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ABSTRACT
Advances in algorithmic fairness have largely omitted sexual ori-
entation and gender identity. We explore queer concerns in pri-
vacy, censorship, language, online safety, health and employment
to study the positive and negative effects of artificial intelligence
on queer communities. These issues underscore the need for new
directions in fairness research that take into account a multiplicity
of considerations, from privacy preservation, context sensitivity
and process fairness, to an awareness of sociotechnical impact and
the increasingly important role of inclusive and participatory re-
search processes. Most current approaches for algorithmic fairness
assume that the target characteristics for fairness—frequently, race
and legal gender—can be observed or recorded. Sexual orientation
and gender identity are prototypical instances of unobserved charac-
teristics, which are frequently missing, unknown or fundamentally
unmeasurable. This paper highlights the importance of developing
new approaches for algorithmic fairness that break away from the
prevailing assumption of observed characteristics.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Social
and professional topics→ Sexual orientation; Gender; Com-
puting / technology policy.
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1 INTRODUCTION
As the field of algorithmic fairness has matured, the ways in which
machine learning researchers and developers operationalise ap-
proaches for fairness have expanded in scope and applicability. Fair-
ness researchers have made important advances and demonstrated
how the risks of algorithmic systems are imbalanced across differ-
ent characteristics of the people who are analysed and affected by
classifiers and decision-making systems [15, 57]. Progress has been
particularly strong with respect to race and legal gender.1 Fairness
studies have helped to draw attention to racial bias in recidivism pre-
diction [9], expose racial and gender bias in facial recognition [32],
reduce gender bias in language processing [26, 124], and increase
the accuracy and equity of decision making for child protective
services [40].

Algorithms have moral consequences for queer communities,
too. However, algorithmic fairness for queer individuals and com-
munities remains critically underexplored. In part, this stems from
the unique challenges posed by studying sexual orientation and
gender identity. Most definitions of algorithmic fairness share a ba-
sis in norms of egalitarianism [15, 20].2 For example, classification
parity approaches to fairness aim to equalise predictive perfor-
mance measures across groups, whereas anti-classification parity
approaches rely on the omission of protected attributes from the
decision making process to ensure different groups receive equiva-
lent treatment [43]. An inherent assumption of these approaches is
that the protected characteristics are known and available within
datasets. Sexual orientation and gender identity are prototypical
examples of unobserved characteristics, presenting challenging ob-
stacles for fairness research [8, 78].

This paper explores the need for queer fairness by reviewing the
experiences of technological impacts on queer communities. For our
discussion, we define ‘queer’ as ‘possessing non-normative sexual
identity, gender identity, and/or sexual characteristics’. We consider

1Throughout this paper, we distinguish between ‘legal gender’ (the gender recorded
on an individual’s legal documents, often assigned to them at birth by the government,
physicians or their parents) and ‘gender identity’ (an individual’s personal feelings
and convictions about their gender; [30]).
2It is worth noting that certain algorithmic domains supplement egalitarian concerns
with additional ethical values and principles. For example, fairness assessments of
healthcare applications typically incorporate beneficence and non-malfeasance, two
principles central to medical ethics [16].
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this to include lesbian, gay, bisexual, pansexual, transgender, and
asexual identities—among others.3

The focus on queer communities is important for several rea-
sons. Given the historical oppression and contemporary challenges
faced by queer communities, there is a substantial risk that artificial
intelligence (AI) systems will be designed and deployed unfairly for
queer individuals. Compounding this risk, sensitive information
for queer people is usually not available to those developing AI
systems, rendering the resulting unfairness unmeasurable from the
perspective of standard group fairness metrics. Despite these issues,
fairness research with respect to queer communities is an under-
studied area. Ultimately, the experiences of queer communities can
reveal insights for algorithmic fairness that are transferable to a
broader range of characteristics, including disability, class, religion,
and race.

This paper aims to connect ongoing efforts to strengthen queer
communities in AI research [3, 4, 83] and sociotechnical decision
making [77, 98, 99, 122] with recent advances in fairness research,
including promising approaches to protecting unobserved charac-
teristics. This work additionally advocates for the expanded inclu-
sion of queer voices in fairness and ethics research, as well as the
broader development of AI systems. We make three contributions
in this paper:

(1) Expand on the promise of AI in empowering queer commu-
nities and supporting LGBTQ+ rights and freedoms.

(2) Emphasise the potential harms and unique challenges raised
by the sensitive and unmeasurable aspects of identity data
for queer people.

(3) Based on use cases from the queer experience, establish
requirements for algorithmic fairness on unobserved char-
acteristics.

2 CONSIDERATIONS FOR QUEER FAIRNESS
To emphasise the need for in-depth study of the impact of AI on
queer communities around the world, we explore several inter-
connected case studies of how AI systems interact with sexual
orientation and gender identity. These case studies highlight both
potential benefits and risks of AI applications for queer communi-
ties. In reviewing these cases, we hope to motivate the development
of technological solutions that are inclusive and beneficial to every-
one. Importantly, these case studies will demonstrate cross-cutting
challenges and concerns raised by unobserved and missing charac-
teristics, such as preserving privacy, supporting feature imputation,
context-sensitivity, exposing coded inequity, participatory engage-
ment, and sequential and fair processes.

