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ABSTRACT

Vital signs are used in Neonatal Intensive Care Units (NICUs) to
monitor the state of multiple patients at once. Alarms are triggered
if a vital sign is below/above a predefined threshold. Numerous
alarms sound each hour which could translate into an overload
for the medical team, known as alarm fatigue. Yet many of these
alarms do not require immediate clinical action of the caregivers.

In this paper we automatically detect moments that need an
immediate response (i.e. interaction with the patient) of the medical
team in NICUs by using caregiver response to the patient, which
is based on the interpretation of vital signs and of nonverbal cues
(e.g. movements) delivered by patients. The ultimate goal of such
approach is to reduce the overload of alarms while maintaining the
patient safety.

We use features extracted from the electrocardiogram (ECG) and
pulse oxymetry (SpO2) sensors of the patient, as most unplanned
interactions between patient and caregivers are due to deteriora-
tions. Since in our unit an alarm can only be paused or silenced
manually at the bedside, we used this information as a prior for
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caregiver response. We also propose different labeling schemes for
classification, each representative of a possible interaction scenario
within the nature of our problem.

We accomplished a general detection of caregiver response with a
mean AUC of 0.82. We also show that when trained only with stable
and truly deteriorating (critical state) samples, the classifiers can
better learn the difference between alarms that need no immediate
response and those that do. In addition, we present an analysis of
the posterior probabilities over time for different labeling schemes,
and use it to speculate about the reasons behind some failure cases.
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Figure 1: Example of interaction between
tient as a response to a critical alarm.

caregiver and pa-

1 INTRODUCTION

Monitoring alarms are used in Intensive Care Units (ICU) worldwide
to alert the medical team of patient deterioration [20] and should be
responded to by the medical team, to avoid physiological damage or
even death [6, 10, 19, 22]. Monitored signals generally include heart
rate (HR), blood pressure, and oxygen saturation in blood (SpOz2),
among many others [6]. Critical alarms are generally accompanied
by loud sounds to alert caregivers and are typically sent to a central
station or sometimes to handhelds of caregivers [10, 23].

The response to critical alarms, shown with an example in Fig-
ure 1, is particularly important in Neonatal Intensive Care Units
(NICUs), as this fragile population has deterioration moments that
tend to escalate quite rapidly. This is because preterm infants have
problems regulating their physiology, as their systems are not fully
developed yet and they are not as well equipped as adults to self-
restore during a deterioration [4, 23].

Nonetheless, not all alarms in a (N)ICU need to be responded to
immediately if they are not yet considered clinically urgent [9, 13].
Other reasons behind the lack of response for some alarms include
self-patient stabilization, a large number of false or irrelevant alarms
(up to 70% of total number of alarms delivered to caregivers), or
work overload in the medical team [7, 13, 17]. Alarm fatigue is
the term used for the overload of monitor alarms, resulting in
desensitization to alarms in caregivers (particularly in nurses) and
could potentially lead to missing important ones [6, 14, 19]. The
problem complicates further in decentralized environments, such as
single-family rooms [23]. Alarm fatigue can become so problematic
that it has been named a medical device technology hazard [14]. On
the one hand clinically relevant alarms should be handled while, to
reduce alarm fatigue, alarms not clinically relevant and requiring
no action should be reduced [13, 18].

In this paper, we propose a method to detect which moments
need to be responded to immediately by a caregiver, by using mul-
timodal vital signs extracted from bedside patient monitors. Un-
like current monitoring alarms which are based on values passing
critical thresholds, we aim to distinguish between important de-
terioration events with clinical relevance and those that can be
potentially ignored. To do so, we use the interaction of the medical
team with the patient monitor as silencing and pausing monitor
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alarms can only be done manually next to the patient. During these
caregiver-patient interactions, similar to other social phenomena,
the medical team learns inherently to interpret nonverbal cues
from neonatal patients (e.g. movements) and reacts accordingly.
We hypothesize that this additional nonverbal information from
the patients, along with the other parameters extracted from vital
signs, allows the medical team to give a more accurate assessment
of deterioration moments in their patients and what situations truly
need a response.

