can always be swapped.

At that point, by (a quite tedious) Laplace expansion along the first row we get

Det
r
(
S4𝑤 − 𝑥𝐼

)
= 𝑥4𝐼 + 𝑥3

(
𝑅𝑏 + 𝐼

)
+ 𝑥2

(
𝑆𝑎 + 𝑅𝑏

)
+ 𝑥

(
𝑆𝑎 + 𝐼

) (
𝑅𝑏 + 𝐼

)
+
(
𝑆𝑎 + 𝐼

)
𝑅𝑏

and

Det
r
(
S8𝑤 − 𝑥𝐼

)
= 𝑥8𝐼 + 𝑥7

(
𝑅𝑏 + 𝐼

)
+ 𝑥6

(
𝑅𝑏 + 𝐼

)
+ 𝑥5

(
𝑆𝑎 + 𝑅𝑏 + 𝐼

)
+ 𝑥4

(
𝑆𝑎 + 𝐼

) (
𝑅𝑏 + 𝐼

)
+ 𝑥3

(
𝑆𝑎𝑅𝑏 + 𝑅𝑏 + 𝑆𝑎

)
+ 𝑥2

(
𝑆𝑎 + 𝐼

) (
𝑅𝑏 + 𝐼

)
+ 𝑥

(
𝑆𝑎𝑅𝑏 + 𝑅𝑏 + 𝐼

)
+ 𝑅𝑏 .

In this case, we have sometimes a behavior similar to the commutative case: for S4𝑤 (xoshiro256),
the second word of state can be predicted exactly

15
; for the other words, about two thirds of the bits

can be predicted. In the case of S8𝑤 (xoshiro512), all words except the last one can be predicted

exactly; for the last one, again about two thirds of the bits can be predicted.

14
The empirical observation about predicted bits are based on the parameters of Table 2 and 5: different parameters will

generate different results.

15
Incidentally, if we reverse multiplication order in the coefficients, the first word can be predicted exactly instead.
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Table 9. Number of xoshiro primitive polynomials depending on word size and state size.

State size in bits

64 128 256 512

16 1 0

𝑤 32 1 0

64 4 4

Table 10. Maximum weight of a xoshiro primitive polynomial depending on word size and state size.

State size in bits

64 128 256 512

16 33

𝑤 32 55

64 131 251

6.3 Full-period linear engines
Using the word polynomials just described we computed exhaustively all parameters providing

primitive characteristic polynomials, and thus full-period linear engines, using the Fermat algebra

system [22], stopping the search at 4096 bits of state.
16

Table 7 and 9 report the number of primitive polynomials, whereas Table 8 and 10 report the

maximum weight of a primitive polynomial. As one can expect, we find that there are many

more full-period xoroshiro instances at many more different state sizes than xoshiro, due to the

additional parameter. We note that by Proposition 7.1 from [39] all full-period linear engines have

the property that each output bit has full period, too.

We did not discuss 16-bit generators, but there is a xoshiro and several xoroshiro choices

available.

7 EQUIDISTRIBUTION
Equidistribution is a uniformity property of pseudorandom number generators: a generator with

𝑘𝑤 bits of state and𝑤 output bits is 𝑑-dimensionally equidistributed if when we consider the vector

of the first 𝑑 output values over all possible states of the generator, each vector appears the same

number of times [17]. In practice, in linear generators over the whole output every 𝑑-tuple of

consecutive output values must appear 2
𝑤 (𝑘−𝑑)

times for 𝑑 ≤ 𝑘 , except for the zero 𝑑-tuple, which

appears 2
𝑤 (𝑘−𝑑) −1 times, as the zero state is not used. In particular, 1-dimensionally equidistributed

generators with𝑤 bits of state emit each𝑤-bit value exactly one time, except for the value zero,

which is never emitted.
17
We will start by discussing the equidistribution of our linear engines

(without scramblers).

Typically, linear generators (e.g., xorshift) update cyclically a position of their state array.

In this case, the simple fact that the generator has full period guarantees that the generator is

equidistributed in the maximum dimension, that is, 𝑘 . However, since our linear engines update

16
The reason why the number 4096 is relevant here is that we know the factorization of Fermat’s numbers 2

2
𝑘 + 1 only up

to 𝑘 = 11. When more Fermat numbers will be factorized, it will be possible to find linear engines with a larger state space.

17
A more refined definition might consider only a subset of bits, in which case equidistribution in larger dimensions is

possible [19].
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more than one position at a time, full period is not sufficient, and different words of the state may

display different equidistribution properties.

Testing for equidistribution in the maximum dimension for a word of the state array is easy

using standard techniques, given the update matrix M of the linear engine: if we consider the 𝑗-th

word, the square matrix obtained juxtaposing the 𝑗-th block columns of M 0 = 𝐼 , M 1 = M , M 2
,

. . . , M 𝑘−1
must be invertible (the inverted matrix returns, given an output vector of 𝑘 words, the

state that will emit the vector). It is straightforward to check that every word of xoroshiro (for
every state size) and of xoshiro512 is equidistributed in the maximum dimension. The words of

xoshiro256 are equidistributed in the maximum dimension except for the third word, for which

equidistribution depends on the parameters; we will not use it.

The * and ** scramblers cannot alter the equidistribution of the full output of a linear engine as

they just remap sequences bijectively (however, note that if we start to consider the equidistribution

of a subset of output bits this is no longer true). Thus, all our generators using such scramblers are

𝑘-dimensionally equidistributed (i.e., in the maximum dimension).

We are left with proving equidistribution results for our generators based on the + scrambler

and on the ++ scrambler. For 𝑑-dimensionally equidistributed linear engines that update cyclically

a single position, adding two consecutive outputs can be easily proven to provide a (𝑑 − 1)-
dimensionally equidistributed generator. However, as we already noticed our linear engines update

more than one position at a time: we thus proceed to develop a general technique, which can be

seen as an extension of the standard technique to prove equidistribution of a purely linear generator,

and will be used in the following sections.

Note that since we have to mix operations from two algebraic structures, throughout this section

the symbols + and − will denote operations in Z/2
𝑤Z, whereas ⊕ will denote sum in (Z/2Z)𝑤 .

7.1 A general technique for equidistribution of +/++-scrambled generators
For a linear engine with 𝑘 words of state, we consider a vector of variables 𝒙 = ⟨𝑥0, 𝑥1, . . . , 𝑥𝑘−1⟩
representing the state of the engine. Then, for each 0 ≤ 𝑖 < 𝑑 , where 𝑑 is the target equidistribution,

we add variables 𝑡𝑖 , 𝑢𝑖 and equations 𝑡𝑖 =
(
𝒙M 𝑖

)
𝑝
, 𝑢𝑖 =

(
𝒙M 𝑖

)
𝑞
, where 𝑝 and 𝑞 are the two state

words to be used by the + or ++ scrambler.

