
Algorithmic Ethics: Formalization and Verification of Autonomous Vehicle
Obligations

COLIN SHEA-BLYMYER and HOUSSAM ABBAS, Oregon State University

We develop a formal framework for automatic reasoning about the obligations of autonomous cyber-physical systems, including their

social and ethical obligations. Obligations, permissions and prohibitions are distinct from a system’s mission, and are a necessary part

of specifying advanced, adaptive AI-equipped systems. They need a dedicated deontic logic of obligations to formalize them. Most

existing deontic logics lack corresponding algorithms and system models that permit automatic verification. We demonstrate how

a particular deontic logic, Dominance Act Utilitarianism (DAU) [23], is a suitable starting point for formalizing the obligations of

autonomous systems like self-driving cars. We demonstrate its usefulness by formalizing a subset of Responsibility-Sensitive Safety

(RSS) in DAU; RSS is an industrial proposal for how self-driving cars should and should not behave in traffic. We show that certain

logical consequences of RSS are undesirable, indicating a need to further refine the proposal. We also demonstrate how obligations can

change over time, which is necessary for long-term autonomy. We then demonstrate a model-checking algorithm for DAU formulas

on weighted transition systems, and illustrate it by model-checking obligations of a self-driving car controller from the literature.

CCS Concepts: • Computer systems organization→ Robotic control; • Computing methodologies→Modeling methodologies;

Model verification and validation; Knowledge representation and reasoning; Robotic planning; • Theory of computation →
Verification by model checking; Logic and verification.

Additional Key Words and Phrases: Deontic logic, Autonomous vehicles, Model checking, Responsibility-Sensitive Safety, Dominance

Act Utilitarianism.

ACM Reference Format:
Colin Shea-Blymyer and Houssam Abbas. 2021. Algorithmic Ethics: Formalization and Verification of Autonomous Vehicle Obligations.

ACM Transactions on Cyber-Physical Systems 1, 1, Article 1 (January 2021), 24 pages. https://doi.org/10.1145/3460975

1 INTRODUCTION

The need for embodied Cyber-Physical Systems (CPS) that are fully autonomous, update their own objectives and

interact with us in our daily lives is more obvious today than ever. To cite one example, the Covid-19 pandemic has

highlighted the need for nursing robots that can check on patients in high-risk situations, self-driving vehicles that

deliver essential goods to people who cannot get them, and companion robots that understand and adapt to different

living situations like those of elderly people or incapacitated persons. We refer to these different types of systems

as human-scale CPS : embodied CPS that interact with humans and their environment, and are perceived as being

reasonably intelligent and autonomous. The common thread to all of these applications is that the autonomous CPS is

seen as just another agent in our environment, and our interactions with it assume a wide range of social expectations

built through our interactions with other humans. Indeed, the success of these systems depends on their respect for

Authors’ address: Colin Shea-Blymyer, sheablyc@oregonstate.edu; Houssam Abbas, houssam.abbas@oregonstate.edu, Oregon State University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

ar
X

iv
:2

10
5.

02
85

1v
1

 [
cs

.A
I]

 6
 M

ay
 2

02
1

https://doi.org/10.1145/3460975

2 Shea-Blymyer and Abbas

these social norms of interaction, and more particularly on the robot’s respect for ethical guidelines that are as necessary

as they are ambiguous. These obligations are distinct from the CPS’ mission, which is, for example, to go from A to B

without collisions. Obligations place constraints on how the CPS achieves its mission, and might be violated. Safety and

performance are no longer sufficient criteria for a successful CPS design: ethical, and more generally social, obligations

must be formalized, verified, and where possible, enforced. In this work we tackle the challenges of formalizing ethical

obligations in a useful and interpretable way, analyzing the properties of these obligations, and automatically verifying

that a system has given obligations.

In the fields of Artificial Intelligence (AI) and Logic, the formalization of ethical and social obligations dates back at

least to Mally [28, 30], with most of the focus going towards developing the ‘right’ logics and simulation-based studies

of normative systems. While these logics are interpretable, they lack system models of the agents under obligation. In

[19], limited ethical requirements are modeled in the costs and/or constraints of a classical optimal control problem.

Precisely defining the costs and constraints that embed ethics into a control problem is challenging, and providing a

high-level interpretation of what a particular choice logically entails is generally not possible. E.g. how does the behavior

change qualitatively if a slack variable is increased or a weight is decreased? In CPS, The formalization, verification, and

enforcement of ethical and social obligations has not been adequately tackled. This paper develops a formal framework

and tool for the analysis of the ethical obligations of human-scale CPS, with applications in self-driving cars.

The formal verification and control of CPS safety and performance has relied on alethic temporal logics, like Linear

Temporal Logic [34], to express behavioral specifications of system models. Alethic logic is the logic of necessity and

possibility: for example, if 𝑝 is a predicate, 𝑝 says that 𝑝 is true in every accessible world - that is, 𝑝 is necessary.

Possibility is then formalized as 𝑝 := ¬ ¬𝑝 : saying that 𝑝 is possible is the same as saying that it is not the case that

¬𝑝 is necessary. And so on. The best known instantiation of this in Verification is LTL [31], in which an accessible

world is a moment in the linear future. Thus 𝑝 formalizes ‘𝑝 is true in every future moment’, and 𝑝 formalizes ‘𝑝 is

true in some future moment’. It is natural to want to leverage alethic logics and associated tools to formalize and study

CPS obligations as well. However, it has been understood for over 70 years that the logic of obligations is different from

that of necessity [32]: applying alethic logic rules to obligation statements can lead to conclusions that are intuitively

paradoxical or undesirable. Consider the following statements:

A. The car will eventually change lanes: this is a statement about necessity. It says nothing about whether the car plays

an active role in the lane change (e.g., perhaps it will hit a slippery patch), or whether it should change lanes.

B. The car can change lanes: this is a statement about ability. The car might be able to do something, but does not

actually do it.

C. The car sees to it that it changes lanes: this is a statement about agency. It tells us that the car ensures that it changes

lanes.
1
I.e., it is an active agent in the lane change.

D. The car ought to change lanes: this is a statement about obligation. The car, for example, might fail to meet its

obligation, either by choice or because it can’t change lanes.

These are qualitatively different statements and there is no a priori equivalence between any two of them. The logic we

adopt should reflect this: its operators and inference rules should model these aspects in the logic, without having to add

new atomic propositions for every new concept and situation that occurs to us. Alethic logics like LTL cannot do so.
2

1
The ‘see to it’ phraseology is very common in Logic and we use it in this paper.

2
Anderson and Kanger attempted a reduction of obligations to alethic logic. See [32, Section 3] for a discussion.

Manuscript submitted to ACM

Algorithmic Ethics 3

We now give a simple but fundamental example, drawn from [32], illustrating this inability of alethic logic. One

might be tempted to formalize obligation using the necessity operator : that is, formalize ‘The car ought to change

lane’ by change-lane. However, in alethic logic, 𝑝 =⇒ 𝑝: if 𝑝 is necessarily true then it is true. If we use for

obligation this reads as Obligatory 𝑝 =⇒ 𝑝: this inference is clearly unacceptable because agents sometimes violate

their obligations so some obligatory things are not true. This leads to the question of what an agent ought to do when

some primary obligations are violated. I.e. the study of statements of the form Obligatory 𝑝 ∧¬𝑝 =⇒ This is not

possible if obligation is formalized using in pure alethic logic, since 𝑝 ∧¬𝑝 =⇒ 𝑞 is trivially true for any 𝑝 and 𝑞.

Deontic logic [18] has been developed specifically to reason about obligations, starting with von Wright [42]. It is

used in contract law, including software contracts, and is an active area of research in Logic-based AI [26]. There are

many flavors of deontic logic [22]. In this paper, we adopt the logic of Dominance Act Utilitarianism (DAU) developed

by Horty [23] because it explicitly models all four aspects above: necessity, agency, ability and obligation. We first

extend DAU to formalize the obligations of human-scale CPS with complex missions. We then formalize a subset of

Intel’s Responsibility-Sensitive Safety, or RSS, in DAU [39]. RSS proposes a set of rules to be followed by self-driving

cars to avoid collisions. To promote ‘naturalistic driving’, RSS places an obligation to avoid aggressive driving while

giving permission to drive assertively. Using our DAU formalization of RSS, we demonstrate that RSS allows a car to

facilitate an accident in traffic, clearly an undesirable position; this points to the need to further refine the RSS proposal.

We develop the first model-checking algorithm for DAU formulas, to determine whether a system model has a given

obligation or not. We implemented the model-checker and present results on a self-driving car controller. An obligation

constitutes a constraint on the CPS controller, and can be integrated into the controller’s objective; thus designing

obligations and checking them is conceptually akin to reward shaping in Reinforcement Learning [43].

When studying an autonomous CPS’ obligations, it is also necessary to analyze how these obligations change over

time, as a result of the agent’s choices [13]. For example if I ought to visit an ill relative today or tomorrow, and I don’t

visit them today, then it’s reasonable to say that tomorrow, my residual obligation is to visit them. It is important that

the formal conclusions yielded by the logic match such intuitive conclusions, in order to build trust in human-scale

CPS. We prove obligation propagation patterns for obligations expressed in DAU.

Our contributions in this paper are to
3
:

(1) formalize the obligations of RSS in DAU, and highlight the subtle decisions that need to be made when developing

a rigorous specification;

(2) derive undesirable consequences of the RSS obligations, pointing to the need for further refinements of RSS;

(3) demonstrate patterns for temporal propagation of obligations in DAU, allowing evaluation of obligations

inheritance;

(4) develop a model-checking algorithm of DAU specifications that allows us to establish whether a system has a

given obligation or not; and

(5) implement the model-checker and demonstrate its use on a self-driving car from the litterature.

Paper Organization. Section 2 defines DAU. Section 3 gives a first case study: the formalization of a subset of RSS

rules in DAU, and some of their logical consequences. Section 4 proves propagation patterns that hold in DAU. Section 5

gives a model-checking algorithm for absolute and conditional DAU statements. Section 6 demonstrates the use of the

3
A preliminary conference version of this work appeared in [40]. This paper adds the analysis of temporal propagation (item 3 above), improves the RSS

formalization significantly and formalizes assertive driving — a model of a social permission (in item 2), adds a model-checking algorithm for conditional

obligations, as the original can not find histories that satisfy a condition (in item 4) and implements both model-checkers and demonstrates their use

(item 5).

Manuscript submitted to ACM

4 Shea-Blymyer and Abbas

model-checker on a highway driving controller from the literature. Related work is reviewed in Section 7, and Section 8

concludes the paper.

2 DOMINANCE ACT UTILITARIANISM

We adopt the logic of Dominance Act Utilitarianism (DAU) developed by Horty [23] because it explicitly models all four

aspects listed in the Introduction: necessity, agency, ability and obligation. It includes a temporal logic as a component

so we can describe temporal behaviors essential to system design, and it uses branching time, essential for modeling

uncontrollable environments. It has an intrinsic computational structure which makes it appealing for CPS verification

and control purposes: the agent’s obligations are derived from maximizing utility, so DAU can be viewed as the deontic

logic of utility maximization in non-deterministic systems. As such, it gives a logical interpretation to the behavior of

systems that maximize utility, such as [19]. This section summarizes the main aspects of DAU developed in [23].

Syntax. Let 𝐴𝑔𝑒𝑛𝑡𝑠 be a finite set of agents, which represent, for example, the cars in traffic. A DAU formula is

obtained as follows:

𝐴 := 𝜙 | ¬𝐴 | 𝐴∧𝐴 | [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] | [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝐴] | ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] | ⊙ ([𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]/𝜙) | 𝑋𝐴

where 𝛼 ∈ 𝐴𝑔𝑒𝑛𝑡𝑠 , ∧,¬ are the usual boolean connectives, and 𝜙 is a formula in the logic CTL
∗
. We use CTL

∗
to specify

the CPS’ mission and to describe states of affairs in the world. We give the informal description of CTL
∗
operators and

refer the reader to [17] for formal semantics: the temporal operator means Always (now and in every future moment

along this trace), means Eventually (now or at some future moment along this trace), and R means Release: 𝜙R𝜓
means that either𝜓 always holds, or it does not hold at some future moment and sometime before then 𝜙 holds. The

path quantifier ∀means For all paths, and ∃ means There exists a path. The DAU-specific operators informally mean

the following: [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] is the agency operator and says that 𝛼 sees to it, or ensures, that 𝐴 is true; [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝐴] is a
variant on [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]; ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] is the obligation modality and says that 𝛼 ought to ensure that 𝐴 is true; finally,

⊙([𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]/𝜙) says that under the condition 𝜙 , 𝛼 ought to ensure that 𝐴 is true. The rest of this section gives the

formal semantics of these deontic operators.