2.1 Privacy
Sexual orientation and gender identity are highly private aspects
of personal identity. Outing queer individuals—by sharing or ex-
posing their sexual orientation or gender identity without their
prior consent—can not only lead to emotional distress, but also
risk serious physical and social harms, especially in regions where
3Throughout this paper, we use ‘queer’ and ‘LGBTQ+’ interchangeably. The hetero-
geneity of queer communities—and the complexity of the issues they face—preclude
this work from being an exhaustive review of queer identity. As a result, there are likely
perspectives that were not included in this manuscript, but that have an important
place in broader discussions of queer fairness.

queerness is openly discriminated against [161], criminalised [49]
or persecuted [136]. Privacy violations can thus have major conse-
quences for queer individuals, including infringement upon their
basic human rights [7, 28], denial of employment and education
opportunities, ill-treatment, torture, sexual assault, rape, and extra-
judicial killings.

2.1.1 Promise. Advances in privacy-preserving machine learn-
ing [27, 81, 118] present the possibility that the queer commu-
nity might benefit from AI systems while minimising the risk of
information leakage. Researchers have proposed adversarial fil-
ters [103, 169] to obfuscate sensitive information in images and
speech shared online while reducing the risks of re-identification.

Still, challenges remain [144]. More research is needed to ensure
the robustness of the adversarial approaches. The knowledge gap
between the privacy and machine-learning research communities
must be bridged for these approaches to achieve the desired ef-
fects. This will ensure that the appropriate types of protections are
included in the ongoing development of AI solutions [5].

2.1.2 Risks. A multitude of privacy risks arise for queer people
from the applications of AI systems. We focus in particular on the
categorisation of identity from sensitive data, the ethical risk of
surveillance, and invasions of queer spaces.

In 2017, Stanford researchers attempted to build an AI ‘gaydar’,
a computer vision model capable of guessing a person’s sexual
orientation from images [162]. The resulting algorithm, a logis-
tic regression model trained on 35,326 facial images, achieved a
high reported accuracy in identifying self-reported sexual orien-
tation across both sexes. The results of this study have since been
questioned, largely on the basis of a number of methodological
and conceptual flaws that discredit the performance of the sys-
tem [59]. Other algorithms designed to predict sexual orientation
have suffered similar methodological and conceptual deficiencies.
A recently released app claimed to be able to quantify the evidence
of one’s non-heterosexual orientation based on genetic data, for
example [18], largely obfuscating the limited ability of genetic in-
formation to predict sexual orientation [58].

Though these specific efforts have been flawed, it is plausible
that in the near future algorithms could achieve high accuracy,
depending on the data sources involved. Behavioural data recorded
online present particular risks to the privacy of sexual orientation
and gender identity: after all, the more time people spend online, the
greater their digital footprint. AI ‘gaydars’ relying on an individual’s
recorded interests and interactions could pose a serious danger to
the privacy of queer people. In fact, as a result of the long-running
perception of the queer community as a profitable ‘consumer group’
by business and advertisers alike, prior efforts have used online
data to map ‘queer interests’ in order to boost sales and increase
profits [140]. In at least one instance, researchers have attempted
to use basic social media information to reconstruct the sexual
orientation of users [19].

The ethical implications of developing such systems for queer
communities are far-reaching, with the potential of causing se-
rious harms to affected individuals. Prediction algorithms could
be deployed at scale by malicious actors, particularly in nations
where homosexuality and gender nonconformity are punishable
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offences. In fact, in many such nations, authorities already use tech-
nology to entrap or locate queer individuals through social media
and LGBTQ+ dating apps (e.g., [48]). Systems predicting sexual
orientation may also exacerbate the pre-existing privacy risks of
participating in queer digital spaces. There have been recorded
cases of coordinated campaigns for outing queer people, resulting
in lives being ruined, or lost due to suicide [54]. These malicious
outing campaigns have until now been executed at smaller scales.
However, recent developments in AI greatly amplify the potential
scale of such incidents, endangering larger communities of queer
people in certain parts of the world. Facial recognition technol-
ogy [159] could be employed by malicious actors to rapidly identify
individuals sharing their pictures online, whether publicly or in
direct messages. Facial recognition could similarly be used to au-
tomatically identify people in captured recordings of protests, in
queer nightclubs or community spaces, and other in-person social
events. These possibilities highlight the potential dangers of AI
for state-deployed surveillance technology. Chatbots have simi-
larly been deployed to elicit private information on dating apps,
compromising users’ device integrity and privacy [109]. Existing
bots are scripted, and therefore can usually be distinguished from
human users after longer exchanges. Nonetheless, strong language
models [31] threaten to exacerbate such privacy risks, given their
ability to quickly adjust to the style of communication based on a
limited number of examples. These language models amplify exist-
ing concerns around the collection of private information and the
compromising of safe online spaces.

In addition to the direct risks to privacy, algorithms intended to
predict sexual orientation and gender identity also perpetuate con-
cerning ideas and beliefs about queerness. Systems using genetic
information as the primary input, for example, threaten to rein-
force biological essentialist views of sexual orientation and echo
tenets of eugenics—a historical framework that leveraged science
and technology to justify individual and structural violence against
people perceived as inferior [121, 164]. More broadly, the design
of predictive algorithms can lead to erroneous beliefs that biology,
appearance or behaviour are the essential features of sexual ori-
entation and gender identity, rather than imperfectly correlated
causes, effects or covariates of queerness.