Given a target vector of output values ⟨𝑣0, 𝑣1, . . . , 𝑣𝑑−1⟩, we would like to show that there are

2
𝑤 (𝑘−𝑑)

possible values of 𝒙 that will give the target vector as output. This condition can be

expressed by equations on the 𝑡𝑖 ’s and the 𝑢𝑖 ’s involving the arithmetic of Z/2
𝑤Z. In the case of

the + scrambler, we have equations 𝑣𝑖 = 𝑡𝑖 + 𝑢𝑖 ; in particular, 𝑝 and 𝑞 can be exchanged without

affecting the equations. In the case of the ++ scrambler, instead, if 𝑡𝑖 denotes the first word of state

used by the scrambler (see Section 4.3) we have 𝑣𝑖 = (𝑢𝑖 + 𝑡𝑖 )𝑅𝑟 + 𝑡𝑖 , but there is no way to derive 𝑡𝑖
from 𝑢𝑖 ; the dual statement is true if 𝑡𝑖 denotes the second word of state used by the scrambler.

Now, to avoid mixing operations in Z/2
𝑤Z and (Z/2Z)𝑤 we will first solve using standard linear

algebra the 𝑥𝑖 ’s in terms of the 𝑡𝑖 ’s and the 𝑢𝑖 ’s. At that point, we will be handling a new set of

constraints in (Z/2Z)𝑤 containing only 𝑡𝑖 ’s and 𝑢𝑖 ’s: using a limited amount of ad hoc reasoning,
we will have to show how by choosing 𝑘 − 𝑑 parameters freely we can satisfy at the same time

both the new set of constraints and the equations on Z/2
𝑤Z induced on the 𝑡𝑖 ’s and the 𝑢𝑖 ’s by the

choice of a scrambler. If we will be able to do so, we will have parameterized all occurrences of

⟨𝑣0, 𝑣1, . . . , 𝑣𝑑−1⟩ in the output using 𝑘 −𝑑 parameters, so such occurrences must be at most 2
𝑤 (𝑘−𝑑)

.

But since there are 2
𝑤𝑘 𝑑-dimensional output vectors (including the all-zero output associated with

the all-zero state), by pigeonholing the occurrences must be exactly 2
𝑤 (𝑘−𝑑)

.
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7.2 xoroshiro

Proposition 7.1. A xoroshiro+ generator with𝑤 bits of output and 𝑘𝑤 bits of state applying the
+ scrambler (see Section 4.1) to the first and last word of state is (𝑘 − 1)-dimensionally equidistributed.

Proof. For the case 𝑘 = 2 the full period of the underlying xoroshiro generator proves the

statement. If 𝑘 > 2, denoting with the 𝑡𝑖 ’s the first word and with the𝑢𝑖 ’s the last word our technique

applied to X𝑘𝑤 provides equations

𝑡𝑖 = 𝑥𝑖 0 ≤ 𝑖 ≤ 𝑘 − 2

𝑢0 = 𝑥𝑘−1

𝑢𝑖+1 = (𝑡𝑖 ⊕ 𝑢𝑖 )𝑅𝑐 0 ≤ 𝑖 ≤ 𝑘 − 3

Thus, the only constraint on the 𝑡𝑖 ’s and 𝑢𝑖 ’s is the last equation. It is immediate that once we assign

a value to 𝑢0 we can derive a value for 𝑡0 = 𝑣0 − 𝑢0, then a value for 𝑢1 and so on. □

Note that the claim of Proposition 7.1 cannot be extended to 𝑘-dimensional equidistribution.

Consider the full-period 5-bit generator with 10 bits of state and parameters 𝑎 = 1, 𝑏 = 3, and 𝑐 = 1.

As a xoroshiro generator it is 2-dimensionally equidistributed, but it is easy to verify that the

sequence of outputs of the associated xoroshiro+ generator is not 2-dimensionally equidistributed

(it is, of course, 1-dimensionally equidistributed by Proposition 7.1).

The proof of Proposition 7.1 can be easily extended to the case of a xoroshiro++ generator.

Proposition 7.2. A xoroshiro++ generator with𝑤 bits of output and 𝑘𝑤 bits of state applying the
++ scrambler (see Section 4.3) to the last and first word of state is (𝑘 − 1)-dimensionally equidistributed.
If 𝑘 = 2, also applying the ++ scrambler the first and last word of state yields a 1-dimensionally
equidistributed generator.

Proof. We use the same notation as in Proposition 7.1. For the case 𝑘 = 2 the full period of

the underlying xoroshiro generator proves the statement, as there is no constraint, so the only

equation between 𝑡0 and 𝑢0 is either 𝑢0 = (𝑣0 − 𝑡0)𝑅−𝑟 − 𝑡0, if we are scrambling the first and the

last words of state, or 𝑡0 = (𝑣0 − 𝑢0)𝑅−𝑟 − 𝑢0, if we are scrambling the last and the first one.

Otherwise, we proceed as in the proof of Proposition 7.1. Since we are scrambling the last and

first word, we have 𝑡𝑖 = (𝑣𝑖 − 𝑢𝑖 )𝑅−𝑟 − 𝑢𝑖 , and the proof can be completed in the same way. □

The counterexample we just used for xoroshiro+ can be used in the xoroshiro++ case, too,

to show that the claim of Proposition 7.2 cannot be extended to 𝑘-dimensional equidistribution.

Moreover, the full-period xoroshiro++ 4-bit generator with 16 bits of state and parameters 𝑎 = 3,

𝑏 = 1 and 𝑐 = 2 is not even 3-dimensionally equidistributed if we scramble the first and last word

(instead of the last and the first), showing that the stronger statement for 𝑘 = 2 does not extend to

larger values of 𝑘 .

7.3 xoshiro

Proposition 7.3. A xoshiro+ generator with𝑤 bits of output and 4𝑤 bits of state applying the +
scrambler (see Section 4.1) to the first and last word of state is 3-dimensionally equidistributed.

Proof. In this case, denoting with the 𝑡𝑖 ’s the first word and with the 𝑢𝑖 ’s the last word, our

technique applied to S4𝑤 provides the constraints

𝑡0 = 𝑡2 ⊕ 𝑢2𝑅
−𝑏 ⊕ 𝑡1𝑅

−𝑏

𝑡1 = 𝑡2 ⊕ 𝑢2𝑅
−𝑏

But if we choose 𝑡2 arbitrarily, we can immediately compute 𝑢2 = 𝑣2 − 𝑡2 and then 𝑡1 and 𝑡0. □
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Once again, the claim of Proposition 7.3 cannot be extended to 4-dimensional equidistribution.

The only possible 2-bit xoshiro generator with 8 bits of state has full period but it is easy to verify

that the associated xoshiro+ generator is not 4-dimensionally equidistributed.

Now, we prove an analogous equidistribution result for xoshiro512+.

Proposition 7.4. A xoshiro+ generator with𝑤 bits of output and 8𝑤 bits of state and applying
the ++ scrambler (see Section 4.3) the first and third word of state is 7-dimensionally equidistributed.

Proof. Denoting with the 𝑡𝑖 ’s the first word and with the 𝑢𝑖 ’s the third word and applying again

our general technique, we obtain the constraints

𝑡𝑖 = 𝑢𝑖 ⊕ 𝑢𝑖+1 0 ≤ 𝑖 ≤ 5.

