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ABSTRACT
The present study investigates the applicability of deep learning
methods in EEG neuromarketing prediction tasks, compared to
traditional machine learning approaches. Neuroscientific methods
have expanded research capabilities in marketing and created new
insights into consumer behavior and decision making processes.
Both machine learning and deep learning approaches can be em-
ployed to predict relevant consumer preference from brain activity.
The former requires extensive signal processing and feature en-
gineering for classification whereas the later relies on raw brain
signals and thus avoids time-consuming preprocessing. In this pa-
per, the performance of a machine learning model comprising an
ensemble of algorithms was compared to the performance of a con-
volutional neural network (CNN) on two independently collected
EEG datasets, one concerning product choices and the other movie
ratings. While both models showed poor performance for predic-
tion of product choices, the convolutional neural network proved
more accurate in the prediction of movie ratings. This provides
evidence for the superiority of deep learning algorithms in certain
neuromarketing prediction tasks. We discuss the limitations and
future application opportunities.
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1 INTRODUCTION
The last decade has seen a rise in lean development practices, a
term coined in the manufacturing industry, in which fast product
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development, waste reduction, and constant consumer feedback
are integrated into the production cycle to ensure consumer satis-
faction and market success of a product [1]. Companies and organi-
zations have an increased need to understand and predict consumer
preferences in order to be able to compete in an increasingly inter-
connected global economy. Traditional forms of gathering customer
feedback include conducting surveys or interviews, mostly with
focus groups that fit a particular target market. These explicit re-
search schemes have been shown to introduce various biases that
can distort the gathered information’s quality and reliability [2, 3].

Neuromarketing research offers an extension to the traditional
marketing research and aims at offering new ways of gaining in-
sights into consumer behavior while improving the quality and
reliability of this information [3]. A large amount of research from
the neuromarketing literature uses data from EEG recordings, since
compared to other research tools, it is often much cheaper and
easier to collect, while still being able to distill relevant tempo-
ral and frequency patterns of brain signals related to marketing
stimuli [4]. Some argue that neuromarketing augments our under-
standing of human perception and decision making by allowing
researchers to access and assess information beyond the level of
human consciousness [5].

Plassmann et al. laid out five key contributions of neuroscience
to the field of marketing [6]. These include 1) identifying cognitive
mechanisms, 2) measuring implicit responses, 3) distinguishing
psychological processes, 4) understanding individual differences,
and 5) making predictions about human behavior. Past neuromar-
keting research has mostly contributed to the first four principles
by investigating neural mechanisms and psychological theories
that underlie users’ opinions and behavior in the market [6-9].
This reflects a scarcity of literature in the realm of neuromarketing
prediction research.

The recent rise of artificial intelligence (AI) and machine learn-
ing (ML) has enabled researchers to effectively mine the patterns
in EEG signals and make predictions about human preferences. For
instance, Golnar-Nik et al. [10] showed that EEG spectral power
could serve as a useful feature for predicting consumer choices.
They conducted a study in which participants were shown different
mobile phone advertisements while EEG signals were recorded.
Using EEG band powers and a SVM classifier, they could achieve
a peak accuracy of 87% in prediction of consumers’ intention to
buy the phones. In another study, Yadava et al. [11] collected EEG
signals while subjects watched images of different products and
then indicated whether they liked the presented product or not. Au-
thors used wavelet decomposition coefficients as input for several
machine learning algorithms and reported a peak accuracy of 70%
achieved by a Hidden Markov model.
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Although machine learning models have shown favorable out-
comes in prediction of EEG responses, they require tedious and
time-consuming preprocessing and hand-crafted feature extraction
steps. Deep learning (DL) models, on the other hand, can handle
large amount of data and can directly learn complex features from
raw signals. Craik et al. [13] conducted an extensive review of deep
learning techniques used in a wide range of EEG classification tasks,
including motor imagery, seizure detection, sleep stage scoring and
Alzheimer’s detection. The authors found that of all reviewed deep
learning EEG classification papers, only 39% used raw signals as
input into the neural networks and the rest still relied on extracted
features or images created from the signals (e.g. spectrograms) to
increase model performance.

Additionally, Craik et al. [13] found that convolutional neural
networks (CNN) were the most popular architecture, having been
implemented in 43% of all reviewed papers. CNNs are a subset of
architectures used in deep learning and have been shown successful
in various image classification problems, including radiology, MRI
images and tomography images [14]. Moreover, they have been
shown effective in signal processing applications, including EEG
classification tasks, as they can handle raw data, facilitate end-to-
end learning and require less parameters than other deep neural
networks [15].

