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Abstract

Fair clustering is the process of grouping similar entities to-
gether, while satisfying a mathematically well-defined fair-
ness metric as a constraint. Due to the practical challenges
in precise model specification, the prescribed fairness con-
straints are often incomplete and act as proxies to the intended
fairness requirement, leading to biased outcomes when the
system is deployed. We examine how to identify the intended
fairness constraint for a problem based on limited demonstra-
tions from an expert. Each demonstration is a clustering over
a subset of the data. We present an algorithm to identify the
fairness metric from demonstrations and generate clusters us-
ing existing off-the-shelf clustering techniques, and analyze
its theoretical properties. To extend our approach to novel
fairness metrics for which clustering algorithms do not cur-
rently exist, we present a greedy method for clustering. Ad-
ditionally, we investigate how to generate interpretable so-
lutions using our approach. Empirical evaluation on three
real-world datasets demonstrates the effectiveness of our ap-
proach in quickly identifying the underlying fairness and in-
terpretability constraints, which are then used to generate fair
and interpretable clusters.

Introduction
Graph clustering is increasingly used for decision mak-
ing in high-impact applications such as infrastructure de-
velopment (Hospers, Desrochers, and Sautet 2009), health
care (Haraty, Dimishkieh, and Masud 2015), and criminal
justice (Aljrees et al. 2016). These domains involve highly
consequential decisions and it is important to ensure that the
generated solutions are unbiased. Fair clustering is the pro-
cess by which similar nodes are grouped together, while sat-
isfying a given fairness constraint (Chierichetti et al. 2017).
Prior works on fair clustering focus on designing efficient
algorithms to satisfy a given fairness metric (Anderson et al.
2020; Ahmadian et al. 2019; Chierichetti et al. 2017; Gal-
hotra, Brun, and Meliou 2017; Kleindessner, Awasthi, and
Morgenstern 2019). These approaches assume that the spec-
ified fairness metric is complete and accurate. With the in-
creased growth in the number of ways to define and measure
fairness, a key challenge for system designers is to accu-
rately specify the fairness metric for a problem.

Due to the practical challenges in the precise specification
of fairness metrics and the complexity of machine learning
models, the system’s objective function and constraints are
often tweaked during the training phase until it produces the
desired behavior on a small subset of the data. As a result,
the system may be deployed with an incompletely specified

Figure 1: An illustration of incomplete specification of fair-
ness metric leading to biased output—unequal distribution
of green and blue nodes in each cluster—when deployed.

fairness metric that acts as a proxy to the intended metric.
Clustering with incompletely specified fairness metrics may
lead to undesirable consequences when deployed. It is chal-
lenging to identify the proxies during system design due to
the nuances in the fairness definitions and unstated assump-
tions. Two similar fairness metrics that produce similar solu-
tions during the design and initial testing may generate dif-
ferent solutions that are unfair in different ways to different
groups, when deployed.

For example in Figure 1, the designer inadvertently spec-
ifies an incomplete fairness metric and assumes the system
will behave as intended when deployed. This unintentional
incomplete specification is not discovered during the initial
testing since the generated results align with that of the in-
tended metric on the training data, such as sample data from
California. Consequently, the system may generate biased
solution when deployed in Texas, due to demographic shift.
Thus, design decisions that seem innocuous during initial
testing may have harmful impacts when the system is widely
deployed. While the difficulty in selecting a fairness metric
for a given problem is acknowledged (Knight 2019), there
exists no principled approach to address this meta-problem.
How to correctly identify the fairness metric that the de-
signer intends to optimize for a problem?

We present an approach that generates fair clusters by
learning to identify the intended fairness metric using lim-
ited demonstrations from an oracle. It is assumed that there
exists a true clustering with the intended fairness metrics,
which are initially unknown. Each demonstration is a sam-
ple from the true clusters, providing information about a
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subset of the nodes in the dataset. Given a finite number
of expert demonstrations, our solution approach first clus-
ters the demonstrations to infer the likelihood of each can-
didate constraint and then generates clusters using the most
likely constraint. By maintaining a distribution over the can-
didate metrics and updating it based on the demonstrations,
the intended clusters can be recovered since demonstrations
are i.i.d. The nodes in a demonstration are selected by the
expert, abstracted as an oracle. This is in contrast to query-
ing an oracle where the algorithm selects the nodes to query
and the oracle responds if they belong to the same cluster
or not. When the oracle is a human, demonstrations are eas-
ier to collect rather than querying for pairs of nodes, which
requires constant oversight.

While inferring the intended fairness metric is critical to
minimize the undesirable behavior of the system, the abil-
ity of an end user to evaluate a deployed system for fairness
and identify when to trust the system hinges on the inter-
pretability of the results. Though clustering results are ex-
pected to be inherently interpretable, no clear patterns may
be easy to identify when clustering with a large number of
features (Saisubramanian, Galhotra, and Zilberstein 2020).
While the existing literature has studied fair clustering and
interpretable clustering independently (Chierichetti et al.
2017; Saisubramanian, Galhotra, and Zilberstein 2020), to
the best of our knowledge, there exists no approach to gener-
ate clusters that are both fair and interpretable. We show that
our solution approach can generate fair and interpretable
clusters by inferring both fairness and interpretability con-
straints, based on limited demonstrations.

Our primary contributions are as follows: (1) formaliz-
ing the problem of learning to generate fair clusters from
demonstrations; (2) presenting two algorithms to identify the
fairness constraints for clustering, generate fair clusters, and
analyzing their theoretical guarantees; and (3) empirically
demonstrating the effectiveness of our approach in identify-
ing the clustering constraints on three data sets, and using
our approach to generate fair and interpretable clusters.

Background and Related Work

K-center Clustering It is one of the most widely studied
objectives in the literature (Vazirani 2013). Let H=G(V, d)
be a graph with V = {v1, v2, . . . , vn} denoting a set of n
nodes, along with a pairwise distance metric d : V × V →
R. The nodes are described by features values, F . Given a
graph instance H and an integer k, the goal is to identify k
nodes as cluster centers (say S, |S| = k) and assign each
node to the cluster center such that the maximum distance
of any node from its cluster center is minimized. The output
is a set of clusters C = {C1, C2, . . . , Ck}. The clustering
assignment function is defined by γ : V → [k] and the nodes
assigned to a clusterCi are {v ∈ V |γ(v) = i}. The objective
value is calculated as:

okC(H, C) = max
v∈V

min
s∈S

d(u, s).