Choosing a value for 𝑢0 (and thus 𝑡0 = 𝑣0 − 𝑢0) gives by the first equation 𝑢1 = 𝑡0 ⊕ 𝑢0 and thus

𝑡1 = 𝑣1 − 𝑢1, by the second equation 𝑢2 = 𝑡1 ⊕ 𝑢1 and 𝑡2 = 𝑣2 − 𝑢2, and so on. □

Note that the claim of Proposition 7.4 cannot be extended to 8-dimensional equidistribution: the

xoshiro+ generator associated with the only full period 5-bit xoshiro generator with 40 bits of

state (𝑎 = 2, 𝑏 = 3) is not 8-dimensionally equidistributed.

Proposition 7.5. A xoshiro++ generator with𝑤 bits of output and 4𝑤 bits of state and scrambling
the first and last words of state is 3-dimensionally equidistributed.

Proof. The proof uses the same notation of Proposition 7.3, and proceeds in the same way: the

equations we obtain are the same, and due to the choice of scrambler we have 𝑢𝑖 = (𝑣𝑖 − 𝑡𝑖 )𝑅−𝑟 − 𝑡𝑖 ,

so can obtain the 𝑢𝑖 ’s from the 𝑡𝑖 ’s. □

Proposition 7.6. A xoshiro++ generator with𝑤 bits of output and 8𝑤 bits of state scrambling
the third and first words of state is 7-dimensionally equidistributed.

Proof. The proof uses the same notation of Proposition 7.4, and proceeds in the same way: the

equations we obtain are the same, and due to the choice of scrambler we have 𝑡𝑖 = (𝑣𝑖 −𝑢𝑖 )𝑅−𝑟 −𝑢𝑖 ,

so we can obtain the 𝑡𝑖 ’s from the 𝑢𝑖 ’s. □

The counterexamples for Proposition 7.3 and 7.4 used to prove that their claims cannot be

extended to higher-dimensional equidistribution work also for Proposition 7.5 and 7.6, respectively.

8 ESCAPING ZEROLAND
We show in Figure 7 the speed at which the generators hitherto examined “escape from ze-

roland” [31]: linear engines need some time to get from an initial state with a small number

of bit set to one to a state in which the ones are approximately half (famously, the Mersenne Twister

requires millions of iterations), and while scrambling reduces this phenomenon, it is nonetheless

detectable. The figure shows a measure of escape time given by the ratio of ones in a window of 4

consecutive 64-bit values sliding over the first 1000 generated values, averaged over all possible

seeds with exactly one bit set (see [31] for a detailed description).

9 A THEORETICAL ANALYSIS OF SCRAMBLERS
We conclude the paper by discussing our scramblers from a theoretical point of view. We cast our

discussion in the same theoretical framework as that of filtered linear-feedback shift registers. A
filtered LFSR is given by an underlying LFSR and by a Boolean function that is applied to the state

of the register. The final output is the output of the Boolean function. If the LFSR updates one bit at

a time, we can see the Boolean function as sliding on the sequence of bits generated by the LFSR,
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Fig. 7. Convergence to “half of the bits are ones in average” plot.

emitting a scrambled output. The purpose of filtering a LFSR is that of making it more difficult to

guess its next bit: the analogy with linear engines and scramblers is evident, as every scrambler can

be seen as a set of𝑤 boolean functions applied to the state of the linear engine. There are however

a few differences:

• we use only primitive polynomials;

• we use several Boolean functions, and we are concerned with the behavior of their combined

outputs;

• we do not apply a Boolean function to a sliding window of the same LFSR: rather, we have 𝑘𝑤

copies of the same LFSR whose state is different, and we apply our set of Boolean functions

to their single-bit output concatenated;

• we are not free to design our favorite Boolean functions: we are restricted to the ones

computable with few arithmetic and logical operations;

• we are not concerned with predictability in the cryptographic sense, but just in the elimination

of linear artifacts, that is, failures in tests for binary rank, linear complexity, and Hamming-

weight dependencies.

We will see that many basic techniques coming from the cryptographic analysis of filtered

LFSRs can be put to good use in our case. We will bring along a very simple example: a full-period

xorshift linear engine with 𝑤 = 3 and 6 bits of state [39]. Its parameters are 𝑎 = 1 (left shift),

𝑏 = 2 (right shift), 𝑐 = 1 (right shift), and its characteristic polynomial is 𝑝 (𝑥) = 𝑥6 +𝑥5 +𝑥3 +𝑥2 + 1.

9.1 Representation by generating functions
We know that all bits of a linear engine satisfy linear recurrences with the same characteristic

polynomial, but we can be more precise: we can fix a nonzero initial state and compute for each bit

the generating function associated with the bit (see [13] for a detailed algorithm). Such functions

have at the denominator the reciprocal polynomial 𝑥𝑛𝑝 (1/𝑥𝑛) (𝑛 here is the degree of 𝑝), whereas

the numerator (a polynomial of degree less than 𝑛) represents the initial state. In our example,

representing the first word using 𝑥0 (lowest bit), 𝑥1, 𝑥2, the second word using 𝑦0, 𝑦1 and 𝑦2, and
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using as initial state all bits set to zero except for 𝑥0, we have

𝐹𝑥0
(𝑧) = 𝑧5 + 𝑧2 + 𝑧 + 1

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

𝐹𝑦0
(𝑧) = 𝑧5 + 𝑧4 + 𝑧3 + 𝑧2 + 𝑧

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

𝐹𝑥1
(𝑧) = 𝑧5 + 𝑧2

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

𝐹𝑦1
(𝑧) = 𝑧4 + 𝑧

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

𝐹𝑥2
(𝑧) = 𝑧5 + 𝑧4

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

𝐹𝑦2
(𝑧) = 𝑧4 + 𝑧3

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

If we write the formal series associated with each function, the 𝑖-th coefficient will give exactly the

𝑖-th output of the corresponding bit of the linear engine.

The interest in the representation by generating function lies in the fact that now we can perform

some operations on the bits. For example, to study the lower bits of a generator using the + scrambler

to our linear engine, we add two bits, and we can easily compute the associated function, as adding

coefficients is the same as adding functions:

𝐹𝑥0+𝑦0
(𝑧) = 𝐹𝑥0

(𝑧) + 𝐹𝑦0
(𝑧) = 𝑧5 + 𝑧2 + 𝑧 + 1

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

+ 𝑧5 + 𝑧4 + 𝑧3 + 𝑧2 + 𝑧

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

=
𝑧4 + 𝑧3 + 1

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

.

However, we are now stuck, because addition over Z/2
𝑤Z needs more than just xors. With 𝑥0, 𝑥1,

. . . , 𝑥𝑤−1 and 𝑦0, 𝑦1, . . . , 𝑦𝑤−1 representing the bits, from least significant to most significant, of

two𝑤-bit words, to represent their arithmetic sum over Z/2
𝑤Z we can define the result bits 𝑠𝑖 and

the carry bits 𝑐𝑖 using the recurrence

𝑠𝑖 = 𝑥𝑖 + 𝑦𝑖 + 𝑐𝑖−1 (8)

𝑐𝑖 = (𝑥𝑖 + 𝑦𝑖 )𝑐𝑖−1 + 𝑥𝑖𝑦𝑖 (9)

where 𝑐−1 = 0. This recurrence is fundamental because carries are the only source of nonlinearity

in our scramblers (even multiplication by a constant can be turned into a series of shifts and sums).

