
26 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Online Learning for Adaptive Video Streaming in Mobile Networks

Published version:

DOI:10.1145/3460819

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1846117 since 2022-03-05T17:18:55Z



ar
X

iv
:1

90
5.

11
70

5v
2 

 [
cs

.M
M

] 
 7

 N
ov

 2
01

9
1

Optimizing Adaptive Video Streaming in Mobile

Networks via Online Learning
Theodoros Karagkioules, Georgios S. Paschos, Nikolaos Liakopoulos, Atillio Fiandrotti, Dimitrios Tsilimantos

and Marco Cagnazzo

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—In this paper, we propose a novel algorithm for video
rate adaptation in HTTP Adaptive Streaming (HAS), based on
online learning. The proposed algorithm, named Learn2Adapt
(L2A), is shown to provide a robust rate adaptation strat-
egy which, unlike most of the state-of-the-art techniques, does
not require parameter tuning, channel model assumptions or
application-specific adjustments. These properties make it very
suitable for mobile users, who typically experience fast variations
in channel characteristics. Simulations show that L2A improves
on the overall Quality of Experience (QoE) and in particular the
average streaming rate, a result obtained independently of the
channel and application scenarios.

Index Terms—Adaptive video streaming, online learning

I. INTRODUCTION

V IDEO streaming accounts nowadays for more than 75%

of the global Internet traffic, a percentage projected to

reach a striking 82% by 2022 [1]. To facilitate this increasing

demand for video consumption, HAS has been adopted as the

main technology for video streaming over the Internet, gaining

significant popularity as it allows video clients to seamlessly

adapt to changing network conditions and video content to

be distributed over existing web service infrastructures. In

2012, the Moving Picture Expert Group (MPEG) consortium

created the Dynamic Adaptive Streaming over HTTP (DASH)

standard [2], that has since become the dominant HAS method.

According to DASH, the video content is first encoded

at multiple quality representations (e.g., multiple resolutions

to meet the diverse display capabilities of different types

of user devices and multiple bitrates to adapt to network

characteristics) and is made available on an HTTP server. Each

quality representation is organized in smaller and indepen-

dently decodable files called segments; each segment typically

accounting for a few seconds of video. A client desiring

to access a video, initially fetches a manifest file from the

server, that contains the description of the segments (available

quality representations, bitrate of each segment, etc.). Then the

client deploys a rate adaptation algorithm, that sequentially

selects the appropriate bitrate for each segment, given network

conditions. Based on the bitrate indication, the client then
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Télécom Paris, LTCI, Institut Polytechnique de Paris, France, e-mail:
firstname.lastname@telecom-paris.fr.

selects the corresponding quality representation and indepen-

dently requests and downloads every segment at a finite-sized

queue, known as the buffer. By controlling the bitrate for

each segment, rate adaptation algorithms aim at matching the

video download (or streaming) rate to the channel rate. If

the video consumption (or playback) rate is larger than the

download rate, the buffer will deplete, eventually leading to

a re-buffering event (i.e. playback interruption). In essence, a

rate adaptation algorithm is an optimization solution with the

objective of maximizing the streamed video bitrate, while at

the same time ensuring uninterrupted and stable (i.e. minimal

bitrate switches) streaming.

Constant developments in cellular networking technology,

such as 4G’s Long Term Evolution (LTE) or the anticipated

5G, are changing the landscape of mobile high-bandwidth

multimedia applications, that are becoming fast an integral part

of the mobile clients’ life. In particular, the demand for mobile

video streaming has advanced at unprecedented growth rates

over the last years and is expected to reach 79% of the global

mobile data traffic by 2022 [3]. Nonetheless, cellular networks

are typically characterized by throughput variation, caused

by radio propagation effects, such as scattering, fast fading,

path loss and shadowing or handover events; that occur when

a data session is transferred to another cell. Such network

conditions pose significant challenges on mobile streaming

solutions, where optimal bitrate adaptation over fluctuating

wireless channels remains an elusive task. This paper aims

to offer a novel perspective on the mobile bitrate adaptation

problem, under the scope of online optimization.

As the DASH standard does not specify a particular rate

adaptation algorithm, a plethora of proposed solutions exists

in both scientific literature and actual industry practices. A

performance evaluation of recent rate adaptation algorithms in

mobile networks [4], showed that fixed-rule schemes may re-

quire parameter tuning according to the considered network or

user scenario, and thus cannot generalize well beyond a certain

scope of usage. In an effort to overcome this limitation, some

algorithms resort to learning techniques or control theoretic

approaches to attain optimal bitrate adaptation. However, their

practical implementation on mobile devices may be hindered

by energy-demanding architectures [5] or by the complexity

of exploring the complete optimization space [6]. In this work

we propose a novel rate adaptation algorithm based on Online

Convex Optimization (OCO) [7], that is independent of any

parameter selection concerning the streaming environment and

does not require computationally heavy operations.

