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Abstract

We offer ShiftConvolvePoibin, a fast exact method to compute the tail of

a Poisson-Binomial distribution (PBD). Our method employs an exponential

shift to retain its accuracy when computing a tail probability, and in practice

we find that it is immune to the significant relative errors that other methods,

exact or approximate, can suffer from when computing very small tail proba-

bilities of the PBD. The accompanying R package is also competitive with the

fastest implementations for computing the entire PBD.

1 Introduction

Let Xi for i = 1, . . . , N be independent Bernoulli random variables (RVs) with cor-

responding probabilities of success pi. The distribution of X =
∑N

1 Xi is called a
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Poisson-binomial distribution (PBD) and it clearly generalizes the binomial distri-

bution (pi ≡ p for all i).

Biscarri et al. highlighted the considerable interest in using the PBD in diverse

areas of scientific research ranging from genetics through survey sampling to sports

analysis [1]. Coinciding with this scientific interest was a continuing effort on part

of the statistical community to develop efficient and accurate tools for evaluating

the significance of tests based on the PBD. Most of these tools, which range from

approximation-based ones, including Poisson and normal approximations, to a grow-

ing recent interest in exact methods are also reviewed in [1].

In this paper we focus on computing the tail probability of the PBD. Specifically

we look at evaluating P (X ≥ x) for a Poisson-binomial (PB) RV X focusing on

accurately computing this (right) tail probability when it is small. Note that a left

tail can be readily transformed into a right tail by considering X ′ = N − X =∑N
1 (1−Xi) which is again a PB RV.

Recently Madsen et al. pointed out that when using Hong’s popular DFT-CF [5]

to compute the right tail of the PBD one can expect extremely high relative errors

when the actual value is smaller than about 10−16 [8].1 While many statisticians

would not consider that a problem, and indeed it is not a problem in the canonical

5% significance cutoff scenario, Madsen et al.’s motivation comes from bioinformatics

research where one often needs to accurately evaluate even much smaller tails. In

such cases relying on DFT-CF could lead to significant errors in the downstream

analysis.

1If the true value s 6= 0 is computed as s̃ then the associated relative error is defined as
|(s̃− s) /s|.
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As an alternative, Madsen et al. develop a saddle-point based approximation

method which, as they demonstrate, has a much better-behaved relative error when

computing the p-value of large values of the statistic X [8]. Moreover, as Madsen et

al. argue, the runtime complexity of their approach is O (N) compared with DFT-

CF’s complexity of O (N2) making their method a seemingly win-win proposition for

someone interested in evaluating the right tail of the PBD.

In this paper we show that while the saddlepoint approximation method of Mad-

sen et al. (SA) is generally quite accurate, there are cases where it also suffers from

significantly large errors. Particularly problematic are cases where the actual p-value

is close to 1 but SA reports much smaller values (e.g., Figure 2 below). Madsen et

al. acknowledged that SA “is not suited for calculating large (not significant) p-values

(> 0.1)”, however how would the user know the p-value is > 0.1 if SA reports a value

that is much closer to 0 (e.g., consider s0 < 4000 in panel A of Figure 2 below)?

Going back to the extremely large relative errors that DFT-CF can induce, we

show below that the same applies to DC-FFT, which is the more recent method of

Biscarri et al. [1]. Note that both DFT-CF and DC-FFT are exact methods, that is,

they compute the probability mass function (pmf) of the PBD using the underlying

distribution rather than relying on an asymptotic approximation. So how can the

approximation-based SA be much more accurate than those exact methods?!

Before explaining this we would like to clarify that both DFT-CF and DC-FFT

are accurate as long as you gauge their accuracy using the total absolute error (TAE)

as your figure of merit. Indeed, as reported by both Hong and Biscarri et al., in that

case these exact methods live up to their name with the error rarely exceeding 10−10.
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However, as noted above the relative error can tell a very different story.

As explained, for example in [13], the source of the extremely large relative er-

rors is the Discrete Fourier Transform (DFT, defined below), which both DFT-CF

and DC-FFT rely on. Specifically, the DFT involves summing many positive and

negative numbers so the accumulated roundoff errors are amplified by intermediate

cancellations and potentially create extremely large relative errors in the final result

— something that we observe with DFT-CF and DC-FFT.

