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Abstract
Algorithmic dimensions quantify the algorithmic information density of individual points and
may be defined in terms of Kolmogorov complexity. This work uses these dimensions to bound
the classical Hausdorff and packing dimensions of intersections and Cartesian products of fractals
in Euclidean spaces. This approach shows that a known intersection formula for Borel sets holds
for arbitrary sets, and it significantly simplifies the proof of a known product formula. Both of
these formulas are prominent, fundamental results in fractal geometry that are taught in typical
undergraduate courses on the subject.
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1 Introduction

Classical fractal dimensions, among which Hausdorff dimension [12] is the most important,
refine notions of measure to quantitatively classify sets of measure 0. In 2000, J. Lutz [15]
showed that Hausdorff dimension can be simply characterized using betting strategies called
gales, and that this characterization can be effectivized in order to quantitatively classify
non-random infinite data objects. This effective Hausdorff dimension and other, related
algorithmic dimensions have been applied to multiple areas of computer science and have
proven especially useful in algorithmic information theory [25].

The connection between algorithmic and classical dimensions has more recently been
exploited in the other direction, i.e., to apply algorithmic information theoretic methods and
intuition to classical fractal geometry (e.g., [29, 2]). A point-to-set principle of J. Lutz and
N. Lutz [16], stated here as Theorem 6, characterizes the classical Hausdorff dimension of
any set in Rn in terms of the algorithmic dimensions of its individual points.

In the same work, J. Lutz and N. Lutz showed that the point-to-set principle gives rise
to a new, pointwise technique for dimensional lower bounds, and, as a proof of concept,
used this technique to give an algorithmic information theoretic proof of Davies’s 1971 [7]
theorem stating that every Kakeya set in R2 has Hausdorff dimension 2. This bounding
technique has since been used by N. Lutz and Stull [18] to make new progress on a problem in
classical fractal geometry by deriving an improved lower bound on the Hausdorff dimension
of generalized Furstenberg sets, as defined by Molter and Rela [26].
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Figure 1 Let E and F both be Koch snowflakes, which have Hausdorff dimension log3 4 ≈ 1.26.
Left: Theorem 1 states that, for almost all translation parameters z ∈ R2, the Hausdorff dimension
of the intersection E ∩ (F + z) is at most 2 log3 4 − 2 ≈ 0.52. Right: For a measure zero set of
translations, the intersection may have Hausdorff dimension as large as that of the original sets.
Note that Koch curves are Borel sets, so the new generality introduced by Theorem 1 is not required
for this example.

The same algorithmic dimensional technique is applied here to bound the dimensions of
intersections and products of fractals. Most significantly, we extend the following intersection
formula, previously shown to hold when E and F are Borel sets [11], to arbitrary sets E and
F .1 This formula is illustrated in Figure 1.

I Theorem 1. For all E,F ⊆ Rn, and for (Lebesgue) almost all z ∈ Rn,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F )− n} ,

where F + z = {x+ z : x ∈ F}.

Our approach also yields a simplified proof of the following known product formula for
general sets.

I Theorem 2 (Marstrand [19]). For all E ⊆ Rm and F ⊆ Rn,

dimH(E) + dimH(F ) ≤ dimH(E × F ) .

We use symmetric arguments to derive the known corresponding statements about packing
dimension [37, 10], a formulation of fractal dimension that was developed independently by
Tricot [37] and Sullivan [36] and is dual to Hausdorff dimension. These results are included
here to showcase the versatility of this technique and its ability to capture the exact duality
between Hausdorff and packing dimensions.

2 Classical Fractal Dimensions

We begin by stating classical, measure-theoretic definitions of the two most well-studied
notions of fractal dimension, Hausdorff dimension and packing dimension. These definitions
are included here for completeness but are not used directly in the remainder of this work;
we will instead apply equivalent characterizations in terms of algorithmic information, as
described in Section 3.

1 This result is closely related to the Marstrand Slicing Theorem, as stated in the excellent recent book
by Bishop and Peres [4]. The proof given there assumes that a set is Borel, but this assumption was
inadvertently omitted from the theorem statement [3].



N. Lutz 58:3

I Definition 2.1 (Hausdorff [12]). For E ⊆ Rn, let Uδ(E) be the collection of all countable
covers of E by sets of positive diameter at most δ, where the diameter of any set U ⊆ Rn is
given by

diam(U) = sup
x,y∈U

|x− y| .

For all s ≥ 0, let

Hs
δ (E) = inf

{∑
i∈N

diam(Ui)s : {Ui}i∈N ∈ Uδ(E)
}
.