OCO has emerged as a very effective online learning

http://arxiv.org/abs/1905.11705v2
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framework, that is also suitable for mobile deployment, in

terms of resource requirements. According to OCO, an agent

learns to make sequential decisions in order to minimize an

adversarial loss function, unknown at decision time. OCO is

“model-free”, as no statistical assumption is required, while at

the same time it provides tractable feasibility and performance

guarantees [8]. Having already been proposed for problems

with rapidly fluctuating environments, such as cloud resource

reservation management [9] and dynamic network resource

allocation [10], it constitutes an appealing candidate for HAS

as well. However, the application of OCO in HAS is not a

straightforward task. Given its discrete decision space (set

of available quality representations) and instantaneous state-

dependent constraints (finite-sized buffer queue), HAS opti-

mization does not fall directly in the class of OCO problems.

This work provides multiple contributions towards formulat-

ing the HAS optimization problem under the OCO framework.

First, we model the adaptive streaming client by a learning

agent, whose objective is to maximize the average bitrate of

a streaming session, subject to scheduling constraints of the

buffer queue. In general, the choice of the objective function

is made under the assumption that higher average bitrate

typically corresponds to higher video quality, when comparing

the same video in the same resolution. The constraints are

chosen relative to the buffer queue, since re-buffering events

can significantly influence QoE [11]. Second, we fulfill the

OCO requirement that both the set of decisions and constraint

functions must be convex by a) allowing the agent to make

decisions on the quality representation of each segment, ac-

cording to a probability distribution for the bitrate and by b)

deriving a set of convex constraints associated with the upper

and lower bound of the finite buffer. We achieve the latter

by making a relaxation to an unbounded buffer that adheres

to time-averaging constraints. Third, we model the channel

rate evolution by an adversary, that decides the cost of each

decision a posteriori. We eventually solve the HAS optimiza-

tion problem by proposing Learn2Adapt (L2A), a novel rate

adaptation algorithm based on the OCO theory. In our trace-

based simulations, our proposed method proves to be robust,

providing consistently better QoE, when evaluated against

reference state-of-the-art rate adaptation algorithms in a wide

spectrum of possible network and streaming conditions.

II. RELATED WORK

Video rate adaptation schemes can be broadly classified

according to the module that implements the rate adaptation

logic. According to the DASH standard, multimedia delivery

requires a server-client architecture, thus the rate adaptation

module can be hosted at either of the two components. Server-

side rate adaptation methods, require no cooperation from the

client and resort to traffic shaping methods at the server-side

alone [12]. Such approaches may produce high overhead on

the server and thus make scaling with the number of clients a

real challenge. Additionally, network-assisted rate adaptation

methods have also been proposed, that allow HAS clients to

take network information into consideration for optimizing

the rate adaptation process [13], [14]. Nonetheless, most of

the proposed rate adaptation schemes, reside at the client-

side, where bitrate decisions are made according to either

network or application-level information, a combination of

both, or even cross-layer metrics. In the following, we focus

our analysis on such client-side approaches, as they are more

relevant and thus comparable to the proposed method herein.

Primarily, heuristic approaches have been proposed for

client-side rate adaptation, that can be mainly classified into

three categories according to the considered input. First,

throughput-based methods estimate the available channel rate

to decide on the bitrate of the streamed video. For instance,

Li et al. [15] propose, PANDA, a rate adaptation module

that uses a moving average filter to estimate the available

throughput and schedules the download of every segment, in a

way that reduces bitrate oscillations, particularly in scenarios

with multiple clients. A similar throughput-based strategy,

called FESTIVE [16], focuses primarily on fairness amongst

all clients. Second, buffer-based methods use application-level

signals, such as the instantaneous buffer level to perform the

adaptation. A notable such method comes from Huang et al.

[17], who propose BBA; a mapping between instantaneous

buffer values to video bitrate levels. Third, hybrid methods

may use a combination of inputs. In that direction, Kim

et al. [18] propose XMAS, a hybrid method that deploys a

traffic shaping scheme, based on both throughput estimates and

playback buffer levels, while Xie et al. [19] propose piStream;

a physical-layer informed rate adaptation strategy. Lately, new

Smartphone devices have enabled the fusion of multiple sensor

readings to infer context in the mobile client’s environment.

To this end, Mekki et al. [20] solicit incorporating a user’s

inferred location into the decision process.

Recently, there has been a shift in the scientific literature, in

regard to the methods used in the rate adaptation design; pri-

marily towards optimization and control theoretic approaches.

Most notably, Spiteri et al. [21] formulate rate adaptation as

a utility maximization problem and devise BOLA, an online

control algorithm, that makes use of the instantaneous buffer

occupancy. Also in the direction of control-theoretic schemes,

MPC, by Yin et al. [6], combines buffer occupancy and

throughput predictions for optimal rate adaptation.

In regard to rate adaptation methods based on optimization

and in particular on dynamic programming, Zhou et al. [22],

propose mDASH and formulate the rate adaptation logic as

a Markov Decision Process (MDP) where the buffer size,

bandwidth conditions and bitrate stability are taken as Markov

state variables. Similarly, Bokani et al. [23] model the rate

adaptation logic as an MDP problem as well and incorporate

mobility by including vehicular environments. Some of the

main drawbacks of MDP-based solutions are computational

load and the need to know the statistics of the network and

video content in advance.

Model-free Reinforcement Learning (RL) approaches, such

as Q-Learning (QL), have also been investigated for the design

of rate adaptation methods. Claeys et al. [24] propose a

QL-based HAS client, allowing dynamical adjustment of the

streaming behavior to the perceived network state. While QL

approaches provably converge to the optimal policy, provided

that their parameters are chosen correctly, the convergence
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speed becomes an issue when trying to cope with previously

unseen channel or video content patterns.