Branching time. Let 𝑇𝑟𝑒𝑒 be a set of moments with an irreflexive, transitive ordering relation < such that for any

three moments𝑚1,𝑚2,𝑚3 in 𝑇𝑟𝑒𝑒 , if𝑚1 < 𝑚3 and𝑚2 < 𝑚3 then either𝑚1 < 𝑚2 or𝑚2 < 𝑚1. There is a unique root

moment which we denote by 0. A history is a maximal linearly ordered set of moments from 𝑇𝑟𝑒𝑒: intuitively, it is a

branch of the tree that extends infinitely into the future. Given a moment𝑚 ∈ 𝑇𝑟𝑒𝑒 , the set of histories that go through

𝑚 is 𝐻𝑚 := {ℎ | 𝑚 ∈ ℎ}. See Fig. 1. We will frequently refer to moment/history pairs𝑚/ℎ, where𝑚 ∈ Tree and ℎ ∈ 𝐻𝑚 .

Definition 2.1. [23, Def. 2.2] With 𝐴𝑃 a set of atomic propositions, a branching time model is a tuple M = (𝑇𝑟𝑒𝑒, <, 𝑣)
where 𝑇𝑟𝑒𝑒 is a tree of moments with ordering < and 𝑣 is a function that maps moments𝑚 in M to sets of atomic

propositions from 2
𝐴𝑃

, the set of subsets of 𝐴𝑃 .4

In this paper, to retain a uniform satisfaction relation like [23], we will speak of formulas holding or not at an𝑚/ℎ
pair and write M,𝑚/ℎ |= 𝜙 , where it is always the case that ℎ ∈ 𝐻𝑚 . When the formula is in CTL

∗
there should be no

confusion as a CTL
∗
path formula is evaluated along ℎ and a state formula is evaluated at𝑚. Given a DAU statement 𝐴,

4
In the DAU formulation of [23], 𝑣 maps𝑚/ℎ pairs, rather than moments𝑚, to subsets of 𝐴𝑃 . This is more general but disagrees with the common

usage of atomic propositions in CPS Verification, so we adopt this more classical definition of 𝑣. The ideas of this paper are best explained without such

(currently) unnecessary generalities.

Manuscript submitted to ACM

Algorithmic Ethics 5

m1

m2 m3

h1 h2 h3

K1 K2

K3 K4 K5

h1 h2 h3 h4

h5 h6

A A A

A A

B

10 10

9783

m

m0

Fig. 1. A utilitarian stit model for an agent 𝛼 illustrating the main DAU definitions. Moments𝑚 <𝑚′ with sets of histories 𝐻𝑚 =

{ℎ1, . . . , ℎ6 } and 𝐻𝑚′ = {ℎ1, . . . , ℎ4 }. Each moment is marked with the actions available to 𝛼 at that moment:𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 = {𝐾1, 𝐾2 }
and𝐶ℎ𝑜𝑖𝑐𝑒𝑚

′
𝛼 = {𝐾3, 𝐾4, 𝐾5 }. Action 𝐾2 = {ℎ5, ℎ6 } and 𝐾4 = {ℎ2 }. Each history is marked with the formula(s) that it satisfies at

𝑚 and with its value𝑉𝑎𝑙𝑢𝑒 (ℎ) , e.g.,𝑚/ℎ1 satisfies 𝐴 and has value 3.𝑚/ℎ5 |= [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] since𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ5) = 𝐾2, and both ℎ5
and ℎ6 satisfy 𝐴. On the other hand,𝑚/ℎ1 ̸ |= [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] since 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ1) = 𝐾1 = {ℎ1, ℎ2, ℎ3, ℎ4 } and ℎ4 does not satisfy 𝐴.
𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 = {𝐾2 } so𝑚/ℎ5 |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴].𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚′

𝛼 = {𝐾4, 𝐾5 } and so 𝛼 has no obligations at𝑚′ since there is no formula 𝜙
s.t. |𝜙 |𝑚′ ⊇ 𝐾4 ∪𝐾5 (See Def. 2.4). Finally,𝑚/ℎ5 |= [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝐴] because 𝐾2 ⊂ |𝐴 |𝑚 and 𝐻𝑚 ≠ |𝐴 |𝑚 = {ℎ1, ℎ2, ℎ3, ℎ5, ℎ6 }.

the proposition it expresses at moment𝑚 is the set of histories where it holds starting at𝑚

|𝐴|M𝑚 := {ℎ ∈ 𝐻𝑚 | M,𝑚/ℎ |= 𝐴} (1)

Where there’s no risk of ambiguity, we dropM from the notation, writing |𝐴|𝑚 ,𝑚/ℎ |= 𝐴, etc.

Choice. Consider an agent 𝛼 ∈ 𝐴𝑔𝑒𝑛𝑡𝑠 . Formally, at𝑚, an action 𝐾 is a subset of𝐻𝑚 : this is the subset of histories that

are still realizable after taking the action. At every moment𝑚, 𝛼 is faced with a choice of actions which we denote by

𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 . So 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 ⊂ 2
𝐻𝑚

. See actions in Fig. 1. 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 must obey certain constraints given in the Supplementary

material. In what follows, 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 is assumed finite for every 𝛼 and𝑚.

Agency. Agency is defined via the ‘Chellas sees to it’ operator 𝑐𝑠𝑡𝑖𝑡 , named after Brian Chellas [16]. Intuitively, an

agent sees to it, or ensures, that 𝐴 holds at𝑚/ℎ if it takes an action 𝐾 s.t., whatever other history ℎ′ could’ve resulted

from 𝐾 , 𝐴 is true at𝑚/ℎ′ as well. I.e., the non-determinism does not prevent 𝛼 from guaranteeing 𝐴.

Definition 2.2 (Chellas cstit). [23, Def. 2.7] With agent 𝛼 and DAU statement 𝐴, let 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ) be the unique action
that contains ℎ. Then

M,𝑚/ℎ |= [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] iff 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ) ⊆ |𝐴|M𝑚

If 𝐾 ⊆ |𝐴|𝑚 we say 𝐾 guarantees 𝐴. See Fig. 1. A deliberative stit operator is also defined, which captures the notion

that an agent can only truly be said to do something if it also has the choice of not doing it. See Fig. 1.

Definition 2.3 (Deliberative stit). [23, Def. 2.8] With agent 𝛼 and DAU statement 𝐴,

M,𝑚/ℎ |= [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝐴] iff 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ) ⊆ |𝐴|M𝑚 and |𝐴|M𝑚 ≠ 𝐻𝑚

Operators 𝑐𝑠𝑡𝑖𝑡 and 𝑑𝑠𝑡𝑖𝑡 are not interchangeable and fulfill complementary roles.

Manuscript submitted to ACM

6 Shea-Blymyer and Abbas

Optimal actions. To speak of an agent’s obligations, we will need to speak of ‘optimal actions’, those actions that

bring about an ideal state of affairs. Let 𝑉𝑎𝑙𝑢𝑒 : 𝐻0 → R be a value function that maps histories ofM to utility values

from the real line R. This value represents the utility associated by all the agents to this common history. Given two

sets of histories 𝑍 and 𝑌 , we order them as

𝑍 ≤ 𝑌 iff 𝑉𝑎𝑙𝑢𝑒 (ℎ) ≤ 𝑉𝑎𝑙𝑢𝑒 (ℎ′) ∀ ℎ ∈ 𝑍,ℎ′ ∈ 𝑌 (2)

Let 𝑆𝑡𝑎𝑡𝑒𝑚𝛼 := 𝐶ℎ𝑜𝑖𝑐𝑒𝑚
𝐴𝑔𝑒𝑛𝑡𝑠\{𝛼 } be the set of background states against which 𝛼 ’s decisions are to be evaluated. These are

the choices of action available to other agents. Given two actions 𝐾,𝐾 ′
in𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 , 𝐾 ⪯ 𝐾 ′

iff 𝐾 ∩𝑆 ≤ 𝐾 ′∩𝑆 for all 𝑆 ∈
𝑆𝑡𝑎𝑡𝑒𝑚𝛼 . That is, 𝐾 ′

dominates 𝐾 iff it is preferable to it regardless of what the other agents do (known as sure-thing

reasoning). Strict inequalities are naturally defined. Optimal actions are given by

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 := {𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 | �𝐾 ′ ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 s.t. 𝐾 ≺ 𝐾 ′} (3)

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 is non-empty in models with finite 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 [23, Thm. 4.10].

Dominance Ought. We are now ready to define Ought statements, i.e., obligations. Intuitively we will want to say

that at moment𝑚, agent 𝛼 ought to see to it that 𝐴 iff 𝐴 is a necessary condition of all the histories considered ideal at

moment𝑚. This is formalized in the following dominance Ought operator, which is pronounced “𝛼 ought to see to it

that 𝐴 holds”.

Definition 2.4 (Dominance Ought). With 𝛼 an agent and 𝐴 an obligation in a model M,

M,𝑚/ℎ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] iff 𝐾 ⊆ |𝐴|M𝑚 for all 𝐾 ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 (4)

See Fig. 1 for examples. The dominance ought satisfies a number of intuitive logical properties; we refer the reader

to [23, Ch. 4]. The dual of the Ought is (weak, a.k.a. negative) Permission:

P[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] := ¬ ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝐴]

The intuitive meaning of permission is that 𝛼 can ensure 𝐴 without violating any obligations. Moreover, having a

permission does not imply that one actually sees to it that 𝐴 is true. This is quite different from 𝐴, which simply says

that 𝐴 actually happens, and from ∃[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] which says that 𝛼 can ensure 𝐴, neither of which refers to obligations.

Conditional obligation. It is often necessary to say that an obligation is imposed only under certain conditions. Let 𝑋

be a proposition, i.e. 𝑋 = |𝜙 |𝑚 for some 𝜙 . The choice of actions available to 𝛼 at𝑚 under the condition that 𝑋 holds

is defined as 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 /𝑋 := {𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 | 𝐾 ∩ 𝑋 ≠ ∅}. This is the right definition because non-determinism might

make it impossible to have 𝐾 ⊆ 𝑋 (i.e., an action that guarantees 𝑋), but future actions might still ensure the finally

realized history will satisfy 𝑋 . Thus in Fig. 1 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 /𝐵 = {𝐾1}. Conditional dominance is then defined by comparing

only histories that satisfy 𝜙 : for two actions 𝐾,𝐾 ′
from𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 , 𝐾 ⪯𝑋 𝐾 ′

iff 𝐾 ∩𝑆 ∩𝑋 ≤ 𝐾 ′∩𝑆 ∩𝑋 for all 𝑆 ∈ 𝑆𝑡𝑎𝑡𝑒𝑚𝛼 .

The conditionally optimal actions are then

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 /𝑋 := {𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 /𝑋 | �𝐾 ′ ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 /𝑋 s.t. 𝐾 ≺𝑋 𝐾 ′} (5)

Finally, where 𝐴 is an obligation and 𝜙 a formula in the underlying temporal logic, the conditional Ought is defined by

M,𝑚/ℎ |= ⊙([𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]/𝜙) iff 𝐾 ⊆ |𝐴|M𝑚 ∀𝐾 ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 /|𝜙 |M𝑚 . (6)

Manuscript submitted to ACM

Algorithmic Ethics 7

We note that conditional obligation is not the same as 𝜙 =⇒ ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙]. Conditional obligation only compares

𝜙-satisfying histories, while this latter formula still compares all histories.

Terminology abuse. In what follows, histories that belong to optimal actions will be called optimal.

3 CASE STUDY IN MODELING: RESPONSIBILITY-SENSITIVE SAFETY FOR SELF-DRIVING CARS

Responsibility-Sensitive Safety, or RSS, is a proposal put forth by Intel’s Mobileye division [39]. It proposes rules or

requirements that, if followed by all cars in traffic, would lead to zero accidents. RSS attempts to promote a natural way

of driving by drawing the line between acceptable assertive driving, and unacceptable aggressive driving. We consider

these notions, of assertive vs. aggressive driving, to be fundamentally social because they refer to what a particular

society accepts. Thus we may say that RSS places an obligation to avoid aggressive driving while giving permission to

drive assertively. The RSS proposal is expressed in the language of continuous-time dynamical systems and ordinary

differential equations, but the rules to be followed are not formalized logically, so it is not possible to reason about them

or derive their logical consequences. This work complements the dynamical equations-based presentation of RSS in [39]

with a deontic logic formalism. We have three objectives in doing so: demonstrating the usefulness of DAU in a real use

case; highlighting the ambiguities implicit in such proposals, which would go unnoticed without formalization; and

automating the checking of logical consistency and deriving of conclusions. We first present the RSS rules in natural

language (Section 3.1), then their formalization (Section 3.2), and finally we analyze the rules’ logical consequences.

