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ABSTRACT
In this paper, we inaugurate the field of quantum fair machine
learning. We undertake a comparative analysis of differences and
similarities between classical and quantum fair machine learning
algorithms, specifying how the unique features of quantum com-
putation alter measures, metrics and remediation strategies when
quantum algorithms are subject to fairness constraints. We present
the first results in quantum fair machine learning by demonstrating
the use of Grover’s search algorithm to satisfy statistical parity
constraints imposed on quantum algorithms. We provide lower-
bounds on iterations needed to achieve such statistical parity within
𝜖-tolerance. We extend canonical Lipschitz-conditioned individual
fairness criteria to the quantum setting using quantum metrics. We
examine the consequences for typical measures of fairness in ma-
chine learning context when quantum information processing and
quantum data are involved. Finally, we propose open questions and
research programmes for this new field of interest to researchers
in computer science, ethics and quantum computation.
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1 INTRODUCTION
Quantum computing and machine learning represent two of the
most significant fields of computational science to have emerged
over the last half century. Over the last decade, attention has in
particular turned to the ethical implications of machine learning
technology [9, 10, 14], motivating the development of fair machine
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learning. Despite significant advances in quantum computing and
quantum information processing [5] and the growing importance of
quantum devices, little or no direct work on the ethics of quantum
computing has been undertaken, with limited discussion on the
morality and philosophy of quantum computing [1, 2] or debates
about the appropriateness of the term ‘quantum supremacy’ [21].

Although fully scalable fault-tolerant [23] quantum computing
has not yet been realised, the availability of intermediate noisy
scalable quantum computing devices means that near-term compu-
tation on quantum devices using quantum algorithms is becoming
a reality. The potential capacity of quantum computers to (i) solve
problems that are classically intractable and, more practically, to (ii)
solve problems which, while tractable, are classically infeasible (due
to resource constraints), motivates their use in machine learning.
The wide scope of tasks that may be performed on quantum com-
puters such as solving optimisation problems, simulating classical
or complex systems or modelling highly complex systems, such as
multi-agent interactive systems means that machine learning (and
computation) involving quantum computers is likely to give rise
to (and be subject to) ethical considerations. Many such problems
remain infeasible (if tractable) for classical computation and are
thus ethically unproblematic. Yet such computations may become
feasible due to the enhanced computational potential afforded by
quantum computing, which expands the frontiers of optimisation
problems that may be solved by providing for computational capac-
ity beyond the constraints of classical computation. If optimisation
problems that are classically infeasible become computationally
feasible on a quantum computer, then the ethics of such compu-
tations become relevant and such ethics must be considered in
light of the quantum nature of computation. Thus research into fair
machine learning and fair computation on quantum computers is
well-motivated.

Fair machine learning is the most mature field addressing the
theoretical and technical challenges of undertaking classical com-
putation subject to ethical (fairness) constraints. To date, however,
no equivalent research has been undertaken regarding the technical
impact of ethical constraints upon quantum computation. In this
paper, we seek to address this gap via an exposition of quantum fair
machine learning (see also concurrent work on ethical quantum
computing generally [22]). As we detail below, the unique aspects
of quantum computation (including its inherently measurement-
based probabilistic nature, the availability of coherent superposition
states, the restriction of computational dynamics to unitary evolu-
tion, no cloning theorems etc) mean that computation is undertaken
differently from the classical case. As a result, the types of metrics,
measures, circuits and ways in which constrained optimisation for
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fair objectives can be undertaken on a quantum computer exhibit
important differences.

For example, in contrast to classical data, quantum data is repre-
sented as vectors on Hilbert spaces H . Classical data can in theory
be directly accessed and operated upon. Quantum data, in a super-
position state, cannot be and insteadmust be manipulated indirectly.
As distinct from classical computing dynamics, quantum computing
must evolve unitarily according to Schrödinger’s equation. Instead
of direct probabilities, quantum states are characterised by complex-
valued amplitudes which determine the probability of obtaining
an outcome when measuring a quantum state |𝜓 ⟩. Unlike classical
computing, the order of operations matters in the quantum con-
text, as represented by non-commutative operators (or Lie brackets)
[𝐴, 𝐵] ≠ 0. Distance measures in quantum computing also differ.
Quantum computing also has available to it important non-classical
resources, such as entanglement, with no counterpart classically.
As such, the study and practical implementation of fair quantum
machine learning requires researchers to understand the implica-
tions of these computational differences and, in turn how these
differences affect (a) the applicability of fair machine learning tech-
niques to fair quantum computation and (b) the need to develop new
quantum-specific techniques to solve ethical quantum optimisation
problems.

1.1 Results and contributions
The results and contributions of this paper are as follows.

(1) We present the first results characterising ways in which fair
machine learning undertaken on quantum devices differs
from or is similar to its classical counterpart.

(2) We provide quantum analogues of a number of key results in
fair machine learning at the preprocessing, in-processing and
post-processing stages, such as fairness criteria andmeasures
and remedial strategies to satisfy fairness constraints.