A simple greedy algorithm provides a 2-approximation for
the k-center problem and it is NP-hard to find a better ap-
proximation factor (Vazirani 2013).

Fairness in Machine Learning The existing literature
on fairness in machine learning can be broadly catego-
rized into two lines of work: defining notions of fairness
and designing fair algorithms. Various notions of fairness
have been studied by researchers in different fields such as
AI, Economics, Law, Philosophy, and Public Policy (Bera,
Chakrabarty, and Negahbani 2019; Brams and Taylor 1996;
Binns 2018; Chierichetti et al. 2017; Galhotra, Brun, and
Meliou 2017; Mehrabi et al. 2019; Thomson 1983; Verma
and Rubin 2018). The two commonly studied fairness crite-
ria are as follows.

• Group fairness ensures the outcome distribution is the
same for all groups of interest (Chierichetti et al. 2017;
Galhotra, Brun, and Meliou 2017; Verma and Rubin
2018). This is measured using metrics such as dis-
parate impact (Feldman et al. 2015) and statistical par-
ity (Kamishima et al. 2012; Verma and Rubin 2018)
including conditional statistical parity, predictive parity,
false positive error rates, and false negative error rates.

• Individual fairness ensures that any two individuals with
the same attributes are not discriminated (Anderson et al.
2020; Dwork et al. 2012; Ilvento 2019). This is often mea-
sured using metrics such as causal discrimination (Dwork
et al. 2012; Verma and Rubin 2018).

Given a mathematically well-defined fairness criteria, a fair
algorithm produces outputs that are aligned with the given
fairness definition. Examples include fair clustering (Ander-
son et al. 2020; Ahmadian et al. 2019; Chierichetti et al.
2017; Kleindessner, Awasthi, and Morgenstern 2019), fair
ranking (Celis, Straszak, and Vishnoi 2018), and fair vot-
ing (Celis, Huang, and Vishnoi 2018). Although these works
have laid vital ground work to assure fairness in some set-
tings, much of the efforts in designing fair algorithms have
focused on the algorithm’s performance—efficiency, scala-
bility, and providing theoretical guarantees. There is very lit-
tle effort, if any, at the meta-level: designing algorithms that
can identify a suitable fairness metric for a clustering prob-
lem, given a set of candidate metrics. There has been recent
focus on learning a metric (Ilvento 2019) or a representation
that ensures fairness with respect to classification tasks (Hil-
gard et al. 2019; Gillen et al. 2018). It is not straightforward
to extend these fair classification techniques to fair cluster-
ing because they have different objectives. This is further
complicated by the lack of ground truth and NP-hardness of
clustering. Therefore, it is critical to develop techniques to
infer metrics for fair clustering.

Fair Clustering Fair clustering approaches generate clus-
ters that maximize the clustering objective value, while satis-
fying the given fairness requirement (Anderson et al. 2020;
Ahmadian et al. 2019; Bera, Chakrabarty, and Negahbani
2019; Chierichetti et al. 2017; Kleindessner, Awasthi, and
Morgenstern 2019). The commonly considered fairness met-
rics in clustering are group fairness (Chierichetti et al. 2017),
individual fairness (Ilvento 2019; Mahabadi and Vakilian
2020), and distributional fairness (Anderson et al. 2020).
These approaches require exact specification of fairness
metrics a priori. They generate fair clusters either by modify-



ing the input graph or use the fairness metrics as constraints
and solve it as a linear optimization.

Interpretable Clustering Interpretable clustering is the
process of generating clusters such that it is easy to iden-
tify patterns in the data for the end user. A recent approach
to generate interpretable clusters maximizes the homogene-
ity of the nodes in each cluster, with respect to predefined
features of interest to the user (Saisubramanian, Galhotra,
and Zilberstein 2020). The problem is solved as a multi-
objective clustering problem where both interpretability and
the k-center objective value are optimized. While both fair-
ness and interpretability are typically investigated indepen-
dently, the ability to evaluate the system for fairness viola-
tions often relies on its interpretability.

Clustering with an Oracle Prior works that use addi-
tional knowledge from an oracle for clustering typically in-
volve queries of the form ‘do nodes u and v belong to the
same cluster?’ (Ashtiani, Kushagra, and Ben-David 2016;
Mazumdar and Saha 2017a,b; Galhotra et al. 2018; Firmani,
Saha, and Srivastava 2016; Vesdapunt, Bellare, and Dalvi
2014). Our approach is different from the oracle-based clus-
tering in the following manner. First, our approach involves
the oracle selecting the nodes and determining what infor-
mation is revealed. Second, the oracle provides information
potentially about a subset of nodes, instead of pairwise rela-
tionships.

Learning from Demonstration Learning from demonstra-
tion is a type of apprenticeship learning, where the learner
learns by observing an expert (typically a human) perform-
ing the task (Abbeel and Ng 2004). The learner tries to
mimic the expert’s behavior by observing the demonstra-
tions and generalizing it to unseen situations. Learning from
demonstration is a popular approach used to teach robots
to complete a task (Abbeel and Ng 2004) or avoid the neg-
ative side effects of their actions (Saisubramanian, Kamar,
and Zilberstein 2020).

Likelihood Estimation Maximum likelihood estimation
(MLE) is a statistical method to estimate the parameters of a
probability distribution by maximizing the likelihood func-
tion, such that the observed data are most probable under
the assumed model (White 1982). Intuitively, it is a search
in the parameter space to identify a set of parameters, for the
model, that best fit the observed data. The maximum likeli-
hood estimate is the point in the parameter space that maxi-
mizes the likelihood function.

Problem Formulation
Problem Statement: Let G = 〈V, d〉 be the input graph
with vertices V and distance metric d and let o denote the
clustering objective. Given a finite set of candidate fairness
metrics, denoted by Ω, and a finite set of clustering demon-
strations, denoted by Λ, the goal is to identify a fairness met-
ric ωF ∈ Ω required to be satisfied by the clusters when
optimizing objective o.