Three important points must be made:

(A) The formalization does not depend on the dynamical equations that govern the cars because we wish our conclusions

to be independent of these lower-level concerns. This is consistent with the standard AV control architecture where

a logical planner decides what to do next (‘change lanes’ or ‘turn right’) and a lower-level motion planner executes

these decisions. Our logical analysis concerns the logical planner.

(B) We are not trying to formalize general traffic laws [38] or driving scenarios, which is outside the scope of this

paper. We are only formalizing the RSS rules.

(C) Every formalization, in any logic, can always be refined. We are not aiming for the most detailed formalization; we

aim for a useful formalization.

3.1 The RSS rules

The rules for Responsibility-Sensitive Safety are [39]:

RSS1. Do not hit someone from behind.

RSS2. Do not cut-in (to a neighboring lane) recklessly.

RSS3. Right-of-way is given, not taken.

RSS4. Be careful of areas with limited visibility.

RSS5. If you can avoid an accident without causing another one, you must do it.

RSS6. To change lanes, you do not have wait forever for a perfect gap: i.e., you do not have to wait for a gap large

enough to get into even when the other car, already in the lane, maintains its current motion.

RSS6 is derived directly from the following in [39, Section 3]: “the interpretation [of the duty-of-care law] should lead to

[...] an agile driving policy rather than an overly-defensive driving which inevitably would confuse other human drivers

and will block traffic [...]. As an example of a valid, but not useful, interpretation is to assume that in order to be “careful”

our actions should not affect other road users. Meaning, if we want to change lane we should find a gap large enough

Manuscript submitted to ACM

8 Shea-Blymyer and Abbas

such that if other road users continue their own motion uninterrupted we could still squeeze-in without a collision.

Clearly, for most societies this interpretation is over-cautious and will lead the AV to block traffic and be non-useful.”

Note that, consistently with points (A)-(C) above, this is stated without any reference to dynamics or specific scenarios.

The RSS authors are concerned that overly cautious driving might lead to unnatural traffic, so RSS aims to allow cars to

move a bit assertively, and defines correct reactions to that.

Note finally that RSS4 is explicitly formulated in terms of obligations and ability. However, we will not study RSS4

and RSS5 as they are currently too vague for formalization.

3.2 Formalization of RSS Rules

Formalizing RSS1. Let 𝜙 denote ‘collision with car ahead of me’. A plausible formalization of RSS1 is then

𝑅𝑆𝑆1. ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝜙]

That is, 𝛼 ought to see to it that there is no collision with a car ahead of it. A positive aspect of this formalization is that

if at some𝑚, a rear-end collision is inevitable, then 𝑅𝑆𝑆1 ceases to hold: ∀𝜙 =⇒ ¬ ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝜙]. This provides an
automatic and interpretable update of control objectives. In a deployed system, an automatic proof engine could update

which obligations hold and which don’t, based on the current situation [3]. An alternative formalization is

𝑅𝑆𝑆1𝑟 . ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙]]

This says that 𝛼 should see to it that it does not deliberately ensure an accident 𝜙 . This form of obligation is called

refraining [24]: 𝛼 refrains from hitting anyone from behind. If a rear-end collision is inevitable at some𝑚, then 𝑅𝑆𝑆1𝑟

still holds (unlike 𝑅𝑆𝑆1) and is trivially satisfied. This might be computationally cheaper than having to use a proof

engine to tell us that the obligation no longer holds.

In the general case, some actions at𝑚 guarantee a collision, some guarantee no collision, and the rest don’t guarantee

either: the future could evolve either way. If we are interested in guaranteeing no collision over a long horizon, then,

because of non-determinism, it is unlikely that any action in the present moment can guarantee that. In such a case

𝑅𝑆𝑆1 will be violated repeatedly in a rather trivial way; on the other hand, 𝑅𝑆𝑆1𝑟 is more permissive, since it can be

met by taking any optimal action that allows the possibility of no collision over the horizon. A lower-level controller,

running at a higher rate, could then ensure freedom from collision forever.

Formalizing RSS2. Define formulas,𝜓 : a non-reckless cut-in, and𝜓𝑟 : a reckless cut-in. Then RSS2 is formalizable as

𝑅𝑆𝑆2. ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : (𝜓 ∨𝜓𝑟 =⇒ ¬𝜓𝑟)] .

That is, 𝛼 should see to it that always, if a cut-in happens, then it is a non-reckless cut-in.

Formalizing RSS3. Formalizing this rule requires some care. First, note that RSS3 should probably be amended to say

that ‘Right-of-way is given, not taken, and some car is given the right-of-way’ - otherwise, traffic comes to a standstill.

We will first focus on formalizing the prohibition (nobody should take the right-of-way), then we will formalize the

positive obligation (somebody must be given it).

Let 𝐴𝑔𝑒𝑛𝑡𝑠 = {𝛼, 𝛽,𝛾, . . .} be a finite set of agents. Define the atomic propositions𝐺𝑅𝑂𝑊 𝛼
𝛽
: 𝛽 gives right-of-way to 𝛼

and 𝑝𝛼 : 𝛼 proceeds/drives through the conflict region. Then 𝑇𝑅𝑂𝑊𝛼 := 𝑝𝛼 ∧¬(𝐺𝑅𝑂𝑊 𝛼
𝛽
∧𝐺𝑅𝑂𝑊 𝛼

𝛾 ∧ . . .) formalizes

taking the right-of-way: 𝛼 proceeds without being given the right-of-way by everybody. We could now express the

Manuscript submitted to ACM

Algorithmic Ethics 9

prohibition in RSS3: every 𝛼 ought to see to it that it does not take the right-of-way:

𝑅𝑆𝑆3𝑝𝑟𝑜ℎ𝑖𝑏0.
∧

𝛼 ∈𝐴𝑔𝑒𝑛𝑡𝑠
⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝑇𝑅𝑂𝑊𝛼] (7)

The difficulty with this formulation is that it could lead to 𝛼 being obliged to force everybody else to give it the

right-of-way - something over which, a priori, it has no control. To see this, we need the following.

Proposition 3.1. Given obligations 𝐴 and 𝐵, ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∨𝐵] ∧(∀¬𝐴) =⇒ ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵]

In words, if 𝛼 ought to ensure 𝐴 or 𝐵 at𝑚/ℎ, but every available history violates 𝐴, then its obligation is effectively

to ensure 𝐵.

Proof. Assume that𝑚/ℎ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∨𝐵] ∧∀¬𝐴. By definition of the dominance ought, for all𝐾 ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 , 𝐾 ⊆
|𝐴∨𝐵 |𝑚 . And by definition of |𝐴|𝑚 (Eq. 1), |𝐴∨𝐵 |𝑚 = |𝐴|𝑚 ∪ |𝐵 |𝑚 . We also have that𝑚/ℎ |= ∀¬𝐴, i.e.,𝑚/ℎ′ |= ¬𝐴 for

all ℎ′ ∈ 𝐻𝑚 ; thus |𝐴|𝑚 = ∅. Therefore ∀𝐾 ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 , 𝐾 ⊆ |𝐵 |𝑚 , which is the definition of𝑚/ℎ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵]. □

Applied to Eq. (7) with 𝐴 = ¬𝑝𝛼 and 𝐵 = ∧𝛽≠𝛼 𝐺𝑅𝑂𝑊 𝛼
𝛽
, Thm. 3.1 says that if 𝛼 is in a situation where it has no

choice but to proceed (e.g. as a result of slippage on a wet road, say), then its obligation is to see to it that everybody

else gives it the right-of-way, which is unreasonable.

Instead, we adopt a more passive attitude: every agent sees to it that if they are not given the right-of-way, then they

do not pass. Letting atomic proposition 𝑔𝛼 denote that right-of-way is Granted to 𝛼 ,

𝑅𝑆𝑆3𝑝𝑟𝑜ℎ𝑖𝑏.
∧

𝛼 ∈𝐴𝑔𝑒𝑛𝑡𝑠
⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : (¬𝑔𝛼 =⇒ ¬𝑝𝛼)] (8)

The positive obligation, that somebody must be given the right-of-way, seems to be a group obligation: the group

must give right-of-way to one of its members. Group obligations are formally defined in [23, Ch. 6]. Then we formalize

𝑅𝑆𝑆3𝑝𝑜𝑠. ⊙ [𝐴𝑔𝑒𝑛𝑡𝑠 𝑐𝑠𝑡𝑖𝑡 : ∨𝛼 ∈𝐴𝑔𝑒𝑛𝑡𝑠 𝑔𝛼] (9)

This says the group 𝐴𝑔𝑒𝑛𝑡𝑠 has an obligation to give right-of-way to someone, and the only choice is in who gets it.

Finally, we formalize 𝑅𝑆𝑆3 as the conjunction of 𝑅𝑆𝑆3𝑝𝑟𝑜ℎ𝑖𝑏 and 𝑅𝑆𝑆3𝑝𝑜𝑠 .

Formalizing assertiveness and RSS6. This rule says that if the car wants to change lanes, it shouldn’t have to wait

forever for the perfect gap (otherwise, traffic is stalled). It is one way in which RSS attempts to promote ‘assertive

driving’, a style of driving that tries to obtain right-of-way in a ‘polite’ way. The key difficulty, of course, is to distinguish

between assertive driving, which is acceptable, and aggressive driving, which is not. Deontic logic can help in that

regard.We model assertiveness as a permission to not drive conservatively or defensively. That is, if 𝜒 is a formula that

describes conservative driving behavior in a particular context Ω, then driving assertively is the conditional permission

P([𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜒]]/Ω) (10)

This is a permission: it does not constitute an obligation to drive assertively. Depending on its reward structure, the

agent might choose to drive conservatively after all. Importantly, Eq. (10) states that the agent can drive assertively

without violating any obligations it does have.

For RSS6, conservative driving consists in waiting for the perfect gap before passing, that is, waiting until the other

car, already in the lane, gives 𝛼 the right-of-way. Thus we may take 𝜒 = 𝑔𝛼R¬𝑝𝛼 , where, recall, 𝑝𝛼 means ‘𝛼 proceeds

Manuscript submitted to ACM

10 Shea-Blymyer and Abbas

through the conflict region’ and 𝑔𝛼 means ‘𝛼 is granted the right-of-way’. Finally, with𝑤𝛼 meaning ‘𝛼 wants to change

lanes’ we have

𝑅𝑆𝑆6. P([𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝑔𝛼R¬𝑝𝛼]]/𝑤𝛼) (11)

3.3 Application: undesirable consequence of RSS star-calculations

One of the main tenets of RSS is that an Autonomous Vehicle (AV) is only responsible for avoiding potential accidents

between itself and other cars (so-called ‘star calculations’); interactions between 2 other cars are not its concern [39,

Remarks 1 and 8]. Yet everyday driving experience makes clear that our actions can be faulted for at least facilitating an

accident: e.g., by repeated braking, I may cause the car behind me to do the same, leading the car behind it to rear-end

it. Or I might make a sudden lane change over two lanes, causing the car in the lane next to me to over-react when I

speed past it, and collide with someone else. We now show how this intuition is automatically captured by the DAU

logic, and that RSS star-calculations lead to undesirable behavior of the AV.

Let 𝜙 ∈ CTL
∗
denote a formula expressing “Accident between two other cars”, and the accident is such that 𝛼

can facilitate it as in the above 2 examples. Then [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙] says that 𝛼 (deliberately) sees to it that the accident

happens even though it could avoid doing so; given what we assumed about this accident, this means 𝛼 facilitates the

accident. Then [𝛼 𝑑𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙]] expresses that 𝛼 sees to it that it does not facilitate the accident: this is a form of

refraining. Finally, [𝛼 𝑑𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙]]] says that 𝛼 refrains from refraining, that is, 𝛼 does not refrain

from facilitating the accident (even though it could). The RSS position is that it is OK for 𝛼 to refrain from refraining [39,

Remarks 1 and 8]. However, refraining from refraining is the same as doing. Formally [23, 2.3.3.]