Even though deep learning approaches have been demonstrated
to be successful in many EEG classification tasks [13, 15], the sci-
entific literature on their employment in the field of neuromar-
keting remains scarce and reflects a need for more investigation
[12]. Therefore, in this paper we examined the suitability of deep
learning for neuromarketing applications by comparing two differ-
ent frameworks; one relying on traditional EEG feature extraction
and classic machine learning algorithms and the other exploiting
the self-learning capabilities of a convolutional neural network.
Moreover, to examine the validity of our proposed methodology,
we applied both frameworks to two independently collected neuro-
marketing EEG datasets; one concerning product choices and the
other movie ratings. We trained the ML and DL models on each
EEG dataset separately and evaluated the obtained performances.

2 METHODS
2.1 Datasets
Two datasets were employed in this study to compare the per-
formance of ML and DL approaches in neuromarketing tasks. A
summary of both datasets is given in Table 1.

The first dataset, made available by Yadava et al. [11], included
EEG recordings from 25 participants, aged between 18-25. EEG
signals were recorded with a 14-channel Emotiv Epoc+ while par-
ticipants watched different product images for 4 seconds. The stim-
uli consisted of 14 different product categories (e.g. shirts, shoes,
ties, etc.), each containing three different images, resulting in 42
different products. After each image, participants had to indicate
their liking or disliking for the presented product. This resulted in
1050 epochs of EEG signals, out of which 1045 were made public.
The recording sampling rate was 128 Hz.

The second dataset was made available by Unravel1, which is a
neuromarketing company based in Utrecht, the Netherlands. The
1https://www.unravelresearch.com/

data was recorded as part of a research project conducted by the
company. A total of 32 participants, aged between 21-71, were
shown 6 movie trailers randomly selected out of 16, while their EEG
was recorded. All movie trailers were from Hollywood production
movies and included different genres, including action, comedy,
thrillers, etc. The EEG signals were recorded using a 9-channel
B-Alert X-Series. The sampling frequency rate was 256 Hz. After
each presented trailer, participants had to answer three different
questions: “Have you seen the movie?” (Yes/No), “How would you
rate the movie?” (Likert Scale 1-10) and “Would you like to see the
movie?” (Yes/No). In this work, only the question aboutmovie rating
was used. For comparison purposes, the ratings were transformed
into a binary variable; scores ranging from 1 to 5 were interpreted
as a dislike for the movie and scores ranging from 6 to 10 indicated
participant’s liking of the movie.

2.2 Machine Learning Model
Figure 1a presents a schematic diagram of the ML classification
algorithm.

2.2.1 EEG Preprocessing and Feature Extraction. For both datasets,
first a bandpass filter between 0.5 Hz and 40 Hz was applied to the
raw EEG signals to reduce the effect of noise. Next, all prominent
frequency bands, i.e. delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz),
beta (12-30 Hz) and gamma (above 30 Hz) were extracted and the
spectral energy associated with each band was calculated. Subse-
quently, all spectral energies from all channels were concatenated
to form the signal’s final feature vector.

2.2.2 Algorithm Architecture. In real-world machine learning appli-
cations, a common way to improve the prediction performance for
a classification or regression task is to use an ensemble of models.
Research shows that on average, an ensemble of predictors perform
better than a single predictor on its own [16]. In this work, the
ensemble combined three heterogenous predictors from different
model classes. The ensemble comprised a support vector machine
(SVM), random forest (RF) and logistic regression (LogReg), each us-
ing a unique approach for classification. These models were chosen
based on their different decision functions to induce model diversity
and help the ensemble deal with uncertainty for classifying new
cases. A further argument for choosing a diverse set of predictors
for the ensemble is that each predictor’s distinct decision function
inherently leads to disagreement between the predictors, which
is an essential attribute for a well-performing ensemble [17]. In
general, each predictor is trained individually on the training data
and their predictions are averaged. As a result of this, the output
of an ensemble consists of the integrated model’s average output
fi (x) and is defined as:

f (x) = arдmax

( k∑
i=1

wi fi (x)

)
(1)

where k refers to the number of classifiers used in the ensemble, and
wi fi (x) corresponds to the predicted probability for instance x of
classifier i . A soft voting approach was used, where each predictor
outputted the predicted probability of the instance’s class label and
the final output of the predicted class corresponded to the argmax
of the sums of predicted probabilities for each class.

https://www.unravelresearch.com/
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Table 1: Description of both EEG datasets employed in this study.