In contrast, if we add up only non-negative numbers then the relative error is well-

controlled. In particular, the exact method of Direct Convolution (DC) — proposed

by Biscarri et al. (Algorithm 1 [1]), as well as by Madsen et al., can be considered

as the gold standard in terms of accuracy. The downside of DC is that its runtime

complexity is O (N2) making it potentially forbiddingly slow for large values of N .

Indeed, DC-FFT was specifically designed to be much faster than DC.

In this paper we introduce ShiftConvolvePoibin (or ShiftConvolve for short), a

novel exact method with a close-to-linear runtime complexity of O
(
N (logN)2) and

which, in practice, is on par with DC in terms of its control of the relative error.

ShiftConvolve accomplishes this by relying on the same exponential shift idea that

was originally employed in [7] to control the numerical errors introduced by the DFT

when computing a certain tail probability (see also [13]).
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2 Addressing the accuracy problem

2.1 DFT and the relative error problem

The DFT operator, D, and its inverse, D−1, are linear operators defined on Cn as

(Dx)(k) :=
n−1∑
j=0

x(j)e−i2πkj/n k = 0, . . . , n− 1

(D−1y)(k) :=
1

n

n−1∑
j=0

y(j)ei2πkj/n k = 0, . . . , n− 1.

(1)

It is clear from their definitions that computing the real and imaginary components of

the result generally involves adding up both positive and negative numbers creating

the significant relative errors we alluded to.

In practice the DFT is almost invariably calculated by the Fast Fourier Transform

(FFT) which has a time complexity of O (n log n) [3]. Brisebarre et al. provide an

exhaustive overview of the analysis of the error introduced by the FFT [2] and

it should be stressed that in general a naive implementation of the DFT would

not be any more accurate than the FFT [11]. Regardless, our goal here is not to

bound the error, rather we follow up on Madsen et al. in pointing out the potentially

catastrophic effect the FFT can have on the relative error and to offer a solution to

this problem.

Both DFT-CF and DC-FFT rely on the DFT (and its inverse): the first to invert

the characteristic function of the PBD and the second to perform its convolutions

as explained below. In both cases the DFT can severely compromise the relative

accuracy of the computed values as shown in panel A of Figure 1: while the DFT-
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relying methods coincide with the accurate DC for pmf entires that are larger than

≈ 10−16, values that are smaller cannot be recovered by DFT-CF and DC-FFT (DFT-

CF often returns 0 in this case as is evident by the gaps in the green logarithmic

curve). In particular, using DFT-CF or DC-FFT to compute a right tail probability

for large values of x will typically yield a result that is orders of magnitude off in terms

of the relative accuracy: the correct values as per DC are orders of magnitude smaller

than the values reported by DC-FFT, whereas for DFT-CF the reported values vary

between 0 (100% relative error) and the same order as DC-FFT’s reported values.2

Panel A of Figure 1 suggests that it is impossible to recover the smaller entries

of the pmf because of the numerical errors inherent to the DFT. There is however a

solution that was first suggested in [7] and that uses an exponential shift to overcome

the numerical errors.

2.2 The exponential shift

Let q be a PB pmf supported on 0, 1, . . . , n then the exponentially shifted version of

q is defined as

qθ(k) = q(k)ekθ/Mq(θ) k = 0, 1, . . . , n, (2)

where Mq(θ) is the moment generating function (MGF) of q. Note that dividing by

the MGF guarantees that qθ is a proper pmf.

The basic idea behind the introduction of the exponential shift is that the FFT-

based methods are still accurate for the larger values so all we need to do is make

2Note that the absolute error is still small: no more than ≈ 10−16 but our interest here is in
accurately recovering the small values.
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A. Original pmf, no shift B. Original pmf as well as shifted (DC-FFT)
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Figure 1: The accuracy problem. (A) The (log of the) PB pmf computed by the accurate DC is contrasted with
the values computed by DFT-CF and DC-FFT both of which rely on the DFT: values below ≈ 10−16 cannot be
recovered. Missing values of DFT-CF correspond to reported 0 values. The PBD here is defined using N = 100
values of pi that were independently and uniformly sampled. (B) The log of the PB pmf computed by DC-FFT
compared with a shifted variant. (C) The (log of the) relative error in computing the right tail using DC-FFT and
its shifted variant. (D) Same as panel B but using DFT-CF and a shifted variant of DFT-CF. Gaps correspond to
reported 0 values.
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sure the values we are actually interested in are “large enough”.