[𝛼 𝑑𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙]]] ≡ [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙]

This matches our intuition: to not refrain from facilitating an accident even though one could (left-hand side in previous

equation) is the same as facilitating it (right-hand side). In other words, under this formalization, the RSS position is

tantamount to allowing AVs to facilitate accidents between others - clearly, an undesirable conclusion. This aspect of

RSS, therefore, needs refinement to take into account longer-range interactions between traffic participants.

4 OBLIGATION PROPAGATION

Obligations vary over time: the obligation at moment𝑚 is the set of necessary conditions (formulas in the tense logic)

satisfied by all histories optimal at𝑚, and the set of optimal histories can change from moment to moment. There is

thus a need to understand how obligations change over time: for example if the agent does not act optimally at𝑚,

does the obligation disappear at the next moment? Or does it persist, perhaps in a modified form? The formal study

of obligation propagation is also a way to interpret the temporal evolution of utility-maximizing controllers: as the

controller (and the environment) act, obligations change, placing new constraints on the controller.

The following examples show that these questions must be studied formally, since intuition usually fails us. Consider

the following tentative propagation pattern, in which 𝜙 is a CTL
∗
formula:

⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑋𝜙] =⇒ 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] (12)

This says that an obligation now to ensure that 𝜙 holds at the next moment implies an obligation at the next moment to

ensure that 𝜙 holds, which sounds plausible. However, it is not valid in DAU. Fig. 2a gives a counter-example: 𝐾2 is

optimal at𝑚1 so𝑚1/ℎ1 |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑋𝜙]; however𝑚3 is the next moment along ℎ1 and𝑚3/ℎ1 ̸ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙], so
𝑚1/ℎ1 ̸ |= 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] and Eq. (12) is not valid.

Manuscript submitted to ACM

Algorithmic Ethics 11

m1

m2m3

K1 K2

K3 K4 K5 K6

X𝜙

9 10887
h1 h2 h4h3 h5

𝜓𝜓

(a)
m1

m2

h1

K1 K2

K3 K4

◇𝜙

8 7
h2 h3

9
𝜙

(b)

Fig. 2. Counter-examples to tentative obligation propagation patterns. (a) Pattern in Eq. (12); (b) Pattern in Eq. (13)

As a second example, the following tentative pattern says that if the agent has an obligation to ensure that 𝜙

eventually holds, does not do so now, but it is still possible to do so at the next moment, then at the next moment the

agent still has an obligation to ensure eventually 𝜙 :

⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] ∧¬[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] ∧𝑋∃[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] =⇒ 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] (13)

Fig. 2b shows a counter-example to this second pattern: we have𝑚1/ℎ2 |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙], and that𝑚1/ℎ2 |= 𝑋∃[𝛼 𝑐𝑠𝑡𝑖𝑡 :
𝜙]. If 𝐾2 will be taken, then𝑚2/ℎ2 ̸ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] because 𝐾3 is optimal at𝑚2, so Eq. (13) is also invalid.

Both counter-examples exploited the fact that along the𝑚/ℎ pair where the left-hand side is evaluated, the agent

acts non-optimally. This suggests that to derive valid temporal propagation patterns, we must assume the agent is

acting optimally. So we define the distinguished atomic proposition a∗ for this purpose:

𝑚/ℎ |= a∗ iff 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ) ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼

The following pattern is valid in DAU. Let𝑚+ (ℎ) be the moment that follows𝑚 in ℎ; e.g.,𝑚+
1
(ℎ1) =𝑚3 in Fig. 2a.

⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑋𝜙] ∧ a∗ =⇒ 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] (14)

Proof. The pair𝑚/ℎ satisfies the left-hand side iff𝐾 ⊆ |𝑋𝜙 |𝑚 for all optimal𝐾 at𝑚. By a∗, we have that𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ)
is optimal, thus𝑚/ℎ |= 𝑋𝜙 , which implies that𝑚+ (ℎ)/ℎ |= 𝜙 , which is the definition of𝑚/ℎ |= 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙]. □

Acting optimally is not always enough however. The following valid pattern says that if 𝛼 ought to see to it that 𝜙 ,

acts optimally, but it is impossible to satisfy 𝜙 now, then at the next moment 𝛼 still ought to see to it that 𝜙 . Here,

∀¬𝜙 is necessary in the antecedent: the implication fails trivially without it.

⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] ∧ a∗ ∧∀¬𝜙 =⇒ 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙] (15)

Finally we present a pattern of obligation propagation which does not require optimal behavior, but which is only

satisfied in certain models.

Lemma 4.1. With 𝜙,𝜓 CTL∗ formulas, letM be a stit model which satisfies the following constraint at every moment

𝑚: for all actions 𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 s.t. 𝐾 ⊆ |¬𝜙 |𝑚 and which contain a history ℎ s.t.𝑚+ (ℎ) |= ∃[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜓], it holds that all
Manuscript submitted to ACM

12 Shea-Blymyer and Abbas

optimal actions in 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚
+ (ℎ)

𝛼 guarantee𝜓 . Then in such a model, the following is satisfied at every index𝑚/ℎ.

⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙 ∨𝑋𝜓] ∧[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝜙] ∧𝑋∃[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜓] =⇒ 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜓] (16)

This says that if 𝛼 has an obligation to ensure 𝜙 ∨𝑋𝜓 , guarantees ¬𝜙 now, but next it is still possible to guarantee𝜓 ,

then the next obligation is to guarantee𝜓 .

Proof. Let𝑚/ℎ be an index in M at which the DAU formula (16) is evaluated. Let 𝐾ℎ be the action to which ℎ

belongs, and for brevity, write𝑚′ =𝑚+ (ℎ).
Case 1: ℎ ∈ ∪𝐾 ∈𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 𝐾 . Then 𝐾ℎ ⊆ |𝜙 ∨𝑋𝜓 |𝑚 = |𝜙 |𝑚 ∪ |𝑋𝜓 |𝑚 . By hypothesis, 𝐾ℎ ⊆ |¬𝜙 |𝑚 also so 𝐾ℎ ⊆

|𝑋𝜓 |𝑚 \ |¬𝜙 |𝑚 . By construction, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚
′

𝛼 ⊆ 𝐻𝑚′ ⊆ 𝐾ℎ so for every 𝐾∗ ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚′
𝛼 and every ℎ′ ∈ 𝐾∗

,𝑚′/ℎ′ |= 𝜓 ,
which is the definition of𝑚/ℎ |= 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜓].

Case 2: ℎ ∉ ∪𝐾 ∈𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 𝐾 . From the formula antecedent, we have that 𝐾ℎ ⊆ |¬𝜙 |𝑚 and that𝑚′/ℎ |= ∃[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜓].
Therefore the model constraint yields that all optimal actions at𝑚′

guarantee 𝜓 , which is the definition of𝑚/ℎ |=
𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜓]. □

Finally, the proof also establishes the following pattern.

Proposition 4.2. The following is valid (i.e., satisfied in all models) in DAU:

⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜙 ∨𝑋𝜓] ∧[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝜙] ∧ a∗ =⇒ 𝑋 ⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝜓]

5 MODEL CHECKING DAU

The expressive power of DAU makes the logic a useful tool in the hands of a system designer. The system designer can

use DAU to specify the obligations the system ought to have. While DAU derives obligations from stit trees, control

engineers often model agents as some kind of automata. How then can we verify that the controller has the obligations

the system designer has specified? Note that having an obligation is not the same as meeting that obligation: the

obligation is a constraint that might or might not be met. This section’s algorithms verify that a system has a given

obligation, i.e. that it has the given constraints on its behavior.

We can ensure that an agent has an obligation by framing the question as a model checking problem. In this section

we cast agents as stit automata, and introduce novel algorithms to perform model checking for obligations. All proofs

not given here can be found in the supplementary material.

5.1 Stit Automata

For a set 𝑆 , let 𝑆𝜔 denote the set of infinite sequences (𝑎𝑖)𝑖∈N with 𝑎𝑖 ∈ 𝑆 .

Definition 5.1 (Stit automaton). Let 𝐴𝑃 be a finite set of atomic propositions. A stit automaton 𝑇 is a tuple 𝑇 =

(𝑄,𝑞𝐼 ,K, 𝐹 ,Δ, 𝐿,𝑤, _), where 𝑄 is a finite non-empty set of states, 𝑞𝐼 is the initial state, K is a finite non-empty set of

actions, 𝐹 ⊂ 𝑄 is a set of final states, Δ ⊂ 𝑄 × K ×𝑄 is a finite transition relation such that if (𝑞, 𝐾, 𝑞′) and (𝑞, 𝐾 ′, 𝑞′)
are in Δ then 𝐾 = 𝐾 ′

, 𝐿 : 𝑄 → 2
𝐴𝑃

is a labeling function, 𝑤 : Δ → R is a weight function, and _ : R𝜔 → R is an

accumulation function.

When dealing with multiple automata, we will sometimes write𝑇 .𝑞𝐼 ,𝑇 ._, etc, to clarify which automaton is involved.

Note that 𝑇 is a type of non-deterministic weighted automaton. Its unweighted counterpart 𝑇𝑢 is a classical transition

system, thus for a CTL
∗
formula 𝜙 , we could model-check whether 𝑇𝑢 |= 𝜙 . Denote by Δ(𝑞) the set of outgoing

Manuscript submitted to ACM

Algorithmic Ethics 13

q0q0 q1

q2

q3

K1

K2

K3

K4 K5

K6

K7

T

root = 0

K1 K2

K4 K5K6 K3

m((q1, K4, q1), 2)

m((q1, K6, q3), 2) m((q1, K5, q1), 2) m((q1, K3, q0), 2)

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

MT

q0q0 q1

q2

q3

K1

K3

K4 K5

K6

K7

T1

K1

K3

K4 K5

K6

K7

T 0
1

q0q0 q1

q2

q3

K1

K2

K3

K4 K5

K6

K7

qren
0 qren

1

qren
2

qren
3

m((q0, K2, q2), 1)m((q0, K1, q1), 1)

m((q1, K4, q2), 1)

K4

K4

K4

K4

Fig. 3. Left: a stit model generated by executing the stit automaton𝑇 (transition weights not shown). Center and right: Automata𝑇𝑛
and𝑇 ′

𝑛 used in Algorithm 1.𝑇1 only has 𝐾1 as first action, and𝑇 ′
1
is obtained by re-naming states of𝑇1 and adding a copy of𝑇1 to it.

Executions of𝑇 ′
1
are simply the execution of𝑇 that start with 𝐾1.

transitions from 𝑞 (Δ(𝑞) = {(𝑞, 𝐾, 𝑞′) ∈ Δ}), by K(𝑞) = {𝐾 ∈ K | ∃(𝑞, 𝐾, 𝑞′) ∈ Δ} the set of actions available at 𝑞.
Examples of _ include the functions min/max, discounted sum and long-run average:

min(b) = min

𝑖
𝑤 (b [𝑖]) (17)

DiscSum(b) =

∞∑︁
𝑖=0

𝛾𝑖 ·𝑤 (b [𝑖]) , 0 < 𝛾 < 1 (18)

liminfAvg(b) = lim inf

𝑛→∞
1

𝑛

𝑛∑︁
𝑖=0

𝑤 (b [𝑖]) (19)

Definition 5.2 (Execution). Let𝑇 be a stit automaton and𝑞0 a state in𝑄 . A𝑞0-rooted execution b of𝑇 is a sequence of tran-

sitions of the form b = (𝑞0, 𝐾0, 𝑞1) (𝑞1, 𝐾1, 𝑞2) . . . ∈ Δ𝜔 . The corresponding sequence of actions 𝐾0, 𝐾1, . . . ∈ K𝜔
is called

a tactic. The value of execution b = b [0]b [1]b [2] . . ., where b [𝑖] ∈ Δ, is defined to be _(𝑤 (b [0])𝑤 (b [1])𝑤 (b [2]) . . .),
and abbreviated _(b).

Because of non-determinism, a tactic can produce multiple executions. A set of agents is modeled by the product of

all individual stit automata, which is itself a stit automaton. (When taking the product, we must define how weights are

combined and how to construct the product’s accumulation function, which are application-specific considerations.)

Therefore the rest of this section applies to stit automata, whether they model one or multiple agents. We will continue

to refer to one agent 𝛼 for simplicity.