This work aims therefore at improving current mechanisms for
healthcare applications by revising the definition of alarms used in
the NICU and substituting alarms based on thresholds with new
alarms developed based on caregiver response to critical conditions
recorded from their past experience. Furthermore, the solution of
using multimodal vital signs together with caregiver responses as
a response to the interpretation of patient signals and nonverbal
cues from the patients is adopted in this work since it allowed
to preserve privacy of both caregivers and patients in the NICU
during the data collection and did not have an impact on working
routines of caregivers. For instance, cameras were not used to record
caregivers entering patient rooms as the use of these devices in
intensive care setting could have resulted in a major privacy issue, a
problem that we tackled with the alternative of using the interaction
of the medical team with the monitor, and hence with the patient.
This response can give important information on which alarms are
useful and which ones can be filtered out. Reducing alarms can
increase patient safety but also patient and family well-being. In
addition, fewer alarms can lower stress levels for caregivers.

The main contributions of our work are:

e We automatically detect moments that need an immediate
interaction of caregivers with patients in NICUs.

e We evaluate the response in moments where alarms were
triggered by the bedside patient monitor, aiming to filter
alarms that do not need an immediate response.

e We evaluate three different labeling schemes for training
and testing of our models, based on the presence of monitor
alarms and caregiver response. With each labeling scheme,
we evaluate different scenarios of interaction that are inher-
ent to the nature of our problem.

The rest of the paper is distributed as followed: Section 2 summa-
rizes the related work. Section 3 details some important aspects in
the day-to-day of our NICU which are relevant to better understand
our problem and the steps taken to solve it. The dataset used in
this work is described in section 4, while Section 5 presents the pro-
posed method and our different labeling schemes. Section 6 shows
the experimental cases created using our labeling schemes, and
their result and discussion. Finally, our conclusions are presented
in Section 7.

2 RELATED WORK

Some works discussed reducing alarm fatigue in NICUs by imple-
menting delays between exceeding a threshold and the start of the
alarm, or by using longer average periods for vital signs, to account
for patient self-stabilization [16, 21]. Other heuristic approaches
aimed towards wider limits for alarm thresholds [25] or customizing
them to patient characteristics [18, 24]. However, these approaches
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do not use interaction of the caregiver with the system to investi-
gate clinical relevance of an alarm. Most works aiming to reduce
false alarms and alarm fatigue in (N)ICUs focus on the vital signs.
For example, Chen et. al. [3] used supervised machine learning to
detect artifacts in online vital signs from multiple sensors. Similarly,
Eerikiinen et. al. [8] focused on clinical and physiological signs of
arrhythmia, in order to train classifiers capable of recognizing this
specific deterioration event.

Previous work studied the assessment given by the medical team,
especially nurses, to critical alarms and how this influences their
reaction [9, 13, 18]. In particular, it was discussed that not all the
alarms caused by vital signs exceeding thresholds triggered an im-
mediate response by the medical team. Joshi et. al. [13] showed that
nurses see all alarms as a good indicator, but they do not see the
need to respond to all as only a fraction of alarms are considered ur-
gent. More recently, Ergezen and Kol [9] provided an observational
study to determine types of alarms and evaluate the response given
by nurses to each type. Similarly, a rather low percentage of critical
alarms (about 50%) was responded. Nevertheless, none of the above
approaches used prior knowledge obtained from caregiver assess-
ment of alarms to train detection or prediction models. The closest
work to our own was presented by Ostojic et. al. [17]. Using HR
and SpO2 with four machine learning algorithms, they classified
alarms responded to by the medical team as true or false alarms.
However, the staff labeled only the moments that were responded
and they did so in an offline manner. In contrast, in this work we
assess all alarms generated by the patient monitor, and not only
those responded to. Moreover, to the best of our knowledge, we are
the first to use the assessment of caregivers in the onsite response to
alarms to automatically detect moments that should be responded
to, aiming for alarm reduction.