Lately, Deep-Learning (DL) approaches have also been pro-

posed for rate adaptation, presenting promising merits in both

accuracy and convergence of bitrate decisions. Pensieve [25]

is a rate adaptation DL framework that does not rely on pre-

programmed models or assumptions about the environment,

but instead gradually learns the best policy for bitrate decisions

through observation and experience. Another DL approach is

called D-DASH [5], that combines DL and RL mechanisms

and achieves a good trade-off between policy optimality and

convergence speed during the decision process. Nonetheless,

the deployment of DL in mobile devices is typically associ-

ated with high computational and energy demands, especially

during training phases and thus external (hardware) resources

may be required to assist in the rate adaptation process.

Huang et al. [26] have recently explored combinatorial

optimization for rate adaptation and have proposed Hindsight,

a near-optimal, linear-time and linear-space greedy algorithm.

During our literature review, we have identified a require-

ment for a rate adaptation approach, that is not only scalable

to the number of clients, but also light in computation and

that does not rely on any modelling assumptions. We attempt

to fulfill these prerequisites with our novel method proposed

in Section IV. A more detailed survey on adaptive streaming

solutions can be found in [27].

III. SYSTEM MODEL

This section introduces the model for the media content and

client operations used in the rest of this work. Moreover, the

notation is summarized in Table I.

A. Media model

Let us assume that a video sequence of duration D seconds

is stored on a server organized in the form of T = ⌈D/V ⌉
segments, each of constant playback duration V . Each segment

is encoded at N quality representations at increasing target

bitrate r ∈ {r1, . . . , rN}. For a given quality representation

n ∈ {1, . . . , N}, the actual size of the t-th segment (t ∈
{1, . . . , T }) – denoted St,n and measured in bits – is a function

of the segment content. In the following, we will assume that

the server is connected to the client across a channel of rate

Ct and thus the t-th segment is downloaded across the channel

in
St,n

Ct
seconds.

B. Client model

The client issues a request to the server, for the t-th segment

and then waits for that segment to be fully downloaded before

requesting the (t + 1)-th segment. We refer to the, typically

variable, interval between two consecutive requests as a deci-

sion epoch. Since the content is downloaded in T segments,

the total number of decision epochs is T and referred to as the

horizon. At the beginning of the t-th epoch, the client selects

the quality representation xt ∈ X = {1, . . .N} for segment t,
corresponding to the bitrate indication rxt

∈ {r1, . . . , rN} of

the deployed rate adaptation algorithm.

TABLE I: Notations
Notation Definition Units

D Video content total duration seconds
V Segment duration seconds
T Streaming horizon segments
N Quality representations scalar
xt Selected quality representation for segment t scalar
rxt Bitrate corresponding to quality xt kbps
St,n File size of segment t in n-th quality kbits
ωt Decision distribution probability vector
ω∗ Benchmark distribution probability vector
Q Virtual queue scalar
VL Cautiousness parameter scalar
α Step-size scalar
β Target switching rate switches per epoch
γ Switch counter scalar
Ct Channel rate at epoch t kbps
Bt Buffer level at epoch t seconds

Bmax Maximum buffer level seconds
∆t Buffer delay seconds

Let Bt represent the buffer level at the beginning of the t-th
epoch, measured in seconds of buffered video at the client. The

downloaded segments are stored in a buffer whose size may

not exceed an upper bound Bmax, that exists normally due

to memory constraints of the mobile device. Upon completely

downloading the t-th segment, Bt increases by V seconds.

However, due to the concurrent playback of the buffered

segments, Bt will also decrease by the amount of time required

to download the t-th segment, which is equal to
St,xt

Ct
seconds

(as long as Bt > 0). So, the buffer level evolves between two

consecutive epochs according to:

Bt+1 =

[

Bt −
St,xt

Ct

]+

+ V −∆t, (1)

where [x]+ , max(0, x). A delay ∆t =
[

Bt − St,xt

Ct
+ V −Bmax

]+

is introduced to account

for the upper bound Bmax of the buffer size. In other words,

if Bt− St,xt

Ct
+V < Bmax, the (t+1)-th segment is requested

immediately and ∆t = 0. Otherwise, the request for the

(t + 1)-th segment is delayed by ∆t seconds, to allow the

buffer to drop to Bmax. This delay protects against buffer

overflow incidents, which occur when the buffer surpasses

Bmax and creates the characteristic bursty traffic of HAS

[28]. A buffer underflow occurs when the instantaneous buffer

level drops below zero, causing a stall in the video playback,

an event that significantly degrades the QoE [11].

In the next section we provide a framework which allows us

to design a learning algorithm, that provably optimizes video

quality subject to keeping the buffer asymptotically away from

the two limits.

IV. ADAPTIVE STREAMING PROBLEM FORMULATION

This section provides an algorithmic solution based on the

theory of OCO [7]. In order to cast the video streaming opti-

mization problem as an OCO with budget constraints problem,

we first propose a relaxation on the finite buffer queue and then

we modify the formulation to convexify the decision space.