From stit automata to stit models. An automaton𝑇 , along with a state 𝑞0 ∈ 𝑄 , induce a stit modelM𝑇,𝑞0 in the natural

way, which we now describe somewhat informally: state 𝑞0 maps to the root moment 0 of M𝑇,𝑞0 . From 𝑞0, 𝑇 has a

choice of actionsK(𝑞0), which map to the actions available at 0 inM𝑇,𝑞0 . Each action 𝐾 inK(𝑞0) non-deterministically

causes one or more transitions, each of which maps to a moment in M𝑇,𝑞0 ; all transitions caused by a given 𝐾 map to

moments in histories that originate in the same action 𝐾 inM𝑇,𝑞0 . And so on from each next state. See Fig. 3 for an

example. We let [: Δ → 𝑇𝑟𝑒𝑒 denote the map from transitions to moments, and lift it to executions in the natural way,

Manuscript submitted to ACM

14 Shea-Blymyer and Abbas

i.e., [(b) := [(b [0])[(b [1]) . . . By construction, [(b) is a history inM𝑇,𝑞0 . Its utility 𝑉𝑎𝑙𝑢𝑒 ([(b)) is the _-value of the
generating execution, i.e., _(b). The atoms labeling [((𝑞, 𝐾, 𝑞′)) are 𝑣 ([((𝑞, 𝐾, 𝑞′))) := 𝐿(𝑞′). The formal construction

and proof of the following proposition can be found in the supplementary material.

Proposition 5.3. The structure M𝑇,𝑞0 is a utilitarian stit model with finite 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 for every agent 𝛼 and moment𝑚.

Model-checking determines whether a stit automaton, at a given state, satisfies an Ought statement.

Definition 5.4. Given an automaton 𝑇 , one of its states 𝑞, the induced model M𝑇,𝑞 and an obligation 𝐴, we say that

𝑇, 𝑞 satisfies ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴], written 𝑇, 𝑞 |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴], iffM𝑇,𝑞, 0/ℎ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] for an arbitrary history ℎ ∈ 𝐻0.

The history ℎ is arbitrary since the truth of ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] does not depend on the history but only on the moment.

The construction ofM𝑇,𝑞 roots all histories at moment 0. However, what if the automaton can only reach state 𝑞

after 𝑖 time steps? Then a priori, it might be that whether an Ought holds at 𝑞 depends on 𝑖 , because the accumulation

function _ can be time-dependent. The following shows that for certain accumulation functions important in practice,

the choice of root moment does not matter.

Proposition 5.5. Given a stit automaton 𝑇 and an obligation 𝐴, let 𝑞, 𝑞′ be states of 𝑇 s.t. 𝑞 is reachable from 𝑞′ in 𝑖

transitions along an execution b . Let ℎ be an arbitrary history ofM𝑇,𝑞 , let ℎ′ = [(b) be the history that connects [(b [0]) to
[(b [𝑖−1]) inM𝑇,𝑞′ , and let𝑚′ = [(b [𝑖−1]). Then, if _ is discounted sum or long-run average,M𝑇,𝑞, 0/ℎ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]
iffM𝑇,𝑞′,𝑚

′/ℎ′ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]

Proof. For clarity, we write M = M𝑇,𝑞 and M ′ = M𝑇,𝑞′ , and write M .() vs M ′.() to disambiguate something in

M vs something in M ′
. We will show that the trees rooted at 0/ℎ inM and 𝑖/ℎ′ inM ′

have the same structure and

that the value ordering of their histories is the same in both models. This implies that the same Oughts hold at both.

The histories of M are images, under [, of executions that start at 𝑞. Because transition b [𝑖 − 1] ends in 𝑞, the
histories of M ′

rooted at𝑚′ = [(b [𝑖 − 1]) are also images of executions that start at 𝑞. Therefore, M ′.𝐻𝑚′ is identical

toM .𝐻0. In particular they satisfy the same set of CTL
∗
formulas. We refer to this common set of histories as 𝐻∗

.

Take two arbitrary ℎ1, ℎ2 ∈ 𝐻∗
and their pre-images b1, b2 by [. By construction, b [𝑘 + 𝑖] = b1 [𝑘] = b2 [𝑘], 𝑘 ≥ 0,

and the concatenation 𝑓𝑗 := ℎ
′[0] . . . ℎ′[𝑖 − 1]ℎ 𝑗 [0]ℎ 𝑗 [1] . . . is a 0-rooted history inM ′

, 𝑗 = 1, 2. If _ = DiscSum then

M .𝑉𝑎𝑙𝑢𝑒 (ℎ 𝑗) =
∑
𝑘≥0 𝛾

𝑘𝑤 (b 𝑗 [𝑘]), whileM ′.𝑉𝑎𝑙𝑢𝑒 (𝑓𝑗) =
∑𝑘=𝑖−1
𝑘=0

𝛾𝑘𝑤 (b [𝑘]) +∑
𝑘≥0 𝛾

𝑖+𝑘𝑤 (b 𝑗 [𝑘]). Thus

M .𝑉𝑎𝑙𝑢𝑒 (ℎ1) ≤ M .𝑉𝑎𝑙𝑢𝑒 (ℎ2) iff M ′.𝑉𝑎𝑙𝑢𝑒 (𝑓1) ≤ M ′.𝑉𝑎𝑙𝑢𝑒 (𝑓2)

Thus the histories in 𝐻∗
are identically ranked in both models, which implies that optimal actions are the same. This,

combined with the fact that they satisfy the same formulas, yields the desired conclusion.

Similarly, if _ is liminfAvg, then for 𝑗 = 1, 2,

M ′.𝑉𝑎𝑙𝑢𝑒 (𝑓𝑗) = lim inf

𝑛→∞
1

𝑛

[∑︁
0≤𝑘≤𝑖−1

𝑤 (b [𝑘]) +
∑︁
𝑘≥0

𝑤 (b 𝑗 [𝑘])
]
= lim inf

𝑛→∞
1

𝑛

∑︁
𝑘≥0

𝑤 (b 𝑗 [𝑘]) = M .𝑉𝑎𝑙𝑢𝑒 (ℎ 𝑗)

So histories of 𝐻∗
are identically ranked by liminfAvg in both models, yielding the desired conclusion. □

5.2 Model Checking of Unconditional Obligations

The problem of cstit model checking is: given a stit automaton 𝑇 that models an agent 𝛼 , a state 𝑞 ∈ 𝑇 .𝑄 , and a formula

𝐴 which is either a CTL
∗
formula, or a statement of the form [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙] or ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙] where 𝜙 is a CTL

∗
formula,

determine whether M𝑇,𝑞, 0/ℎ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] for some arbitrary ℎ ∈ 𝐻0.

Manuscript submitted to ACM

Algorithmic Ethics 15

We restrict the algorithm to statements of the above forms for conciseness of the presentation; DAU formulas with

additional nesting levels can be handled by extending the algorithms we present below.

Recalling Definition 2.4, the cstit model checking problem can be broken into two parts: what is the set of optimal

actions at 𝐻0 (i.e. 𝐾 ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼), and do all these optimal actions guarantee the truth of 𝐴 (i.e. 𝐾 ⊆ |𝐴|M
0

)? If all

optimal actions guarantee 𝐴 then, by Def. 2.4, M𝑇 has obligation 𝐴 at 0/ℎ. Algorithm 1 solves this problem, and is

discussed in depth below.

Proposition 5.6. Algorithm 1 returns True iffM, 𝑟𝑜𝑜𝑡/ℎ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]. It has complexity𝑂 (2𝜎 (|𝑇 | +𝑐_ + |𝑇 | ·2 |𝜙 |)),
where 𝜎 is the maximum out-degree from any state in 𝑇 , 𝑐_ is the cost of computing the minimum and maximum values of

a tactic executed on automaton 𝑇 , |𝑇 | is the number of states and transitions in 𝑇 , and |𝜙 | is the size of the CTL∗formula in

𝐴.

Algorithm 1 begins by considering each action available to the agent at root: 𝐾𝑛 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒0𝛼 . For each of these actions,

a version 𝑇 ′
𝑛 of the automaton 𝑇 is constructed such that each of its executions is an execution of 𝑇 starting with action

𝐾𝑛 . In this way we can determine the best (𝑢𝑛) and worst (ℓ𝑛) possible values of the executions in each action 𝐾𝑛 by

analyzing the automaton𝑇 ′
𝑛 (this is discussed further in Section 5.2.1). With the range of values [ℓ𝑛, 𝑢𝑛] known for each

action 𝐾𝑛 , we find those ranges whose 𝑢𝑛 is not less than any ℓ ′𝑛 . These value ranges are un-dominated. The optimal

actions 𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼 are those actions whose corresponding value ranges are un-dominated. This completes the first step

of the algorithm: finding the optimal actions at 𝐻0. The second step determines if all optimal actions guarantee 𝐴.

In this algorithm |=
CTL

∗ denotes the classical CTL∗ satisfaction relation. If the obligation is a CTL
∗
formula, then we

simply check if every execution of 𝑇 ′
𝑛 satisfies the 𝐴 by checking ∀𝐴. If the obligation is a 𝑑𝑠𝑡𝑖𝑡 statement containing

a CTL
∗
formula 𝜙 , then we must verify two conditions: that not all actions in 𝐶ℎ𝑜𝑖𝑐𝑒0𝛼 guarantee 𝜙 , so ∃¬𝜙 , and that

every execution of 𝑇 ′
𝑛 with 𝐾𝑛 ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼 satisfies 𝜙 .

5.2.1 Computing Extremal History Utilities. In line 8 of algorithm 1, the maximum- and minimum-valued executions of

an automaton 𝑇 ′
𝑛 must be found. This problem is related to, but distinct from, temporal logic accumulation [10] and

quantitative languages [15]. A realistic example of a _ that can be computed is _ = min. For instance, if a transition’s

weight 𝑤 ((𝑞, 𝐾, 𝑞′)) is the time-to-collision when taking that transition, then the value of an execution _(b) is the
shortest time-to-collision encountered along that execution. The best history, then, is the one with the greatest minimum

time-to-collision. To compute _(b) for _ = min we proceed as follows. To avoid trivialities assume every cycle in 𝑇𝑛 is

reachable. Every infinite execution visits one or more cycles. A simple cycle is one that does not contain any other

cycles. A prefix is a path connecting 𝑞𝐼 to a simple cycle, and which does not itself contain a cycle. We call an execution

simple if it only loops around one simple cycle forever, possibly after traversing a prefix to get there from 𝑞𝐼 . There

are finitely many simple cycles, and their prefixes are obtainable using backward reachability, so we can compute the

value of every simple execution by taking the min along every connected prefix-cycle pair. The value of a non-simple

execution b equals the value of some simple execution, since the transition of b with minimum weight is also a transition

of a simple execution, be it on a simple cycle or a prefix. Thus, the maximum execution value 𝑢𝑛 equals the maximum

simple execution value. Similarly for the minimum execution value ℓ𝑛 .

A second common accumulation function is the discounted sum function in Eq. (17). To find find the histories that

carry the highest and lowest values, we cast the automaton as an extreme case of a Markov decision process (MDP).