In sum, sexual orientation and gender identity are associated
with key privacy concerns. Non-consensual outing and attempts
to infer protected characteristics from other data thus pose ethical
issues and risks to physical safety. In order to ensure queer algo-
rithmic fairness, it will be important to develop methods that can
improve fairness for marginalised groups without having direct
access to group membership information. This could be achieved
either through proxies [63] when there is sufficient contextual in-
formation in the data, or by implementing more general principles
to ensure that similar individuals are treated similarly [51], under
any plausible unobserved grouping [95].

2.2 Censorship
Multiple groups and institutions around the world impose unjust
restrictions on the freedom of expression and speech of queer com-
munities. This censorship is often justified by its supporters as
‘preserving decency’ and ‘protecting the youth’, but in reality leads

to the erasure of queer identity. Laws against ‘materials promoting
homosexuality’ were established in the late 1980s in the United
Kingdom and repealed as late as 2003 [34]. Nations that are con-
sidered major world powers have laws banning the portrayal of
same-sex romances in television shows (e.g., China; [105]), the men-
tion of homosexuality or transgender identities in public education
(e.g., state-level laws in the United States; [72]), or any distribution
of LGBT-related material to minors (e.g., Russia; [91]). Not only do
such laws isolate queer people from their communities—particularly
queer youth—they shame queerness as indecent behaviour, setting
a precedent for further marginalisation and undermining of human
rights. Many queer content producers in such nations have argued
that their online content is being restricted and removed at the
detriment of queer expression and sex positivity, as well as at the
cost of their income [167].

2.2.1 Promise. AI systems may be effectively used to mitigate cen-
sorship of queer content. Machine learning has been used to analyse
and reverse-engineer patterns of censorship. A study of 20 million
tweets from Turkey employed machine learning to show that the
vast majority of censored tweets contained political content [150].
A statistical analysis of Weibo posts and Chinese-language tweets
uncovered a set of charged political keywords present in posts with
anomalously high deletion rates [14]. Further study of censorship
could be key to drawing the international community’s attention
to human rights violations. It might also be useful for empowering
affected individuals to circumvent these unfair restrictions. For
example, a comparative analysis of censorship across platforms
might help marginalised communities identify safe spaces where
freedom of expression is least obstructed, as well as provide ev-
idence and help coordinate action against platforms responsible
for discriminatory censorship. Nonetheless, no large-scale study of
censored queer content has yet been conducted, rendering these
forward-looking technical applications somewhat speculative at
the moment.

2.2.2 Risk. Although we believe machine learning can be used to
combat censorship, tools for detecting queer digital content can
be abused to enforce censorship laws or heteronormative cultural
attitudes. As social network sites, search engines, and other media
platforms adopt algorithms to moderate content at scale, the risk
for unfair or biased censorship of queer content increases, and
governing entities are empowered to erase queer identities from
the digital sphere [41]. Automated content moderation systems are
at risk of censoring queer expression even when the intention is
benign, such as protecting users from verbal abuse. To help combat
censorship restrictions and design fair content moderation systems,
ML fairness researchers could investigate how to detect and analyse
anomalous omission of information related to queer identity (or
other protected characteristics) in natural language and video data.

Censorship often goes hand-in-hand with the distortion of facts.
Recent advances in generative models have made the fabrication
of digital content trivial, given enough data and computational
power [38]. Malicious and dehumanising misinformation about
the queer community has been used as justification for abuse and
suppression throughout history, tracing back to medieval interpre-
tations of ancient religious texts [52]. Technological and political so-
lutions to the threat of misinformation are important for protecting
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queer expression—as well as global democracy. The AI community
has begun to develop methods to verify authentic data through,
for example, open datasets and benchmarks for detecting synthetic
images and video [129].

While the goal of fairness for privacy is preventing the impu-
tation of sensitive data, the goal of fairness for censorship is to
reveal the unfair prevention of expression. This duality could sur-
face important technical connections between these fields. In terms
of social impact, many people around the world outside of the queer
community are negatively affected by censorship. Further research
in fairness for censorship could have far-reaching benefit across
technical fields, social groups and borders.

2.3 Language
Language encodes and represents our way of thinking and com-
municating about the world. There is a long history of oppressive
language beingweaponised against the queer community [117, 155],
highlighting the need for developing fair and inclusive language
models.

Inclusive language [163] extends beyond the mere avoidance
of derogatory terms, as there are many ways in which harmful
stereotypes can surface. For example, the phrase ‘That’s so gay’ [39]
equates queerness with badness. Using the term ‘sexual preference’
rather than ‘sexual orientation’ can imply that sexual orientation
is a volitional choice, rather than an intrinsic part of one’s identity.
Assuming one’s gender identity, without asking, is harmful to the
trans community as it risks misgendering people. This can manifest
in the careless use of assumed pronouns, without knowledge of
an individual’s identification and requested pronouns. Reinforcing
binary and traditional gender expression stereotypes, regardless of
intent, can have adverse consequences. The use of gender-neutral
pronouns has been shown to result in lower bias against women
and LGBTQ+ people [151]. To further complicate the matter, words
which originated in a derogatory context, such as the label ‘queer’
itself, are often reclaimed by the community in an act of resistance.
This historical precedent suggests that AI systems must be able
to adapt to the evolution of natural language and avoid censoring
language based solely on its adjacency to the queer community.

2.3.1 Promise. Natural language processing applications perme-
ate the field of AI. These applications include use cases of general
interest like machine translation, speech recognition, sentiment
analysis, question answering, chatbots and hate speech detection
systems. There is an opportunity to develop language-based AI sys-
tems inclusively—to overcome human biases and establish inclusive
norms that would facilitate respectful communication with regards
to sexual orientation and gender identity [147].