Dataset 1 (Product Choice) Dataset 2 (Movie Rating)

Participants N = 25, Age 18-39 N = 32, Age 21-71
Task Watched 14 product categories each having 3 images Rated the products

(Like/Dislike)
Watched 6 movie trailers randomly selected
Rated the movies on a 10-point Likert scale

EEG
system

Emotiv Epoc+ B-Alert X-Series

Electrodes 14 channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) 9 channels (POz, Fz, Cz, C3, C4, F3, F4, P3, P4)
Electrode
positions
Epoch
duration

4-sec recording while viewing product images Recorded while watching movie trailers

Figure 1: Schematic representations of the machine learning and deep learning algorithms employed in the classification of
neuromarketing EEG datasets.

2.3 Deep Learning Model
Figure 1b presents a schematic diagram of the deep learning classi-
fication approach.

2.3.1 Neural Network Structure. In this study, a deep convolutional
neural network (CNN) was employed. A CNN typically consists of
three elementary units: convolution, pooling and fully connected
layers. While the convolution and pooling units perform automatic
feature extraction, the fully connected layers map these features
onto the final output layer to produce the final prediction. Similar
to a regular multi-layer perceptron, the output value is based on
the connection weights and biases of the previous layers in the
network structure. The weights and biases of the network with
respect to the training instances are updated by using backpropa-
gation. Hyperparameters that can be tweaked to influence model

performance include the learning rate, momentum, and type of
optimizer. The learning rate influences how fast the network learns,
while the momentum aids with convergence by adjusting the rate
of gradient descent based on the steepness of the loss function. Op-
timizers use the learning rate and momentum to update the weight
parameters that minimize the loss function. In this research, the
learning rate was initialized at 1.0 × 10−4, with momentum of 0
and Stochastic Gradient Descent (SGD) was used as the optimizer.
These hyperparameters were chosen based on trial and error.

2.3.2 Convolutional 1D Layer. This layer applied a convolution op-
eration that automatically extracted features from the fixed-length
EEG signals. In this process, a filter slid over the input signal and
applied a matrix multiplication, which was then added to the fea-
ture map. This process was repeated numerous times with various
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filters that resulted in very different feature maps. At the end of
this procedure, the feature maps were combined and merged into
the layer’s final output.

2.3.3 Dropout Layer. In this study, dropout layers were imple-
mented in order to avoid overfitting the training data. Dropout
refers to the random dropping out of units or neurons in a neural
network during each training phase. Adding dropout layers to a
neural network prevents co-dependency among neurons and often
leads to better generalization performance.

2.3.4 Max-pooling 1D Layer. This layer reduced the dimension-
ality of the output neurons from the previous layer and thus re-
duced computational complexity and prevented overfitting. The
max-pooling operation only chooses the maximum values from
each patch of the final feature map from the previous convolutional
layer. This resulted in a downsampled (i.e. pooled) feature map that
emphasized the patch’s most apparent feature.

2.3.5 Flatten Layer. In this layer, the feature matrix was trans-
formed into a flat vector, which was then fed to the fully connected
dense layers.

2.3.6 Fully Connected Dense Layer. This layer received the output
from the convolutional layer and was fully connected to the output
neurons of the flatten layer. In our network architecture, two dif-
ferent activation functions were used in the fully connected layers;
1) a rectified linear activation unit (ReLU), which is a non-linear
activation function that outputs the following values based on input
x :

f (x) =max (0, x) (2)
And 2) a simple sigmoid activation function, which is applied to
one neuron for the output layer and outputs the class label for an
instance z, based on Equation 3.

σ (z) =
1

1 + e−z
(3)

If the output of the sigmoid function is above 0.5, it will predict the
positive class, otherwise the negative class.

2.3.7 Training and Evaluation. Bothmodels were trained and tested
separately on both datasets to draw reliable conclusions regarding
the general performance and applicability of the two frameworks.
While the ensemble classifier was trained on the extracted band
energy features, the convolutional neural network was trained
on the raw EEG signals (after bandpass filtering), skipping the
manual feature extraction step. The convolutional neural network
was trained using a batch size of 60, referring to the number of
instances that were fed through the network at each training step.
The number of epochs in this work was set to 100, which means
that the algorithm iterated over the training set a hundred times
while adjusting the network weights in this process. These numbers
were chosen based on trial and error, leading to the algorithm’s
highest efficiency and performance.

The first dataset (product choice) was relatively balanced with a
45% Like to 55% Dislike ratio. The second dataset (movie choice)
was skewed with a 68% Like to 32% Dislike ratio. Therefore we
integrated class weights into the algorithms, so that they took the
data distribution into account. This penalized misclassifications

made by the minority class by setting a higher class weight and at
the same time reducing weight of the majority class.