Manuscript submitted to ACM

16 Shea-Blymyer and Abbas

Data: A stit automaton 𝑇 = (𝑄,𝑞𝐼 ,K, 𝐹 ,Δ, 𝐿,𝑤, _), an obligation 𝐴

Result:M𝑇 , 𝑟𝑜𝑜𝑡/ℎ |= ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]
1 Set 𝑟𝑜𝑜𝑡 = 0

2 Set 𝐶ℎ𝑜𝑖𝑐𝑒0𝛼 = {𝐾 ∈ K | (𝑞𝐼 , 𝐾, 𝑞′) ∈ Δ for some 𝑞′} = {𝐾1, . . . , 𝐾𝑚}
// First step: find optimal actions at 𝑟𝑜𝑜𝑡

3 for 1 ≤ 𝑛 ≤ 𝑚 do
/* Construct automaton 𝑇 ′

𝑛 s.t. every execution of 𝑇 ′
𝑛 is an execution of 𝑇 starting with

action 𝐾𝑛. See Fig. 3. */

4 Create automaton 𝑇𝑛 by deleting all transitions (𝑞𝐼 , 𝐾, 𝑞′) with 𝐾 ≠ 𝐾𝑛

5 Create a copy 𝑇 ren

𝑛 of 𝑇𝑛

6 Create the automaton 𝑇 ′
𝑛 as a union of 𝑇 ren

𝑛 and 𝑇 , with every transition (𝑞, 𝐾,𝑇 ren

𝑛 .𝑞𝐼) in 𝑇 ren

𝑛 replaced by a

transition (𝑞, 𝐾,𝑇 .𝑞𝐼)
88 Compute the max value, 𝑢𝑛 , and min value, ℓ𝑛 , of any 𝑇

′
𝑛 tactic starting at 𝑞𝐼

9 end
/* An interval [ℓ𝑛, 𝑢𝑛] is un-dominated if there is no other interval [ℓ ′𝑛, 𝑢 ′𝑛], computed in

the above for-loop, s.t. ℓ ′𝑛 > 𝑢𝑛 */

1111 Find all un-dominated intervals [ℓ𝑛, 𝑢𝑛]
1313 Set 𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼 = {𝐾𝑛 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒0𝛼 | [ℓ𝑛, 𝑢𝑛] is un-dominated}

/* Second step: decide whether all actions 𝐾 in 𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼 guarantee 𝐴, i.e., 𝐾 ⊆ |𝐴|𝑟𝑜𝑜𝑡. */

1515 for 𝐾𝑛 ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼 do
16 if 𝐴 is a CTL∗ formula then

/* Does every execution of 𝑇 starting with 𝐾𝑛 satisfy 𝐴? */

17 Use CTL
∗
model-checking to check whether 𝑇 ′

𝑛 |=
CTL

∗ ∀𝐴
18 if 𝑇 ′

𝑛 ̸ |=CTL∗ ∀𝐴 // Optimal action 𝐾𝑛 does not guarantee 𝐴

19 then
2121 return False

22 end
2424 else if 𝐴 = [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙] with 𝜙 ∈ CTL∗ then

// This is true iff 𝐻0 = |𝜙 |0
2626 Model-check whether 𝑇 |=

CTL
∗ ∀𝜙

/* This is true iff 𝐾𝑛 guarantees 𝜙, is not equiv. to line 26 */

27 Model-check whether 𝑇 ′
𝑛 |=

CTL
∗ ∀𝜙

28 if 𝑇 |=CTL∗ ∀𝜙 or 𝑇 ′
𝑛 ̸ |=CTL∗ ∀𝜙 then

3030 return False

31 end
3333 else

/* Last case: 𝐴 = ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙] with 𝜙 ∈ CTL∗. Similar to previous case on line 24 with

obvious modifications */

34 end
35 end
3737 Return True

Algorithm 1:Model checking DAU.

An MDP is a control process modeled in discrete time where actions are chosen by a decision making agent, the

outcomes of those actions are stochastic, and each outcome gives the agent some reward [6]. We specify the construction

of the𝑀𝐷𝑃𝑇 cast from an automaton 𝑇 in the supplementary material.

Manuscript submitted to ACM

Algorithmic Ethics 17

Value iteration is a dynamic programming algorithm used to solve MDPs [36]. Solving an MDP generates a policy

for choosing an action at each state that optimizes some reward aggregation function _. Following this policy from a

given state 𝑞 (called an "optimal policy" and denoted by 𝜋∗ (𝑞)) will produce the sequence of state transitions (denoted
by 𝜔∗ (𝑞)) that maximizes accumulated rewards. The expected accumulated reward for following an optimal policy

from 𝑞 ∈ 𝑆 is denoted by 𝑉 ∗ (𝑞).

Proposition 5.7. Given a stit automaton 𝑇𝑛 , let 𝑇−
𝑛 be a copy of 𝑇𝑛 where the edge weights are negated, let𝑀𝐷𝑃𝑇𝑛 be

the stit MDP cast from 𝑇𝑛 , and let𝑀𝐷𝑃𝑇 −
𝑛
be the stit MDP cast from 𝑇−

𝑛 . Then, if _ is discounted sum, the extremal values

of 𝑇𝑛 are 𝑢𝑛 = 𝑉 ∗ (𝑞𝐼) in𝑀𝐷𝑃𝑇𝑛 and ℓ𝑛 = −𝑉 ∗ (𝑞𝐼) in𝑀𝐷𝑃𝑇 −
𝑛

5.3 Model Checking Conditional Obligations

The problem of conditional cstit model checking is: given a stit automaton𝑇 that models an agent 𝛼 , a state 𝑞 ∈ 𝑇 .𝑄 , and
a formula 𝐴 as in Section 5.2 (i.e. 𝐴 is either in CTL

∗
, or a statement of the form [𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙] or ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝜙] where 𝜙

is in CTL
∗
), and a finite-horizon formula 𝐵, determine whetherM𝑇,𝑞, 0/ℎ |= ⊙([𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]/𝐵) for some ℎ ∈ 𝐻0.

𝐵 is a finite horizon condition, meaning that there exists a 𝜏 ≥ 0 such that every history of length 𝜏 either satisfies or

violates 𝐵. We note that if 𝐵 is a state formula, then either all 𝑞-rooted histories satisfy 𝐵 or none do. To avoid such

trivialities, we only consider conditions that are specified by path formulae. In this section we introduce modifications

to algorithm 1 and its proof (in the supplementary material) that reflect this difference in determining optimal actions.

Proposition 5.8. Algorithm 2 returns True iffM, 𝑟𝑜𝑜𝑡/ℎ |= ⊙([𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]/𝐵). It has complexity𝑂 (𝜎 (|𝑇 |+𝜎𝜏 |𝑇 |22 |𝐵 |+
𝜎𝜏 · 𝑐_) + 𝜎 |𝑇 |2 |𝜙 |), where 𝜎 is the maximum out-degree from any state in𝑇 , 𝑐_ is the cost of computing the minimum and

maximum values of a tactic executed on automaton 𝑇 , |𝑇 | is the number of states and transitions in 𝑇 , |𝜙 | is the size of the
CTL∗ formula in A, and |𝐵 | is the size of the CTL∗ formula for the condition.

Conceptually, getting the histories that satisfy 𝐵 can be done by brute force: unroll 𝑇 ’s executions up to depth 𝜏 and

retain actions 𝐾𝑛 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒0𝛼 that contain 𝐵-satisfying histories. The values of these 𝐵-satisfying histories are compared

to determine conditionally optimal actions, as per Def. 2.2 and Eq. (6). Once the conditionally optimal actions are

determined, the algorithm continues as in Algo. 1.

The actual model-checker constructs incrementally automata 𝑇 ′
𝑛,𝑙

: every such automaton has one initial action 𝐾𝑛 ,

has a single execution up to the horizon 𝜏 , and behaves like the original automaton after 𝜏 . Its unique execution up to

𝜏 satisfies 𝐵. Algo. 2 uses these automata to determine the conditionally optimal actions by comparing 𝐵-satisfying

histories, in the same way that Algo. 1 uses 𝑇 ′
𝑛 to compute (unconditionally) optimal actions. Alg. 3 shows how to

construct 𝑇 ′
𝑛,𝑙

. Each 𝑇 ′
𝑛,𝑙

has two components: a "fragment" of |𝐵 | followed by a copy of 𝑇 . The fragment is obtained by

beginning with𝑇 ′
𝑛 , removing all transitions from 𝑞𝐼 except for one (𝑞𝐼 , 𝐾𝑛, 𝑞′), forming the union between the resulting

automaton and a copy of𝑇 , and checking this new automaton to see if there exists an execution that accepts 𝐵. If it does

not, it aborts this branch (line 13). If it does, it sets 𝑞𝑎 = 𝑞′ (that is, we change the state we remove transitions from)

and repeats the process of removing transitions, taking the union with 𝑇 , and checking that the automaton accepts ∃𝐵.
This process repeats a maximum of 𝜏 times, ensuring that the resulting automaton has a single history for 𝜏 moments,

and accepts 𝐵. This final automaton is 𝑇 ′
𝑛,𝑙

.

6 CASE STUDY IN MODEL CHECKING SELF-DRIVING CARS OBLIGATIONS

As discussed in section 5, it is common for a control engineer to model agents as an automaton, and it is natural

to want to verify that the automata have some given obligations. The formalizations given thus far are required to

Manuscript submitted to ACM

18 Shea-Blymyer and Abbas

Data: A stit automaton 𝑇 = (𝑄,𝑞𝐼 ,K, 𝐹 ,Δ, 𝐿,𝑤, _), an obligation 𝐴, a horizon-limited condition 𝐵, the

condition’s horizon 𝜏

Result:M𝑇 , 𝑟𝑜𝑜𝑡/ℎ |= ⊙([𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]/𝐵)
1 Set 𝑟𝑜𝑜𝑡 = 0

2 Set 𝐶ℎ𝑜𝑖𝑐𝑒0𝛼 = {𝐾 ∈ K | (𝑞𝐼 , 𝐾, 𝑞′) ∈ Δ for some 𝑞′} = {𝐾1, . . . , 𝐾𝑚}
// First step: find optimal actions at 𝑟𝑜𝑜𝑡

3 for 1 ≤ 𝑛 ≤ 𝑚 do
/* Construct automaton 𝑇 ′

𝑛 s.t. every execution of 𝑇 ′
𝑛 is an execution of 𝑇 starting with

action 𝐾𝑛. This is exactly like lines 4, 5, 6 in Algorithm 1 */

/* Generate all automata whose first action is 𝐾𝑛 and have one history up to depth 𝜏 ,

that history satisfies 𝐵, and after that, it behaves like 𝑇 */

55 {𝑇 ′
𝑛,0
, . . . ,𝑇 ′

𝑛,𝑙
} = fragmentStep(𝑇 ′

𝑛, 𝐵, 𝜏, 1, 𝑞𝐼)

// see Algorithm 3 for fragmentStep()

6 for 1 ≤ 𝑖 ≤ 𝑙 do
88 Compute the max value, 𝑢𝑛,𝑖 , and min value, ℓ𝑛,𝑖 , of any 𝑇

′
𝑛,𝑙

tactic starting at 𝑞𝐼

9 end
10 Set 𝑢𝑛 = max𝑖 (𝑢𝑛,𝑖); Set ℓ𝑛 = max𝑖 (ℓ𝑛,𝑖);
11 end
1313 Find all un-dominated intervals [ℓ𝑛, 𝑢𝑛]
1515 Set 𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼/𝐵 = {𝐾𝑛 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒0𝛼 | [ℓ𝑛, 𝑢𝑛] is un-dominated}

/* Once all conditionally optimal actions are found, this algorithm proceeds exactly like

algorithm 1 starting from line 13 */
Algorithm 2: Conditional model checking DAU.

Data: A stit automaton 𝑇 = (𝑄,𝑞𝐼 ,K, 𝐹 ,Δ, 𝐿,𝑤, _), a horizon-limited condition 𝐵, the condition’s horizon 𝜏 , the

automaton depth 𝑖 , an anchor state 𝑞𝑎
Result: The set of stit automata that model fragments of |𝐵 |

1 Set {𝑞1, . . . , 𝑞𝑚} = {𝑞′ ∈ 𝑄 | (𝑞𝑎, 𝐾, 𝑞′) ∈ Δ for some 𝑞′ and some 𝐾}
// First step: find condition accepting actions at current 𝑟𝑜𝑜𝑡

2 for 1 ≤ 𝑙 ≤ 𝑚 do
/* Construct automaton 𝑇 ′

𝑙
s.t. every execution of 𝑇 ′

𝑙
is an execution of 𝑇 starting with

a transition to 𝑞𝑙. */

3 Create automaton 𝑇𝑙 by deleting all transitions (𝑞𝑎, 𝐾, 𝑞) with 𝑞 ≠ 𝑞𝑙

4 Create a copy 𝑇 ren

𝑙
of 𝑇𝑙

5 Create the automaton 𝑇 ′
𝑙
as a union of 𝑇 ren

𝑙
and 𝑇 , with every transition (𝑞, 𝐾,𝑇 ren

𝑙
.𝑞𝐼 ,𝑎) in 𝑇 ren

𝑙
replaced by

a transition (𝑞, 𝐾,𝑇 .𝑞𝐼 ,𝑎) where 𝑞𝐼 ,𝑎 is any state on an execution from 𝑞𝐼 to 𝑞𝑎

6 if 𝑇 ′
𝑙
|= ∃𝐵 then

7 if 𝑖 < 𝜏 then
8 Return fragmentStep(𝑇 ′

𝑙
, 𝐵, 𝜏 , 𝑖 + 1, 𝑞𝑙);

9 else
10 Return 𝑇 ′

𝑙
;

11 end
12 else
13 Continue;

14 end
15 end

Algorithm 3: fragmentStep(𝑇, 𝐵, 𝜏, 𝑖, 𝑞𝑎): Recursively generating fragments of |𝐵 |.