The approach is visualized in panel B of Figure 1, which focuses on accurately

recovering P (X ≥ 800). As seen by the red curves in panels B and C of the figure,

DC-FFT does not allow us to accurately gauge this probability which is many order

of magnitude smaller than the values reported by DC-FFT.

However, when the proper exponential shift is applied to the pmf (panel B, dashed

black curve) the values that we are interested in are sufficiently inflated so that DC-

FFT accurately recovers the section of the pmf about x = 800 (panel B, dashed

green curve).

Finally, reversing the shift we note that the combination of DC-FFT with the

shift and its reversal allows us to accurately recover the tail probability for any x

in the neighborhood of 800: the relative error is miniscule (≈ 10−13, panels B and

C, solid green curves). Panel D suggests that the same principle would work for

DFT-CF.

The reason we use an exponential shift rather than some other arbitrary way to

inflate the values we are interested in is that the exponential shift can be readily

applied, as well as peeled off, or reversed in our context. Specifically:

Claim 1. The exponential shift commutes with the convolution operation (∗), that

is, if p and q are pmfs defined on 0, 1, . . . , n then (p ∗ q)θ ≡ pθ ∗ qθ.

Proof. Recall that if X and Y are independent N-valued RVs with corresponding

pmfs p and q then

Mp∗q ≡MX+Y ≡MX ·MY ≡Mp ·Mq.
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With this in mind for k = 0, . . . , 2n we have

(p ∗ q)θ (k) = (p ∗ q) (k) · ekθ/Mp∗q (θ)

=
k∑
i=0

(
p(i) · eiθ

) (
q (k − i) · e(k−i)θ) / (Mp(θ) ·Mq(θ))

= (pθ ∗ qθ) (k) .

It follows that the same holds for convolutions of any order and hence that we

can compute qθ, the θ-shifted version of the PB pmf q, by convolving the θ-shifted

versions of each of the Bernoulli pmfs. The latter of course can be trivially found

because a θ-shifted Bernoulli(p) pmf is again a Bernoulli pmf only with probability

of success pθ = peθ/
(
1− p+ peθ

)
. Note that, in particular, an exponentially shifted

PBD is also a PBD.

It follows that we can use DFT-CF and DC-FFT to compute the exponentially

shifted pmf pθ of the PBD by applying them to θ-shifted Bernoullis. Of course,

recovering q from qθ is a trivial exercise of inverting (2), or equivalently applying a

shift of −θ to qθ. This is indeed the procedure we applied when obtaining the green

curves of panels B and D of Figure 1.

What is missing at this point is the protocol for determining θ given x. Here

again we follow [7], and we define the shift as the value of θ that minimizes the

expression logMq (θ) − θ · x. The critical point of the latter function is the value θ

for which M ′
q (θ) /Mq (θ) = x but M ′

q (θ) /Mq (θ) is simply the expected value of the
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shifted qθ. Hence, finding θ amounts to solving

x = E (Xθ) =
N∑
i=1

E (Xi,θ) =
N∑
i=1

pie
θ

1− pi + pieθ
, (3)

whereXθ =
∑N

1 Xi,θ is a qθ distributed RV andXi,θ are independent Bernoulli(pθ(i) =

pie
θ/
(
1− pi + pie

θ
)
) RVs. In practice we solve (3) numerically using the uniroot

function in R.

3 ShiftConvolvePoibin

Combining our exponential shift protocol with either DFT-CF or DC-FFT produces

an exact method that is able to practically recover any right tail probability (p-

value) with a negligible relative error. The combined general procedure is outlined

in Algorithm 1.

Consider the variant of Algorithm 1 where the pmf of the (shifted) PBD is com-

puted with DC-FFT with its default setting of M = N . In this case, starting with

the N (shifted) Bernoulli pmfs at each step DC-FFT pairs all intermediate (shifted)

PB pmfs and convolves each pair while passing the resulting PB pmf to the next

step until at the last step it ends up with a single PB pmf (Algorithm (2)).