The two frameworks were evaluated on two evaluation metrics,
accuracy and the F1 score. Accuracy is a standard measure of how
accurate the algorithm predicts, however, in the case of a highly
imbalanced dataset, this metric can be misleading since a majority
class predictor would have a very high accuracy score. Therefore,
F-score is also reported, which is defined as the harmonic mean of
precision (the proportion of relevant instances among all predicted
instances) and recall (the fraction of correctly classified instances
among all relevant instances). F-score gives a more reliable mea-
sure of a model’s performance since it considers how the data is
distributed.

3 RESULTS
Classification results from both models are summarized in Table
2. As can be seen in this table, both frameworks performed poorly
on the first dataset with an accuracy level that is not significantly
above chance level and an even worse F1-score.

On the other hand, the performance results of the classification
models on Dataset 2 were notably different. Here, machine learning
approach achieved a reasonable accuracy of 63.54% and a F1 score of
76.83%. However, the CNN model outperformed the first approach
with an accuracy of 74.57% and an F1-score of 84.13 %.

Given that the models yielded different outcomes on the two
datasets, and that they both failed in reaching favorable results
in Dataset 1, we further explored whether the issue was due to
algorithm implementation or poor data quality. To examine this, we
confirmed if the convolutional neural network was able to overfit
the training data. Overfitting is observed when the training accu-
racy keeps increasing while the validation/test accuracy remains
steady or decreases. This would suggest that the algorithm is able
to memorize the data and its accompanying noise but it is not able
to classify the data.

Figure 2 displays training accuracy against the validation ac-
curacy of a simple train-test partition over one hundred epochs
in Dataset 1. Here, the training accuracy rises steadily with the
number of epochs and eventually reaches a point where the algo-
rithm has memorized the dataset, thus overfitting it. In contrast,
the validation accuracy shows no progression and stagnates around
the chance level. This supports the notion that the algorithm was
correctly implemented and that the quality of the dataset 1 should
be blamed for the poor performance.

4 DISCUSSION
The goal of this study was to examine whether deep learning meth-
ods such as convolutional neural networks would prove a more
suitable framework for neuromarketing prediction tasks compared
to traditional machine learning approaches. Hereby, a convolutional
neural network and an ensemble classifier composed of an SVM, RF
and LogReg were trained and compared on two separately collected
EEG datasets; one concerning product choices and the other movie
ratings. It was shown that both approaches yielded sub-optimal
performance in the first dataset (product choice prediction task).
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Table 2: Classification performance of both machine learning and deep learning models on two EEG datasets.

Dataset 1 (Product Choice) Dataset 2 (Movie Rating)

Accuracy F-score Accuracy F-score
ML Model
(Ensemble)

50.71% 39.47% 63.54% 76.83%

DL Model
(CNN)

51.48% 47.39% 74.57% 84.13%

Figure 2: Training and validation accuracy in the CNN
model on product choice dataset (Dataset 1)

However, the convolutional neural network significantly outper-
formed the ensemble classifier in the second dataset (movie rating
prediction task).

The novelty of this study lies in the implementation of a deep
convolutional neural network without EEG feature extraction and
thus conducting an end-to-end learning with a neuromarketing
dataset. This supports the assertion that deep learning methods are
applicable in specific neuromarketing prediction tasks if certain
conditions regarding the data are met. Plausible conditions that
might increase the predictive power concerning deep learning ap-
plications in neuromarketing research will be further explored in
this section.

Regarding Dataset 1, three probable reasons can be given as to
why both ML and DL frameworks performed poorly in predict-
ing product choices. First, the EEG signals were recorded using an
Emotiv Epoc+ headset [11], which is a low-cost alternative to more
expensive EEG recorders. These low-cost alternatives offer great op-
portunities for conducting inexpensive experiments. However, this
cost reduction comes at the expense of an inability to capture accu-
rate information in error-prone contexts [18]. Duvinage et al. [19]
conducted a quantitative comparison between the Emotiv Epoc+
headset and a medical EEG device and demonstrated that even
though the Emotiv headset was able to record some task-relevant
EEG signals, it performed significantly worse than a medical EEG