We present learning to cluster from demonstrations
(LCD), an approach to infer ωF using Λ. LCD is intro-

duced and discussed in the context of fair clustering but it
is a generic approach that can be used to infer any clustering
constraint. LCD can also handle the case of clustering with
multiple fairness metrics by simply considering Ω to be the
power set over possible candidate metrics.

Clustering demonstrations: LCD relies on the availabil-
ity of clustering demonstrations by an expert. It is relatively
easier to gather demonstrations from a human expert than
querying for pairs of nodes, which requires constant over-
sight or availability to answer the queries.

Definition 1. A clustering demonstration λ provides the
inter-cluster and intra-cluster links for a subset of nodes
from the dataset S ⊆ V, |S| ≥ 2, by grouping them ac-
cording to the underlying objective function and constraints,
λ={C1, . . . , Ct}with eachCi denoting a cluster and t ≤ k.

To generate a demonstration, the oracle selects a subset of
nodes and then clusters it, in accordance with the true clus-
ters. The following assumption ensures that demonstrations
are i.i.d and the expert is not acting as an adversary.

Assumption 1. The nodes in each demonstration are ran-
domly selected and clustered according to the ground-truth
fairness constraints.

Therefore, a demonstration λ is a sample of the underly-
ing clustering, revealing the relationship between a subset
of the nodes. However the relationship between the nodes in
successive demonstrations is unknown, when the nodes are
distinct in each demonstration. We illustrate this with an ex-
ample. Consider seven nodes {u1, . . . , u7} whose true but
initially unknown clustering is C∗1 = {u1, u2, u3}, C∗2 =
{u4, u5}, and C∗3 = {u6, u7} . Let λ1 = {(u1, u2), (u4)}
and λ2 = {(u3), (u5), (u6)} denote two successive demon-
strations. Demonstration λ1 shows that u1, u2 are in the
same cluster and u4 is in a separate cluster. Demonstration
λ2 shows that u3, u5 and u6 are in different clusters. At the
end of λ1 and λ2, it is not clear if u1, u2 and u3 belong to
the same cluster or not.

Definition 2. Globally informative demonstration provides
the true cluster affiliation of a subset of nodes, S ⊆ V , and is
denoted by λg = {〈u1, γ(u1)〉, . . . , 〈us, γ(us)〉}, ∀ui ∈ S
with γ(u) indicating the cluster affiliation of node u.

Globally informative demonstration provides information
about the true cluster affiliation (cluster ID) of the nodes,
which is used to retrieve the inter-cluster and intra-cluster
links between the nodes and form clusters {C1, . . . , Ct}
with t ≤ k. The information provided by a single globally
informative demonstration is the same as a regular cluster-
ing demonstration. However, globally informative demon-
strations facilitate cross-referencing the cluster affiliations
across demonstrations, overcoming the drawback of gen-
eral clustering demonstration. Consider the example with
global demonstrations λ1 = {〈u1, 1〉, 〈u2, 1〉, 〈u4, 2〉} and
λ2 = {〈u3, 1〉, 〈u5, 2〉, 〈u6, 3〉}. Then we know that C∗1 =
{u1, u2, u3}. This subtle but important distinction acceler-
ates the identification of fairness constraints.



Symbol Formula Parameter Reference
ωGF Ratio of each feature value ∈ [α, β] α, β (Bera, Chakrabarty, and Negahbani 2019; Chierichetti et al. 2017)
ωEQ Relative distribution of a specific feature value β (Ding 2020; Galhotra, Saisubramanian, and Zilberstein 2019)
ωIC Homogeneity of clusters β (Saisubramanian, Galhotra, and Zilberstein 2020)

Table 1: Candidate fairness and interpretable constraints (Ω).

Fairness and Interpretability Constraints

In the rest of the paper, we focus on inferring the following
constraints, with constraint thresholds defined below.

Disparate impact or group fairness (ωGF ). This com-
monly studied fairness metric requires the fraction of nodes
belonging to all groups, characterized by the sensitive fea-
ture, to have a fair representation in each cluster. Suppose
the sensitive feature takes two values—Red or Blue, with
each node assigned one of the two colors. This constraint re-
quires the fraction of red and blue nodes in a cluster to be
within [α, β] where α, β∈ [0, 1] are called constraint thresh-
olds (Bera, Chakrabarty, and Negahbani 2019; Chierichetti
et al. 2017).

Equal representation (ωEQ). This fairness constraint en-
forces equal distribution of nodes with a specific feature
value, across clusters. An example is requiring all clusters
to have equal number of nodes with the feature value ‘Red’.
This clustering constraint has been particularly useful in
team formation settings, where the resources are fixed and
certain colored nodes need to be distributed equally among
teams (clusters). More formally, let αi denote the number of
nodes with feature value α in cluster Ci. Constraint ωEQ re-
quires αi = αj . Restricting all nodes of feature value α to be
distributed equally may be very strict for some applications.
A generalization of this constraint requires the distribution
ratio to be greater than a pre-defined threshold β, αi

αj
> β,

for every pair of clusters (Ding 2020; Galhotra, Saisubrama-
nian, and Zilberstein 2019). This ratio captures the relative
distribution of α-valued nodes across the clusters.

Interpretability (ωIC). This constraint considers a
specific feature of interest (say ‘Color’) and requires that
all clusters are homogenized according to the considered
feature. The homogeneity of a cluster with respect to a
feature f is characterized by the fraction of nodes of a
cluster that have same feature value for the input feature.
For example, consider a cluster with 7 blue nodes, 2 red
nodes and 1 green colored node. Then the homogeneity of
the cluster with respect to the feature ‘color’ and feature
value ‘blue’ is 0.7. Generating interpretable clusters re-
quires satisfying a homogeneity threshold β— each cluster
is required to have at least β fraction of nodes with re-
spect to f (Saisubramanian, Galhotra, and Zilberstein 2020).

These constraints, described by a feature f and a thresh-
old β, are summarized in Table 1. Given the set of candi-
date constraints Ω and demonstrations Λ, LCD aims to iden-
tify the constraint, along with its feature and corresponding
threshold, that has the maximum likelihood.

Solution Approach
We begin by describing a naive approach to infer the con-
straint thresholds and discuss its limitations. We then pro-
pose an algorithm that infers the constraint threshold and
generates clusters using existing clustering algorithms. To
extend our approach to handle fairness metrics that are not
currently supported by the existing algorithms, we present a
greedy clustering approach.