Each such pairwise convolution is executed using the FFT based on the follow-

ing identity. Suppose that the pmfs p and q are supported on {0, 1, . . . ,m} and

{0, . . . , n} respectively and for Q ≥ m + n + 1 embed p and q in RQ by extending

them with Q − m, respectively Q − n, zeros. Then using the Q-dimensional DFT
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Algorithm 1: shift-compute-PB-pmf-unshift

Input: p = (p0, p1, ..., pN−1) vector of success probabilities, observed value s0

/* Lines 1-5: apply the exponential shift to p */

1 Function: µ(θ,p) ←− sum([pi exp(θ)/(1− pi + pi exp(θ)) for pi ∈ p])
2 θ∗ ←− find root θ such that µ(θ,p)− s0 = 0
3 pθ ←− empty list
4 for pi ∈ p do
5 pθ(i)

+ ←− pi exp(θ∗)/(1− pi + pi exp(θ∗))
6 qθ ←− apply DC-FFT or DFT-CF to pθ

/* Lines 7-10: reverse the exponential shift */

7 q ←− empty list
8 M ←− prod([(1− pi + pi exp(θ∗)) for pi ∈ p])
9 for j ∈ 0, 1, . . . , N − 1 do

10 q(j)←− qθ(j) exp(−j · θ) ·M
Output: q: the convolved pmf

operator and its inverse we have [12]

p ∗ q = D−1(Dp�Dq), (4)

where for Q-dimensional vectors u and v, (u� v)(i) = u(i)v(i).

At first glance DC-FFT (M = N) seems wasteful because each intermediate pmf

is computed by applying D−1 while at the next step D is applied to the same pmf

(lines 13 and 15). Of course, these two operators have different dimensions (the

latter’s twice the former’s) so this is not as wasteful as it might initially look. Still,

we next show how some work can be saved by making a more efficient use of what

has already been computed in the previous step.

For u ∈ Cn let u∗ ∈ C2n be the zero-padded 2n-dimensional version of u: u∗(i) =

11



Algorithm 2: Pair-aggregated-FFT-convolution (DC-FFT with M = N)

Input: p = (p0, p1, ..., pN−1) vector of success probabilities
1 V ←− empty list
2 for pi ∈ p do
3 add FFT((1− pi, pi, 0, 0)) to list V
4 L ←− length(V )
5 while L > 2 do
6 V ∗ ←− empty list
7 if L is odd then
8 n←− length(v in V )
9 add the n−dimensional vector (1, 1, ..., 1) to list V

10 split V into pairs (vi,vj)
11 for each pair (vi,vj) in V do
12 u←− FFTInverse(PointwiseMultiply(vi,vj))
13 u←− pad u with length(u) 0s
14 v∗ ←− FFT(u)
15 add v∗ to list V ∗

16 V ←− V ∗

17 L←− length(V )

18 u←− FFTInverse(PointwiseMultiply(V [0], V [1]))
Output: u
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u(i) for i = 0, . . . , n−1 and u∗(i) = 0 for i = n, . . . , 2n−1. Then for k = 0, . . . , n−1

(D2nu
∗)(2k) =

2n−1∑
j=0

u∗(j)e−i2π(2k)j/(2n) =
n−1∑
j=0

u(j)e−i2πkj/n = (Dnu)(k). (5)

That is, the even entries of D2nu
∗ coincide with Dnu and therefore we do not need

to recompute them.

As for the odd entries of D2nu
∗, for k = 0, . . . , n− 1

(D2nu
∗)(2k+1) =

2n−1∑
j=0

u∗(j)e−i2π(2k+1)j/(2n) =
n−1∑
j=0

(
u(j)e−iπj/n

)
e−i2πkj/n = (Dn (u� ω))(k),

(6)

where ω(j) = e−iπj/n for j = 0, . . . , n−1 and � again is the coordinate-wise product.

So while these odd entries do not come for free they can be computed using an n-

dimensional DFT rather than a 2n-dimensional one.

Algorithm 3 takes advantage of the last two identities to speed up DC-FFT

(M = N), or Algorithm (2), by about 50% for large N (more on that in Section 4.2

below).