device in terms of the signal-to-noise ratio. The low spatial resolu-
tion of EEG recordings and the often inadequate measures of neural
activity below the surface layers of the brain, compounded with
a low signal-to-noise ratio of cost-efficient EEG devices, makes it
arguably difficult to predict complex behavior like product prefer-
ences in the case of neuromarketing [20]. Second, the EEG signals
were only recorded for four seconds while participants were look-
ing at the products. This inevitably leads to small amounts of data
and notably impedes the neural network from learning relevant
patterns from the data. Neural networks offer much flexibility and
can model a wide range of functions but rely on large amounts of
usable training data to be able to do so [21]. Finally, upon closer
inspection of the product stimuli [11], it became evident that the
product pictures employed for data collection were neither visually
appealing nor engaging as they usually are in a regular e-shopping
experience. Since customers cannot wholesomely perceive the prod-
uct through touch, online retailers typically try to approximate a
real-world shopping experience by providing high-quality photos,
short video snippets and a 3d interactive mode of the product, to
provide the customer with a more realistic view of the product
[22]. The detailed and vivid presentation of products is becoming
increasingly important in shaping consumers’ attitudes and be-
haviors towards the products [23]. Therefore, the quality of the
EEG signals in Dataset 1 can be blamed for the poor learning of
the models and further research is needed to examine if EEG can
capture relevant predictive information in the context of a more
realistic experimental setup.

In contrast to the product choice prediction task, both frame-
works performed quite well on the movie rating prediction task,
with the convolutional neural network performing significantly bet-
ter than the ensemble classifier. Even though fewer EEG channels
were recorded in Dataset 2, the EEG epochs were 30 seconds long,
thus providing more samples for the algorithm to learn the task. Fur-
thermore, stimuli consisted of movie trailers, which were processed
visually and through auditory perception channels, thus potentially
being more engaging and stimulating than simple static images of
products. Past research has demonstrated that brain responses to
movie trailers captured with EEG are able to predict individuals’
preference and population-wide commercial success of the movies
[24], thus supporting the notion that richer experimental stimuli
can elicit more meaningful brain responses for neuromarketing
prediction applications.

The obtained difference between the prediction outcomes on
the two employed datasets shows the importance of the stimulus
salience in neuromarketing research. Salience is defined as a prod-
uct’s perceptual influence on the consumer and its ability to stand
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out from other products and reach a higher level of awareness
[25, 26]. Bordalo et al. [27] presented a predictive framework on
how consumers’ buying decisions are influenced by the salience of
products. They posit that a consumer attaches disproportionately
high weight to salient attributes, when it stands out among the
good’s attributes relative to that attribute’s average level in the
choice set. The more salient a product or stimulus is, the higher the
likelihood that it will be regarded as having greater utility and thus
elicit stronger brain responses that could be captured by EEG [28].
Therefore, future neuromarketing research should take salience into
account as an important characteristic of experimental stimuli and
employ a choice set that is salient enough to capture participants’
attention.

Even though the proposed deep learning approach outperformed
traditional machine learning framework in the case of movie rating
prediction, it was not able to outperform state-of-the-art classifica-
tion performance in EEG neuromarketing reports that have reached
a preference prediction accuracy of 80-95% [29–31]. The main dif-
ference between our study and these papers is that they have used
various feature extraction methods, including non-linear features
from Detrended Fluctuation Analysis (DFA) or a combination of
power spectral density (PSD), spectral energy (SE) and spectral
centroid (SC) features. Additionally, the extracted features in these
studies were used to train traditional machine learning algorithms,
such as a K-Nearest Neighbors (KNN) or Multilayer Perceptron
(MLP) algorithm, which demonstrate efficacy in neuromarketing
research only when useful features and information are extracted
from the signals. Our approach, on the contrary, employs an end-to-
end learning without any dependency on data cleaning and feature
engineering, which are usually the most time-consuming and error
prone processes of a classification problem. This is particularly
critical in the context of real-time EEG classification and further
use of the model in real-world neuromarketing applications [32].
Preprocessing of EEG signals is often a complicated task that can
introduce delay and unnecessary bias to the prediction process,
which could then degrade the performance and efficiency of the
application [32, 33]. Therefore, despite the lower performance that
was obtained in this study compared to past reports, our proposed
deep learning framework remains promising and useful for future
developments, as it was able to achieve reasonable prediction accu-
racy despite the presence of noise in the EEG signals. Future studies
should focus on integration of fast and automatic artifact rejection
methods with deep learning models to reduce the cost and bias in
the preprocessing step and thus ensure a more stable prediction for
real-time applications.

Finally, recent research suggests the advantage of new media
and computer-generated environments such as immersive virtual
reality on the study of user behavior and brain responses [34, 36, 37].
Such technological advances offer great opportunities for a more en-
gaging customer journey and multisensory interactive experience
with the product [38], which can influence users on an affective,
cognitive and behavioral level [35]. The field of neuromarketing
should aim to keep up with these developments and integrate them
as new research tools in order to be able to capture relevant and
useful information with regards to consumer behavior [34]. This
can lead to more informative data sources that AI methods such

as neural networks could use to make more accurate and useful
predictions in the realm of marketing research.