The s-dimensional Hausdorff (outer) measure of E is

Hs(E) = lim
δ→0+

Hs
δ (E) ,

and the Hausdorff dimension of E is

dimH(E) = inf {s > 0 : Hs(E) = 0} = sup {s : Hs(E) =∞} .

Three desirable properties have made dimH the most standard notion of fractal dimension
since it was introduction by Hausdorff in 1919. First, it is defined on every set in Rn.
Second, it is monotone: if E ⊆ F , then dimH(E) ≤ dimH(F ). Third, it is countably stable:
if E =

⋃
i∈NEi, then dimH(E) = supi∈N dimH(Ei). These three properties also hold for

packing dimension, which was defined much later, independently by Tricot [37] and by
Sullivan [36].

I Definition 2.2 (Tricot [37], Sullivan [36]). For all x ∈ Rn and ρ > 0, let Bρ(x) denote the
open ball of radius ρ and center x. For all E ⊆ Rn, let Vδ(E) be the class of all countable
collections of pairwise disjoint open balls with centers in E and diameters at most δ. That is,
for every i ∈ N, we have Vi = Bρi

(xi) for some xi ∈ E and ρi ∈ [0, δ/2], and for every j 6= i,
Vi ∩ Vj = ∅. For all s ≥ 0, define

P sδ (E) = sup
{∑
i∈N

diam(Vi)s : {Vi}i∈N ∈ Vδ(E)
}
,

and let

P s0 (E) = lim
δ→0+

P sδ (E) .

The s-dimensional packing (outer) measure of E is

P s(E) = inf
{∑
i∈N

P s0 (Ei) : E ⊆
⋃
i∈N

Ei

}
,

and the packing dimension of E is

dimP (E) = inf {s : P s(E) = 0} = sup {s > 0 : P s(E) =∞} .

Notice that defining packing dimension in this way requires an extra step of optimization
compared to Hausdorff dimension. More properties and details about classical fractal
dimensions may be found in standard references such as [23, 11, 35].

MFCS 2017
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3 Algorithmic Fractal Dimensions

This section defines the effective Hausdorff and packing dimensions in terms of algorithmic
information, i.e., Kolmogorov complexity. We also define conditional dimensions and discuss
some properties of these dimensions, including their relationships to classical Hausdorff and
packing dimensions.

3.1 Kolmogorov Complexity
Kolmogorov complexity quantifies the incompressibility of finite data objects. It is most
often defined in the space {0, 1}∗ of binary strings, but it is readily extended to other
discrete domains. For the purposes of this work, the complexity of rational points is most
relevant. Hence, fix some standard binary encoding for n-tuples of rationals. The Kolmogorov
complexity of p is the length of the shortest binary program that outputs p. Formally, it is

K(p) = min
π∈{0,1}∗

{|π| : U(π) = p} ,

where U is a fixed universal prefix-free Turing machine and |π| is the length of π. This
quantity is also called the algorithmic information content of p. The conditional Kolmogorov
complexity of p given q ∈ Qn is the length of the shortest binary program that outputs p
when given q as an input:

K(p|q) = min
π∈{0,1}∗

{|π| : U(π, q) = p} .

The algorithmic mutual information between p ∈ Qm and q ∈ Qn measures, informally, the
amount that knowledge of q helps in the task of compressing p. Formally, it is

I(p : q) = K(p)−K(p|q) .

The quantities K(p), K(p|q), and I(p : q) may be considered algorithmic versions of entropy
H(X), conditional entropy H(X|Y ), and mutual information I(X;Y ), from classical (Shan-
non) information theory. See references [14, 27, 8] for more details on algorithmic information
and the connections between algorithmic and classical theories of information.

3.2 Effective Dimensions
Using approximation by rationals, Kolmogorov complexity may be further extended to
Euclidean spaces [17]. For every E ⊆ Rn, define

K(E) = min{K(p) : p ∈ E ∩Qn} ,

where the minimum is understood to be infinite if E ∩Qn is empty. This is the length of
the shortest program that outputs some rational point in E. The Kolmogorov complexity of
x ∈ Rn at precision r ∈ N is given by

Kr(x) = K(B2−r (x)) ,

the length of the shortest program that outputs any precision-r rational approximation of x.
Kr(x) may also be described as the algorithmic information content of x at precision r, and
similarly, Kr(x)/r is the algorithmic information density of x at precision r. This ratio does
not necessarily converge as r →∞, but it does have limiting bounds in [0, n]. These limits
are used to define effective dimensions.
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I Definition 3.1 ([15, 24, 1, 17]). Let x ∈ Rn.
1. The effective Hausdorff dimension of x is

dim(x) = lim inf
r→∞

Kr(x)
r

.