It is clear that to continue to the higher bits we need to be able to multiply two sequences, but

multiplying generating functions, unfortunately, corresponds to a convolution of coefficients.

9.2 Representation in the splitting field
We now start to use the fact that the characteristic polynomial of our linear engine is primitive. Let

E be the splitting field of a primitive polynomial 𝑝 (−) of degree 𝑛 over Z/2Z [23]. In particular, E
can be represented as (Z/2Z) [𝛼]/𝑝 (𝛼), that is, by polynomials in 𝛼 computed modulo 𝑝 (𝛼), and in
that case by primitivity the zeroes of 𝑝 (−) are exactly the powers

𝛼, 𝛼2, 𝛼4, 𝛼8, . . . , 𝛼2
𝑛−1

,

that is, the powers having exponents in the cyclotomic coset 𝐶 =
{

1, 2, 4, 8, . . . , 2𝑛−1

}
. Note that

𝛼2
𝑛

= 𝛼 in E. Every rational function 𝑓 (𝑧) representing the output of a bit of the linear engine can

then be expressed as a sum of partial fractions

𝑓 (𝑧) =
∑︁
𝑐∈𝐶

𝛽𝑐

1 − 𝑧𝛼𝑐
, (10)

where 𝛽𝑖 ∈ E, 𝛽𝑐 ≠ 0. As a consequence [13], the 𝑗-th bit 𝑏 𝑗 of the sequence associated with 𝑓 (𝑧)
has an explicit description:

𝑏 𝑗 =
∑︁
𝑐∈𝐶

𝛽𝑐
(
𝛼𝑐

) 𝑗
. (11)
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𝐹𝑠
0
(𝑧) = 𝑧4 + 𝑧3 + 1

𝑧6 + 𝑧4 + 𝑧3 + 𝑧 + 1

𝐹𝑠
1
(𝑧) = 𝑧13 + 𝑧9 + 𝑧8 + 𝑧

𝑧15 + 𝑧14 + 𝑧11 + 𝑧7 + 𝑧4 + 𝑧3 + 1

𝐹𝑠
2
(𝑧) = 𝑧37 + 𝑧35 + 𝑧32 + 𝑧30 + 𝑧27 + 𝑧25 + 𝑧24 + 𝑧20 + 𝑧19 + 𝑧17 + 𝑧14 + 𝑧11 + 𝑧8 + 𝑧2

𝑧41 + 𝑧39 + 𝑧34 + 𝑧32 + 𝑧30 + 𝑧28 + 𝑧27 + 𝑧26 + 𝑧24 + 𝑧23 + 𝑧17 + 𝑧16 + 𝑧15 + 𝑧14 + 𝑧13 + 𝑧11 + 𝑧9 + 𝑧8 + 𝑧7 + 𝑧6 + 𝑧5 + 𝑧3 + 1

Fig. 8. The generating functions of the three bits of the xorshift+ generator.

This property makes it possible to compute the sum of two sequences and the (output-by-output)

product of two sequences. We just need to compute the sum or the product of the representation (11).

The sum of two sequences is just a term-by-term sum, whereas in the case of a product we obtain

a convolution. In both cases, we might experience cancellation—some of the 𝛽’s might become

zero. But, whichever operation we apply, we will obtain in the end for a suitable set 𝑆 ⊆ [2𝑛] a
representation of the form ∑︁

𝑐∈𝑆
𝛽𝑐𝛼

𝑐 . (12)

with 𝛽𝑐 ≠ 0. The cardinality of 𝑆 is now exactly the degree of the polynomial at the denominator of

the rational function

𝑔(𝑧) =
∑︁
𝑐∈𝑆

𝛽𝑐

1 − 𝑧𝛼𝑐

associated with the new sequence, that is, its linear complexity [13]. In our example, the coefficients

of the representation (11) of 𝑥0 are

𝛽1 = 𝛼4 + 𝛼3 𝛽8 = 𝛼4 + 𝛼3 + 𝛼2 + 𝛼

𝛽2 = 𝛼5 + 𝛼3 + 𝛼2 + 𝛼 𝛽16 = 𝛼5 + 𝛼4 + 𝛼3 + 𝛼

𝛽4 = 𝛼5 + 𝛼4 + 𝛼2 + 1 𝛽32 = 𝛼5 + 𝛼2 + 𝑎

and similar descriptions are available for the other bits, so we are finally in the position of computing

exactly the values of the recurrence (8): we simply have to use the representation in the splitting

field to obtain a representation of 𝑠𝑖 , and then revert to functional form using (10).

The result is shown in Figure 8: as it is easy to see, we can still express the bits of xorshift+ as

LFSRs, but their linear complexity rises quickly (remember that every generator with 𝑛 bits of state

is a linear generator of degree 2
𝑛
with characteristic polynomial 𝑥2

𝑛 + 1, so “linear” should always

mean “linear of low degree”).

Note that the generating function is irrelevant for our purposes: the only relevant fact is that

the representation in the splitting field of the first bit has 6 coefficients, that of the second bit 15

and that of the third bit 41, because, as we have already observed, these numbers are equal to

the linear complexity of the bits of our xorshift+ generator. Unfortunately, this approach can

be applied only to state arrays of less than a dozen bits: as the linear complexity increases due to

the influence of carries, the number of terms in the representation (12) grows quickly, up to being

unmanageable. Thus, this approach is limited to the analysis of small examples or the construction

of counterexamples.



23

9.3 Representing scramblers by polynomials
A less exact but more practical approach to the analysis of the scrambled output of a generator

is that of studying the scrambler in isolation. To do so, we are going to follow the practice of the

theory of filtered LFSRs: we will represent the scramblers as a sum of Zhegalkin polynomials, that is,
squarefree polynomials over Z/2Z. Due to the peculiarity of the field, no coefficients or exponents

are necessary. If we can describe the function as a sum of distinct polynomials, we will say that

the function is in algebraic normal form (ANF). For example, the 3-bit scrambler of our example

generator can be described by expanding recurrence (8) into the following three functions in ANF:

𝑆0 (𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2) = 𝑥0 + 𝑦0

𝑆1 (𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2) = 𝑥1 + 𝑦1 + 𝑥0𝑦0

𝑆2 (𝑥0, 𝑥1, 𝑥2, 𝑦0, 𝑦1, 𝑦2) = 𝑥2 + 𝑦2 + 𝑥1𝑦1 + 𝑥0𝑦0𝑥1 + 𝑥0𝑦0𝑦1

There is indeed a connection between the polynomial degree of a Boolean function, that is, the

maximum degree of a polynomial in its ANF, the linear complexity of the bits of a linear engine,

and the linear complexity of the bit returned by the Boolean function applied to the engine state.

We will use the standard notation [𝑛] = {0, 1, 2, . . . , 𝑛 − 1}.