3 NICU MONITORING WORKFLOW

To better understand the nature of our problem, we describe the
alarm handling workflow protocol in a NICU (see Figure 1). There
are several types of monitor alarms in a NICU, classified given their
severity and nature (e.g. sensor type or technical issue). Monitoring
critical alarms due to a vital sign are triggered when the signal goes
below or above a threshold predefined by the medical team. The
value of these thresholds vary depending on the population (i.e.
very low weight, low weight) and other specific characteristics of
the patient [23].

A yellow alarm is triggered when a particular vital sign of the pa-
tient is outside of the stable range, but it is not yet life-threatening.
These can deteriorate further or self-stabilize. Red alarms are trig-
gered when a vital sign goes below/above critical levels and can
threaten the life of the patient. These can also self-stabilize, but this
scenario is less likely. As an example for our NICU, an SpO; value
lower than 88% will trigger a yellow alarm while a value lower than
80% will produce a red alarm for desaturation.

All alarms produce alert sounds in the bedside monitors and are
send to a central station, for medical information and assessment.
As our NICU has a single-family room arrangement, red alarms are
also sent to the wearable handle of the caregiver responsible for the
patient. If no response is found after 45 seconds and the red alarm
does not self-stabilize, this is send to the next caregiver available

346

ICMI 21 Companion, October 18-22, 2021, Montréal, QC, Canada

Heart Rate
200 ‘ [ )
150 / ‘l jrr‘.\l I \ tl [\h'.rl ||'|
i ¥ | }
100 l ' \ |
{
50
SPO2
J | '~ N il 1 "‘
4 ! M 4
80 ] n "|.4, AW
60 \[ Y/ ™ [
40
20
o]
............. Alarms
. - - : L L ___ LI} " - .-
Yellow
I Red B
Bradycardia - - L ] L __ 1] L] 1
N Desaturation - 1 — -
———  Silenced
wessssssm  Paused = ==
#1 #2 #3

Figure 2: Alarm timeline for Heart Rate (HR) and Oxygen
Saturation (SpO;), with three different deterioration events.

following a well-defined hierarchy. When an immediate response
is needed, the caregiver will go to the patient room to care for the
patient and handle the alarm.

The first action in the room is to silence an alarm. Silencing
means that alarms related to that sensor are silenced for 1 minute.
For example, silencing a bradycardia alarm (low heart rate) would
silence all alarms related to heart rate.

Another action could be to use a pause. When a pause is applied,
all alarms are inactive for 3 minutes. Alarms can be paused while
alarms are active and while there are no alarms. Pause is typically
used when caregivers plan to take care of a patient (e.g. diaper
change, feeding or kangaroo care!), knowing that these actions can
disturb the sensors and lead to unnecessary alarms. The pause time
can be stopped manually by the caregivers before the fading time,
to prevent alarms being silenced or paused when the caregiver has
left the bedside. Events like silence and pause therefore indicate
that a caregiver is close to the patient, as this action cannot be
performed in our unit without being at the bedside. We call these
responded events.

Figure 2 shows an example of alarms for HR and SpO; for a
deteriorating patient. The yellow and red alarms are subdivided
into alarms for critically low heart rate (bradycardia) and SpO;
(desaturation). Moments of silenced/paused alarms are also shown.
The interaction of the caregiver with the patient was as follows.
First, the patient deteriorated (low oxygen saturation levels) and
that escalated to a red alarm which was silenced (event #1 in Figure
2). After this interaction, the infant reacted favorably and saturation

!Kangaroo care is a technique in which a caregiver puts the infant in his/her parents
chest ensuring skin-to-skin contact, and it stimulates the infant’s development [15]
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Table 1: Patient demographics for our study.

Characteristic Median 25th perc.  75th perc.
Gestational age (weeks) 29.4 28.71 30.71
Birth weight (g) 12600  1065.0 1417.5

Table 2: Used features per signal type. HRV: Heart Rate Vari-
ability. SpO;: peripheral oxygen saturation. SDNN: Standard
deviation of RR-intervals. RMSSD: square root of the mean
of the sum of the squares of differences between adjacent
RR-intervals.