In the following, we present our online-learning algorithm

Learn2Adapt (L2A), based on gradient descent and we provide

theoretical guarantees for its performance.
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A. OCO formulation

We formulate the rate adaptation problem as a constrained

OCO problem, where the goal is to minimize the cumulative

losses
∑T

t=1 ft(xt) (referring to the average bitrate of the

downloaded segments) while keeping the cumulative con-

straint functions
∑T

t=1 g
i
t(xt), ∀i = 1, 2, negative (referring to

buffer underflow and overflow); see also the relevant literature

[29], [30]. In the OCO framework, functions ft, g
i
t ∀i = 1, 2

are chosen by an adversary and are unknown at decision time.

We will relate these functions to the random evolution of the

channel rate Ct, which in nature is not adversarial. Never-

theless, the adversarial setting is more general and includes

any – potentially time-varying – distribution of Ct, which in

turn bestows on our algorithm superior robustness. Next, we

explain how these functions are used in our system.

Recall the set of quality representations X , and let xt ∈ X
be the decision for the quality representation of the segment to

be downloaded in epoch t. Consider the following functions:

f̃t(xt) , −rxt
(2)

g̃1t (xt) ,
St,xt

Ct
− V, (3)

g̃2t (xt) , V − St,xt

Ct
− Bmax

T
, (4)

where (2) captures the utility (higher bitrate yields smaller

losses). (3)-(4) express the buffer displacement, which will be

used to model the buffer underflow and overflow constraints,

respectively. A high quality representation xt combined with a

low channel rate Ct will prolong download time
St,xt

Ct
, which

will result in high buffer consumption. Since Ct is unknown

at decision time of xt, it is impossible to know the values of

g̃it(xt), ∀i = 1, 2. Our approach therefore, is to learn the best

xt based on our estimation of g̃it(xt), ∀i = 1, 2.

To cast the above problem as OCO with budget constraints,

we propose the following steps:

• First, we provide a relaxation to the hard constraints of the

buffer model.

• Second, we convexify the decision set by randomization.

We associate a probability to each decision, and we learn

the optimal probability distribution for deciding the quality

representation to download at each epoch.

B. Buffer constraints

Here we explain how we use the cumulative constraint

functions
∑T

t=1 g̃
i
t(xt), ∀i = 1, 2 to model buffer underflow

and overflow, respectively. The buffer evolves according to

(1) and ensuring 0 ≤ Bt ≤ Bmax, ∀t, involves in principle

a very complicated control problem, which in the presence of

unknown adversarial Ct is exacerbated.

To avoid computationally heavy approaches and to arrive

at a simple (yet robust) solution, we thus seek an alternative

approach. In that direction, we treat the buffer as an infinite

queue, with the simpler (compared to (1)) update rule:

Bt+1 = Bt+V −St,xt
/Ct, where now no additional delay ∆t

is ever imposed on the system. By this, we allow instantaneous

violation of the budget, but we utilize a penalty which aims

to maintain the buffer on the [0, Bmax] range on average. In

particular, using (3)-(4), we capture in g̃it(xt), ∀i = 1, 2 the

instantaneous buffer displacement on both directions (mea-

sured in seconds) and by requiring the cumulative constraint
∑T

t=1 g̃
i
t(xt) ≤ 0, ∀i = 1, 2, we ensure that on average Bt

remains in the non-negative regime below Bmax. A benefit

is that these constraints are in the realm of OCO theory,

and therefore allow us to design a simple learning algorithm

that provably satisfies them. Overall, our approach here is

to apply a loosely coupled control to the buffer constraints,

by tolerating instantaneous violations and ensuring that in the

long-term only a few are experienced.

C. Convexification

To obtain a convex decision set, we use a convexification

method based on randomization of the decision process [31].

Consider the probability simplex:

Ω = {ω ∈ R
N : ω ≥ 0 ∧ ‖ω‖1 = 1},

where ωn = P(x = n) denotes the probability that we decide

x = n ∈ {1, . . . , N} and Ω is a convex set. Thus, instead

of learning directly the decision xt, we learn the optimal

probability ωt = (ωt,n)n=1,...,N of picking xt from the integer

set X . Given a decision ωt, the actual quality representation

will be chosen according to the expectation of the correspond-

ing utility, i.e. xt ∈ argminx∈X |rx −
∑N

n=1 ωt,nrn|. The

functions of interest become now random processes and we

must appropriately modify them by taking expectations with

respect only to ωt and not to the randomness of Ct:

ft(ωt) , −E[rxt
] = −

N
∑

n=1

ωt,nrn (5)

g1t (ωt) , E

[

St,xt

Ct
− V

]

=

∑N
n=1 ωt,nSt,n

Ct
− V (6)

g2t (ωt) , E

[

V − St,xt

Ct
− Bmax

T

]

= V −
∑N

n=1 ωt,nSt,n

Ct
− Bmax

T
.

(7)
Given the loss function and constraints above, we formulate

the constrained OCO problem, that we solve in Section V:

min
ω∈Ω

T
∑

t=1

ft(ω) s.t.

T
∑

t=1

git(ω) ≤ 0 ∀i = 1, 2.

The following are true for functions (5)-(7) and our surro-

gate convex problem:

• The diameter of Ω, defined as the largest Euclidean dis-

tance between any two vectors, is
√
N .