Naive algorithm
A naive approach to infer the clustering constraint from a
given set of demonstrations Λ is to exhaustively generate
all possible clusterings for each type of constraint, its cor-
responding feature, and threshold. Among these clusterings,
the most likely set of clusters correspond to the one having
maximum conformance with the demonstrations Λ. This ap-
proach is highly effective in identifying the desired set of
clusters but does not scale, given that the fairness constraint
threshold can take infinite values. For example, the disparate
impact constraint ωGF take two parameters α, β as input,
which can take any value in the range [0, 1]. To efficiently
infer the constraint, we build on the following observations.

• k-center clustering (and centroid-based clustering in gen-
eral) aims to minimize the maximum distance of any node
from the cluster center. Therefore, it is very unlikely that
a particular node is assigned to the farthest center.

• Our problem can be modeled as a likelihood estimation
problem, where the most likely constraint is expected to
correspond to the ground truth constraint.

Given a cluster C, we can estimate the most likely thresh-
old of C with respect to a constraint, by following the pro-
cedure discussed in the previous section. For example, if a
cluster has 3 red nodes and 5 blue nodes, we can infer that
the fraction of nodes of each color is at least min(3/8, 5/8).
Using this constraint threshold estimation, a simple ap-
proach is to estimate the likelihood of different clustering
constraints by considering each demonstration as an inde-
pendent set of clusters and calculate threshold with respect
to each constraint over these clusters. A major drawback of
this approach is that a single clustering demonstration gen-
erally does not contain representation from all k clusters and
feature values for the considered feature. This may mislead
the likelihood estimation when a demonstration considered
in isolation.

Example 1. Consider an optimal clustering for ωGF , de-
noted by C1 = {r1, r2, b1, b2} and C2 = {r3, b3}, where
r1, r2, r3 are the red nodes and b1, b2, b3 are blue col-
ored nodes. Suppose one of the demonstration is λ =
{(r1, r2), (r3)}. Based on this demonstration, the inferred



Figure 2: Overview of solution approach.

Algorithm 1 Maximum Likelihood Constraint

Input: Demos Λ, Nodes V , Features of interest F
Output: Clusters C

1: for v ∈ Λ do
2: C ← C ∪ {v}
3: C ← ConstructClusters(Λ)
4: while |C| > k do
5: C ← MergeClosest(C)
6: T (ω, f)← 0,∀ω ∈ Ω, f ∈ F
7: for ω ∈ Ω, f ∈ F do
8: T (ω, f)← CalculateThreshold(C,ω, f)
9: for (ω, f) ∈ T do

10: Cω,f ← CLUSTER(ω, f, V )
11: Lω,f ← Likelihood(Cω,f ,Λ)
12: (ω, f)← arg max(Lω,f )

constraint is ωIC with β = 1, which incorrectly indicates
that all the nodes in a cluster have the same color.

Proposed Algorithm
We present Algorithm 1 that clusters the given demonstra-
tions and processes these clusters to infer the most likely
constraint and its parameter values (feature and threshold).
Figure 2 presents the high level architecture of our proposed
technique. Given a collection of demonstrations generated
by an expert, our algorithm greedily merges them to gener-
ate k clusters. These clusters are then used to calculate the
likelihood of each fairness constraint and infers the cluster-
ing with maximum likelihood.

Algorithm 1 proceeds in two phases. In the first phase
(Lines 1-5), the algorithm forms k clusters of the demonstra-
tions Λ. This phase initializes a clustering C over the set of
nodes in demonstrations Λ (ConstructClusters(Λ))
which correspond to the different clusters identified by the
expert. Note that the set C may contain more than k clusters.
In that case, we greedily merge the closest pair of clusters
until k clusters have been identified. The distance between
any pair of clusters Ci, Cj ∈ C is measured as the maximum
distance between any pair of nodes in Ci and Cj :

d(C1, C2) = max
u∈C1,v∈C2

d(u, v).

In the second phase (Lines 6-12), the identified clusters
C are processed to calculate the most likely threshold with
respect to each feature and constraint (denoted by T ). The
identified threshold is used to generate a set of k clusters on
the original dataset V for each 〈constraint, feature〉 pair. At
the end of this step, there are |F | × |Ω| clusterings, with one
of them corresponding to the intended set of clusters.

To identify the set of clusters with maximum likelihood
(L), we calculate the accuracy of each clustering with re-

Algorithm 2 Greedy Algorithm for Novel Metrics

Input: Demos Λ, Nodes V , Features of interest F
Output: Clusters C

1: for v ∈ V do
2: C ← C ∪ {v}
3: C ← ConstructClusters(Λ)
4: while |C| > k do
5: C ← MergeClosest(C)
6: T ← Calculate constraint threshold of each constraint
7: for (ω, f) ∈ L do
8: L(ω, f)← Calculate likelihood of each constraint
9: Perform greedy adjustment to satisfy each constraint

10: Lω,f ← Likelihood(Cω,f ,Λ)
11: Return the clustering corresponding arg max(Lω,f )

spect to the input demonstrations and return the set of clus-
ters that have the highest accuracy. The accuracy of a set
of clusters C is calculated by labeling each pair of nodes as
intra-cluster or inter-cluster, and then measuring the fraction
of pairs that have same labels according to C and Λ. The ac-
curacy estimate of the clusters C captures the likelihood of a
particular constraint.

Complexity. The first phase of Algorithm 1 is initialized
with O(|Λ|) demonstrations and iteratively reduced to k
clusters. In each iteration, it calculates the distance between
pairs of clusters, resulting in O(|Λ2|) run time. The second
phase considers all combinations of constraint and features,
thereby performing clustering |F | × |Ω| times where F de-
notes the set of features for each node. Therefore, the run
time complexity of Algorithm 1 to calculate clusters over
the demonstrations is O(log3 n) and it takes O(n|F ||Ω|) to
construct clusters and calculate likelihood.

Algorithm 1 identifies the optimal set of clusters and the
maximum likelihood constraints for a given set of demon-
strations, assuming that a clustering technique exists for an
input constraint. We now present a greedy algorithm that
does not rely on the clustering technique and greedily gen-
erates the set of clusters with maximum likelihood.