Sensor Feature group Features
Electrocardiogram Heart Rate mean, variance
(ECG) HRV mean RR, SDNN, RMSSD
Pulse Oxymeter SpO2 mean, variance

increased again. The second deterioration event (#2) comes minutes
later and consists of i) a desaturation followed by a bradycardia
alarm which is considered more critical to the infant and ii) a pause
of the alarms and several silencing episodes after the pause fading
time is reached (3 minutes). This is considered a clinically relevant
deterioration event. Finally, a third deterioration event occurred,
similar to the event #2, after which the infant recovered and went
back to stable ranges in the monitoring signals.

4 THE DATASET

Maxima Medical Center (MMC) is a general hospital in Veldhoven
(The Netherlands) with a 22-bed (18 in use), level III tertiary NICU,
and an admission rate of approximately 380 newborns per year. The
NICU comprises 9 single rooms, 5 twin rooms and 1 triplet room.
Prematurely born infants from 24 weeks and older can be treated.
All patients are continuously monitored using the Philips IntelliVue
MX 800 monitor and all signals and alarms are automatically stored
in a private data warehouse (PIIC iX, Data Warehouse Connect,
Philips Medical Systems, Andover, MA). The sample frequency of
the ECG is 250Hz, and HR and SpOy are measured every second.
The patient profile that determines thresholds for the red and yellow
alarms is chosen based on the gestational age of the neonate.

The data for six days for a total of 66 preterm infants is retrospec-
tively collected from the data warehouse. It comprises ECG, HR
and SpO; signals, critical (red and yellow) alarms, and silenced and
paused alarms. The patient demographics are presented in Table 1.
The medical ethical committee of MMC provided a waiver for this
study, in accordance with the Dutch law on medical research with
humans (WMO).

About 5% of the time consists of yellow alarms, while 0.8% are red
alarms. In addition, 1.6% of the time were either paused or silenced
by the medical team. It is thus clear that we are dealing with a
problem of imbalance classes. As such, the training of the classifiers
and the metrics for its evaluation should be defined accordingly.

5 PROPOSED METHOD

Here we describe our approach to detect the need for caregiver
response, based on clinically readily available data in the patient
monitor. First, we describe the used sensors and the multimodal
features derived from them. Then, we define a responded event
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and a deterioration event, and describe how they differ from raw
critical monitoring alarms. Next, we present our different labeling
schemes and the classifiers used in our experiments.

5.1 Multimodal Sensors and Features

We have two main sensors in this work: 1) the ECG to measure the
electrical activity of the heart, and 2) the pulse oximeter for SpOs.
These sensors were chosen because the majority of critical alarms
in a NICU comes from them [24]. We derived three different feature
groups: 1) HR-based, 2) HRV-based and 3) SpOz-based (see Table
2).

An RR-interval is the time elapsed between two successive peaks
in the ECG, called R-peaks. The heart rate HR is determined from
the RR-interval as the number of beats (peaks) per minute. This
signal is pre-extracted in most modern patient monitors including
the one in our dataset. The Philips IntelliVue MX 800 monitor adds
a series of noise filtering and signal enhancing proprietary methods
for a better estimation of the heart rate. We use the mean and the
variance of the HR as our features for this modality as variance in
the heart rate is indicative of incoming deterioration [11]. Heart
Rate Variability (HRV) features are derived from this RR-interval
signal [1, 2]. In the current work, we use the mean RR-interval
value within a window (mean-RR), the standard deviation of the
RR-intervals within a window (SDNN) and the square root of the
mean of the sum of the squares of differences between adjacent
RR-intervals (RMSSD) [2]. Finally, for the SpO; we simply calculate
the mean and variance. These statistics are used since they have
proven to be informative of deterioration [26] and since they were
previously defined in other studies, allowing for an easier transfer
of knowledge about results to caregivers.

5.2 Responded and Deterioration Events

Figure 2 shows three deterioration events. In our pipeline, first we
find the alarms. Next, we cluster the silenced and paused alarms that
were placed 3 minutes or less next to each other, as most interaction
events between caregivers and the patient constitute a sequence of
these alarms without separations longer than these, and it is also
the longer fading time for pause/silencing in our system. Once the
silenced and paused alarms are clustered into a single event, we
investigate if critical red and yellow alarms are triggered within
the event. Critical alarms that are closely placed together are also
clustered in the same way as the pause/silence alarms.