• Functions ft and git, ∀i = 1, 2 are smooth, bounded

and have bounded gradients. Specifically, ∀t,ω, i = 1, 2:

|ft(ω)| ≤ rN ,

|g1t (ω)| ≤ max

{∣

∣

∣

∣

Smin

Cmax
− V

∣

∣

∣

∣

,

∣

∣

∣

∣

Smax

Cmin
− V

∣

∣

∣

∣

}

,

|g2t (ω)| ≤ max

{
∣

∣

∣

∣

V − Smin

Cmax
− Bmax

T

∣

∣

∣

∣

,

∣

∣

∣

∣

V − Smax

Cmin
− Bmax

T

∣

∣

∣

∣

}

,

‖∇ft(ω)‖ ≤

√

√

√

√

N
∑

n=1

r2n, ‖∇git(ω)‖ ≤

√

√

√

√

N
∑

n=1

(

St,n

Cmin

)2

,

where Ct ∈ [Cmin, Cmax], St,j ∈ [Smin, Smax] and

∇ft(ω),∇git(ω), ∀i = 1, 2 denote the gradients.
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D. Regret metric

At every decision epoch t = 1, 2, . . . T the following events

occur in succession:

(a) the agent computes ωt ∈ Ω according to an algorithm,

(b) the agent chooses xt ∈ argminx∈X |rx −
∑N

n=1 ωt,nrn|,
(c) an adversary decides Ct, and the loss function f̃t(ωt) and

the constraint functions g̃it(ωt), ∀i = 1, 2 are determined

using (2)-(4), and then used to measure the actual loss

and buffer displacement,

(d) the following forms of feedback are provided to the agent:

(i) the value of Ct, (ii) the functions ft, g
i
t, ∀i = 1, 2,

(iii) the gradients ∇ft(ωt),∇git(ωt), ∀i = 1, 2.

The feedback above is used by the agent to eventually deter-

mine the gradient vectors ∇ft+1(ωt+1),∇git+1(ωt+1), ∀i =
1, 2. We now define the performance metric in our problem

which consists of two parts: the regret of an algorithm and the

i-th constraint residual, defined as:

RT =
T
∑

t=1

ft(ωt)−
T
∑

t=1

ft(ω
∗) and V i

T =
T
∑

t=1

git(ωt),

respectively. Here ω∗ ∈ Ω is a benchmark distribution, that

minimizes the losses in hindsight, with knowledge of the

functions ft, g
i
t, ∀i = 1, 2. This benchmark satisfies the

cumulative constraints every K:

ω∗ ∈ argmin
ω∈Ω

T
∑

t=1

ft(ω)

s.t.

K+k−1
∑

t=k

git(ω) ≤ 0,

∀k = 1, . . . , T −K + 1, and ∀i = 1, 2.

This benchmark is first explained in [29], where the authors

prove that for any K = o(T ), a smart agent can learn to have

no regret, while satisfying the adversarial constraints. In our

case, picking K = T 1−ǫ, for small ǫ > 0, gives the best

approximation of our algorithms’ performance, allowing max-

imum freedom to the competing benchmark. If an algorithm

achieves both o(T ) regret and o(T ) constraint residual, then

it follows that as T → ∞ we have (i) RT /T → 0, hence our

algorithm has the same losses with (or “learns”) the benchmark

action, and (ii) V i
T /T → 0, ∀i = 1, 2, hence our algorithm

ensures the average constraint. Since the benchmark action is

the best a posteriori action, taken with knowledge of all the

revealed values of Ct, learning it is both remarkable and very

useful.

V. OCO SOLUTION

In this section, we propose a “no regret” algorithm to solve

the constrained OCO problem defined in the previous section.

We first provide the intuition behind the algorithm design and

the introduction of a switching budget, that allows the control

of the switching frequency for our algorithm. We then detail

the proposed algorithm, and finally provide some performance

bounds.

A. Learn to Adapt (L2A) algorithm

As a general note, a main challenge in such problems is

that the constraints git(ωt), ∀i = 1, 2 are not known when the

decision of ωt is taken. The OCO approach to this issue is to

predict such functions using a first order Taylor expansion of

git(ωt), ∀i = 1, 2 around ωt−1 evaluated at ωt [7]:

ĝit(ωt) , git−1(ωt−1)+〈∇git−1(ωt−1),ωt−ωt−1〉, ∀i = 1, 2.
(8)

We recall that in (8), only ωt is unknown at t, whereas ωt−1,

∇git−1(ωt−1) and git−1(ωt−1), ∀i = 1, 2 are known via the

obtained feedback.

Contrary to the standard (unconstrained) online gradient [7],

our algorithm must combine the objective and the constraint

functions. To this end, consider the regularized Lagrangian:

Lt(ω,Q(t)) =

2
∑

i=1

Qi(t)ĝ
i
t(ω) +VLf̂t(ω) +α||ωt −ωt−1||2,

where Qi(t) is the Lagrange multiplier, ĝit(ω) is the prediction

of the constraint function git(ω) from (8), VL is a cautious-

ness parameter that controls the trade-off between regret and

constraint residual, f̂t(ω) applies (8) to ft, α is the step-size

and ||ωt − ωt−1||2 is a regularization term that smooths the

decisions. Parameters VL and α are tuned for convergence

and their choices are given below. We mention here, that the

Lagrange multiplier Qi(t), ∀i = 1, 2 is updated in a dual

ascent approach, by accumulating the constraint deviations:

Qi(t+ 1) = [Qi(t) + ĝit(ωt)]
+, ∀i = 1, 2.