5 CONCLUSION
In this research, the applicability of a deep learning method (con-
volutional neural network) in neuromarketing was assessed by
comparison with traditional machine learning methods (feature ex-
traction and ensemble classification). These two frameworks were
evaluated on a product choice and movie rating prediction task. Our
results showed different performance of the models depending on
the employed dataset. None of the frameworks performed well on
predicting product choices, while the convolutional neural network
significantly outperformed the ensemble classifier on the movie
rating prediction task. It was shown that the deep learning method
with minimal preprocessing could serve as a superior prediction
framework for neuromarketing, if sufficient and high-quality data
was made available. This framework could aid in developing prod-
uct strategies or predicting product success by extending the ex-
isting methodologies and data sources. Additionally, we discussed
the role of experimental stimuli in the context of neuromarketing
and algorithmic performance. Future research in neuromarketing
should consider the salience of the stimuli and investigate how
new technologies such as virtual and augmented reality can be
used to construct a more immersive and stimulating experimental
environment to capture more promising brain data. Deep learning
methods should then be assessed on their predictive performance
by being trained on this new type of data.

ACKNOWLEDGMENTS
Authors would like to thank Nikki Leeuwis and Tom Van Bommel
from Unravel Research for making their data available to us for the
purpose of this study.

REFERENCES
[1] Jeffrey K. Liker, and James M. Morgan. 2006. The Toyota Way in Services: The

Case of Lean Product Development. Academy of management perspectives, 20,
2, 5-20. DOI: 10.5465/amp.2006.20591002

[2] Gerard J. Tellis, and Deepa Chandrasekaran. 2010. Extent and Impact of Response
Biases in Cross-National Survey Research. International Journal of Research in
Marketing, 27, 4, 329-341. DOI: 10.1016/j.ijresmar.2010.08.003

[3] Ferdousi S. Rawnaque, KhandokerM. Rahman, Syed F. Anwar, Ravi Vaidyanathan,
Tom Chau, Farhana Sarker, and Khondaker A. Al Mamun. 2020. Technological
advancements and opportunities in Neuromarketing: a systematic review. Brain
Informatics, 7(1), 1-19. DOI: 10.1186/s40708-020-00109-x

[4] Giovanni Vecchiato, Laura Astolfi, Fabrizio De Vico Fallani, Jlenia Toppi, Fabio
Aloise, Francesco Bez, Daming Wei et al. 2011. On the Use of EEG or MEG Brain
Imaging Tools in Neuromarketing Research. Computational Intelligence and
Neuroscience, 2011. DOI: 10.1155/2011/643489

[5] Tanja Schneider, and Steve Woolgar. 2012. Technologies of ironic revelation:
enacting consumers in neuromarkets. Consumption Markets and Culture, 15, 2,
169-189. DOI: 10.1080/10253866.2012.654959

[6] Hilke Plassmann, Vinod Venkatraman, Scott Huettel, and Carolyn Yoon. 2015.
Consumer Neuroscience: Applications, Challenges, and Possible Solutions. Jour-
nal of Marketing Research, 52, 4, 427-435. DOI: 10.1509/jmr.13.0613

[7] Zeliha Eser, F. Bahar Isin, and Metehan Tolon. 2011. Perceptions of marketing aca-
demics, neurologists, and marketing professionals about neuromarketing. Journal
of Marketing Management, 27, 7-8, 854-868. DOI: 10.1080/02672571003719070

[8] Bülent Yılmaz, Sümeyye Korkmaz, Dilek B. Arslan, Evrim Güngör, and Musa H.
Asyalı. 2014. Like/dislike analysis using EEG: Determination of most discrimina-
tive channels and frequencies. Computer Methods and Programs in Biomedicine,
113, 2, 705-713. DOI: 10.1016/j.cmpb.2013.11.010

[9] Charles Spence. 2019. Neuroscience-Inspired Design: From Academic Neuromar-
keting to Commercially Relevant Research. Organizational Research Methods,
22, 1, 275-298. DOI: 10.1177/1094428116672003



Deep Learning for Neuromarketing; Classification of User Preference using EEG Signals AH2021, May 27, 28, 2021, Geneva, Switzerland