We define a responded event as a cluster of closely placed silenced
and/or paused alarms, which are our prior for caregiver response.
If a responded event co-allocates or has closely placed red or/and
yellow alarms, we call it a deterioration event. This way we can
analyze the different types of such events (e.g. desaturation only,
desaturation with bradycardia, arrhythmia). We add an additional
30 seconds at the beginning and end of each responded event, to
account for caregiver response to the alarms (if any) while outside
of the patient room and for stabilization after the event, respectively.
Also, as a pause inactivates all alarms, we need to assess the seconds
before a pause.

Figure 3 (top) presents the raw red and yellow alarms (in red),
the alarms that were paused or silenced (black) and the responded
events that resulted after the clustering scheme (blue). We can see
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Figure 3: Clustering of paused/silenced alarms for the crea-
tion of responded events. If a responded event also has
alarms within it, corresponds to a deterioration event. Top:
using raw alarms. Bottom: using 1 minute windows.

in this figure that while there are "holes’ between paused/silenced
alarms (black stream), these are filled after the clustering. In ad-
dition, it is clear from this figure that while critical alarms were
triggered, these were not always responded.

The top section of Figure 3 presents the responded events derived
from the raw alarms. However, the real start and end of any event
is only known retrospectively. To adapt the creation of responded
events for detection using machine learning, we present the same
information in a sliding window manner (bottom of Figure 3, for
windows of size T=1 minute without overlap). Thus, we also can
have samples of consistently the same length. If there is at least one
alarm (critical, silence or pause) within the window, that window
is presented as having that type of alarm. Then, silenced/paused
windows are clustered together to create the final responded events,
and the critical alarm windows are evaluated for the deterioration
events instead of the raw alarms. With this small change, the au-
tomatic detection of a caregiver response can be done for every
window of T seconds.

5.3 Labeling Schemes and Detection of
Caregiver Response

Each window of size T needs to be classified as responded or not.
For all experiments, we use T equal to 1 minute. This choice was
made to define windows long enough to include alarms and care-
giver response (since time for response, in case this is present, is
usually brief and less than 30 sec) while avoiding the inclusion
of different consecutive alarms. For each window we extract the
features summarized in Table 2 and label if alarms occur (Windows
with Alarms as WA=1) and if an interaction with the monitor occurs
(Window Responded as WR=1). These are the red stream (alarms)
and the blue stream (events) in Figure 3. There are four possible
combinations for WA and WR, resulting in one of four classes:

e Class 1: no alarms, no response (WA=0, WR=0)

o Class 2: alarms present, no response (WA=1, WR=0)

e Class 3: no alarms, response present (WA=0, WR=1).

o Class 4: alarms present, response present (WA=1, WR=1)

The first and last classes are clear cases where the patient is
stable or during a deterioration event, respectively. On the contrary,
the other two classes are rather ambiguous.

A response without alarms (class 3) generally represents rou-
tinely interactions such as caregiver handling that do not entail
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a deterioration. Thus, the features could potentially be closer to
those in class 1, even while responded to. Similarly, alarms with-
out response (class 2) could potentially be upcoming deterioration
events that are not yet considered sufficiently relevant to respond,
but for which the features can be closer to class 4. Class 2 could
also represent momentary self-restoring instabilities, noisy signals
or wrongly placed sensors that need no response at all.

Due to all the above plus the knowledge gathered at analyzing
caregiver routines in a NICU, we create three different labeling
schemes: 1) complete label, 2) strict label, and 3) AlarmsOnly label.

For the complete label, we only use the Window Responded (WR)
stream as our ground truth which is the equivalent to detecting
all responded events. Thus, the potentially ambiguous samples in
classes 2 and 3 are forced to be part of class 1 and 4, respectively.
With this label we aim to assess the global response of caregivers
to the patient’s needs, not only those due to deteriorations.