2.3.2 Risks. Biases, stereotypes and abusive speech are persistently
present in top-performing language models, as a result of their
presence in the vast quantities of training data that are needed
for model development [44]. Formal frameworks for measuring
and ensuring fairness [69, 70, 141] in language are still in nascent
stages of development. Thus, for AI systems to avoid reinforcing
harmful stereotypes and perpetuating harm to marginalised groups,

research on inclusive language requires more attention. For lan-
guage systems to be fair, they must be capable of reflecting the
contextual nature of human discourse.

2.4 Fighting Online Abuse
The ability to safely participate in online platforms is critical for
marginalised groups to form a community and find support [104].
However, this is often challenging due to pervasive online abuse [80].
Queer people are frequently targets of internet hate speech, harass-
ment and trolling. This abuse may be directed at the community as
a whole or at specific individuals who express their queer identity
online. Adolescents are particularly vulnerable to cyberbullying
and the associated adverse effects, including depression and suicidal
ideation [2]. Automated systems for moderation of online abuse
are a possible solution that can protect the psychological safety of
the queer community at a global scale.

2.4.1 Promise. AI systems could potentially be used to help hu-
man moderators flag abusive online content and communication
directed at members of marginalised groups, including the queer
community [131, 134]. A proof of concept for this application was
developed in the Troll Patrol project [6, 50], a collaboration between
Amnesty International and Element AI’s former AI for Good team.
The Troll Patrol project investigated the application of natural lan-
guage processing methods for quantifying abuse against women on
Twitter. The project revealed concerning patterns of online abuse
and highlighted the technological challenges required to develop
online abuse detection systems. Recently, similar systems have been
applied to tweets directed at the LGBTQ+ community. Machine
learning and sentiment analysis were leveraged to predict homo-
phobia in Portuguese tweets, resulting in 89.4% accuracy [125].
Deep learning has also been used to evaluate the level of public
support and perception of LGBTQ+ rights following the Supreme
Court of India’s verdict regarding the decriminalisation of homo-
sexuality [88].

The ways in which abusive comments are expressed when tar-
geted at the trans community pose some idiosyncratic research
challenges. In order to protect the psychological safety of trans peo-
ple, it is necessary for automated online abuse detection systems
to properly recognise acts of misgendering (referring to a trans
person with the gender they were assigned at birth) or ‘deadnam-
ing’ (referring to a trans person by the name they had before they
transitioned; [146]). These systems have a simultaneous responsi-
bility to ensure that deadnames and other sensitive information
are kept private to the user. It is therefore essential for the queer
community to play an active role in informing the development of
such systems.

2.4.2 Risks. Systems developed with the purpose of automatically
identifying toxic speech could introduce harms by failing to recog-
nise the context in which speech occurs. Mock impoliteness, for
example, helps queer people cope with hostility; the communication
style of drag queens in particular is often tailored to be provocative.
A recent study [61] demonstrated that an existing toxicity detection
system would routinely consider drag queens to be as offensive as
white supremacists in their online presence. The system further
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specifically associated high levels of toxicity with words like ‘gay’,
‘queer’ and ‘lesbian’.

Another risk in the context of combating online abuse is uninten-
tionally disregarding entire groups through ignorance of intersec-
tional issues. Queer people of colour experience disproportionate
exposure to online (and offline) abuse [13], even within the queer
community itself. This imbalance stems from intersectional con-
siderations about the ways in which race, class, gender, and other
individual characteristics may combine into differential modes of
discrimination and privilege (“intersectionality”; [46]). Neglecting
intersectionality can lead to disproportionate harms for such sub-
communities.

To mitigate these concerns, it is important for the research com-
munity to employ an inclusive and participatory approach [107]
when compiling training datasets for abusive speech detection.
For example, there are homophobic and transphobic slurs with a
racialised connotation that should be included in training data for
abuse detection systems. Furthermore, methodological improve-
ments may help advance progress. Introducing fairness constraints
to model training has demonstrably helped mitigate the bias of
cyber-bullying detection systems [60]. Adversarial training can
similarly assist by demoting the confounds associated with texts of
marginalised groups [165].

2.5 Health
The drive towards equitable outcomes in healthcare entails a set of
unique challenges for marginalised communities. Queer commu-
nities have been disproportionately affected by HIV [143], suffer
a higher incidence of sexually-transmitted infections, and are af-
flicted by elevated rates of substance abuse [160]. Compounding
these issues, queer individuals frequently experience difficulties
accessing appropriate care [23, 75]. Healthcare professionals often
lack appropriate training to best respond to the needs of LGBTQ+
patients [135]. Even in situations where clinicians do have the
proper training, patients may be reluctant to reveal their sexual
orientation and gender identity, given past experiences with dis-
crimination and stigmatisation.

In recent months, the COVID-19 pandemic has amplified health
inequalities [29, 157]. Initial studies during the pandemic have
found that LGBTQ+ patients are experiencing poorer self-reported
health compared to cisgendered heterosexual peers [120]. The
health burden of COVID-19 may be especially severe for queer
people of colour, given the substantial barriers they face in access-
ing healthcare [74].

2.5.1 Promise. To this day, the prevalence of HIV among the queer
community remains a major challenge. Introducing systems that
both reduce the transmission risk and improve care delivery for
HIV+ patients will play a critical role in improving health outcomes
for queer individuals.