Greedy Algorithm for Novel Metrics
To handle the fairness objectives for which fair clustering
algorithms do not currently exist, we present a greedy algo-
rithm that generates k clusters without assuming any knowl-
edge about the clustering algorithm for the input constraints.

Our approach is outlined in Algorithm 2. Given a collec-
tion of demonstrations Λ and vertices V , the algorithm pro-
ceeds in two phases. The first phase of Algorithm 2 (Lines
1-5) is similar to that of Algorithm 1, where all nodes are ini-
tialized as singleton clusters and all nodes that are grouped
together in Λ are merged. The closest pair of clusters in C are
sequentially merged until k clusters have been identified. Let
C denote the final set of k clusters.

The second phase (Lines 6-12) begins with estimating the
constraint threshold (T ), as in Algorithm 1. The estimated
threshold is used to greedily post-process the clusters ac-
cording to each constraint. This greedy processing transfers



the nodes from one cluster to another, following the con-
straint requirements and is similar to local search techniques
that move nodes between clusters to satisfy a constraint. At
the end of this phase, there are |F | × |Ω| different sets of
clusters, with each optimizing a different fairness constraint.
The clustering that has the highest likelihood with the input
demonstrations is returned as the final set of clusters. The
likelihood is estimated in terms of the accuracy of pairwise
intra-cluster and inter-cluster labels.

Theoretical Analysis
In this section, we analyze the effectiveness of Algorithm 1
to identify the constraints even when the oracle presents
Θ(log n) demonstrations, where n = |V |. We first show
that the estimated constraint is accurate with a high prob-
ability under the assumption that the oracle chooses nodes
uniformly at random. We then extend the analysis to settings
where the presented demonstrations are biased towards spe-
cific clusters. This analysis assumes that each demonstration
λ ∈ Λ has constant size1.

Let Ṽ denote the set of nodes that have been clustered
in atleast one of the demonstrations. Lemma 3 shows that
the sample Ṽ contains Θ(log n) from a cluster C∗ whenever
|C∗| ≥ n

k .

Lemma 3. Consider a random sample Ṽ ⊆ V such that
|Ṽ | ≥ 10 k log n and each node in Ṽ is chosen uniformly at
random, then |Ṽ ∩ C∗| ≥ 5 log n, ∀C∗ ≥ n

k .

Proof. LetXv be a binary indicator variable such thatXv =
1 if v ∈ Ṽ and 0 otherwise. Since, each record v is chosen
uniformly at random, Pr[v is chosen] = |Ṽ |

n . Therefore,

E
[
|Ṽ ∩ C∗|

]
≥ |Ṽ |

n
|C∗| = 10 log n.

Using Chernoff bound, |Ṽ ∩C∗| ≥ 5 log nwith a probability
of 1− 1

n2 .

Consider a set of ground truth clusters, C∗ =
{C∗1 , . . . , C∗k}, such that ∀|C∗i | satisfy one of the clustering
constraint ω ∈ Ω. This means that ∃i such that |C∗i | ≥ n

k .
For the next part of the proof, we will consider this C∗i to
analyze the quality of estimated constraint threshold.
Lemma 4. Suppose the optimal cluster C∗i satisfies the
constraint, ωGF with parameters [α, β] and |Ṽ ∩ C∗i | =

Θ(log n), then the estimated threshold on processing |Ṽ ∩
C∗i | is [α(1− ε), β(1 + ε)] with a high probability.

Proof. Suppose the optimal fairness constraint ωGF consid-
ers a feature f with parameters [α, β]. LetA = {a1, . . . , at}
denote the domain of values for the feature f . According
to the fairness constraint, the subset of C∗i that has feature
value aj ,∀j is within a fraction [α, β]. Suppose the fraction
of nodes with feature value ai be αi.

We claim that the fraction of nodes with feature αi in the
sample Ṽ ∩ C∗ is within [αi(1 − ε), αi(1 + ε)] with a high

1Our proofs extend to the setting where demonstration size is
Ω(1) too.

probability, where ε is a small constant. Let Xv denote a
binary random variable such that Xv is one if v is present
in the sample Ṽ and 0 otherwise. The expected number of
nodes that have feature αi and belong to the set Ṽ ∩ C∗i
is αi|C∗

i ||Ṽ |
n = Θ(log n). Following the proof of Lemma 3

and using Chernoff bound, we get that the number of nodes
with value aj is within a factor of [(1 − ε/2), (1 + ε/2)] of
the expected value with a high probability. Additionally, the
expected number of nodes that belong to the sample |C∗i ∩
Ṽ | =

|C∗
i ||Ṽ |
n and the number of nodes is within a factor of

[(1− ε/2), (1 + ε/2)] with a high probability.
Therefore, the ratio of node that have feature value ai and

belong to the sample Ṽ ∩ C∗i is always within a factor of[
1−ε/2
1+ε/2 ,

1+ε/2
1−ε/2

]
∼ [1− ε, 1 + ε] for small values of ε. Taking

a union bound over all feature values, we guarantee that the
estimated parameter is within a factor of [1 − ε, 1 + ε] with
a high probability.

Lemma 5. Suppose the optimal cluster C∗i satisfies the con-
straint, ωIC with parameter β (some constant) and |Ṽ ∩
C∗i | = Θ(log n), then the estimated threshold on process-
ing |Ṽ ∩C∗i | is [β(1− ε), β(1 + ε)] with a high probability.

Proof. Suppose the optimal cluster C∗i satisfies ωIC with
parameter β with respect to a feature value α. Therefore,
β fraction of the nodes in C∗i have the feature value α. To
analyze the fraction of nodes of feature value α, we define
binary random variable Xv for each v such that Xv = 1 if
v ∈ Ṽ and 0 otherwise. The expected number of nodes with
feature value α in the sample Ṽ ∩C∗i is β|C∗

i ||Ṽ |
n . Following

the analysis of Lemma 4, we get that the fraction of nodes
of color α is within a factor of [β(1 − ε), β(1 + ε)] with a
probability of 1− 1

n .

Lemma 6. Suppose the optimal cluster C∗i satisfies the con-
straint, ωEQ with parameter β and |Ṽ ∩ C∗i | = Θ(log n),,
then the estimated threshold on processing |Ṽ ∩ C∗i | is
[β(1− ε), β(1 + ε)] with a high probability.

Proof. This analysis is similar to that of Lemma 5.