On the contrary, in the strict label we only consider classes 1
(stable) and 4 (deterioration events), for which we know for certain
the state of the patient. For this labeling, which main use would
be during training only (see Section 6), samples of classes 2 and
3 are discarded. The hypothesis behind this label is that it could
allow the classifiers to learn the difference between a stable and a
deteriorating infant, which can later translate to the necessity to
respond or not to its aid during a deterioration event.

Finally, in the AlarmsOnly label we only consider classes 2 and 4,
for which alarms were triggered within the window by the patient
monitor. From a clinical point of view, the correct discrimination
between classes 2 and 4 directly leads to a reduction of false alarms,
thus reducing alarm fatigue. So this labeling scheme would allow
us to properly assess such reduction.

We choose not to address our problem as a multiclass classifi-
cation as we do not want to separate each class, but rather detect
windows that should be responded to by the medical team. We
do include the original four classes during our analysis to better
explain possible reasons behind potential failure cases (Section 6).

5.4

Using the three labeling schemes explained in Section 5.3, we create
the six different experiments or cases summarized in Table 3.

The first case would be our general assessment of caregiver
response, i.e. detection of responded events. Case 2 would only
account for pre-selected samples, from which we can see if the
classifiers can learn the difference between a stable patient and
one with a clinically relevant deterioration. Hence, this case would
also be our upper boundary. In addition, case 3 would focus on the
particular cases where an alarm is triggered by the patient monitor,
and the medical team should decide whether to respond to it.

Cases 4 to 6 represent meaningful training and testing combi-
nations of the labeling schemes. First, in case 4 we evaluate the
impact of learning the true separation between a deteriorating and
a stable patient in the detection of all responded events. For case 5,
we assess how this difference influences the necessity to respond
to alarms triggered by the patient monitor. Finally, in case 6 we
evaluate if training using all responded events can potentially be
beneficial for the specific windows with an alarm triggered by the
patient monitor. While the main goal of this work is to detect a

Machine Learning Procedure
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Table 3: Experimental cases. Each case represents a relevant
combination during training/testing of our labelings.

Labeling used
CASE Training Testing

1 Complete Complete
2 Strict Strict

3 AlarmsOnly  AlarmsOnly
4 Strict Complete
5 Strict AlarmsOnly
6 Complete  AlarmsOnly

Table 4: Mean AUC (+ standard deviation between folds) of
the detection of caregiver response for the different cases.

Case | Logistic Regressor Nearest Mean
1 0.821 £ 0.03 0.812 + 0.03
2 0.935 £ 0.04 0.938 £ 0.03
3 0.783 + 0.07 0.773 + 0.07
4 0.791 = 0.04 0.803 + 0.04
5 0.772 £ 0.07 0.777 £ 0.07
6 0.777 + 0.07 0.779 + 0.07

window that should be responded (i.e. responded events), from a
clinical point of view the most relevant cases are those for which
the AlarmOnly label is used during testing (3, 5 and 6).

For each case, we applied a leave-5-subjects-out cross-validation
using the same training and test data in all cases for a fair compari-
son. This means that all samples for 5 subjects (selected at random
without replacement) are left out for testing in each fold, while the
rest of samples are used for training.

We use a logistic regressor (L1 penalty) and a nearest mean classi-
fier for all our experiments. We selected these to assess the problem
with a linear separation and a clustering based approach, respec-
tively. In addition, due to the simplicity that characterizes these two
classifiers compared to other methods (e.g. neural networks), these
classifiers allow to explain the importance of each feature, which is
critical for the transfer of knowledge about results achieved with
this work to caregivers. To consider the imbalance in our dataset
during training, we weighted the contribution of each sample given
its class presence during the optimization of the objective function
[5].

For evaluation we used the Receiver Operating Characteristic
curve (ROC) and the area under them (AUC). Unlike accuracy,
these metrics are more suited to handle imbalanced data [5, 12]. In
addition, we present confusion matrices for further evaluation.