Machine learning presents key opportunities to augment medi-
cal treatment decisions [21]. For example, AI may be productively
applied to identify the patients most likely to benefit from pre-
exposure prophylaxis for HIV. A research team recently developed
such a system, which correctly identified 38.6% of future cases of
HIV [106]. The researchers noted substantial challenges: model
sensitivity on the validation set was 46.4% for men and 0% for

women, highlighting the importance of intersectionality for fair
outcomes in healthcare. Machine learning has also been used to pre-
dict early virological suppression [22], adherence to anti-retroviral
therapy [139], and individual risk of complications such as chronic
kidney disease [130] or antiretroviral therapy-induced mitochon-
drial toxicity [97].

2.5.2 Risks. Recent advances in AI in healthcare may lead to wide-
spread increases in welfare. Yet there is a risk that benefits will
be unequally distributed—and an additional risk that queer peo-
ple’s needs will not be properly met by the design of current sys-
tems. Information about sexual orientation and gender identity
is frequently absent from research datasets. To mitigate the pri-
vacy risk for patients and prevent reidentification, HIV status and
substance abuse are also routinely omitted from published data.
While such practices may be necessary, it is worth recognising the
important downstream consequences they have for AI system de-
velopment in healthcare. It can become impossible to assess fairness
and model performance across the omitted dimensions. Moreover,
the unobserved data increase the likelihood of reduced predictive
performance (since the features are dropped), which itself results
in worse health outcomes. The coupled risk of a decrease in per-
formance and an inability to measure it could drastically limit the
benefits from AI in healthcare for the queer community, relative
to cisgendered heterosexual patients. To prevent the amplification
of existing inequities, there is a critical need for targeted fairness
research examining the impacts of AI systems in healthcare for
queer people.

To help assess the quality of care provided to LGBTQ+ patients,
there have been efforts aimed at approximately identifying sexual
orientation [24] and gender identity [53] from clinical notes within
electronic health record systems. While well intentioned, these
machine learning models offer no guarantee that they will only
identify patients who have explicitly disclosed their identities to
their healthcare providers. These models thus introduce the risk
that patients will be outed without their consent. Similar risks arise
from models developed to rapidly identify HIV-related social media
data [168].

The risk presented by AI healthcare systems could potentially
intensify during medical gender affirmation. There are known ad-
verse effects associated with transition treatment [115]. The active
involvement of medical professionals with experience in cross-sex
hormonal therapy is vital for ensuring the safety of trans people
undergoing hormone therapy or surgery. Since cisgendered in-
dividuals provide the majority of anonymised patient data used
to develop AI systems for personalised healthcare, there will be
comparatively fewer cases of trans patients experiencing many
medical conditions. This scarcity could have an adverse impact on
model performance—there will be an insufficient accounting for the
interactions between the hormonal treatment, its adverse effects
and potential comorbidities, and other health issues potentially
experienced by trans patients.

Framing fairness as a purely technical problem that can be ad-
dressed by the mere inclusion of more data or computational adjust-
ments is ethically problematic, especially in high-stakes domains
like healthcare [110]. Selection bias and confounding in retrospec-
tive data make causal inference particularly hard in this domain.
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Counterfactual reasoning may prove key for safely planning inter-
ventions aimed at improving health outcomes [127]. It is critical
for fairness researchers to engage deeply with both clinicians and
patients to ensure that their needs are met and AI systems in health-
care are developed and deployed safely and fairly.

2.6 Mental Health
Queer people are more susceptible to mental health problems than
their heterosexual and cisgender peers, largely as a consequence
of the chronically high levels of stress associated with prejudice,
stigmatisation and discrimination [108, 113, 114, 152]. As a result,
queer communities experience substantial levels of anxiety, depres-
sion and suicidal ideation [112]. Compounding these issues, queer
people often find it more difficult to ask for help and articulate
their distress [111] and face systemic barriers to treatment [128]. A
recent LGBTQ+ mental health survey highlighted the shocking ex-
tent of issues permeating queer communities [153]: 40% of LGBTQ+
respondents seriously considered attempting suicide in the past
twelve months, with more than half of transgender and nonbinary
youth having seriously considered suicide; 68% of LGBTQ+ youth
reported symptoms of generalised anxiety disorder in the past two
weeks, including more than three in four transgender and nonbi-
nary youth; 48% of LGBTQ+ youth reported engaging in self-harm
in the past twelve months, including over 60% of transgender and
nonbinary youth.

2.6.1 Promise. AI systems have the potential to help address the
alarming prevalence of suicide in the queer community. Natural
language processing could be leveraged to help human operators
identify cases of an increased suicide risk more reliably, and respond
to them appropriately. These predictions could be based either on
traditional data sources such as questionnaires and recorded inter-
actions with mental health support workers, or new data sources
including social media and engagement data. The Trevor Project,
a prominent American organisation providing crisis intervention
and suicide prevention services to LGBTQ+ youth [154], is working
on such an initiative. The crisis contact simulator developed by
The Trevor Project team has been designed to emulate plausible
conversations and interactions between the helpline workers and
the callers. The Trevor Project uses this simulator to help train new
team members, allowing them to practice their skills. The narrow
focus of this application mitigates some of the risks intrinsic to
the application of language models, though the effectiveness of the
system is still being evaluated. In partnership with Google.org and
its research fellows, The Trevor Project also developed an AI system
to identify and prioritise community members at high risk while
simultaneously increasing outreach to new contacts. The system
was designed to relate different types of intake-form responses to
downstream diagnosis risk levels. A separate group of researchers
developed a language processing system [101] to identify help-
seeking conversations on LGBTQ+ support forums, with the aim
of helping at-risk individuals manage and overcome their issues.