Our ShiftConvolvePoibin algorithm (Algorithm 4) combines Algorithm 1 with

the latter, more efficient, Algorithm 3. Note that due to its built-in exponential shift

ShiftConvolve can return the accurate logarithm of the right tail probability even

when the actual number can create an underflow or 0 when not using logs.

We have two implementations of ShiftConvolve where in both cases the critical

part of the code is written in C and is wrapped in an R package. The two versions

differ in which code they use to execute the FFT: one version relies on FFTW [4] and
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Algorithm 3: Frugal-pair-aggregated-FFT-convolution (FPA-FFTC)

Input: p = (p0, p1, ..., pN−1) vector of success probabilities
1 V ←− empty list
2 for pi ∈ p do
3 add FFT((1− pi, pi, 0, 0)) to list V
4 L ←− length(V )
5 while L > 2 do
6 V ∗ ←− empty list
7 n←− length(v in V )
8 ω ←− [exp(ijπ/n) for j ∈ [0, 1, ..., n− 1]
9 if L is odd then

10 add the n-dimensional vector (1, 1, ..., 1) to list V
11 split V into pairs (vi,vj)
12 for each pair (vi,vj) in V do
13 u←− FFTInverse(PointwiseMultiply(vi,vj))
14 w ←− FFT(PointwiseMultiply(u,ω))

/* assign the components of v and w to even and odd

components of v∗ respectively: */

15 v∗ ←− (v[0],w[0],v[1],w[1], ...,v[n− 1],w[n− 1])
16 add v∗ to list V ∗

17 V ←− V ∗

18 L←− length(V )

19 u←− FFTInverse(PointwiseMultiply(V [0], V [1]))
Output: u

14



requires the user to install the FFTW package whereas the other uses minFFT [9]

and is self-contained. In both cases ShiftConvolve saves some runtime by taking

advantage of the fact that the FFTInverse operation on line 13 of Algorithm 3 should

produce a real-valued vector.

Algorithm 4: ShiftConvolvePoibin

Input: p = (p0, p1, ..., pN−1) vector of success probabilities, observed value s0

1 Apply steps 1-5 of Algorithm 1 to get the shifted pθ
2 qθ ←− FPA-FFTC(pθ) /* apply Algorithm 3 to pθ */

3 Apply steps 7-10 of Algorithm 1 to get the unshifted q
Output: q: the convolved pmf

To conserve runtime and accuracy in practice ShiftConvolve treats the special

degenerate cases pi ∈ {0, 1} differently. That is, before any convolutions are done on

the input vector, each pi = 0 is discarded (these correspond to guaranteed failures,

or adding the constant random variable 0) and each pi = 1 is also discarded, but

represents a (+1) shift in index for the final pmf (guaranteed successes, or adding

the constant random variable 1).

Finally, the ShiftConvolvePoibin package offers the user the option of forgoing

any exponential shift if one wants to compute the entire pmf rather than a tail.

4 Comparative analysis

In this section we look at the performance of the exact methods DFT-CF, DC-FFT

and ShiftConvolvePoibin, as well as the approximation method SA. We start with

the analysis of the accuracy of the computed right tail probability.
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Figure 2: Failures of SA. The panels highlight regions where SA fails to accurately compute the right tail probability.
Here, N = 10000 and the pi were sampled uniformly from [0, 1]. (A) The computed right tail probability (p-value)
reported by SA and the accurate DC. (B) The corresponding (log base 10 of) the relative error where we added for
reference the significantly smaller relative error of ShiftConvolve. The performance of SA is of particular concern for
s0 ≤ 4000 as it reports p-values that are smaller than 0.1 giving the user no indication that it might be off from the
correct tail probability which is close to 1.

4.1 Accuracy

We first look only at SA and ShiftConvolve. Panel B of Figure 2 confirms that SA

offers a good relative accuracy for most of the range of values s0 for which the tail

probability is small (panel A), however, for extremely large values of s0 the relative

accuracy is compromised. More alarming is the fact that for values of s0 < 4000 SA

consistently and inaccurately reports very small tail probabilities instead of values

close to 1. In addition, SA occasionally reports probabilities that are larger than 1.