[10] Parnaz Golnar-Nik, Sajjad Farashi, and Mir-Shahram Safari (2019). The applica-
tion of EEG power for the prediction and interpretation of consumer decision-
making: A neuromarketing study. Physiology & behavior, 207, 90-98. DOI:
10.1016/j.physbeh.2019.04.025

[11] Mahendra Yadava, Pradeep Kumar, Rajkumar Saini, Partha P. Roy, and Debi
P. Dogra. 2017. Analysis of EEG signals and its application to neuromarketing.
Multimedia Tools and Applications, 76, 18, 19087-19111. DOI: 10.1007/s11042-
017-4580-6

[12] Mashael Aldayel, Mourad Ykhlef, and Abeer Al-Nafjan. 2020. Deep Learning for
EEG-Based Preference Classification in Neuromarketing. Applied Sciences, 10, 4,
1525. DOI: 10.3390/app10041525

[13] Alexander Craik, Yongtian He, and Jose L. Contreras-Vidal. 2019. Deep learning
for electroencephalogram (EEG) classification tasks: a review. Journal of Neural
Engineering, 16, 3, 031001. DOI: 10.1088/1741-2552/ab0ab5

[14] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi.
2018. Convolutional neural networks: an overview and application in radiology.
Insights into Imaging, 9, 4, 611-629. DOI: 10.1007/s13244-018-0639-9

[15] Robin T. Schirrmeister, Jost T. Springenberg, Lukas D. J. Fiederer, Martin Glasstet-
ter, Katharina Eggensperger, Michael Tangermann, Frank Hutter, Wolfram Bur-
gard, and Tonio Ball. 2017. Deep learning with convolutional neural networks
for EEG decoding and visualization. Human Brain Mapping, 38, 11, 5391-5420.
DOI: 10.1002/hbm.23730

[16] Joseph Prusa, Taghi M. Khoshgoftaar, and Daivd J. Dittman. 2015. Using Ensemble
Learners to Improve Classifier Performance on Tweet Sentiment Data. In 2015
IEEE International Conference on Information Reuse and Integration, 252-257.
IEEE. DOI: 10.1109/iri.2015.49

[17] Akhlaqur Rahman, and Sumaira Tasnim. 2014. Ensemble Classifiers and Their Ap-
plications: A Review. International Journal of Computer Trends and Technology,
10, 1, 31-35. DOI: 10.14445/22312803/ijctt-v10p107

[18] Francesco Carrino, Joel Dumoulin, Elena Mugellini, Omar Abou Khaled, and
Rolf Ingold. 2012. A self-paced BCI system to control an electric wheelchair:
Evaluation of a commercial, low-cost EEG device. In 2012 ISSNIP Biosignals
and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living
(BRC), 1-6. IEEE. DOI: 10.1109/BRC.2012.6222185

[19] Matthieu Duvinage, Thierry Castermans, Thierry Dutoit, Mathieu Petieau,
Thomas Hoellinger, Caty De Saedeleer, Karthik Seetharaman, and Guy Cheron.
2012. A P300-based Quantitative Comparison between the Emotiv Epoc Head-
set and a Medical EEG Device. Biomedical Engineering, 765, 1, 2012-2764. DOI:
10.2316/P.2012.764-071

[20] Steven J. Stanton, Walter Sinnott-Armstrong, and Scott A. Huettel. 2017. Neu-
romarketing: Ethical Implications of its Use and Potential Misuse. Journal of
Business Ethics, 144, 4, 799-811. DOI: 10.1007/s10551-016-3059-0

[21] Martin Macas, Fabio Moretti, Alessandro Fonti, Andrea Giantomassi, Gabriele
Comodi, Mauro Annunziato, Stefano Pizzuti, and Alfredo Capra. 2016. The role
of data sample size and dimensionality in neural network based forecasting
of building heating related variables. Energy and Buildings, 111, 299-310. DOI:
10.1016/j.enbuild.2015.11.056

[22] Jiyeon Kim, and Sandra Forsythe. 2008. Adoption of virtual try-on technology
for online apparel shopping. Journal of Interactive Marketing, 22, 2, 45-59. DOI:
10.1002/dir.20113

[23] Hyun-Hwa Lee, Jihyun Kim, and Ann M. Fiore. 2010. Affective and Cognitive
Online Shopping Experience: Effects of Image Interactivity Technology and
Experimenting With Appearance. Clothing and Textiles Research Journal, 28, 2,

140-154. DOI: 10.1177/0887302X09341586
[24] Maarten A. Boksem, and Ale Smidts. 2015. Brain Responses to Movie Trailers

Predict Individual Preferences forMovies and Their Population-Wide Commercial
Success. Journal of Marketing Research, 52, 4, 482-492. DOI: 10.1509/jmr.13.0572