Lemmas 4, 5 and 6 show that the estimated parameter
from a cluster C∗i with respect to the considered fairness
constraints is within a factor of [(1− ε), (1 + ε)] of the true
constraint threshold with a high probability. Using these re-
sults, we prove the following theorem.

Theorem 7. Given a collection of nodes V and randomly
chosen globally informative demonstrations Λ = Θ(log n)
such that each demonstration reveals the true cluster affilia-
tion of a constant number of records, then the optimal clus-
ter constraint is identified within a multiplicative factor of
[(1− ε), (1 + ε)] with a high probability.

Proof. Let Λ denote a collection of globally informative
demonstrations such that |Λ| = Θ(log n) and let Ṽ =

∪λg∈Λλg . Using Lemma 3, we know that Ṽ ∩C∗i =Θ(log n)



for all C∗i containing Θ(n) nodes and therefore, using Lem-
mas 4, 5 and 6 we are guaranteed to estimate the cor-
rect threshold for the cluster C∗i . Hence, Algorithm 1 cor-
rectly estimates the constraint with maximum likelihood
with Θ(log n) globally informative demonstrations.

Remark 8. In this section we do not optimize for the con-
stants in Θ notation because Algorithm 1 empirically con-
verges in less than 2 log n demonstrations.

We extend the proof of Theorem 7 to the setting where the
demonstrations are not globally informative but the ground
truth clusters satisfy an interesting property, similar to the
γ-margin property studied in prior work (Ashtiani, Kusha-
gra, and Ben-David 2016). We first define the margin prop-
erty. Let Ṽ denote a subset of nodes and C∗ denote the set
of clusters corresponding optimal constraint. The set Ṽ is
considered to satisfy margin property if d(u, x) > d(u, v)

where u, v ∈ C∗i ∩ Ṽ and x ∈ Ṽ \ C∗i .

Theorem 9. Given a collection of nodes V and ran-
domly chosen demonstrations Λ = Θ(log n) such that each
demonstration reveals the clustering over a subset of nodes,
then the optimal cluster constraint is identified within a mul-
tiplicative factor of [(1− ε), (1 + ε)] with a high probability
if the sampled nodes ∪λ∈Λλ satisfy the margin property.

Proof. Let Λ denote a collection of demonstrations such that
|Λ| = Θ(log n) and let Ṽ = ∪λ∈Λλ. Using Lemma 3, we
know that Ṽ ∩ C∗i = Θ(log n) for all C∗i containing Θ(n)
nodes. This guarantees that we have Θ(log n) nodes sam-
pled from C∗i but we may not have merged all these nodes to
form a single cluster. In order to show that the nodes present
in merged cluster (after Line 5 of Algorithm 1) belong to
the same cluster, we use the margin property. The margin
property assumes that all nodes that belong to same clus-
ter are closer to each other as compared to nodes of other
cluster. Therefore, MergeClosest always merges a pair
of clusters that belong to same optimal cluster C∗i , thereby
guaranteeing its correctness. Since C∗i has been constructed
correctly, the proof is same as Theorem 7.

Theorem 10. Given a collection of nodes V and ran-
domly chosen demonstrations Λ = Θ(log n) such that each
demonstration reveals the clustering over a subset of nodes,
then Algorithm 2 recovers ground truth clusters with a high
probability if the nodes V satisfy the margin property.

Proof. This analysis is similar to that of Theorem 9.

Discussion. The analysis of Theorem 9 assumed mar-
gin property over the sampled nodes. In most real world
datasets, clusters are often well separated, thereby automati-
cally implying the margin property. Additionally, even if the
margin property does not hold on overall clusters, expert can
choose samples for the demonstration such that the samples
of different clusters are present sufficiently away. The proof
of Theorem 9 can be extended to settings where a constant
fraction of sampled nodes do not obey the margin property.

Another important assumption that is crucial in the anal-
ysis presented above is the randomness of sampled nodes.

Theorem 7 and 9 assume that every node is chosen uni-
formly at random. Note that these assumptions can be re-
laxed and our proofs extend to settings when the samples
are biased towards a specific cluster. For example, the num-
ber of samples a specific cluster (say C∗i ) is much higher
than Θ(log n) but the samples from other clusters are much
fewer. In this case, Algorithm 1 will correctly estimate the
threshold from C∗i with fewer demonstrations but it may re-
quire more number of demonstrations to achieve accurate
estimate from other clusters.

Experiment Setup
In this section, we evaluate the effectiveness of LCD on three
real world datasets. We show that our techniques efficiently
calculate the true likelihood of each constraint and the gener-
ated set of clusters are closer to the desired output, compared
to other baselines.

Datasets We evaluate our approach on three datasets,
which are borrowed from the prior work that experiment
with the metrics of interest.
• Bank dataset (Bera, Chakrabarty, and Negahbani 2019)

containing 4521 data nodes corresponding to phone calls
from a marketing campaign by a Portuguese banking in-
stitution. The marital status of the records is considered as
the sensitive feature for ωGF constraint, with parameters
[0.49, 0.51].

• Adult dataset (Saisubramanian, Galhotra, and Zilberstein
2020) containing 1000 records with the income infor-
mation of individuals along with their demographic at-
tributes. ‘Age’, ‘occupation’, and ‘income’ features are
considered as the features of interest. Fairness constraint
ωEQ is optimized with respect to ‘occupation’ and ωIC
with respect to ‘age’ and ’income’.

• Crime dataset (Saisubramanian, Galhotra, and Zilber-
stein 2020) contains crime information about different
1994 communities in the United States, where ‘number
of crimes per 100K population’ is used for ωIC fairness
constraint.

The features in these datasets are considered to calculate dis-
tance between every pair of nodes. Euclidean distance is cal-
culated between numerical attributes and Jaccard distance
between the categorical attributes. Please refer to (Bera,
Chakrabarty, and Negahbani 2019; Saisubramanian, Galho-
tra, and Zilberstein 2020) for more details.

Baselines We compare the results of our techniques with
the following baselines:
• B1 calculates the likelihood by considering each demon-

stration as a separate set of clusters;
• B2 merges the different clusters in the demonstration to

identify k clusters and infers the likelihood over the iden-
tified clusters; and

• B3 performs a grid search over all possible fairness con-
straints and identifies the clustering that conforms with
the generated demonstrations.
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Figure 3: Comparison of estimated constraints for different datasets.