We further compound the online optimization problem by

introducing a switching budget. Let β ∈ (0, 1] be the maxi-

mum allowed reconfiguration frequency measured in quality

switches per epoch. The goal is to limit the number of changes

within the horizon to at most βT 1. This is a valuable property

that allows stability control for the following algorithm (Algo-

rithm 1), that takes a step in the direction of the sub-gradient

of the regularized Lagrangian.

Algorithm 1 Learn2Adapt (L2A)

Initialize: Q(1) = 0, ω0 ∈ S, t′ = 1
Parameters: cautiousness parameter VL, step size α, maxi-

mum allowed switch rate β, switch counter γ = 0
1: for all t ∈ {1, 2, . . . , T } do

2: if γ
t ≤ β then

3: ωt = projΩ

[

ωt−1 −
∑

t
j=t′

{VL∇fj−1(ωj−1)+
∑

2
i=1

Qi(j)∇gi
j−1(ωj−1)}

2α

]

4: t′ = t+ 1
5: γ ++
6: else

7: ωt = ωt−1

8: end if

9: Qi(t+ 1) = [Qi(t) + ĝit(ωt)]
+, ∀i = 1, 2

10: end for

Here projΩ [·] denotes the Euclidean projection on set Ω.

1While β may allow a switch at a given epoch t, ωt = ωt−1 is still a
valid decision.
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B. Performance guarantees

The main contribution of this work is the formulation the

rate adaptation problem in the constrained OCO framework

and the proposal of Learn2Adapt (L2A). In the following

we invoke the theorem from [29], to provide theoretical

performance guarantees for the Learn2Adapt algorithm. We

note here that although the following theoretical guarantees are

derived for β = 1, in the numerical evaluation of Section VI

we provide evidence that L2A performs well even for β < 1.

Theorem 1 (From [29]). For β = 1, choose small ǫ > 0,

fix K = o(T 1−ǫ), VL = T 1−ǫ/2, and α = VL

√
T . Then, the

Learn2Adapt (L2A) algorithm guarantees:

RT = O(T 1−ǫ/2), V i
T = O(T 1−ǫ/4), ∀i = 1, 2.

Effectively, this means that over time our algorithm learns

the best a-posteriori distribution ω∗, which neatly satisfies

the average constraints and minimizes the cumulative quality

losses. We experimentally verify below that the corresponding

choices xt made by sampling this distribution have extremely

well performing properties for video streaming adaptation.

VI. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of our proposed

rate adaptation algorithm against two reference rate adaptation

schemes, by experimenting with real mobile network traces

and video sequences, for two separate streaming applications

(Video on Demand (VoD) and live streaming) and under five

video streaming performance metrics.

A. Experimental setup

a) Network scenarios: In our evaluation, we use real

cellular network traces and in particular a data-set that includes

4G channel measurements for various mobility scenarios [32].

For our experiments, we have selected the static, pedestrian

and car scenarios (operator A therein), as realistic cases for no,

low and high mobility, respectively. The {static, pedestrian,

car} scenario consist of {12, 26, 41} traces with an aver-

age measurement duration of {17, 18, 23} min, respectively.

Cellular networks present significant challenges to the rate

adaptation process, as they are typically characterized by rapid

throughput fluctuation and short service outages; that may be

caused by radio propagation effects, low-coverage areas or

handover events. While these characteristics are realistically

depicted in the selected traces of [32], taking a step further in

our evaluation, we have designed a synthetic scenario consist-

ing of 20 traces, that is characterized by abrupt and steep

channel rate transitions. This so-called markovian scenario

emulates two channel levels (states) {0.75, 23.0} Mbps with a

0.05 state transition probability and is complementary to the

real traces; to present the rate adaptation algorithms with an

additional, even more demanding network scenario.

b) Video parameters: In [33] video sequences are en-

coded at multiple bitrates in conditions typical of Over-The-

Top (OTT) video delivery. We used 3 sequences: BBB, TOS

and Sintel, encoded in the H.264/AVC standard, at target

bitrates {0.37, 0.75, 1.5, 3.0, 5.8, 12.0, 17.0, 20.0} Mbps, cor-

responding to resolutions in {384 × 216, 640 × 360, 1024 ×
576, 1280× 720, 1920 × 1080, 3840 × 2160}, and organized

in DASH segments with duration V = 2s.

c) Streaming scenarios: In our experiments, we consider

a VoD streaming scenario and a live streaming scenario. For

the VoD scenario, we considered a maximum buffer value of

Bmax = 120s (60 segments). For the live streaming scenario,

we reduced the maximum buffer value to Bmax = 20s (10

segments), according to the tighter latency requirements. All

the figures below concern the case of VoD, while the results

for the live streaming scenario are presented in Table III.

d) Algorithms: We compare our method L2A, for β =
0.3 and β = 1, against RB, a throughput-based method and

BB, a buffer-based method, following the design principles and

parameters selection found in [15] and [21], respectively.