Lemma 9.1. Let E be the splitting field of a primitive polynomial 𝑝 (𝑥) of degree 𝑛, represented by
polynomials in 𝛼 computed modulo 𝑝 (𝛼). Then, there is a tuple ⟨𝑡0, 𝑡1, . . . 𝑡𝑘−1⟩ ∈ [𝑛]𝑘 such that∏

𝑖∈[𝑘 ]
𝛼2

𝑡𝑖
= 𝛼𝑐

iff there is an 𝑆 ⊆ [𝑛] with 0 < |𝑆 | ≤ 𝑘 and

𝑐 =
∑︁
𝑠∈𝑆

2
𝑠 .

Proof. First we show that the all 𝑐’s are of the form above. When all the 𝑡𝑖 ’s are distinct, we

have trivially 𝑆 = {𝑡𝑖 | 0 ≤ 𝑖 < 𝑘 }. If 𝑡𝑖 = 𝑡 𝑗

𝛼2
𝑡𝑖
𝛼2

𝑡 𝑗

= 𝛼2·2𝑡𝑖 = 𝛼2
𝑡𝑖+1

,

remembering that computations of exponents of 𝛼 are to be made modulo 2
𝑛 − 1. Thus, the problem

is now reduced to a smaller tuple, and we can argue by induction that the result will be true of

some 𝑆 ⊆ [𝑘 − 1] ⊆ [𝑘].
Now we show that for every 𝑆 as in the statement there exists a corresponding tuple. If |𝑆 | = 𝑘 ,

this is obvious. Otherwise, let |𝑆 | = 𝑗 and 𝑠0, 𝑠1, . . . , 𝑠 𝑗−1 be an enumeration of the elements of 𝑆 .

Then, the 𝑘-tuple

𝑠0, 𝑠1, . . . , 𝑠 𝑗−2, 𝑠 𝑗−1 − 1, 𝑠 𝑗−1 − 2, . . . , 𝑠 𝑗−1 − 𝑘 + 𝑗 + 1, 𝑠 𝑗−1 − 𝑘 + 𝑗, 𝑠 𝑗−1 − 𝑘 + 𝑗,

where the operations above are modulo 𝑛, gives rise exactly to the set 𝑆 , as

𝛼2
𝑠𝑗−1

−1

𝛼2
𝑠𝑗−1

−2

· · ·𝛼2
𝑠𝑗−1

−𝑘+𝑗+1

𝛼2
𝑠𝑗−1

−𝑘+𝑗
𝛼2

𝑠𝑗−1
−𝑘+𝑗

= 𝛼2
𝑠𝑗

.

□

An immediate consequence of the previous lemma is that there is a bound on the increase of

linear complexity that a Boolean function, and thus a scrambler, can induce:
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Proposition 9.2. If 𝑓 is a Boolean function of 𝑛 variables with polynomial degree 𝑑 in ANF and 𝑥𝑖 ,
0 ≤ 𝑖 < 𝑛, are the bits of a linear engine with 𝑛 bits of state, then the rational function representing
𝑓
(
𝑥0, 𝑥1, . . . , 𝑥𝑛−1) has linear complexity at most

𝑈 (𝑛,𝑑) =
𝑑∑︁
𝑗=1

(
𝑛

𝑗

)
. (13)

The result is obvious, as the number of possible nonzero coefficients of the splitting-field repre-

sentation of 𝑓
(
𝑥0, 𝑥1 . . . , 𝑥𝑛−1

)
is bounded by𝑈 (𝑛,𝑑) by Lemma 9.1. Indeed,𝑈 (𝑛,𝑑) is well known:

it is the standard bound on the linear complexity of a filtered LFSR. Our case is different, as we

are applying Boolean functions to bits coming from different instances of the same LFSR, but the

mathematics is the same.

There is also another inherent limitation: a uniform scrambler on𝑚 bits cannot have polynomial

degree𝑚:

Proposition 9.3. Consider a vector of 𝑛 Boolean functions on𝑚 variables such that the preimage
of each vector of 𝑛 bits contains exactly 2

𝑚−𝑛 vectors of𝑚 bits. Then, no function in the vector can
have the (only) monomial of degree𝑚 in its ANF.

Proof. Since the vector of functions maps the same number of input values to each output value,

if we look at each bit and consider its value over all possible vectors of𝑚 bits, it must be zero 2
𝑚−1

times, one 2
𝑚−1

times. But all monomials of degree less than𝑚 evaluate to an even number of

zeroes and ones. The only monomial of degree𝑚 evaluates to one exactly once. Hence, it cannot

appear in any of the polynomial functions. □

Getting back to our example, the bounds for linear complexity of the bits of our xorshift+
generator are

(
6

1

)
= 6,

(
6

1

)
+
(
6

2

)
= 21, and

(
6

1

)
+
(
6

2

)
+
(
6

3

)
= 41. From Figure 8, the first and last bits

attain the upper bound (13), whereas the intermediate bit does not. However, Lemma 9.1 implies

that every subset of 𝑆 might be associated with a nonzero coefficient. If this does not happen, as in

the case of the intermediate bit, it must be the case that all the contributions for that subset of 𝑆

canceled out.

The amount of cancellation happening for a specific combination of linear engine and scrambler

can in principle be computed exactly using the splitting-field representation, but as we have

discussed this approach does not lend itself to computations beyond very small generators. However,

we gathered some empirical evidence by computing the polynomial degree of the Boolean function

associated with a bit using (8) and then by measuring directly the linear complexity using the

Berlekamp–Massey algorithm [13]: with careful implementation, this technique can be applied

much beyond where the splitting-field representation can get. The algorithm needs an upper bound

on the linear complexity to return a reliable result, but we have (13). We ran extensive tests on

several generators, the largest being 12-bit generators with 24 bits of state. The results are quite

uniform: unless the state array of the linear engine is tiny, if the characteristic polynomial is

primitive, cancellation is an extremely rare event.

These empirical finds suggest that it is a good idea to independently study scramblers as Boolean

functions, and in particular estimating or computing their polynomial degree. Then, given a class

of generator, one should gather some empirical evidence that cancellation is rare, and at that point

use the upper bound (13) as an estimate of linear complexity. This is the approach that we will

follow in the following sections.

We remark however that a high polynomial degree is not sufficient to guarantee to pass all

tests related to linearity. The problem is that such tests depend on the joint output of the Boolean
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functionswe are considering.Moreover, there is a great difference between having a high polynomial

degree and passing a linear-complexity or binary-rank test.

For example, consider the following pathological Boolean function that could be part of a

scrambler:

𝑥𝑤−1 +
∏

𝑖∈[𝑤−1]
𝑥𝑖 . (14)

This function has very high polynomial degree, and thus a likely high linear complexity. The

problem is that if, say, 𝑤 = 64 from a practical viewpoint it is indistinguishable from 𝑥𝑤−1, as

the “correction” that raises its linear complexity rarely happens. If the state array is small, this

bit will fail all linearity tests. A single high-degree monomial is not sufficient in isolation, despite

Lemma 9.1, so we will look for scramblers represented by a large number of monomials.