Algorithm 1 is referred as Alg1 and Algorithm 2 is labeled
Alg2 in all the plots in this section. Unconstrained k-center
clustering technique is labeled as kC.

Setup We use open source implementations of ωGF and
ωIC , and contacted the authors of (Galhotra, Saisubrama-
nian, and Zilberstein 2019) for ωEQ. Their code base were
used to generate ground truth clusters for an input constraint
requirement. All algorithms were implemented in Python
and tested on an Intel Core i5 computer with 16GB of RAM.

Our experiments compare the identified fairness param-
eter by our algorithm and each baseline. To compare the
quality of identified clusters, we compute the F-score of the
identified intra-cluster pairs of nodes. F-score denotes the
harmonic mean of the precision and recall, where precision
refers to the fraction of correctly identified intra-cluster pairs
and recall refers to the fraction of intra-cluster pairs that are
identified by our algorithm. In all experiments, we report re-
sults with k = 5. We execute the code of constraint cluster-
ing techniques with specified parameters to generate ground
truth clustering. Each demonstration is generated by sam-
pling a subset of five nodes randomly from these clusters.
Unless otherwise specified, we consider 2 log n demonstra-
tions as input and these demonstrations do not reveal the true
cluster affiliation of the considered nodes. In case there are
multiple constraints that generate the same set of demon-
strations, the algorithm output is considered correct if it cor-
rectly identifies any one of those constraints2.

Results and Discussion
Effectiveness of Algorithm 1 The effectiveness of Algo-
rithm 1 is measured based on the constraint threshold and
the quality of the generated clusters. Figure 3 compares
the estimated threshold of the most-likely constraint, calcu-
lated by Algorithm 1 with the ground truth and other base-
lines. Across all datasets, Algorithm 1 estimates the optimal
threshold for every considered constraint, matching the per-
formance of ground truth. This validates the effectiveness of
Algorithm 1 to correctly estimate the most likely constraint
and its corresponding threshold.

Among the baselines, B3 achieves a similar performance.
This is an expected behavior since B3 performs naive grid

2Among the considered constraints, this situation does not arise
whenever |Λ| > 5
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Figure 4: F-score comparison for different datasets.

search to explore all threshold values. Although it is effec-
tive in inferring the threshold, this technique is orders of
magnitude inefficient due to the exhaustive enumeration of
clusters using the different sets of constraints, features and
their respective thresholds. It is therefore practically infeasi-
ble to implement this for problems with large input graphs
and large Ω.

The other baselines B1 and B2 consistently show poor
performance. Baseline B1 does not identify any fairness
constraint in settings where the demonstrations obey ωGF
and ωEQ (Figure 3(a) and 3(b) respectively). However, it
identifies the optimal clustering constraint only in case of
ωIC . Given that each demonstration has fewer than 5 nodes,
the information available in a single demonstration is not
sufficient for B1 to infer the true fairness constraint. On the
other hand, B2 overcomes the limitations of B1 by merg-
ing the demonstrations randomly in order to capture con-
straint information over all demonstrations collectively. This
approach has better performance than B1 but does not iden-
tify the true clustering constraint in majority of the cases. It
does not identify the fairness constraint ωEQ (Figure 3(b))
and the identified constraint threshold in all other cases are
sub-optimal.

Figure 4 compares the quality of the returned clusters,
by comparing the F-score of the clustering output of each
technique with the ground truth clusters. In this experiment,
Algorithm 1 and B3 achieve optimal performance as they
identify the true ground truth clusters across all parameter
settings. All other baselines did not identify the clusters cor-
rectly and achieved low F-score. Particularly, in case of ωEQ
and ωGF , the baselines B1 and B2 did not identify the opti-
mal constraint threshold and generated biased clusters.

Table 2 compares the running time of Alg1 and other



Dataset Alg1 B1 B2 B3

Bank 0.57 0.49 0.52 100
Adult 1.14 1.01 1.1 117
Crime 1.02 0.9 0.97 104

Table 2: Running time results (in minutes).
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Figure 5: Effect of # demonstrations on Alg2 performance.

baselines for different datasets and clustering constraints.
Among all datasets, Alg1 is orders of magnitude faster than
B3. In the worst case, Alg1 generates O(|Ω| × |F |) sets of
clusters whereas B3 generates clusters exhaustively for ev-
ery value of constraint threshold. The running time of Alg1
is comparable with B1 and B2.

Effectiveness of Algorithm 2 Alg2 identifies k clusters
such that the returned output obeys the fairness constraint
reflected from the demonstrations Λ. Figure 5 plots the F-
score of Alg2 for two data sets and the results are com-
pared with that of Alg1. This allows us to compare the per-
formance of our greedy Alg2 with that of an existing effi-
cient solver. In Figure 5(a), we employed the approach used
in Bera, Chakrabarty, and Negahbani (2019) to generate the
ground truth clusters according to ωGF and tested the effec-
tiveness of Alg2 to recover ground truth clusters for varying
number of demonstrations. Similarly in Figure 5(b), ground
truth is generated using ωIC .

When the number of demonstrations is less than 5, the
F-score of the generated clusters is 0.55 for both domains.
As we increase the number of demonstrations, we observe
that the performance of Alg2 improves and is closer to that
of Alg1. Alg2 achieves more than 0.9 F-score in less than
20 demonstrations. The continuous improvement in accu-
racy demonstrates the effectiveness of Alg2 in recovering
clusters without relying on a clustering algorithm.

Effect of Demonstrations We now investigate the effect
of number of demonstrations on the performance of our
techniques in identifying the optimal constraint threshold.
We varied the number of demonstrations in multiples of
log n: 0.5 log n, log n, 2 log n. Figure 6 compares the con-
straint threshold and the F-score of the identified clusters
using Alg1, with varying number of demonstrations on
the Bank and Adult dataset. In case of ωGF , the ground
truth constraint requires equal representation of the different
groups in each cluster. Algorithm 1 correctly identifies the
fairness constraint and achieves perfect F-score even when Λ
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Figure 6: Effect of # demonstrations on Alg1 performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4 8 16
# demonstrations

β F-score

(a) Bank, ωGF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

5 10 20 40
# demonstrations

β
F-score

(b) Adult, ωIC

Figure 7: Effect of sampling bias on Alg1 performance.

contains as low as four demonstrations. Increasing the num-
ber of demonstrations does not improve its performance as
the constraint likelihood has already converged. In ωIC , the
ground truth clusters are generated according to threshold
β = 0.85. When the number of input demonstrations |Λ|
is low (|Λ| = 4), the estimated interpretability constraint
threshold is inaccurate and the constraint estimation im-
proves as the number of demonstrations are increased. Algo-
rithm 1 is able to achieve an F-score more than 0.8 with just
ten demonstrations and the quality of final clusters improves
monotonically with increasing demonstrations. It converges
to the accurate constraint threshold whenever |Λ| ≥ 20 and
therefore achieves perfect F-score.