RB [15, Section VI] is a throughput-based rate adaptation

scheme based on a four-step adaptation model, where initially

the available network bandwidth is estimated using a proactive

probing mechanism, that is designed to minimize bitrate os-

cillations. Then, the throughput estimates are smoothed using

noise-filters to avoid errors due to throughput variation and

each segment download is scheduled according to inter-request

times, that would drive the buffer to the maximum level.

BB BOLA is a buffer-based rate adaptation algorithm that

uses Lyapunov optimization in order to indicate the bitrate

of each segment. Practically, the algorithm is designed to

maximize a joint utility function that rewards increases in the

average bitrate and penalizes stalls. The implemented variant,

called BOLA-O, mitigates bitrate oscillations by a form of

bitrate capping when switching to higher bitrates.

These rate adaptation methods are widely used in research,

each amongst the best performing methods of their class [4].

Regarding our method L2A, the presented results consider a

cautiousness parameter of VL = T 0.9 and step size of α =
VL

√
T . We note here that according to DASH, in case of a

stall, τ segments must be downloaded in order for the play-out

to resume. For all algorithms we considered τ = 2.

e) Video streaming performance metrics: We evaluate

the performance of our proposed method based on the video

streaming performance metrics presented in Table II. Average

bitrate models the average bitrate r̄ =
∑T

t=1
rxt

T of the received

video segments in a session, normalized over the maximum

average bitrate maxm∈M r̄m obtained for that session by any

adaptation method m ∈ M, where M is the set of all

evaluated methods. Streaming stability models the frequency

of bitrate switching, while streaming smoothness is associated

with the amplitude of the bitrate switches, i.e the absolute

bitrate difference between sequential segments. Both stability

and smoothness are normalized over the maximum attainable

value for each respective metric, while 1{Y} is an indicator

vector; with ones at the positions that condition Y is true,

and zeros otherwise. Additionally, we propose two metrics

associated with a) the frequency of stalls and b) their severity

(duration). With streaming consistency we measure the per-

centage of the user’s allocated time-budget (typically equal to

the video length D) that was spent actually consuming video

content (as opposed to stalling), while streaming continuity
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TABLE II: Video streaming performance metrics
Metric name Element evaluated Metric

Average bitrate Average video bitrate r̄
maxm∈M r̄m

Stability Bitrate switching frequency 1−

∑T
t=2

(

1{rxt
6=rxt−1

}

)

T−1

Smoothness Adaptation amplitude 1−

∑T
t=2 |rxt

−rxt−1
|

(rN−r1)(T−1)

Consistency Stall duration 1−

∑T
t=1 1

{

Bt−1<
St,xt
Ct

}

(

−Bt−1+
∑τ−1

k=0

St+k,xt+k
Ct+k

)

D

Continuity Frequency of stalls 1−

∑T
t=1 1

{

Bt−1<
St,xt
Ct

}

⌈ T
τ
⌉

expresses the percentage of segments that were downloaded

while play-out remained uninterrupted, assuming B0 = 0.

B. Results

In regard to the evaluation results, each point on Figure 1

corresponds to a score for each of the five performance metrics

and is the average result over all traces for the considered

network scenario. In particular, Figure 1(a) shows the perfor-

mance of a static user (no mobility), Figure 1(b) shows the

performance of a pedestrian user (low mobility), Figure 1(c)

shows a user while being mobile in a car (high mobility) and

Figure 1(d) corresponds to the artificial markovian scenario.

In Figure 1 L2A, our proposed method, registers significant

improvement in average bitrate, almost up to 45% against

RB and up to 20% against BB, for all studied real network

scenarios and for both the cases of restricted (β = 0.3)

and unrestricted (β = 1) switching. At the same time L2A

offers consistent (i.e without interruptions) streaming with

equivalent continuity to all the other methods, i.e. all methods

experience a few brief stalls during periods of very poor

channel quality. In regard to smoothness, all methods obtain

equivalent scores. Nonetheless, in regard to the stability metric,

L2A’s restricted switching variant (β = 0.3) achieves about

15% improvement in stability when compared to the case of

unrestricted (β = 1) switching; a result that is anticipated

from our algorithmic design. Additionally, L2A’s restricted

switching variant (β = 0.3) improves on stability by 25%
against BB. Comparing L2A and RB in stability, we observe

equivalent performance, yet RB is overall more conservative,

given the low average bitrate it obtained in all scenarios.

In the markovian network scenario depicted in Figure 1(d),

L2A performs 50% better against RB and 25% better against

BB in terms of average bitrate, while performing equally well,

or even better (i.e. against BB in stability), in all other metrics.

Thus L2A is robust against the channel fluctuations and doesn’t

require any assumption on the channel rate distribution.

In Figure 2(a), a sample path for the channel rate and the

bitrate selection for each method is presented for a randomly-

selected pedestrian-mobility trace, while, Figure 2(c) depicts

the evolution of the buffer for the same trace2. From these

plots, we can argue that L2A learns the volatile channel

distribution, in order to re-actively provide the highest bitrate

2We note here that in Figure 2, while some markers have been omitted for
clarity, the lines remain an accurate representation of the results.

(which is the optimization objective) and to pro-actively

protect the buffer from under-flowing (which is one of the

optimization constraints). While this ‘adaptive behavior’ of

L2A may come only at a marginal cost in smoothness (i.e.

bitrate distance between consecutive decisions), Figure 1(b)

shows that L2A achieves on average only 3% less smoothness

than the other methods; a trade-off that is aligned with

common HAS optimization principles.