Figures 3 and 4 as well as Supplementary Figures 6 and 7 confirm what we noted

above: DFT-CF and DC-FFT cannot recover entries that are smaller than approxi-

mately 10−16. SA’s performance in those figures is consistent with Figure 2 analyzed

above: its accuracy is compromised as we are close to the maximal possible value

and it is significantly off when the p-value is close to 1. In contrast, ShiftConvolve

16



retains very good accuracy (10 accurate digits or more) throughout the entire range

of values.

We also note that for the more skewed Beta(3, 0.1) distribution with higher

proportions of 1s present (due to roundoff errors), the SA algorithm failed to run,

returning an error (as in panel C of Supplementary Figure 6, where the blue curve

is absent). Similarly, DC-FFT breaks when N is very large (N ≥ 5.5 · 105).

4.2 Complexity / runtime

The memory and runtime complexities of an algorithm are important practical con-

siderations. In our case the memory complexity of all the procedures is linear, or

O(N), but their runtimes differ considerably.

Starting with the approximation methods, they all require computing at least a

couple of moments of the distribution hence they are typically O(N), which is clearly

the case for the normal approximation, as well as the refined normal approximation

(RNA) mentioned in [5], but it also applies to the more computationally-intensive

SA. The computationally-demanding part of SA is finding the desired exponential

shift θ but in practice this requires evaluating the MGF at only a small number of

candidate values of θ so the number of operations of this step is still O(N). This is

borne out empirically in panel B of Figure 5 where the execution time of SA follows

a line of slope 1 in log-log scale.

As for the exact methods, the runtime complexity of DC is O (N2): there are

N steps (the outer loop of Algorithm 1 in [1]) and the number of operations in the

kth step is O(k). Moving on to DFT-CF, as noted by Madsen et al., its runtime

17
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Figure 3: Right tail probability. The panels show the (log of the) computed right tail probability (p-value) for
varying settings of the parameters. For the corresponding relative errors see Figure 4. (A) N = 100, pi sampled
uniformly. DFT-CF does not always extend across the entire range of possible values of the statistic because it
reports 0s (log is −∞ in some cases). (B) N = 500, pi sampled uniformly. (C) N = 1000, pi sampled uniformly. (D)
N = 5000, pi sampled uniformly. (E) N = 10000, pi sampled uniformly. (F) N = 50000, pi sampled uniformly.

18



A. B.

0 20 40 60 80 100

−
20

0
10

20
30

40
50

S0

lo
g1

0(
R

el
at

iv
e 

E
rr

or
)

ShiftConvolve
DFT−CF
DC−FFT
SA

0 100 200 300 400 500

−
20

0
10

20
30

40
50

S0

lo
g1

0(
R

el
at

iv
e 

E
rr

or
)

C. D.

0 200 400 600 800 1000

−
20

0
10

20
30

40
50

S0

lo
g1

0(
R

el
at

iv
e 

E
rr

or
)

0 1000 2000 3000 4000 5000

−
20

0
10

20
30

40
50

S0

lo
g1

0(
R

el
at

iv
e 

E
rr

or
)

E. F.

0 2000 4000 6000 8000 10000

−
20

0
10

20
30

40
50

S0

lo
g1

0(
R

el
at

iv
e 

E
rr

or
)

0 10000 20000 30000 40000 50000

−
20

0
10

20
30

40
50

S0

lo
g1

0(
R

el
at

iv
e 

E
rr

or
)

Figure 4: Gauging the accuracy. The panels show the (log of the) relative error (with DC taken as the gold
standard) in computing the right tail probability for varying settings of the parameters. See Figure 3 for the right
tail probability itself. (A) N = 100, pi sampled uniformly. (B) N = 500, pi sampled uniformly. (C) N = 1000, pi
sampled uniformly. (D) N = 5000, pi sampled uniformly. (E) N = 10000, pi sampled uniformly. (F) N = 50000, pi
sampled uniformly.
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Figure 5: Runtime comparison. The panels yield the runtime of the various procedures we consider (panel A is
in natural scale whereas panel B is in log-log scale). DC-FFT was run in its default setting of M = 2 (the missing
point for N = 106 is due to the its failure on that input size). Each data point represents the average runtime over 10
applications of the procedure each using an independently and uniformly drawn N -dimensional vector of Bernoulli
success probabilities (different vector for each of the 10 applications). DC (absolute) is Algorithm 1 of Biscarri et
al. and DC (log-space) is a version of DC that is part of the ShiftConvolvePoibin package and that works with logs
to extend DC’s dynamic range. In panel B we added short line segments of slopes m = 1 and m = 2 for reference.

complexity is also O (N2) because this is the complexity of the part of the procedure

that computes the characteristic function (CF) and inverting it is done using FFT

in O (N logN). Again, these quadratic complexities can be observed in panel B of

Figure 5 where the execution times of DFT-CF and DC (we have both a version that

works in log-space as well as the default version) follow a line of slope 2 in log-log

scale.