In Figure 3, the input demonstrations do not reveal the
true cluster affiliation of any of the nodes. We ran an addi-
tional experiment with the globally informative demonstra-
tions (Definition 2), which reveals the ground truth cluster
affiliation of each node in the demonstration. With this addi-
tional information, we observe that Algorithm 1 converges
to the optimal constraint threshold in less than ten demon-
strations. This experiment validates that Algorithm 1 is able
to leverage the extra information provided by globally infor-
mative demonstration to converge faster.

Next, we evaluate the effect of number of demonstrations
on the performance of Algorithm 2. Figure 5 shows that as
we increase the number of demonstrations, Alg2 matches
the F-score of Alg1.

Ablation Study To test the effectiveness of our constraint
estimation techniques, we varied the size of demonstration
from 4 to 10 for the different constraints. As expected, the
number of required demonstrations reduces linearly with in-



crease in demo size3. Therefore, an increase in demonstra-
tion size helps Alg1 converge faster.

We tested the robustness of our constraint threshold esti-
mation techniques by generating demonstrations according
to a biased distribution. In the first experiment (Figure 7), we
employed a biased sampling procedure, where each demon-
stration is biased in favor of some specific clusters but all
nodes within those chosen clusters are equally likely to be
chosen for the demonstration. Specifically, we follow a two
step procedure where we first sample the cluster Ci with
probability pi and the nodes from the sampled cluster are
chosen randomly. This introduction of bias did not affect
the quality of our techniques and Alg1 was able to re-
cover ground truth clusters in Θ(log n) demonstrations. The
second experiment considered a biased sampling procedure
where the expert samples fewer nodes from the marginalized
groups. For example, a node having ‘red’ color is chosen
with probability 1

n but a blue colored node is chosen with
probability 4

n . In such setting, the returned demonstrations
are biased against the marginalized groups and the inferred
clustering threshold is not accurate. We observe that this bias
translates into the constraint threshold estimation procedure
of Alg1. This experiment justifies the requirement of an un-
biased expert annotator that chooses nodes randomly, with-
out considering their sensitive attributes.

To further study the effect of k, we vary the number of
clusters as k = {5, 10, 15, 20, 50} for adult dataset and
calculated the number of demonstrations required to iden-
tify the true clustering constraint. For all values of k, Alg1
identified the optimal set of clusters in less 20 (2 log n)
demonstrations and the number of required demonstrations
increases sub-linearly with k. For example, it required 20
demonstrations for k = 5 and 60 demonstrations were
enough for k = 50. This increase in number of demon-
strations is justified because Alg1 tries to merge presented
demonstrations into k clusters. If the number of clusters in
presented demonstrations is smaller than k, then it might
end up partitioning some clusters which may introduce some
noise in the likelihood estimation procedure. However, when
the input demonstrations are globally informative, the num-
ber of required demonstrations do not increase with k and
therefore do not include the plots. Alg1 converges to the
optimal clustering constraint as soon as there are Θ(log n)
nodes from any of the clusters.

Fair and Interpretable Clusters To further evaluate the
effectiveness of generating fair and interpretable clusters,
we ran interpretable clustering algorithm (Saisubramanian,
Galhotra, and Zilberstein 2020) with β = 1 for Adult
dataset. The generated clusters were then post-processed to
satisfy ωEQ. Since none of the current clustering algorithms
optimize for fairness and interpretability, we implemented
a greedy technique to process the output of interpretable
clusters and satisfy fairness constraint. We considered this
output as the ground truth to generate globally informa-

3We do not consider smaller demonstrations because clustering
fewer than 4 nodes do not reveal information about the underlying
clusters.
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Figure 8: F-score of fair and interpretable clusters generated
by different techniques.

tive demonstration Λ and ran Alg2 to calculate the set of
clusters with maximum likelihood. Alg2 achieved F-score
of more than 0.9 (Figure 8) with less than 25 demonstra-
tions, each with 5 nodes. Any baseline that optimizes ωIC
or ωEQ alone achieve sub-optimal performance. This exper-
iment demonstrated the ability of Alg2 to generate clus-
ters even when the constraint optimization algorithm is not
known. Additionally, Alg2 requires the expert to label less
than 25% dataset to generate fair and interpretable clusters.

Summary and Future Work
With the availability of many nuanced fairness definitions, it
is non-trivial to specify a fairness metric that captures what
we intend. As a result, systems may be deployed with an
incomplete specification of the fairness metric, which leads
to biased outcomes. We formalize the problem of inferring
the complete specification of the fairness metric that the de-
signer intends to optimize for a given problem. We present
an algorithm to generate fair clusters by inferring the fair-
ness constraint using expert demonstration and analyze its
theoretical guarantees. We also present a greedy approach to
generate fair clusters for objectives which are not currently
supported by the existing suite of fair clustering algorithms.
To the best of our knowledge, our algorithm is the first to
combine graph clustering and learning from demonstrations,
particularly to improve fairness. We empirically demonstrate
the effectiveness of our approach in inferring fairness and in-
terpretability metrics, and then generate clusters that are fair
and interpretable. Although we discuss the framework in the
context of fair clustering, our proposed framework can be
used to infer any clustering constraints, as shown in the ex-
periments.

In the future, we plan to conduct a human subjects study
to evaluate our approach and design robust algorithms to
infer the intended metrics in the presence of noise. Devel-
oping robust techniques to handle bias in demonstrations is
another interesting question for future work. Extending our
algorithm to handle other fairness metrics and interpretabil-
ity metrics will broaden the scope of problems that can be
handled by our approach.
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