As a last counterexample, and cautionary tale, we consider the scrambler given by a change of

sign, that is, multiplication by the all-ones word. It is trivial to write this scrambler using negated

variables, but when we expand it in ANF we get

𝑥𝑤−1 +
∏

𝑘∈[𝑤−1]
𝑥𝑘 = 1 + 𝑥𝑤−1 +

∏
𝑘∈[𝑤−1]

(
1 + 𝑥𝑘 ) = 1 + 𝑥𝑤−1 +

∏
𝑆⊆[𝑤−1]

∏
𝑘∈𝑆

𝑥𝑘 . (15)

In other words, the ANF contains all monomials formed with all other bits, but the Boolean

function is still as pathological as (14), as there is no technical difference between 𝑥𝑖 and 𝑥𝑖 . Too

few monomials are problematic, but too many are, too.

9.4 The + scrambler
We conclude this part of the paper with a detailed discussion of each scrambler, using their

representations by squarefree polynomials, as discussed in the previous section. We start from the

+ scrambler, introduced in Section 4.1. Recurrence (8) can be easily unfolded to a closed form for

the scrambled bit 𝑠𝑏 :

𝑠𝑏 = 𝑥𝑏 + 𝑦𝑏 +
𝑏∑︁
𝑖=1

𝑥𝑖−1𝑦𝑖−1

∑︁
𝑆⊆[𝑏−𝑖 ]

∏
𝑗 ∈𝑆

𝑥𝑖+𝑗
∏

𝑗 ∈[𝑏−𝑖 ]\𝑆
𝑦𝑖+𝑗

= 𝑥𝑏 + 𝑦𝑏 +
𝑏∑︁
𝑖=1

𝑥𝑖−1𝑦𝑖−1

∏
𝑗 ∈[𝑏−𝑖 ]

(
𝑥𝑖+𝑗 + 𝑦𝑖+𝑗

)
. (16)

If the 𝑥𝑖 ’s and the 𝑦𝑖 ’s are distinct, the expressions above are in ANF: there are exactly 2
𝑏 + 1

monomials with maximum degree 𝑏 + 1. Thus, if the underlying linear engine has 𝑛 bits of state the

linear-degree bound for bit 𝑏 will be𝑈 (𝑛,𝑏 + 1), where𝑈 (−,−) is defined by (13).

An important observation is that no monomial appears in two instances of the formula for

different values of 𝑏. This implies that any linear combination of bits output by the + scrambler has

the same linear complexity as the bit of highest degree, and at least as many monomials: we say in

this case that there is no polynomial degree loss. Thus, except for the very lowest bits, we expect

that no linearity will be detectable.

In Table 11 we report, using (13), the estimated linear complexity of the lowest bits of some

generators. The lowest values have also been verified using the Berlekamp–Massey algorithm:

as expected, we could not detect any linear-degree loss; running the algorithm on the largest

values is unfeasible. While an accurate linear-complexity test might catch the fourth lowest bit of

xoroshiro128+, the degree raises quickly to the point the linearity is undetectable.
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xoroshiro128+ xoshiro256+ xoshiro512+ xoroshiro1024+ xoroshiro64+ xoshiro128+

128 256 512 1024 64 128

8256 32896 131328 524800 2080 8256

349632 2796416 22370048 178957824 43744 349632

11017632 177589056 2852247168 45723987200 679120 11017632

275584032 8987138112 290367762560 9336909979904 8303632 275584032

Table 11. Estimated linear complexity of the five lowest bits of generators (the first line is bit 0) using the +
scrambler.

The situation for Hamming-weight dependencies is not so good, however, as empirically (Table 1)

we have already observed that xoroshiro engines still fail our test (albeit using three orders

of magnitude more data). We believe that this is due to the excessively regular structure of the

monomials.

Note that if the underlying linear engine is 𝑑-dimensionally equidistributed, the scrambler

generator will be in general at most (𝑑 − 1)-dimensionally equidistributed (see Section 7).

9.5 The * scrambler
We now discuss the * scrambler, introduced in Section 4.2, in the case of a multiplicative constant

of the form 2
𝑠 + 1. This case is particularly interesting because it is very fast on recent hardware; in

particular, (2𝑠 +1) ·𝑥 = 𝑥+(𝑥 ≪ 𝑠), where the sum is in Z/2
𝑤Z, which provides a multiplication-free

implementation. Moreover, as we will see, the analysis of the 2
𝑠 + 1 case sheds light on the general

case, too.

Let 𝑧 = (2𝑠 + 1)𝑥 . Specializing (16), we have that 𝑧𝑏 = 𝑥𝑏 when 𝑏 < 𝑠 ; otherwise, 𝑏 = 𝑐 + 𝑠 ≥ 𝑠 and

𝑧𝑏 = 𝑧𝑐+𝑠 = 𝑥𝑐+𝑠 + 𝑥𝑐 +
𝑐∑︁
𝑖=1

𝑥𝑖−1+𝑠 𝑥𝑖−1

∑︁
𝑆⊆[𝑐−𝑖 ]

∏
𝑗 ∈𝑆

𝑥𝑖+𝑗+𝑠
∏

𝑗 ∈[𝑐−𝑖 ]\𝑆
𝑥𝑖+𝑗

= 𝑥𝑐+𝑠 + 𝑥𝑐 +
𝑐∑︁
𝑖=1

𝑥𝑖−1+𝑠 𝑥𝑖−1

∏
𝑘∈[𝑐−𝑖 ]

(
𝑥𝑖+𝑘+𝑠 + 𝑥𝑖+𝑘

)
. (17)

However, contrarily to (16) the expressions above do not denote an ANF, as the same variable may

appear many times in the same monomial.

We note that the monomial 𝑥𝑠𝑥0𝑥𝑠+1 · · · 𝑥𝑠+𝑐−1, which is of degree 𝑐 + 1, appears only and always

in the function associated with 𝑦𝑏 , 𝑏 > 𝑠 . Thus, bits with 𝑏 ≤ 𝑠 have degree one, whereas bits 𝑏

with 𝑏 > 𝑠 have degree 𝑏 − 𝑠 + 1. In particular, as in the case of +, there is no polynomial degree

loss when combining different bits.

In the case of a generic (odd) constant𝑚, one has to modify recurrence (8) to start including

shifted bits at the right stage, which creates a very complex monomial structure. Note, however, that

bits after the second-lowest bit set in𝑚 cannot modify the polynomial degree. Thus, the decrease of

Hamming-weight dependencies we observe in Table 1 even for xoroshiro* is not due to a higher

polynomial degree with respect to + (indeed, the opposite is true), but to a richer structure of the

monomials. The degree reported for the + scrambler in Table 11 can indeed be adapted to the

present case: one has just to copy the first line as many times as the index of the second-lowest bit

set in𝑚.