Manuscript submitted to ACM

Algorithmic Ethics 19

reason about obligations while performing model checking and are a necessary component of our implementation To

demonstrate the practical uses of DAU, we developed a software implementation of the model-checking algorithms

of Section 5, and applied it to a controller for autonomous driving (adapted from [21]). We check the automaton for

relevant CTL
∗
missions, and for obligations and permissions related to the RSS rules.

6.1 Implementation

We implemented our algorithms for model checking obligations in Python, using calls to the nuXmv symbolic model

checker [14] to dispatch CTL
∗
model checking. Our implementation regards Stit automata models as directed graphs with

edges labeled with action and weight. Operations on the graphs allow us to copy and take unions of automata as needed.

The graphs can be translated to MDPs to find an action’s extremal history utilities, or to a nuXmv model for CTL
∗
model

checking. The source code for our implementation can be found at https://github.com/sabotagelab/MC-DAU.

6.2 Agent Model and Model Checking Results

A hybrid continuous-time controller for autonomous highway driving is presented in [21]. The controller is meant to

allow a car to merge onto a highway, and exit when desired. It is shown in [21] that if all cars are equipped with this

controller, then no collisions can occur and all cars either merge and exit successfully, or drop-out, meaning that they

safely abort the maneuver and go into the doNotEnter state. We modeled this controller in Fig. 4a as a stit automaton,

which we will refer to as 𝛼 . Each state is labeled with the atomic propositions that hold in it, and edges are labeled with

𝛼 ’s actions, both of which are self-explanatory. The controller’s objective is to ensure safe entry, cruising, and exit;

it does not determine when to enter or exit. That is determined by a higher-level decision code and is captured here

with atoms wantEntry and wantExit. It is important to note that the collision state can be reached from almost every

other state: this reflects the understanding that if another agent, 𝛽 , which is not equipped with this controller, takes a

reckless action then it is impossible for 𝛼 to avoid an accident.

We will state a number of missions, obligations, and permissions, that we might expect this automaton to satisfy,

and model-check whether that is indeed the case. If not, we will amend the controller accordingly, thus demonstrating

the value of obligation modeling and verification.

Missions. We formulate the following missions in CTL∗5:

`1 = ∃ (onHighway) (20)

`2 = ∃ ≤4 (reachExit) (21)

`3 = ∃ (¬collision) (22)

The existential quantifier is used since, as noted, freedom from collision is not satisfied on all paths.

The automaton depicted in figure 4a satisfies all the missions formulated above. The first mission (`1) specifies that

the vehicle can eventually enter the highway. The second (`2) states that the vehicle can reach the exit lane within four

units of time (where ≤𝑛 𝑝 means the proposition 𝑝 must be met in 𝑛 steps or fewer, and can be put in LTL syntax

using Next and a bounded counter variable). The third mission (`3) specifies that there is a future where the vehicle

never collides.

Obligations. For convenience, we define the ‘Collision-Free’ subset of states 𝐶𝐹 := {doNotEnter}.

5
Arguably, a logic like ATL [2] might be more appropriate here, but our focus is on DAU model-checking.

Manuscript submitted to ACM

https://github.com/sabotagelab/MC-DAU

20 Shea-Blymyer and Abbas

start

entry lane

do not
enter

ready to
merge

on highway

pass entryreach exit

safe to
exit

exit lane

accelerate

align to gap

align to gap

go to main

go to main

cruise

cruise

yield

prepare exit

go to exit

collision

g𝛼 & !p𝛼

!g𝛼 & !p𝛼p𝛼

!g𝛼 & p𝛼

(5)

(2)

(5)

(2)

(7)

(0)

(5)

(5)

(3)(0)

(7)

(10)

(5)

(0)
collide

(a)

(5)

(1)

(0)
(5)

(1)

(1)

(5)

(5)

(5)
(14)
[4]

(5)(0)
[5]

(0)

(2)
(5)

(5)

(5)

(0)

(5)

(10)

(10)

start

entry lane

do not
enter

ready to
merge

pass entry
 !g𝛼 & !p𝛼

collision
!g𝛼 & p𝛼

on highway
g𝛼 & !p𝛼

pass entry
!g𝛼 & !p𝛼

on highway
g𝛼 & !p𝛼

uncivil
merge

civil
merge

do not
yield

civil
exit

merge

do not
yield

exit

civil
cruise

civil
cruise

civil
yield

cruise

cruise

yield

prepare exit

go to exit

accelerate

align to gap

align to gap

reach exit
p𝛼

safe to
exit

exit lane

(b)

Fig. 4. Highway driving agent automaton. (a) Automaton for one agent 𝛼 [21]. Each state is labeled with the atomic propositions
that hold in it, and each edge is labeled with its weight, and 𝛼 ’s actions. Edges without action labels indicate loops in absorbing
states. The collide action can be taken from any state except doNotEnter, and so is denoted by the large arrow. The proposition 𝑔𝛼
means the agent 𝛼 has been given the right of way, while 𝑝𝛼 means that 𝛼 is proceeding through a conflict region. (b) Modified
automaton adds an edge from passEntry to reachExit with action doNotYield. It also now models implicitly a second car 𝛽 , via its
actions Drive and D-𝛽𝑎𝑔𝑔 . Alternative weights are given in red brackets to make the automaton fail the “no next collision” obligation
and gain the “aggressive” permission.

No-collision: the role of modeling agency. The natural obligation ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬collision] is expected to fail in

all states not in 𝐶𝐹 since, as pointed above, there is nothing that 𝛼 alone can do to guarantee no collision. Formally,

every action of 𝛼 contains a history which satisfies collision at some moment. The model-checker returns UNSAT in

this case, as expected. Perhaps surprisingly, the conditional obligation ⊙([𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬collision]/ ¬collision) also fails
in all states not in 𝐶𝐹 . This obligation says that under the condition that the collision state is never visited, 𝛼 ought

to see to it that there is never a collision - which first sounds almost like a tautology. This is where DAU’s ability to

model agency proves essential for a proper understanding and formalization of individual obligation. Indeed, recall

that in DAU, an agent has an obligation to ensure 𝐴 only if it can guarantee 𝐴 regardless of what other agents do

(recall sure-thing reasoning and the definition of 𝑆𝑡𝑎𝑡𝑒𝑚𝛼 in Section 2). The condition ¬collision restricts our value

comparisons to those actions that permit the condition to hold (Eq. (6)). However, it is still logically false that 𝛼 alone

Manuscript submitted to ACM

Algorithmic Ethics 21

can ensure no collisions: none of the conditionally optimal actions available to 𝛼 guarantees no collisions. Avoidance of

collisions is still a group task, i.e. both 𝛼 and 𝛽 must act to guarantee this - we take this up in section 6.3

No collision next. Are there any states not in 𝐶𝐹 at which the agent has an obligation not to collide next? To

answer, we model-check the obligation

⊙ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑋¬collision] (23)

The model-checker confirms that this obligation can not be satisfied from any state not in 𝐶𝐹 . Since the agent can’t

guarantee another car won’t collide with it, collision is included in the consequence of every action available.

Permission vs Eventually. Suppose the vehicle is actually an ambulance, that occasionally has to be able to exit

the highway early. We thus want to give it permission to exit early, without forcing that behavior, and while respecting

its obligations. So we model-check the permission

𝜋1 = P[𝛼 𝑐𝑠𝑡𝑖𝑡 : ≤4 reachExit] (24)

from the start state (The number 4 is rather arbitrary and is meant to suggest ‘early’). The model-checker informs us

that the model does have this permission. Indeed, as long as the permission is checked from a state where reachExit is

reachable within 𝑛 steps, the permission

P[𝛼 𝑐𝑠𝑡𝑖𝑡 : ≤𝑛 reachExit] (25)

will succeed for this automaton.

Assertive vs aggressive. Finally, we model-check the 𝑅𝑆𝑆6 permission at state passEntry.

𝜋2 = P[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬[𝛼 𝑑𝑠𝑡𝑖𝑡 : 𝑔𝛼R¬𝑝𝛼]] (26)

The model-checker determines that this is satisfied. However, we can show that this is a trivial satisfaction, which

holds regardless of the weights. It is due to the fact that all executions of this automaton starting in passEntry satisfy

𝑔𝛼R¬𝑝𝛼 . On the other hand, consider the following aggressive DAU statement:

𝜋3 = P[𝛼 𝑐𝑠𝑡𝑖𝑡 : [𝛼 𝑑𝑠𝑡𝑖𝑡 : ¬(𝑔𝛼R¬𝑝𝛼)]] (27)

This says that 𝛼 is permitted to deliberately ensure that its driving is not defensive; morally, this is a less defensible

permission. It does not hold because there is no action in this automaton that guarantees ¬(𝑔𝛼R¬𝑝𝛼).

6.3 Modified automaton.

To draw out the effects of changing weights, we modify the automaton in Fig. 4a to get the automaton in Fig. 4b, which

varies in two ways. First, when the vehicle merges onto the highway it may choose to always yield to future traffic

(by doing a ‘civil merge’), or to allow not yielding (by doing an ‘uncivil merge’). Second, another agent 𝛽 is modeled

implicitly, removing most transitions to the collision state. This represents the agent 𝛽 avoiding collisions with agent 𝛼

by taking a drive action. The remaining transition to collision is taken when 𝛼 chooses the do not yield action and 𝛽

chooses a determined 𝛽 aggression (or D-𝛽𝑎𝑔𝑔) action. We confirmed that this automaton still satisfies the mission

formulae `1, `2, and `3.

No collision. With these changes, we can revisit the problem of specifying an obligation to not collide. While the

obligation ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬collision] still fails from start, it holds (though trivially) from the many states that no longer

have a path to collision. On the other hand, the obligation ⊙[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑋¬collision] in equation (23) non-trivially holds

Manuscript submitted to ACM

22 Shea-Blymyer and Abbas

from the passEntry state adjacent to collision. This is ensured by weighting the yield transition relatively heavily —

guaranteeing that the yield action is the only optimal action.

Permission vs Eventually. Suppose again this is an ambulance that occasionally needs to exit the highway early.

The permission P[𝛼 𝑐𝑠𝑡𝑖𝑡 : ≤𝑛 reachExit] no longer necessarily holds in states where reachExit is reachable within 𝑛

steps. We demonstrate this from the onHighway state reached by the civil merge action. By making civil cruise the

optimal action, we guarantee that the optimal histories spend at least one moment in onHighway before moving to

reachExit. This yields an ethically difficult position where an insistence on defensive driving negates the permission to

exit the highway early, though it might be needed.

Assertive vs. Aggressive. Finally, we model-check again the RSS-type permission in Eq. (26) from passEntry. This

does not hold in this model, as determined by the model-checker.Similarly, the permission in Eq. (27) does not hold

because no optimal action guarantees ¬(𝑔𝛼R¬𝑝𝛼).
However, by changing the weights of this automaton as depicted by the red, bracketed weights in Fig. 4b, we can

satisfy permissions 𝜋2 and 𝜋3 at the cost of the “no next collision” obligation in Eq. (23). By ensuring that do not yield

is an optimal action, we know that not all optimal actions guarantee 𝑔𝛼R¬𝑝𝛼 (thus 𝜋2 is satisfied), and we know that

there exists an optimal action that guarantees ¬(𝑔𝛼R¬𝑝𝛼) (thus 𝜋3 is satisfied). As a consequence of do not yield being

counted as an optimal action, the “no collision next” obligation fails.

7 RELATEDWORK

Deontic logic and autonomous systems ethics. The need to encode and study ethical and social obligations for

human-scale CPS is well-recognized [26, 27, 41], though little explored technically. This paper follows the logicist

program [11] in approaching this problem, within which the deontic family of logics takes pride of place having been

created specifically to reason about obligations. Standard Deontic Logic has many well-known paradoxes [22], which

have spurred the proposal of alternatives to remedy them [18]. Some variations are used to specify legal and software

contracts as in [35]. Alternating-time Temporal Logic (ATL) was proposed in [2] to reason about groups of agents, and

used in [12] to reason about strategic obligations, and it will be interesting to connect the modeling of agency between

DAU and ATL. Finally, RSS rules have been encoded in Signal Temporal Logic for the purpose of monitoring them over

linear traces in [7], but notions of obligation and uncertainty were not investigated.