Biscarri et al. empirically demonstrated that DC-FFT is significantly faster than

DFT-CF but did not offer a complexity analysis of DC-FFT and in fact its runtime

complexity varies with the parameter M : with M = N the runtime is the same

O
(
N (logN)2) as ShiftConvolve’s (see our analysis below) but with its default setting

ofM = 2, or any other constant, it is actuallyO (N2) (as can be observed in Figure 5).

Biscarri et al. also suggest a heuristic of choosing M = max
{

2, 2[log2(N/750)]
}

, where
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[x] is the round-to-nearest-integer function which again has the same asymptotic

complexity of O
(
N (logN)2) as when M = N , although in practice it can be much

faster for any given N (Supplementary Figure 8).

The runtime complexity of our ShiftConvolve is O
(
N (logN)2). Indeed, assum-

ing that N = 2K there are K steps each of which consists of using FFT to con-

volve pairs of equal-length vectors: at the kth step there are N/2k pairwise convo-

lutions of 2k-dimensional vectors. Hence the number of operations in the kth step is

O
(
N/2k · 2k log 2k

)
= O (N · k) and summing over k = 1, . . . , K we get the stated

O (N ·K2).

Note that the modifications that we made to speed up Algorithm 2 do not change

its runtime complexity. Rather, the improvement is in the constant. Specifically, in

Algorithm 2 we compute the n-dimensional inverse DFT u = D−1 (vi � vj) (line 12),

as well as the 2n-dimensional DFT of the padded u (line 14). Compare that with

applying the same n-dimensional inverse DFT u = D−1 (vi � vj) in Algorithm 3 (line

13), as well as the n-dimensional (rather than 2n-dimensional) DFT of u � ω (line

14). The former requires about 50% more work, hence ShiftConvolve’s improvement

offers a reduction of about 50% in the runtime for large N .

ShiftConvolve differs from DC-FFT with its default setting of M = N by em-

ploying the exponential shift and its different approach to FFT-based convolution

outlined in Algorithm 3. While the two algorithms share the same runtime complex-

ity we found that in practice ShiftConvolve is typically significantly faster (Supple-

mentary Figure 8). In fact, we observed that ShiftConvolve speed is comparable to

DC-FFT’s when using the above formula of M = max
{

2, 2[log2(N/750)]
}

(Supplemen-
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tary Figure 8).

Generally, the version of ShiftConvolve that uses minFFT is slightly faster than

the version the uses FFTW, hence we used the former version in our runtime bench-

marks. All timing runs were executed on a 3.2GHz Intel Core i7 MacMini with 32GB

of RAM.

5 Discussion

Madsen et al. pointed out that DFT-CF fails to accurately recover small tail proba-

bilities of the PBD resulting in extremely large relative errors. As we show here, the

same applies to DC-FFT, which is also an FFT-based exact algorithm for computing

the PBD.

As an alternative Madsen et al. offer a saddle point approximation method (SA),

which does a significantly better job at recovering these small tail probabilities.

However, SA has its own accuracy issues as we approach the maximal possible value of

N , as well as when the right tail probability is rather large. The latter is particularly

troubling because the typical user will not be aware that the small p-value that SA

reports is in fact very close to 1 (Figure 2).

Following [7, 6, 10] our proposed solution to this problem combines the same

exponential shift (sometime referred to as an exponential tilt) that the saddlepoint

approximation is based on with the FFT-based exact method. Specifically, Shift-

ConvolvePoibin uses an exponential shift combined with a souped-up version of the

FFT-based convolution by aggregated pairs approach as implemented in DC-FFT

22



(M = N). The result is a relatively fast exact algorithm that accurately computes

tail probabilities across the entire range of the PBD.