6 RESULTS AND DISCUSSION
6.1 Classification Results

In Table 4 are summarized the mean (+ standard deviation per fold)
AUC for all the experimental cases. As expected, case 2 has the best
performance (upper boundary) and shows that both classifiers can
learn the difference between a stable and a deteriorating patient.
In addition, Figure 4 presents the mean ROC curves for all cases
and the 2 classifiers. Table 5 presents the confusion matrices for
one of the testing folds selected at random for the nearest mean
classifier in case 1 (left) and case 4 (right). These are calculated
for a threshold in the best operational point extracted from the
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ROC curves. The original classes as defined in Section 5.3 are also
presented for further analysis. Note that the confusion matrices for
cases 5 and 6 can also be derived from these matrices.

Results from Table 4 show that the highest AUC is found consid-
ering the strict labeling for both the training and testing dataset and
the use of the logistic regressor (case 2). This result allows to asso-
ciate a high true positive rate (0.90), main priority in a NICU due to
complications associated to missed responses to critical conditions,
with a very low false positive rate (0.20), indicating a very low
incidence of unnecessary requested responses, a result significantly
better compared to the high number of false or irrelevant alarms
often reported in studies related to NICU environments [7, 13].

Case 1 shows that we can detect all responded events with a
mean AUC of 0.82 for the logistic regressor, without much variance
between the subject folds. The use of the strict label while training
for the same goal (case 4) decreases slightly the AUC performance.
Moreover, while the precision and specificity increases for the fold
presented in Table 5 between cases 4 and 1, the sensitivity decreases
as well. We speculate that by training with all possible events the
classifiers can also discern other types of interactions, whereas with
the strict label there is a focus on deterioration only.

This hypothesis is also supported by the original labels for each
case, presented in Table 5. In the decomposed confusion matrix
of case 1 in Table 5 (bottom left) is shown that from the 314 false
negatives in the binary error only 35 are effectively from class 4 (a
deterioration event). Most of the remaining 279 wrongly classified
as no responded could potentially be routine interactions that do
not entail a clinical deterioration (e.g. caregiver handling). For these
cases there is a response (i.e. interaction with the patient) but the
patient vital signs are stable during the interaction, confusing the
classifier decision. The false negatives for class 3 further increase for
case 4, for which a strict separation between stable and deteriorating
samples was used in the training. While the true positives for class
4 also reduce between cases 1 and 4 by about 25%, this reduction
was around 50% for class 3.

Unfortunately, there are no records in the dataset that explicitly
show the type of interaction (e.g. deterioration, caregiver handling,
parents) so we can not show the correct evaluation per class. Yet,
this knowledge could help explaining several classification errors
and gives us relevant insides for a future extension of this work.

When it comes to alarms triggered by the monitor, we can see
in Table 4 and Figure 4 that there is barely any change between the
ROC and AUC of cases 3, 5 and 6. However, analyzing the original
labels of cases 1 and 4 in Table 5 (from which cases 5 and 6 can be
derived) shows subtle differences for the classes 2 and 4.

For the 2584 samples of class 2 in this fold, which should be
classified as not responded, the correctly classified samples go from
1688 for case 1 (sensitivity of 0.65 for the class) to 2271 for case
4 (sensitivity of 0.88). This behavior maintains in average across
folds for the same classification threshold.

Moreover, when only considering class 2 and 4 in the confusion
matrices, the results of caregiver response in this fold change from
a sensitivity of 0.81, specificity of 0.65 and a precision of 0.15; to
a sensitivity of 0.61, a specificity of 0.88 and a precision of 0.27.
This evaluation is the equivalent of cases 6 and 5 (using the Alar-
mOnly during testing). This implies that training with the strict
label reduced the number of alarms that needed no response but
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Figure 4: Receiver Operating Characteristic curves (ROC) for the detection of caregiver response for all experimental cases. (a)

Logistic Regressor. (b) Nearest mean classifier.

Table 5: Confusion matrices for a random fold and cases 1 and 4 using the nearest mean classifier and a threshold equal to
0.65 (best operational point in ROC). Top: Confusion matrix for the case. Bottom: their respective true classes. Case 1: train
with complete / test with complete. Case 4: train with strict/ test with complete.