2. The effective packing dimension of x is

Dim(x) = lim sup
r→∞

Kr(x)
r

.

These dimensions were originally defined by J. Lutz [15] and Athreya, Hitchcock, J. Lutz,
and Mayordomo [1], respectively. The original definitions were in Cantor space and used gales,
which are betting strategies that generalize martingales, emphasizing the unpredictability of a
sequence instead of its incompressibility. The Kolmogorov complexity characterizations and
translation to Euclidean spaces are due to Mayordomo [24] and J. Lutz and Mayordomo [17].
Relationships between Hausdorff dimension and Kolmogorov complexity were also studied
earlier by Ryabko [30, 31, 32], Staiger [33, 34], and Cai and Hartmanis [5]; see Section 6
of [15] for a detailed discussion of this history.

We will use the fact that these dimensions are preserved by sufficiently well-behaved
functions, namely bi-Lipschitz computable bijections.

I Lemma 3 (Reimann [28], Case and J. Lutz [6]). If f : Rm → Rn is computable and
bi-Lipschitz, then dim(x) = dim(f(x)) and Dim(x) = Dim(f(x)) for all x ∈ Rm.

3.3 Conditional Dimensions
The information theoretic nature of Definition 3.1 has led to the development of algorithmic
dimensional quantities corresponding to the other algorithmic information theoretic quantities
defined above. As analogues to mutual information and conditional information, Case and J.
Lutz defined mutual dimensions [6], and J. Lutz and N. Lutz defined conditional dimensions.
This work will use the latter, which we now describe.

Given E ⊆ Rm and F ⊆ Rn, define

K(E|F ) = max
{

min{K(p|q) : p ∈ E ∩Qm} : q ∈ F ∩Qn
}
.

Then the conditional Kolmogorov complexity of x ∈ Rm at precision r ∈ N given y ∈ Rn at
precision s ∈ N is given by

Kr,s(x|y) = K(B2−r (x)|B2−s(y)) .

I Definition 3.2 (J. Lutz and N. Lutz [16]). Let x ∈ Rm and y ∈ Rn.
1. The lower conditional dimension of x given y is

dim(x : y) = lim inf
r→∞

Kr,r(x|y)
r

.

2. The upper conditional dimension of x given y is

Dim(x : y) = lim sup
r→∞

Kr,r(x|y)
r

.

That work also showed that the symmetry of algorithmic information holds in Euclidean
space, in the form

Kr(x, y) = Kr(x) +Kr,r(y|x) + o(r) .

This fact and elementary properties of limits inferior and superior immediately imply the
following chain rule for effective dimensions.

MFCS 2017
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I Theorem 4 (J. Lutz and N. Lutz [16]). For all x ∈ Rm and y ∈ Rn,

dim(x) + dim(y|x) ≤ dim(x, y)
≤ dim(x) + Dim(y|x)
≤ Dim(x, y)
≤ Dim(x) + Dim(y|x) .

3.4 Oracles and Relative Dimensions
By making the fixed universal machine U an oracle machine, the algorithmic information
quantities above may be defined relative to any oracle A ⊆ N. The definitions of KA(σ|τ),
KA(σ), KA

r (x), KA
r (x|y), dimA(x), DimA(x), dimA(x|y) and DimA(x|y) all exactly mirror

their unrelativized versions, except that U is permitted to query membership in A as a
computational step.

For y ∈ Rn, we write dimy(x) as shorthand for dimAy (x), where Ay ⊆ N encodes the
binary expansions of y’s coordinates in some standard way, and similarly for Dimy(x). Since
this kind of oracle access to y is at least as informative as any finite-precision estimate for
y (ignoring the small amount of information given by the precision parameter itself), these
relative dimensions are bounded above by conditional dimensions.

I Lemma 5 (J. Lutz and N. Lutz [16]). For all x ∈ Rm and y ∈ Rn,
1. dimy(x) ≤ dim(x|y),
2. Dimy(x) ≤ Dim(x|y).

3.5 Point-to-Set Principle
Effective Hausdorff dimension and effective packing dimension were conceived as constructive
versions of classical Hausdorff dimension and packing dimension [15, 1]. The following
point-to-set principle uses relativization to precisely characterize their relationships to their
non-algorithmic precursors.

I Theorem 6 (J. Lutz and N. Lutz [16]). For every E ⊆ Rn, the Hausdorff dimension and
packing dimension of E are
1. dimH(E) = min

A⊆N
sup
x∈E

dimA(x) ,

2. dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .

Notice that, unlike the definitions of dimH(E) and dimP (E) given in Section 2, the above
characterizations are completely symmetrical.

Theorem 6 allows us to prove lower bounds on classical dimensions in a pointwise way.
To show a statement of the form dimH(E) ≥ α, it suffices to show, for a given oracle A
and every ε > 0, that there exists an x ∈ E satisfying dimA(x) ≥ α − ε. Unlike previous
applications of this bounding technique [16, 18], the proofs in Sections 4 and 5 do not directly
invoke Kolmogorov complexity; the only tools needed are Lemma 3, Theorem 4, Lemma 5,
and Theorem 6.

4 Intersections of Fractals

In this section we prove Theorem 1. We then use a symmetric argument to prove the
corresponding statement for packing dimension, which is known [10]. For the case where
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E,F ⊆ Rn are Borel sets, Theorem 1 was shown in its present form by Falconer [11].
Closely related results, which also place restrictions on E and F , were proven earlier by
Mattila [21, 22] and Kahane [13].

I Theorem 1. For all E,F ⊆ Rn, and for (Lebesgue) almost all z ∈ Rn,

dimH(E ∩ (F + z)) ≤ max{0,dimH(E × F )− n} , (1)

where F + z = {x+ z : x ∈ F}.

Proof. Let E,F ⊆ Rn and z ∈ Rn. If E ∩ (F + z) = ∅, then (1) holds trivially, so assume
that the intersection is nonempty. Theorem 6 guarantees that there is some oracle set A ⊆ N
satisfying

dimH(E × F ) = sup
(x,y)∈E×F

dimA(x, y) . (2)

It also guarantees, given any ε > 0, that there is an x ∈ E ∩ (F + z) such that

dimA,z(x) ≥ dimH(E ∩ (F + z))− ε . (3)

Since (x, x− z) ∈ E × F , we have

dimH(E × F ) ≥ dimA(x, x− z)
= dimA(x, z)
≥ dimA(z) + dimA(x|z)
≥ dimA(z) + dimA,z(x)
≥ dimA(z) + dimH(E ∩ (F + z))− ε .

The above lines follow from (2), Lemma 3, Theorem 4, Lemma 5, and (3), respectively.
Letting ε→ 0, we have

dimH(E ∩ (F + z)) ≤ dimH(E × F )− dimA(z) .

Thus, (a) holds whenever dimA(z) = n. In particular, it holds when z is Martin-Löf random
relative to A, i.e., for Lebesgue almost all z ∈ Rn [14, 20]. J

For the case that E and F are Borel sets, Falconer [11] notes that the intersection formula
is readily extended to rigid motions and similarities. The same argument applies in the
general case, so Theorem 1 has the following corollary.

I Corollary 7. Let E,F ⊆ Rn. Let G be the group of rigid motions or the group of similarities
on Rn. Then, for almost all σ ∈ G,

dimH(E ∩ σ(F )) ≤ max{0,dimH(E × F )− n} . (4)

Proof (Following Falconer [11]). For all rotations (and all scalings) of F , Theorem 1 tells
us that (4) holds for almost all translations. Thus, (4) holds for almost all rigid motions and
almost all similarities. J

A corresponding intersection formula for packing dimension has been shown for arbitrary
E,F ⊆ Rn by Falconer [10]. That proof is not difficult or long, but an algorithmic dimensional
proof is presented here as an instance where this technique applies symmetrically to both
Hausdorff and packing dimension.

MFCS 2017
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I Theorem 8 (Falconer [10]). For all E,F ⊆ Rn, and for (Lebesgue) almost all z ∈ Rn,

dimP (E ∩ (F + z)) ≤ max{0,dimP (E × F )− n} .

Proof. As in Theorem 1, we may assume that the intersection is nonempty. Apply Theorem 6
to choose an oracle set B ⊆ N such that

dimP (E × F ) = sup
(x,y)∈E×F

DimB(x, y) (5)

and, given ε > 0, a point y ∈ E ∩ (F + z) satisfying

DimB,z(y) ≥ dimP (E ∩ (F + z))− ε . (6)

Then (y, y − z) ∈ E × F , and we may proceed much as before:

dimP (E × F ) ≥ DimB(y, y − z)
= DimB(y, z)
≥ dimB(z) + DimB(y|z)
≥ dimB(z) + DimB,z(y)
≥ dimB(z) + dimP (E ∩ (F + z))− ε .