Similarly, we provide a bitrate selection sample path in

Figure 2(b), for a randomly-selected markovian trace and

its corresponding buffer evolution in Figure 2(d). Here, we

observe: (i) that in terms of matching the bitrate to the channel

rate at each decision epoch, L2A presents a more efficient

channel utilization, (ii) a slightly unstable behavior for BB,

especially at the beginning of the session and (iii) some stall

events occurring for RB. L2A consistently manages to offer

high bitrate, stable and uninterrupted streaming; even in the

most demanding network scenarios.

To further investigate the robustness property of our method,

we have synthesized an additional network profile, where we

have concatenated car traces to extend the streaming session

duration (horizon) in order to simulate longer, yet realistic

scenarios. For these concatenated car traces, Figure 3(a)

presents the regret rate RT /T against the K-Slot benchmark of

Section IV, for K = T 0.9. Here L2A, for both studied values

of β (0.3, 1), achieves better regret than any other method,

significantly improving on the K-Benchmark in any streaming

horizon, a result that is anticipated from Theorem 1.

Regarding the constraint residual V i
T ∀i = 1, 2, we examine

in particular the case of underflow (i = 1), as stalls are

the most significant factors that can affect the streaming

experience. Potential buffer overflows (i = 2) can be easily

tackled by simply inducing a short delay before requests,

according to (1). In Figure 3(b) we present the constraint

residual rate for the concatenated car traces. L2A manages

to respect the underflow constraint on average, given that the

constraint residual rate V 1
T /T converges to 0.

In order to investigate the merits of L2A beyond VoD,

we repeated the same cycle of experiments for the case of

live streaming, where now Bmax = 20s. In industrial live

streaming applications, such small buffer values are commonly

used, given the strict delay requirements. We present our

results in Table III, which depicts that although RB achieves

higher values in stability, it is not able to compete with the

other methods in terms of average bitrate. On the contrary, L2A
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Fig. 1: Performance evaluation results - L2A improves average bitrate

TABLE III: Live streaming (Bmax = 20s) results (BB / RB / L2A (β = 0.3) / L2A (β = 1))
Static Pedestrian Car Markovian

Average bitrate 0.93 / 0.59 / 0.88 / 0.98 0.94 / 0.58 / 0.93 / 0.96 0.93 / 0.59 / 0.96 / 0.98 0.91 / 0.69 / 0.97 / 1.00

Stability 0.42 / 0.95 / 0.82 / 0.72 0.50 / 0.92 / 0.86 / 0.75 0.56 / 0.91 / 0.86 / 0.78 0.86 / 0.93 / 0.87 / 0.82
Smoothness 0.86 / 0.92 / 0.94 / 0.94 0.86 / 0.92 / 0.94 / 0.95 0.87 / 0.95 / 0.94 / 0.97 0.96 / 0.95 / 0.92 / 0.98
Consistency 0.87 / 0.81 / 0.92 / 0.92 0.85 / 0.62 / 0.83 / 0.85 0.88 / 0.62 / 0.80 / 0.85 0.78 / 0.48 / 0.83 / 0.84

Continuity 0.93 / 0.95 / 0.97 / 0.97 0.93 / 0.93 / 0.97 / 0.97 0.93 / 0.94 / 0.95 / 0.95 0.92 / 0.88 / 0.94 / 0.94

manages to provide up to 30% higher live streaming bitrate

when compared to RB and equivalent bitrate to BB, while its

switch-restricted instance shows up to 40% improvement in

stability when compared to BB. Online learning methods have

– by design – less dependency on the instantaneous buffer

length and are also more reactive to throughput fluctuations,

unlike throughput-based methods that are, normally, as effi-

cient as their throughput estimation module.

VII. CONCLUSIONS

In this work we present Learn2Adapt (L2A), a novel rate

adaptation algorithm for HAS, based on online learning.

Overall, our proposed method performs well over a wide

spectrum of streaming scenarios, due to its design principle; its

ability to learn. It does so without requiring any parameter tun-

ing, modifications according to application type or statistical

assumptions for the channel. The robustness property of L2A

allows it to be classified in the small set of rate adaptation algo-

rithms for video streaming, that mitigate the main limitation of



9

Channel rate BB RB L2A (β = 0.3) L2A (β = 1)

0 100 200 300 400
0

5

10

15

20

25

Decision epochs

B
it

ra
te

(M
b

p
s)

(a) Bitrate selection pedestrian user

0 100 200 300 400 500 600
0

5

10

15

20

25

Decision epochs

B
it

ra
te

(M
b

p
s)

(b) Bitrate selection markovian
channel

0 100 200 300 400
0

20

40

60

80

100

120

140

Decision epochs

B
u

ff
er

le
v
el

(s
)

(c) Buffer level pedestrian user

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

Decision epochs

B
u

ff
er

le
v
el

(s
)

(d) Buffer level markovian channel

Fig. 2: Sample paths for bitrate selection and buffer level
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Fig. 3: Convergence of regret and constraint residual

existing mobile HAS approaches; the dependence on statistical

models for the unknowns. This is of significant relevance in the

field of modern HAS, where OTT video service providers are

continuously expanding their services to include more diverse

user classes, network scenarios and streaming applications.
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