Case 1 Case 4

Complete Estimated Labels Totals Complete Estimated Labels Totals
Labeling No responded Responded Labeling No responded Responded

No responded 33218 2297 35515 No responded 34944 571 35515
Responded 314 371 685 Responded 453 232 685
True Estimated Labels Totals True Estimated Labels Totals
classes No responded Responded classes No responded Responded

Class 1 31530 1401 32931 Class 1 32673 258 32931
Class 2 1688 896 2584 Class 2 2271 313 2584
Class 3 279 218 497 Class 3 379 118 497
Class 4 35 153 188 Class 4 74 114 188

were classified as responded, without drastically compromising the
true positives. This unfortunately came with a reduction in the
sensitivity that could also be explained by the classifier having a
more strict concept of what is a deteriorating event.

6.2 Time Analysis of Probabilities

In addition to the global performance, we present the time analysis
of the test data for 24 hours of one patient selected at random.
Figure 5 presents the posterior probability of caregiver response
when training with the complete label (top) and with the strict
label (middle). The original class as presented in Section 5.3 is also
shown (bottom). Each sample in this figure represent a window of
one minute.

For case 1 (top) there are a several high probabilities around times
for which alarms were triggered by the monitor but there was no
response yet (class 2), as seen between hour 6 and 8 in Figure 5. In
contrast, when training with the strict label, which only considers
true deterioration events, the classifier is capable of reducing the
probability for samples with only alarms while maintaining high
probabilities for sections around a true deterioration (class 4).

This analysis helps showing that in a timely manner the classifier
trained with the strict label can point to deterioration events in a
general way, but has problems choosing the exact windows that
overlap with the ground truth.

This mismatch could also explain the low precision values de-
rived from Table 5, as these low performances are mostly due to
the mismatches in windows around the deterioration events. As
can be seen in Figure 5, the classifier for case 4 triggers a high
probability around almost all deterioration events present in this
day. However, the window-wise overlap between high probabilities
and the ground truth is rather low for these segments.

We hypothesize that different window sizes or adapting the
evaluation to consider this time dependency could potentially show
fairer global results for precision. But we leave this for future efforts
as it lies outside of the scope of this paper.

7 CONCLUSIONS AND FUTURE WORKS

In this paper we introduced our method to detect moments that
need to be responded to by caregivers in a NICU, using multiple
modalities extracted from signals in bedside patient monitors and
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Figure 5: Time analysis of probabilities of the logistic regressor for one day of samples of a random test subject. (Top) Case
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classes.

caregiver response to alarms. This response comprises an inherently
learned knowledge by the medical team of the nonverbal cues
displayed by the patients, which combined with the information
from monitoring signals better informs the medical team of the
true state of the patients and their potential deteriorations.

We obtained a mean AUC of 0.82 for all responded events, a
relevant result considering the high percentages of false alarms
currently sounding in NICUs and causing alarm fatigue in care-
givers. We used different labeling schemes for caregiver response,
motivated in the type of interaction or response present in our data,
both from a medical and a social point of view (e.g. kangaroo care).
We showed that training to detect all responded events has a better
general performance, but training only with samples of stable and
truly deteriorating infants helps reducing the number of alarms
triggered by the patient monitor that need no response, and are
incorrectly classified as needed to responded.

We hypothesize that a better evaluation of types of interaction
between caregiver and patients (e.g. further analyzing nonverbal
cues displayed by the patients and their correlations with their
health condition) can further help reducing our number of false
positives. Thus, we could focus on deterioration events only. Addi-
tionally, incorporating time dependency in our algorithms could
potentially improve the detection of responded events.

This study provides a first insight into the possibility of defining
new meaningful alarms based on previously collected caregiver
responses, as a prior for a more comprehensive understanding of
the state of the patients that includes interpreting their nonverbal
cues. Together with these results, future studies may shed a light on
the possibility of revisiting alarms used in the NICU, by replacing
threshold-based alarms with alarms defined based on previous
caregiver responses, and possibly have an impact in reducing alarm
fatigue in the NICU.
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