To get some intuition about the monomial structure, it is instructive to get back to the simpler

case𝑚 = 2
𝑠 + 1. From (17) it is evident that monomials associated with different values of 𝑖 cannot
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be equal, as the minimum variable appearing in a monomial is 𝑥𝑖−1. Once we fix 𝑖 with 1 ≤ 𝑖 ≤ 𝑐 ,

the number of monomials is equal to the number of sets of the form

𝑆 + 𝑠 ∪ [𝑐 − 𝑖] \ 𝑆 ∪ {𝑠 − 1} 𝑆 ⊆ [𝑐 − 𝑖] (18)

that can be expressed by an odd number of values of 𝑆 (if you can express the set in an even number

of ways, they cancel out). But such sets are in bijection with the values (𝑣 ≪ 𝑠) ∨ ¬𝑣 ∨ (1 ≪ 𝑠 − 1)
as 𝑣 varies among the words of 𝑐 − 𝑖 bits. In a picture, we are looking at the columnwise logical or

of the following diagram, where the 𝑏 𝑗 ’s are the bits of 𝑣 , for convenience numbered from the most

significant:

b0 b1 . . . bs−2 bs−1 bs bs+1 . . . bc−i−1

¬b0 ¬b1 . . . ¬bc−i−s−1 1 ¬bc−i−s+1 . . . ¬bc−i−1

The first obvious observation is that if 𝑠 > 𝑐 − 𝑖 the two rows are nonoverlapping, and they are

not influenced by the one in position 𝑠 − 1. In this case, we obtain all possible 2
𝑐−𝑖

monomials. More

generally, such sets are all distinct iff 𝑠 ≥ (𝑐 − 𝑖 + 1)/2, as in that case the values must differ either

in the first 𝑠 or in the last 𝑠 − 1 bits: consequently, the number of monomials, in this case, is again

2
𝑐−𝑖

. Minimizing 𝑖 and maximizing 𝑐 we obtain 𝑠 ≥ (𝑤 − 𝑠 − 1)/2, whence 𝑠 ≥ (𝑤 − 1)/3. In this

case, the monomials of 𝑧𝑏 are exactly 2 + 2
𝑐−1 + 2

𝑐−2 + · · · + 1 = 2
𝑐 + 1 = 2

𝑏−𝑠 + 1 when 𝑏 ≥ 𝑠 .

As 𝑠 moves down from (𝑤 −1)/3, we observe empirically more and more reduction in the number

of monomials with respect to the maximum possible 2
𝑏−𝑠 + 1. When we reach 𝑠 = 1, however, a

radical change happens: the number of monomials grows as 2
𝑏/2

.

Theorem 9.4. The number of monomials of the Boolean function representing bit 𝑏 of 3𝑥 is18

(2 + [𝑏 odd]) · 2
⌊𝑏/2⌋ − 1.

We remark a surprising combinatorial connection: this is the number of binary palindromes

smaller than 2
𝑏
, that is, A052955 in the “On-Line Encyclopedia of Integer Sequences” [12].

Proof. When 𝑠 = 1, the different subsets in (18) obtained when 𝑆 varies are in bijection with the

values 𝑣 ∨ ¬(𝑣 ≫ 1) as 𝑣 varies among the words of 𝑐 − 𝑖 bits. Again, we are looking at the logical

or by columns of the following diagram, where the 𝑏 𝑗 ’s are the bits of 𝑣 numbered from the most

significant:

b0 b1 b2 b3 . . . bc−i−1

¬b0 ¬b1 ¬b2 . . . ¬bc−i−2

Note that if there is a 𝑏 𝑗 whose value is irrelevant, flipping will generate two monomials that

will cancel each other.

Let us consider now a successive assignment of values to the 𝑏 𝑗 ’s, starting from 𝑏0. We remark

that as long as we assign ones, no assigned bit is irrelevant. As soon as we assign a zero, however,

say to 𝑏 𝑗 , we have that the value of 𝑏 𝑗+1 will no longer be relevant. To make 𝑏 𝑗+1 relevant, we need

to set 𝑏 𝑗+2 = 0. The argument continues until the end of the word, so we can actually choose the

value of (𝑐 − 𝑖 − 𝑗 − 1)/2 bits, and only if 𝑐 − 𝑖 − 𝑗 − 1 is even (otherwise, 𝑏𝑐−𝑖−1 has no influence).

We now note that if we flip a bit 𝑏𝑘 that we were forced to set to zero, there are two possibilities:

either we chose 𝑏𝑘−1 = 1, in which case we obtain a different monomial, or we chose 𝑏𝑘−1 = 0, in

18
Note that we are using Knuth’s extension of Iverson’s notation [14]: a Boolean expression between square brackets has

value 1 or 0 depending on whether it is true or false, respectively.
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xoroshiro128++ xoshiro256++ xoshiro512++ xoroshiro1024++ xoshiro128++

1 × 10
36

3 × 10
48

1 × 10
68

9 × 10
74

1 × 10
27

2 × 10
36

2 × 10
49

1 × 10
69

2 × 10
76

5 × 10
27

3 × 10
36

1 × 10
50

9 × 10
69

4 × 10
77

2 × 10
28

4 × 10
36

4 × 10
50

8 × 10
70

1 × 10
79

6 × 10
28

Table 12. Approximate lower bound on the estimated linear complexity of the four lowest bits (the first line
is bit 0) of generators using the ++ scrambler with parameters from Table 3 and 6.

which case 𝑏𝑘 is irrelevant, but by flipping also 𝑏𝑘+1 we obtain once again the same monomial, so

the two copies cancel each other.

Said otherwise, monomials with an odd number of occurrences are generated either when all

bits of 𝑣 are set to one, or when there is a string of ones followed by a suffix of odd length in which

every other bit (starting from the first one) is zero. All in all, we have

1 +

⌊
𝑐−𝑖−1

2

⌋∑︁
𝑘=0

2
𝑘 = 2

⌈
𝑐−𝑖−1

2

⌉
possible monomials, where 2𝑘 + 1 is the length of the suffix. Adding up over all 𝑖’s, and adding the

two degree-one monomials we have that the number of monomials of 𝑦𝑏 for 𝑏 = 𝑐 + 1 > 0 is

2 +
𝑏−1∑︁
𝑖=1

2

⌈
𝑏−𝑖−2

2

⌉
= 1 + 1 +

𝑏−1∑︁
𝑖=1

2

⌈
𝑏−𝑖−2

2

⌉
= (2 + [𝑏 odd]) · 2

⌊𝑏/2⌋ − 1.

The correctness for the case 𝑏 = 0 can be checked directly. □

We remark that in empirical tests the 3𝑥 scrambler performs very poorly: thus, the excessive

cancellation of monomials implied by the theorem above has practical consequences.

9.6 The ++ scrambler
We will now examine the strong scrambler ++ introduced in Section 4.3. We choose two words 𝑥 , 𝑦

from the state of the linear engine and then 𝑧 = 𝜌𝑟 (𝑥 + 𝑦) + 𝑥 , where + denotes sum in Z/2
𝑤Z.

Computing an ANF for the final Boolean functions appears to be a hard combinatorial problem:

nonetheless, with this setup we know that the lowest bit will have polynomial degree𝑤 − 𝑟 + 1,

and we expect that the following bits will have an increasing degree, possibly up to saturation.

Symbolic computations in low dimension show however that the growth is quite irregular. The

linear complexity of the lowest bits is large, as shown in Table 12, where we display a theoretical

estimate based on (13), assuming that on lower bits degree increase at least by one at each bit

(experimentally, it usually grows more quickly—see again Table 12).

This scrambler is potentially very fast, as it requires just three operations and no multiplication,

and it can reach a high polynomial degree, as it uses 2𝑤 bits.
19
Moreover, its simpler structure

makes it attractive in hardware implementations. However, the very regular structure of the +
scrambler makes experimentally ++ less effective on Hamming-weight dependencies.