In other healthcare contexts, reinforcement learning has recently
demonstrated potential in steering behavioural interventions [166]
and improving health outcomes. Reinforcement learning represents
a natural framework for personalised health interventions, since

it can be set up to maximise long-term physical and mental well-
being [149]. If equipped with natural language capabilities, such
systemsmight be able to act as personalisedmental health assistants
empowered to support mental health and escalate situations to
human experts in concerning situations.

2.6.2 Risks. Substantial risks accompany these applications. Over-
all, research on any intervention-directed systems should be under-
taken in partnership with trained mental health professionals and
organisations, given the considerable risks associated with misdiag-
nosing mental illness (cf. [148]) and exacerbating the vulnerability
of those experiencing distress.

The automation of intervention decisions and mental health
diagnoses poses a marked risk for the trans community. In most
countries, patients must be diagnosed with gender dysphoria—an
extensive process with lengthy wait times—before receiving treat-
ments such as hormone therapy or surgery (e.g., [119]). During
this process, many transgender individuals experience mistrust and
invalidation of their identities frommedical professionals who with-
hold treatment based on rigid or discriminatory view of gender [11].
Automating the diagnosis of gender dysphoria may recapitulate
these biases and deprive many transgender patients of access to
care.

Mental health information is private and sensitive. While AI sys-
tems have the potential to aid mental health workers in identifying
at-risk individuals and those who would most likely benefit from
intervention, such models may be misused in ways that expose the
very people they were designed to support. Such systems could also
lead queer communities to be shut out from employment opportu-
nities or to receive higher health insurance premiums. Furthermore,
reinforcement learning systems for behavioural interventions will
present risks to patients unless many open problems in the field
can be resolved, such as safe exploration [66] and reward speci-
fication [92]. The development of safe intervention systems that
support the mental health of the queer community is likely also
contingent on furthering frameworks for sequential fairness [68],
to fully account for challenges in measuring and promoting queer
ML fairness.

2.7 Employment
Queer people often face discrimination both during the hiring pro-
cess (resulting in reduced job opportunities) and once hired and
employed (interfering with engagement, development and well-
being; [137]). Non-discrimination laws and practices have had a
disparate impact across different communities. Employment nondis-
crimination acts in the United States have led to an average increase
in the hourly wages of gay men by 2.7% and a decrease in employ-
ment of lesbian women by 1.7% [33], suggesting that the impact of
AI on employment should be examined through an intersectional
lens.

2.7.1 Promise. To effectively develop AI systems for hiring, re-
searchers must first attempt to formalise a model of the hiring
process. Formalising such models may make it easier to inspect
current practices and identify opportunities for removing existing
biases (e.g., [100]). Incorporating AI into employment decision pro-
cesses could potentially prove beneficial if unbiased systems are
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developed [73], though this seems difficult at the present moment
and carries serious risks.

2.7.2 Risks. Machine learning-based decisionmaking systems (e.g.,
candidate prioritisation systems) developed using historical data
could assign lower scores to queer candidates, purely based on
historical biases. Prior research has demonstrated that resumes
containing items associated with queerness are scored significantly
lower by human graders than the same resumes with such items re-
moved [96]. These patterns can be trivially learned and reproduced
by resume-parsing machine learning models.

A combination of tools aimed at social media scraping, linguistic
analysis, and an analysis of interests and activities could indirectly
infringe of candidates’ privacy by outing them to their prospective
employers without their prior consent. The interest in these tools
stems from the community’s emphasis on big data approaches,
not all of which will have been scientifically verified from the
perspective of impact on marginalised groups.

Both hiring and subsequent employment are multi-stage pro-
cesses of considerable complexity, wherein technical AI tools may
be used across multiple stages. Researchers will not design and
develop truly fair AI systems by merely focusing on metrics of sub-
systems in the process, abstracting away the social context of their
application and their interdependence. It is instead necessary to
see these as sociotechnical systems and evaluate them as such [138].

3 SOURCES OF UNOBSERVED
CHARACTERISTICS

Most algorithmic fairness studies have made progress because of
their focus on observed characteristics—commonly, race and legal
gender. To be included in training or evaluation data for an algo-
rithm, an attribute must be measured and recorded. Many widely
available datasets thus focus on immutable characteristics (such
as ethnic group) or characteristics which are recorded and regu-
lated by governments (such as legal gender, monetary income or
profession).

In contrast, characteristics like sexual orientation and gender
identity are frequently unobserved [8, 47, 78]. Multiple factors con-
tribute to this lack of data. In some cases, the plan for data collec-
tion fails to incorporate questions on sexual orientation and gender
identity—potentially because the data collector did not consider
or realise that they are important attributes to record [71]. As a
result, researchers may inherit datasets where assessment of sexual
orientation and gender identity is logistically excluded. In other
situations, regardless of the surveyor’s intent, the collection of cer-
tain personal data may threaten an individual’s privacy or their
safety. Many countries have legislation that actively discriminates
against LGBTQ+ people [76]. Even in nations with hard-won pro-
tections for the queer community, cultural bias persists. To shield
individuals from this bias and protect their privacy, governments
may instate legal protections for sensitive data, including sexual
orientation [56]. As a result, such data may be ethically or legally
precluded for researchers. Finally, as recognised by discursive theo-
ries of gender and sexuality, sexual orientation and gender identity
are fluid cultural constructs that may change over time and across
social contexts [35]. Attempts to categorise, label, and record such

information may be inherently ill-posed [64]. Thus, some charac-
teristics are unobserved because they are fundamentally unmeasur-
able. These inconsistencies in awareness and measurability yield
discrepancies and tension in how fairness is applied across different
contexts [25].