These lines follow from (5), Lemma 3, Theorem 4, Lemma 5, and (6). Again, dimB(z) = n

for almost every z ∈ Rn, so this completes the proof. J

5 Products of Fractals

In this section we prove four known product inequalities for fractal dimensions. Inequality (7),
which was stated in the introduction as Theorem 2, is due to Marstrand [19]. When E and
F are Borel sets, it is simple to prove (7) by using Frostman’s Lemma, but the argument
for general sets using net measures is considerably more difficult [23, 9]. The other three
inequalities are due to Tricot [37]. Reference [23] gives a more detailed account of this history.

I Theorem 9 (Marstrand [19], Tricot [37]). For all E ⊆ Rm and F ⊆ Rn,

dimH(E) + dimH(F ) ≤ dimH(E × F ) (7)
≤ dimH(E) + dimP (F ) (8)
≤ dimP (E × F ) (9)
≤ dimP (E) + dimP (F ) . (10)

Notice the superficial resemblance of this theorem to Theorem 4. This similarity is not a
coincidence; each inequality in Theorem 9 follows from the corresponding line in Theorem 4.
The arguments given here for (7–10) are each similar in length to the proof of (7) for Borel
sets. That is, they are quite short.

Proof. Theorem 6 guarantees, for every ε > 0, that there exist an oracle set A ⊆ N and
points x ∈ E and y ∈ F such that

dimH(E × F ) = sup
z∈E×F

dimA(z) , (11)

dimA(x) ≥ dimH(E)− ε ,
dimA,x(y) ≥ dimH(F )− ε .
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Then by (11), Theorem 4 relative to A, and Lemma 5 relative to A, we have

dimH(E × F ) ≥ dimA(x, y)
≥ dimA(x) + dimA(y|x)
≥ dimA(x) + dimA,x(y)
≥ dimH(E) + dimH(F )− 2ε ,

by our choice of x and y. Since ε > 0 was arbitrary, we conclude that (7) holds.
For (8), let ε > 0 and use both parts of Theorem 6 to find B,C ⊆ N, u ∈ E, and v ∈ F

such that

dimH(E) = sup
x∈E

dimB(x) ,

dimP (F ) = sup
y∈E

DimC(y) ,

dimB,C(u, v) ≥ dimH(E × F )− ε .

Since B and C minimize their respective expressions, we also have

dimH(E) = sup
x∈E

dimB,C(x) ,

dimP (F ) = sup
y∈E

DimB,C(y) .

Thus, we can apply Theorem 4 relative to B,C, after first noticing that conditioning on
another point never increases dimension.

dimH(E) + dimP (F ) ≥ dimB,C(u) + DimB,C(v)
≥ dimB,C(u|v) + DimB,C(v)
≥ dimB,C(u, v)
≥ dimH(E × F )− ε .

Again, ε was arbitrary, so (8) holds.
For (9) and (10), we use essentially the same arguments as above. By Theorem 6, there

are A′, B′ ⊆ N, x′, u′ ∈ E, y′, v′ ∈ F , and ε > 0 that satisfy

dimP (E × F ) = sup
z∈E×F

DimA′(z) ,

dimH(E) = sup
z∈E

DimB′(z) ,

dimA′(x′) ≥ dimH(E)− ε ,

DimA′,x′(y′) ≥ dimP (F )− ε ,

DimB′,C(u′, v′) ≥ dimP (E × F )− ε ,

where x and C are as above. We once again apply relativized versions of Theorem 4 and

MFCS 2017
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Lemma 5:

dimP (E) + dimP (F ) ≥ DimB′,C(u′) + DimB′,C(v′)

≥ DimB′,C(u′|v′) + DimB′,C(v′)

≥ DimB′,C(u′, v′)
≥ dimP (E × F )− ε

≥ DimA′(x′, y′)− ε

≥ dimA′(x′) + DimA′(y′|x′)− ε

≥ dimA′(x′) + DimA′,x′(y′)− ε
≥ dimH(E) + dimP (F )− 3ε .

Letting ε→ 0 completes the proof. J

6 Conclusion

The applications of theoretical computer science to pure mathematics in this paper yielded a
significant extension to a basic theorem on Hausdorff dimension, as well as a much simpler
argument for another such theorem. Understanding classical fractal dimensions as pointwise,
algorithmic information theoretic quantities enables reasoning about them in a way that
is both fine-grained and intuitive, and the proofs in this work are further evidence of the
power and versatility of bounding techniques using Theorem 6. In particular, Theorem 1
demonstrates that this approach can be used to strengthen the foundations of fractal geometry.
Therefore, in addition to further applications of these techniques, developing more refined
results on the relationship between classical geometric measure theory and Kolmogorov
complexity is an appealing direction for future investigations.
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