In terms of runtime complexity at O
(
N (logN)2) ShiftConvolve is equivalent to

DC-FFT (M = N), however both DFT-CF as well as DC-FFT with its default

setting of M = 2 have a runtime complexity of O (N2) which makes a significant

difference for large N .

It is worth noting that Biscarri et al. recommend using the refined normal ap-

proximation (RNA) for N ≥ 105, however Supplementary Figure 9 shows that as far

as computing small tail probabilities SA does a significantly better job than RNA

and both are inferior when compared with the accuracy of ShiftConvolve.

In terms of future research, while in practice ShiftConvolve is accurate throughout

the entire range of possible values it would be useful to obtain upper bounds on its

cumulative numerical error which can then be compared with the computed result

to guarantee its accuracy (cf. [14]). A related point is that ShiftConvolve is designed

to accurately recover the relevant section of the pmf (panel B of Figure 1) however

it is worth noting that a few well-selected shifts θ0 should allow us to accurately

recover the entire pmf. Regardless, the ShiftConvolvePoibin package allows the user

to compute the entire PBD while bypassing the exponential shift. As such it is

competitive with the fastest exact methods in this category.

The ShiftConvolvePoibin package is available to download from

https://github.com/andrew12678/ShiftConvolve
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E. SA gets as high as 400 F.
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Figure 6: Right tail probability (II). Similarly to Figure 3 the panels show the (log of the) computed right tail
probability (p-value) for additional settings of the parameters. For the corresponding relative errors see Supple-
mentary Figure 7. (A) N = 104, pi ∼ U(0, 1). (B) N = 104, pi ∼ Beta(0.1, 3). (C) N = 104, pi ∼ Beta(3, 0.1).
Note that in this example with higher proportions of 1s present (due to roundoff errors) the SA algorithm failed to
run, returning an error where the blue curve is absent. (D) N = 104, pi ∼ [0.5 · Beta(3, 0.1) + 0.5 · Beta(0.1, 3)] (E)
N = 104, pi ∼ Beta(3, 3). (F) N = 104, pi ∼ [0.5 · Beta(3, 10) + 0.5 · Beta(10, 3)].
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Figure 7: Gauging the accuracy. Similarly to Figure 4 the panels show the (log of the) relative error in
computing the right tail for varying settings of the parameters. See Figure 6 for the right tail probability it-
self. (A) N = 104, pi ∼ U(0, 1). (B) N = 104, pi ∼ Beta(0.1, 3). (C) N = 104, pi ∼ Beta(3, 0.1).
(D) N = 104, pi ∼ [0.5 · Beta(3, 0.1) + 0.5 · Beta(0.1, 3)] (E) N = 104, pi ∼ Beta(3, 3). (F) N = 104,
pi ∼ [0.5 · Beta(3, 10) + 0.5 · Beta(10, 3)].
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Figure 8: Runtime: DC-FFT (varyingM) and ShiftConvolve. The runtime of DC-FFT using different settings
of the parameter M and ShiftConvolve. Unfortunately we could not get DC-FFT to work for N ≥ 525 · 103. A line
segment of slope 1 was added for reference.

28



A. B.

0 20 40 60 80 100

−
50

−
40

−
30

−
20

−
10

0

S0

lo
g1

0 
C

om
pu

te
d 

p−
va

lu
e

DC
RNA
SA

0 20 40 60 80 100

−
15

−
10

−
5

0
5

10
S0

lo
g1

0 
R

el
at

iv
e 

E
rr

or

ShiftConvolve
RNA
SA

C. D.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−
40

00
0

−
20

00
0

0

S0

lo
g1

0 
C

om
pu

te
d 

p−
va

lu
e

DC
RNA
SA

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
50

10
0

15
0

20
0

25
0

30
0

S0

lo
g1

0 
R

el
at

iv
e 

E
rr

or

ShiftConvolve
RNA
SA

Figure 9: Inaccuracy of RNA. The panels show examples where RNA fails to accurately compute the right tail
probability. (A) N = 100, pi sampled uniformly. The computed right tail probability (p-value) reported by RNA
compared with the accurate DC. (B) The corresponding (log base 10 of) the relative error where we added for
reference the significantly smaller relative error of ShiftConvolve. (C) N = 105. pi sampled uniformly. (D) The
corresponding relative error.
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