Studies of race and ethnicity are not immune to these challenges.
Race and ethnicity may be subject to legal observability issues in
settings where race-based discrimination is a sensitive issue (e.g.,
hiring). Additionally, the definition of racial and ethnic groups has
fluctuated across time and place [65]. This is exemplified by the con-
struction of Hispanic identity in the United States and its inclusion
on the National Census, as well as the exclusion of multiracial indi-
viduals from many censuses until relatively recently [116]. Though
we choose to focus our analysis on queer identity, we note that the
observability and measurability of race are also important topics
(e.g., [133]).

4 AREAS FOR FUTURE RESEARCH
The field of algorithmic fairness in machine learning is rapidly
expanding. To date, however, most studies have overlooked the
implications of their work for queer people. To include sexual ori-
entation and gender identity in fairness research, it will be necessary
to explore new technical approaches and evaluative frameworks.
To prevent the risk of AI systems harming the queer community—
as well as other marginalised groups whose defining features are
similarly unobserved and unmeasurable—fairness research must be
expanded.

4.1 Expanding Fairness for Queer Identities
Machine learning models cannot be considered fair unless they
explicitly factor in and account for fairness towards the LGBTQ+
community. To minimise the risks and harms to queer people world-
wide and avoid contributing to ongoing erasures of queer identity,
researchers must propose solutions that explicitly account for fair-
ness with respect to the queer community.

The intersectional nature of sexual orientation and gender iden-
tity [123] emerges as a recurring theme in our discussions of online
abuse, health and employment. These identities cannot be under-
stood without incorporating notions of economic and racial justice.
Deployed AI systems may pose divergent risks to different queer
subcommunities; AI risks may vary between gay, bisexual, lesbian,
transgender and other groups. It is therefore important to apply an
appropriate level of granularity to the analysis of fairness for algo-
rithmic issues. Policies can simultaneously improve the position of
certain queer groups while adversely affecting others—highlighting
the need for an intersectional analysis of queer fairness.

Demographic parity has been the focus of numerous ML fair-
ness studies and seems to closely match people’s conceptions of
fairness [145]. However, this idea is hard to promote in the context
of queer ML fairness. Substantial challenges are posed by the sensi-
tivity of group membership information and its absence from most
research datasets, as well as the associated outing risks associated
with attempts to automatically derive such information from ex-
isting data [24, 53, 168]. Consensually provided self-identification
data, if and when available, may only capture a fraction of the
community. The resulting biased estimates of queer fairness may
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involve high levels of uncertainty [55], though it may be possible
to utilise unlabeled data for tightening the bounds [82]. While it
is possible to root the analysis in proxy groups [63], there is a risk
of incorporating harmful stereotypes in proxy group definitions,
potentially resulting in harms of representation [1]. Consequently,
most ML fairness solutions developed with a specific notion of de-
mographic parity in mind may be inappropriate for ensuring queer
ML fairness.

Individual [51, 84], counterfactual [94], and contrastive [36] fair-
ness present alternative definitions and measurement frameworks
that may prove useful for improving ML fairness for queer com-
munities. However, more research is needed to overcome imple-
mentational challenges for these frameworks and facilitate their
adoption.

A small body of work aims to address fairness for protected
groups when the collection of protected attributes is legally pre-
cluded (e.g., by privacy and other regulation). Adversarially Re-
weighted Learning [95] aims to address this issue by relying on
measurable covariates of protected characteristics (e.g., zip code
as a proxy for race). This approach aims to achieve intersectional
fairness by optimising group fairness between all computationally
identifiable groups [86, 89]. Distributionally robust optimisation
represents an alternative method for preventing disparity amplifi-
cation, bounding the worst-case risk over groups with unknown
group membership by optimising the worst-case risk over an ap-
propriate risk region [67]. These methods have helped establish a
link between robustness and fairness, and have drawn attention
to the synergistic benefits of considering the relationship between
fairness and ML generalisation [45]. Other adversarial approaches
have also been proposed for improving counterfactual fairness, and
by operating in continuous settings, have been shown to be a better
fit for protected characteristics that are hard to enumerate [62].

Fairness mitigation methods have been shown to be vulnera-
ble to membership inference attacks where the information leak
increases disproportionately for underprivileged subgroups [37].
This further highlights the tension between privacy and fairness, a
common theme when considering the impact of AI systems of queer
communities. It is important to recognise the need for fairness so-
lutions to respect and maintain the privacy of queer individuals
and to be implemented in a way that minimises the associated rei-
dentifiability risks. Differentially private fair machine learning [79]
could potentially provide such guarantees, simultaneously meeting
the requirements of fairness, privacy and accuracy.

Putting a greater emphasis on model explainability may prove
crucial for ensuring ethical and fair AI applications in cases when
fairness metrics are hard or impossible to reliably compute for queer
communities. Understanding how AI systems operate may help
identify harmful biases that are likely to have adverse downstream
consequences, even if these consequences are hard to quantify
accurately. Even in cases when queer fairness can be explicitly mea-
sured, there is value in identifying which input features contribute
the most to unfair model outcomes [17], in order to better inform
mitigation strategies.