[25] Tim Ambler, Sven Braeutigam, John Stins, Steven Rose, and Stephen Swithenby.
2004. Salience and Choice: Neural Correlates of Shopping Decisions. Psychology
and Marketing, 21, 4, 247-261. DOI: 10.1002/mar.20004

[26] Jongpil Park, and Ick-Keun Oh. 2012. A Case Study of Social Media Mar-
keting by Travel Agency: The Salience of Social Media Marketing in the
Tourism Industry. International Journal of Tourism Sciences, 12, 1, 93-106. DOI:
10.1080/15980634.2012.11434654

[27] Pedro Bordalo, Nicola Gennaioli, and Andrei Shleifer. 2013. Salience and Con-
sumer Choice. Journal of Political Economy, 121, 5, 803-843. DOI: 10.1086/673885

[28] Matthew D. Weaver, Wieske van Zoest, and Clayton Hickey. 2017. A temporal
dependency account of attentional inhibition in oculomotor control. Neuroimage,
147, 880-894. DOI: 10.1016/j.neuroimage.2016.11.004

[29] M. Murugappan, Subbulakshmi Murugappan, and Celestin Gerard. 2014. Wire-
less EEG signals based neuromarketing system using Fast Fourier Transform
(FFT). In 2014 IEEE 10th International Colloquium on Signal Processing and its
Applications (CSPA), 25-30. IEEE. DOI: 10.1109/CSPA.2014.6805714

[30] Hooi Nee Oon, A. Saidatul, and Zunaidi Ibrahim. 2018. Analysis on Non-Linear
Features of Electroencephalogram (EEG) Signal for Neuromarketing Applica-
tion. In 2018 International Conference on Computational Approach in Smart
Systems Design and Applications (ICASSDA), 1-8. IEEE. DOI: 10.1109/ICAS-
SDA.2018.8477618

[31] Chowdhury R. Amin, Mirza F. Hasin, Tasin S. Leon, Abrar B. Aurko, Tasmi
Tamanna, Md Anisur Rahman, and Mohammad Z. Parvez. 2020. Consumer Be-
havior Analysis using EEG Signals for Neuromarketing Application. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), 2061-2066. IEEE. DOI:
10.1109/SSCI47803.2020.9308358

[32] Mamunur Rashid, Norizam Sulaiman, Anwar P. A. Majeed, Rabiu M. Musa, Ah-
mad F. Ab Nasir, Bifta S. Bari, and Sabira Khatun. 2020. Current Status, Challenges,
and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehen-
sive Review. Frontiers in Neurorobotics, 14. DOI: 10.3389/fnbot.2020.00025

[33] Maryam Alimardani, and Kazuo Hiraki. 2020. Passive Brain-Computer Interfaces
for Enhanced Human-Robot Interaction. Frontiers in Robotics and AI, 7, 125.
DOI: 10.3389/frobt.2020.00125.

[34] Martin Meißner, Jella Pfeiffer, Christian Peukert, Holger Dietrich, and Thies
Pfeiffer. 2020. How virtual reality affects consumer choice. Journal of Business
Research, 117, 219-231. DOI: 10.1016/j.jbusres.2020.06.004

[35] Stuart Barnes. 2016. Understanding Virtual Reality in Marketing: Nature, Impli-
cations and Potential. SSRN Electronic Journal. DOI: 10.2139/ssrn.2909100

[36] Dylan M. Tjon, Angelica M. Tinga, Maryam Alimardani, and Max M. Louwerse.
2019. Brain Activity Reflects Sense of Presence in 360 Video for Virtual Real-
ity. The 28th International Conference on Information Systems Development
(ISD2019).

[37] Andrea Kuijt, andMaryamAlimardani. 2020. Prediction of Human Empathy based
on EEG Cortical Asymmetry. In 2020 IEEE International Conference on Human-
Machine Systems (ICHMS), 1-5. IEEE. DOI: 10.1109/ICHMS49158.2020.9209561

[38] Tseng-Lung Huang, and Shuling Liao. 2015. A model of acceptance of augmented-
reality interactive technology: the moderating role of cognitive innovativeness.
Electronic Commerce Research, 15, 2, 269-295. DOI: 10.1007/s10660-014-9163-2


	Abstract
	1 INTRODUCTION
	2 METHODS
	2.1 Datasets
	2.2 Machine Learning Model
	2.3 Deep Learning Model

	3 RESULTS
	4 DISCUSSION
	5 CONCLUSION
	Acknowledgments
	References