As a basic heuristic, we suggest to choose a rotation parameter 𝑟 ∈ [𝑤/4 . . 3𝑤/4] such that 𝑟 and

𝑤 − 𝑟 are both prime (or at least odd), and they are not equal to any of the shift/rotate parameters

19
Symbolic computation suggests that this scrambler can reach only polynomial degree 2𝑤 − 3; while we have the bound

2𝑤 − 1 by Proposition 9.3, proving the bound 2𝑤 − 3 is an open problem.
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xoroshiro128** xoshiro256** xoshiro512** xoroshiro1024** xoroshiro64** xoshiro128**

3 × 10
37

2 × 10
57

4 × 10
75

1 × 10
93

2 × 10
18

8 × 10
25

4 × 10
37

7 × 10
57

3 × 10
76

2 × 10
94

3 × 10
18

3 × 10
26

6 × 10
37

3 × 10
58

2 × 10
77

3 × 10
95

5 × 10
18

1 × 10
27

7 × 10
37

9 × 10
58

2 × 10
78

6 × 10
96

6 × 10
18

5 × 10
27

Table 13. Approximate estimated linear complexity of the four lowest bit (the first line is bit 0) of generators
using the ** scrambler with parameters from Table 3 and 6.

appearing in the generator (the second condition being more relevant than the first one). Smaller

values of 𝑟 will of course provide a higher polynomial degree, but too small values yield too short

carry chains. For𝑤 = 64 candidates are 17, 23, 41, and 47; for𝑤 = 32 one has 13 and 19; for𝑤 = 16

one has 5 and 11. In any case, a specific combination of linear engine and scrambler should be

tested thoroughly.

As in the case of the + scrambler, if the underlying linear engine is𝑑-dimensionally equidistributed,

the scrambler generator will be in general at most (𝑑 − 1)-dimensionally equidistributed (see

Section 7).

9.7 The ** scrambler
We conclude our discussion with the strong scrambler ** introduced in Section 4.4. We will be

discussing in detail the case with multiplicative constants of the form 2
𝑠 + 1 and 2

𝑡 + 1, which is

particularly fast (the + symbol will denote sum in Z/2
𝑤Z for the rest of this section).

Let 𝑧 = 𝜌𝑟 (𝑥 · (2𝑠 + 1)) · (2𝑡 + 1). The min{𝑟, 𝑡 } lowest bits of 𝑧 are the min{𝑟, 𝑡 } highest bits of
𝑥 · (2𝑠 + 1). To choose 𝑠 , 𝑟 , and 𝑡 we can leverage our previous knowledge of the scrambler *. We

start by imposing that 𝑠 < 𝑡 , as choosing 𝑠 = 𝑡 generates several duplicates that reduce significantly

the number of monomials in the ANF of the final Boolean functions, whereas 𝑡 < 𝑠 provably yields

a lower minimum degree for the same 𝑟 (empirical computations show also a smaller number of

monomials). We also have to impose 𝑡 < 𝑟 , for otherwise some bits or xor of pair of bits will have

very low linear complexity (polynomial degree one). So we have to choose our parameters with the

constraint 𝑠 < 𝑡 < 𝑟 . Since the degree of the lowest bit is max(1,𝑤 − 𝑟 − 𝑠 + 1), choosing 𝑟 = 𝑡 + 1

maximizes the minimum degree across the bits. Moreover, we would like to keep 𝑠 and 𝑡 as small

as possible, to increase the minimum linear complexity and also to make the scrambler faster.

Also in this case computing an ANF for the final Boolean functions appears to be a hard combina-

torial problem: nonetheless, with this setup we know that the lowest bit will have (when 𝑟 + 𝑠 ≤ 𝑤 )

polynomial degree𝑤 − 𝑟 − 𝑠 + 1, and we expect that the following bits will have increasing degree

up to saturation (which happens at degree𝑤 − 1 by Proposition 9.3). Symbolic computations in low

dimension show some polynomial degree loss caused by the second multiplication unless 𝑟 = 2𝑡 + 1;

moreover, for that value of 𝑟 the polynomial degree loss when combining bits is almost absent.

Taking into consideration the bad behavior of the multiplier 3 highlighted by Theorem 9.4, we con-

clude that the best choice is 𝑠 = 2, 𝑡 = 3, and consequently 𝑟 = 7. These are the parameters reported

in Table 3. The linear complexity of the lowest bits is extremely large, as shown in Table 13.
20

At 32 bits, however, tests show that this scrambler is not sufficiently powerful for xoroshiro64,
and Table 6 reports indeed different parameters: the first multiplier is the constant used for the

20
Note that as we move towards higher bits the ++ scrambler will surpass the linear complexity of the ** scrambler; the fact

that the lower bits appear of lower complexity is due only to the fact that we use much larger rotations in the ++ case.
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* scrambler, and the second multiplier 2
𝑡 + 1 has been chosen so that bit 𝑡 is not set in the first

constant. Again, 𝑟 = 2𝑡 + 1, following the same heuristic of the previous case.

10 CONCLUSIONS
The combination of xoroshiro/xoshiro and suitable scramblers provides a wide range of high-

quality and fast solutions for pseudorandom number generation. Parallax has embedded in their

recently designed Propeller 2 microcontroller xoroshiro128** and the 16-bit xoroshiro32++;
xoroshiro116+ is the stock generator of Erlang and xoshiro256** is the stock generator of the

popular embedded language Lua and of GNU Fortran. xoroshiro128++ and xoshiro256++ are

scheduled to be included in Java 17 as part of JDK Enhancement Proposal 356. Recently, the speed

of xoshiro128** has found application in cryptography [2, 10].

We believe that a more complete study of scramblers can shed some further light on the behavior

of such generators: the open problem is that of devising a model explaining the elimination

of Hamming-weight dependencies. The main difficulty is that analyzing the Boolean functions

representing each scrambled bit in isolation is not sufficient, as Hamming-weight dependencies are

generated by their collective behavior.

There are variants of the scramblers we discussed that do not use rotations: for example, in the ++
and ** scramblers the rotation can be replaced by xoring 𝑥 with 𝑥 ≫ 𝑟 , as also this operation will

increase the linear complexity of the lower bits. For contexts in which rotations are not available

or too expensive, one might explore the possibility of using xorshift generators scrambled with

such variants.

There is a vast literature on filtered LFSR that might be used to prove aspects we approached

only with symbolic small-state computations. For example, in [16] the authors prove a lower bound

on the linear degree of a Boolean function made of a single very specific monomial, something for

which we just argued based on measurements made using the Berlekamp–Massey algorithm. In [4]

the authors try to provide closed forms or even ANFs when the argument of a Boolean function is

multiplied or summed with a constant, which might be a starting point for a closed form for the **
scrambler.

In general, it is an interesting open problem to correlate explicitly the monomial structure of a

Boolean function in ANF with its resilience to linearity tests. Intuitively, recalling (15), one sees that

besides large-degree monomials one needs small-degree monomials to make the tests “perceive”

the increase in linear complexity at the right time.
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