It is important to acknowledge the unquestionable cisnormativity
of sex and gender categories traditionally used in the AI research
literature. The assumption of fixed, binary genders fails to include
and properly account for non-binary identities and trans people [87].

Incorporating such biases in the early stages of AI system design
poses a substantial risk of harm to queer people. Moving forward,
more attention should be directed to address this lacuna.

Creating more-equitable AI systems will prove impossible with-
out listening to those who are at greatest risk. Therefore, it is crucial
for the AI community to involve more queer voices in the develop-
ment of AI systems, ML fairness, and ethics research [10, 126]. For
example, the inclusion of queer perspectives might have prevented
the development of natural language systems that inadvertently
censor content which is wrongly flagged as abusive or inappropriate
simply due to its adjacency to queer culture, such as in the example
of scoring drag queen language as toxic. Researchers should make
efforts to provide a safe space for LGBTQ+ individuals to express
their opinions and share their experiences. Queer in AI workshops
have recently been organised at the Neural Information Processing
Systems conference [3, 4] and the International Conference on Ma-
chine Learning [83], providing a valuable opportunity for queer AI
researchers to network in a safe environment and discuss research
at the intersection of AI and queer identity.

4.2 Fairness for Other Unobserved
Characteristics

The queer community is not the only marginalised group for which
group membership may be unobserved [47]. Religion, disability sta-
tus, and class are additional examples where fairness is often chal-
lenged by observability [85, 132]. Critically, they may also benefit
from developments or solutions within queer fairness research. For
example, in nations where individuals of certain religious groups
are persecuted or subjected to surveillance, privacy is an essential
prerequisite for safety. Persecution targeting religious communities
may also include censorship or manipulation of information [42].
Even in nations where religious freedoms are legally protected,
religious minorities may be subjected to online abuse such as hate
speech or fear-mongering stereotypes [12].

Although the nature of the discrimination is different, people
with disabilities are also a frequent target of derogatory language
on the internet, and are more likely to be harassed, stalked or trolled
online, often to the detriment of their mental health [142]. Youth
with disabilities more frequently suffer from adverse mental health
due to bullying, and people of all ages with physical disabilities
are at higher risk for depression [90, 156]. Therefore, individuals
with disabilities may benefit from insights on the interaction of
unobserved characteristics and mental health. Lower-income and
lower-class individuals also suffer from worse mental health, par-
ticularly in countries with high economic inequality [102]. Fairness
for class and socioeconomic status is also an important consider-
ation for employment, where class bias in hiring limits employee
diversity and may prevent economic mobility [93].

Any particular dataset or AI application may instantiate observ-
ability difficulties with respect to multiple demographics. This may
frequently be the case for disability status and class, for example.
Individual fairness—a set of approaches based on the notion of
treating similar individuals similarly [51, 84]—could potentially
promote fairness across multiple demographics. These approaches
entail a handful of challenges, however. The unobserved group
memberships cannot be incorporated in the similarity measure.
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As a result, the similarity measure used for assessing individual
fairness must be designed carefully. To optimise fairness across
multiple demographics and better capture the similarity between
people on a fine-grained level, similarity measures will likely need
to incorporate a large number of proxy features. This would be a
marked divergence from the proposed measures in most published
work. Counterfactual and contrastive fairness metrics come with
their own set of practical implementation challenges.

On the other hand, the approaches aimed at providing worst-
case fairness guarantees for groups with unknown group member-
ship [67, 95] apply by definition to any marginalised group. They
are also specifically tailored to address the situation of unobserved
protected characteristics. Therefore, fairness solutions required to
address queer ML fairness are likely to be applicable to other groups
as well.

Fairness challenges are institutionally and contextually grounded,
and it is important to go beyond purely computational approaches
to fully assess the sociotechnical aspects of the technology being
deployed. The complexity of these issues preclude any single group
from tackling them in their entirety, and a resolution would ulti-
mately require an ecosystem involving a multitude of partnering
organisations, jointly monitoring, measuring and reporting fairness
of such systems [158].

These issues are only a small sample of the common challenges
faced by groups with typically unobserved characteristics. We in-
vite future work to explore the impact of AI from the perspective
of such groups. It is important to acknowledge that people with
different identities have distinct experiences of marginalisation,
stigmatisation and discrimination. However, recognising common
patterns of injustice will likely enable the development of tech-
niques that can transfer across communities and enhance fairness
for multiple groups. In this way, shared ethical and technical design
principles for AI fairness will hopefully result in a more equitable
future.

5 CONCLUSION
The queer community has surmounted numerous historical chal-
lenges and continues to resist oppression in physical and digital
spaces around the world. Advances in artificial intelligence repre-
sent both a potential aid to this resistance and a risk of exacerbating
existing inequalities. This risk should motivate researchers to de-
sign and develop AI systems with fairness for queer identities in
mind. Systems that attempt to label sexual orientation and gender
identity, even for the purpose of fairness, raise technical and ethical
challenges regarding observability and measurability.

A new discourse on queer fairness has the potential to identify
moral and practical considerations shared across queer commu-
nities, as well as concerns specific to particular subpopulations
in particular places. By further developing techniques supporting
fairness for unobserved characteristics, the machine learning com-
munity can support queer communities and other marginalised
groups. Broadly, the present work—surveying the ways in which AI
may ameliorate or exacerbate issues faced by queer communities—
emphasises the need for machine learning practitioners to design
systems with fairness and dignity in mind.
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