Temporal propagation. The most relevant work on the propagation of obligations is [13], which takes a near-

product of Standard Deontic Logic and LTL to study propagation, and ends up with a semantics that resembles DAU

(albeit LTL is linear time). Works that integrate deontic and temporal modalities more generally include [20] (to specify

business processes), [37] for interpreted systems, and [1] for contextualized (normed) obligations.

Algorithmic aspects.Most of the work in deontic logic has been concerned with finding the ‘right’ axioms and

inference rules that formalize our intuition about obligations and permissions, with algorithmic aspects receiving

comparatively little attention. Broader work in normative multi-agent systems relies on simulation to study, for example,

ways in which social norms arise [9]. Decision procedures exist for some logics, like the KED theorem prover for

Standard Deontic Logic [4], and the decision procedures in [5]. There are even fewer implemented tools, such as

MCMAS, the OBDD-based checker in [29] for the logic of [37], and the implementation of dyadic deontic logic in

Isabelle/HOL in [8]. A proof system for a simplified version of DAU has been developed in [3, 33] to determine whether

certain obligations follow from others (a ‘trusted base’). We propose a model-checker, to determine whether a given

automaton has an obligation, by examining directly the values it assigns to its executions. In a deployed system,

theorem-proving and model-checking are likely to play complementary roles.
Manuscript submitted to ACM

Algorithmic Ethics 23

Interpretability. In DAU, an agent that always performs optimal actions is one that always meets its obligations.

Therefore, DAU can be viewed, informally, as the logic of utility maximization. As such, it gives a logical interpretation

to the behavior of controlled systems that maximize long-term utility, such as [19]. This connects DAU to the field of

interpretable AI [25], albeit from a non-statistical perspective.

8 CONCLUSIONS

We have discussed and demonstrated the use of Dominance Act Utilitarian deontic logic for the formalization of

obligations and permissions for autonomous systems. We investigated the interaction of temporal and deontic

modalities to find patterns for temporal propagation of obligations. We expressed self-driving car obligations from RSS

in DAU, and found undesirable consequences of these norms. We introduced algorithms to allow system designers to

automatically determine if a system has an obligation, and demonstrated an implementation of these algorithms.

In the pursuit of an algorithmic account of a system’s obligations, it would be desirable next to synthesize given

obligations by automatically adjusting the weights. DAU could also be used in tandem with inverse reinforcement

learning to learn the obligations of an agent by observing its behavior. It will also be important to study the inheritance

of obligations between groups and individuals, i.e. knowing how the obligation of a group of agents impacts the

obligations of agents in that group. Since deontic logic was designed for the study of ethics, this work opens the way

for formal ethical analysis of autonomous system design. These considerations will help determine the suitability of

DAU, and deontic logic more generally, for the design and verification of autonomous systems.

REFERENCES
[1] Thomas Ågotnes, Wiebe vanÂ der Hoek, Juan A. Rodríguez-Aguilar, Carles Sierra, and Michael Wooldridge. 2009. A Temporal Logic of Normative

Systems. Springer Netherlands, Dordrecht, 69–106. https://doi.org/10.1007/978-1-4020-9084-4_5

[2] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time Temporal Logic. J. ACM 49, 5 (Sept. 2002), 672–713. https:

//doi.org/10.1145/585265.585270

[3] Konstantine Arkoudas, Selmer Bringsjord, and Paul Bello. 2005. Toward Ethical Robots via Mechanized Deontic. Technical Report. AAAI Fall
Symposium on Machine Ethics.

[4] Alberto Artosi, Paola Cattabriga, and Guido Governatori. 1994. KED: A Deontic Theorem Prover. In on Legal Application of Logic Programming,
ICLP’94. 60–76.

[5] Philippe Balbiani, Jan Broersen, and Julien Brunel. 2009. Decision Procedures for a Deontic Logic Modeling Temporal Inheritance of Obligations.
Electronic Notes in Theoretical Computer Science 231 (2009), 69 – 89. https://doi.org/10.1016/j.entcs.2009.02.030 Proceedings of the 5th Workshop on
Methods for Modalities (M4M5 2007).

[6] Richard Bellman. 1957. A Markovian Decision Process. Indiana Univ. Math. J. 6 (1957), 679–684. Issue 4.
[7] Heni Ben Amor, Aviral Shrivastava, Lina Karam, Adel Dokhanchi, Shakiba Yaghoubi, Mohammad Hekmatnejad, and Georgios Fainekos. 2019.

Encoding and Monitoring Responsibility Sensitive Safety Rules for Automated Vehicles in Signal Temporal Logic. https://doi.org/10.1145/3359986.

3361203

[8] Christoph Benzm’́uller, Ali Farjami, and Xavier Parent. 2018. A Dyadic Deontic Logic in HOL. In DEON.
[9] Guido Boella, Leendert van der Torre, and Harko Verhagen. 2006. Introduction to normative multiagent systems. Computational & Mathematical

Organization Theory 12 (10 2006), 71–79. https://doi.org/10.1007

[10] Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman. 2014. Temporal Specifications with Accumulative Values. ACM
Trans. Comput. Logic 15, 4, Article 27 (July 2014), 25 pages.

[11] Selmer Bringsjord, Konstantine Arkoudas, and Paul Bello. 2006. Toward a General Logicist Methodology for Engineering Ethically Correct Robots.
IEEE Intelligent Systems 21 (07 2006), 38–44. https://doi.org/10.1109/MIS.2006.82

[12] Jan Broersen. 2006. Strategic Deontic Temporal Logic as a Reduction to ATL, with an Application to Chisholm’s Scenario. In Deontic Logic and
Artificial Normative Systems, Lou Goble and John-Jules Ch. Meyer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 53–68.

[13] Jan Broersen and Julien Brunel. 2008. ‘What I fail to do Today, I Have to Do Tomorrow’: A Logical Study of the Propagation of Obligations. In
Computational Logic in Multi-Agent Systems, Fariba Sadri and Ken Satoh (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 82–99.

[14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and
Stefano Tonetta. 2014. The nuXmv Symbolic Model Checker. In CAV (Lecture Notes in Computer Science, Vol. 8559), Armin Biere and Roderick

Manuscript submitted to ACM

https://doi.org/10.1007/978-1-4020-9084-4_5
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.entcs.2009.02.030
https://doi.org/10.1145/3359986.3361203
https://doi.org/10.1145/3359986.3361203
https://doi.org/10.1007
https://doi.org/10.1109/MIS.2006.82

24 Shea-Blymyer and Abbas

Bloem (Eds.). Springer, 334–342.
[15] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. 2008. Quantitative Languages. In Computer Science Logic, Michael Kaminski and

Simone Martini (Eds.). Springer Berlin Heidelberg, 385–400.
[16] B.F. Chellas. 1968. The Logical Form of Imperatives. Department of Philosophy, Stanford University.
[17] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model Checking. MIT Press, Cambridge, Massachusetts.
[18] Dov Gabbay, John Horty, and Xavier Parent (Eds.). 2013. Handbook of deontic logic and normative systems. College Publications.
[19] J. Christian Gerdes and Sarah M. Thornton. 2015. Implementable Ethics for Autonomous Vehicles. Springer Berlin Heidelberg, Berlin, Heidelberg,

87–102.
[20] Laura Giordano, Alberto Martelli, and Daniele Theseider Dupré. 2013. Temporal Deontic Action Logic for the Verification of Compliance to Norms

in ASP. In Proc. of the 14th Intl. Conf. on Artificial Intelligence and Law (Rome, Italy) (ICAIL ’13). ACM, New York, NY, USA, 53–62.
[21] Alain Girault. 2004. A hybrid controller for autonomous vehicles driving on automated highways. Transportation Research Part C: Emerging

Technologies 12, 6 (2004), 421 – 452. https://doi.org/10.1016/j.trc.2004.07.008

[22] Risto Hilpinen and Paul McNamara. 2013. Deontic Logic: A historical survey and introduction.
[23] John Horty. 2001. Agency and Deontic Logic. Cambridge University Press.
[24] John F. Horty and Nuel Belnap. 1995. The deliberative stit: A study of action, omission, ability, and obligation. J. Philos. Logic (1995), 583–644.
[25] Susmit Jha, Tuhin Sahai, Vasumathi Raman, Alessandro Pinto, and Michael Francis. 2019. Explaining AI Decisions Using Efficient Methods for

Learning Sparse Boolean Formulae. J Autom Reasoning (2019), 1055—-1075.
[26] Piotr Kulicki, Robert Trypuz, and Michael P. Musielewicz. 2018. Towards a Formal Ethics for Autonomous Cars. In Deontic Logic and Normative

Systems - 14th International Conference, DEON 2018, Utrecht, The Netherlands, July 3-6, 2018, Jan M. Broersen, Cleo Condoravdi, Nair Shyam, and
Gabriella Pigozzi (Eds.). College Publications, 193–209.

[27] Patrick Lin, Keith Abney, and George A. Bekey (Eds.). 2014. Robot Ethics: The Ethical and Social Implications of Robotics. The MIT Press.
[28] Gert-Jan Lokhorst. [n.d.]. Mally’s Deontic Logic. The Stanford Encyclopedia of Philosophy (Summer 2019 Edition) ([n. d.]). https://plato.stanford.edu/

archives/sum2019/entries/mally-deontic/.
[29] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2017. MCMAS: an open-source model checker for the verification of multi-agent systems.

Intl. Jrnl. on Software Tools for Technology Transfer 19, 1 (01 Feb 2017), 9–30.
[30] Ernst Mally. 1926. Grundgesetze des Sollens. Elemente der Logik des Willens.
[31] Zohar Manna and Amir Pnueli. 1992. The Temporal Logic of Reactive and Concurrent Systems — Specification. Springer.
[32] Paul McNamara. 2018. Deontic Logic. The Stanford Encyclopedia of Philosophy (Fall 2018).
[33] Yuko Murakami. 2004. Utilitarian Deontic Logic. In in ‘Proceedings of the Fifth International Conference on Advances in Modal Logic (AiML 2004.

288–302.
[34] Amir Pnueli. 1977. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Symposium Foundations of Computer Science. 46–57.
[35] Cristian Prisacariu and Gerardo Schneider. 2012. A dynamic deontic logic for complex contracts. The Journal of Logic and Algebraic Programming

81, 4 (2012), 458 – 490. Special Issue: NWPT 2009.
[36] Martin L Puterman. 1994. Markov decision processes : discrete stochastic dynamic programming. Wiley, New York.
[37] Franco Raimondi and Alessio Lomuscio. 2004. Automatic Verification of Deontic Interpreted Systems by Model Checking via OBDD’s. In Procs. of

the 16th European Conf. on Artificial Intelligence.
[38] A. Rizaldi and M. Althoff. 2015. Formalising Traffic Rules for Accountability of Autonomous Vehicles. In 2015 IEEE 18th International Conference on

Intelligent Transportation Systems. 1658–1665.
[39] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2018. On a Formal Model of Safe and Scalable Self-driving Cars. (October 2018).

arXiv:1708.06374v6.
[40] Colin Shea-Blymyer and Houssam Abbas. 2020. A Deontic Logic Analysis of Autonomous Systems’ Safety. In Proceedings of the 23rd International

Conference on Hybrid Systems: Computation and Control (Sydney, New South Wales, Australia) (HSCC ’20). Association for Computing Machinery,
New York, NY, USA, Article 26, 11 pages. https://doi.org/10.1145/3365365.3382203

[41] A. Thekkilakattil and G. Dodig-Crnkovic. 2015. Ethics Aspects of Embedded and Cyber-Physical Systems. In 2015 IEEE 39th Annual Computer
Software and Applications Conference, Vol. 2. 39–44.

[42] Georg H. von Wright. 1951. Deontic Logic. Mind 60, 237 (January 1951).
[43] Eric Wiewiora. 2010. Reward Shaping. Springer US, Boston, MA, 863–865. https://doi.org/10.1007/978-0-387-30164-8_731

Manuscript submitted to ACM

https://doi.org/10.1016/j.trc.2004.07.008
https://plato.stanford.edu/archives/sum2019/entries/mally-deontic/
https://plato.stanford.edu/archives/sum2019/entries/mally-deontic/
https://doi.org/10.1145/3365365.3382203
https://doi.org/10.1007/978-0-387-30164-8_731

	Abstract
	1 Introduction
	2 Dominance Act Utilitarianism
	3 Case Study in Modeling: Responsibility-Sensitive Safety for Self-Driving Cars
	4 Obligation Propagation
	5 Model Checking DAU
	6 Case Study in Model Checking Self-Driving Cars Obligations
	7 Related Work
	8 Conclusions
	References