(3) We present the first technical results in quantum fair ma-
chine learning, demonstrating the use of Grover’s quantum
search algorithm to enable quantum algorithms achieve sta-
tistical parity within 𝜖-tolerance.

(4) We present the quantum analogue of Lipschitz-conditioned
individual fairness criteria, expressed in terms of quantum
metrics and unitary operators on quantum vectors in Hilbert
space.

(5) We list open questions for researchers in quantum informa-
tion processing, machine learning and ethics [22] to consider
as part of their research programmes.

1.2 Structure
The structure of the paper is as follows. Part I summarises the key
characteristics of quantum information processing of relevance to
fair machine learning, including quantum postulates, density matrix
formalism, measurement statistics, no cloning theorems and open
systems. In general, the interface of quantum and classical com-
puting is usefully categorised according to the quantum-classical
quadrant in which data and processing are categorised as either
quantum (𝑄) or classical (𝐶) [3, 25]. We focus upon the 𝐶𝑄 case,
where classical data inputs subject to quantum information pro-
cessing. We review methods by which classical data is encoded in

quantum states |𝜓 ⟩ using basis, amplitude, sample and dynamic
encoding strategies. We examine the use of quantum algorithms
to solve optimisation problems subject to fairness constraints and
the impact that the specifically quantum aspects of those compu-
tations has (if any) upon typical fair machine learning fairness
criteria. In Part II, we present a comparative analysis of how typi-
cal fair machine learning characteristics differ when computation
is undertaken on quantum devices. We explicitly examine quan-
tum analogues of a number of key features of FML algorithms,
including group-based fairness measures (parity, confusion matrix
metric, calibration and others), individual fairness measures (e.g.
Lipschitz conditioned [14] problems) and remedial strategies (such
as redaction, blinding, sampling, data transformation, relabelling,
perturbation and constraint optimisation). We discuss how quan-
tum information processing renders existing techniques in FML
the same, different and in need of modification. We discuss types
of uniquely quantum fair computation and present the quantum
analogue of Lipschitz-conditioned individual fairness constraints
for machine learning algorithms. In Part III, we present an explicit
example of how to use an adaptation of Grover’s infamous quantum
searching algorithm [16] (amplitude amplification) to satisfy fair
statistical parity criteria and give a lower bound on the number of
applications of unitary algorithms necessary for doing so. In Part
IV, we discuss open questions and provide suggestions for research
programmes in quantum FML.

2 PART I: QUANTUM INFORMATION
PROCESSING

In this section, we review the key distinguishing characteristics of
quantum information as distinct from its classical counterpart of
relevance to canonical problems in fair machine learning. We focus
on aspects of quantum information processing, such as superposi-
tion states, quantum entanglement, the inherently probabilistic and
measurement-based nature of quantum computing of relevance
to understanding fair machine learning in a quantum context. We
begin with a synopsis of the primary quantum postulates.

2.1 Postulates
Quantum information processing is characterised by constraints
upon how information is represented and processed arising from
the foundational postulates of quantum mechanics, which we set-
out as follows [20]:

(1) State space: quantum systems are completely described by
(unit) state vectors within a complex-valued vector space
Hilbert space H . Typically for our formulation, we will deal
with arbitrary two-level quantum systems (two-dimensional
state spaces) of qubits with arbitrary state vectors with or-
thonormal bases {|0⟩ , |1⟩}:

|𝜓 ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ (1)

with usual normalisation conditions on unit vectors ⟨𝜓 |𝜓 ⟩ =
1 (that is |𝑎 |2 + |𝑏 |2 = 1), where 𝑎, 𝑏 ∈ C are amplitudes for
measuring outcomes of |0⟩ , |1⟩ respectively (where ⟨𝜓 |𝜓 ′⟩
denotes the inner product of quantum states |𝜓 ⟩ , |𝜓 ′⟩). In
density operator formalism, the system is described via the
positive density operator 𝜌 with trace unity acting on the



state space of the system (such that if the system is in state
𝜌𝑖 with probability 𝑝𝑖 then 𝜌 =

∑
𝑖 𝑝𝑖𝜌𝑖 ). In this work, we as-

sume the standard orthonormal computational basis {|0⟩ , |1⟩}
such that ⟨1|0⟩ = ⟨0|1⟩ = 0 and ⟨1|1⟩ = ⟨0|0⟩ = 1.

(2) Evolution: closed quantum systems (which we focus on in
this paper for simplicity) evolve over time Δ𝑡 = 𝑡1 − 𝑡0
via unitary transformations𝑈 (𝑡) = exp(−𝑖𝐻 (𝑡)) i.e. where
such unitaries represent solutions to the time-dependent
Schrödinger equation governing evolution:

𝑖ℏ
𝑑 |𝜓 (𝑡)⟩
𝑑𝑡

= 𝐻 (𝑡) |𝜓 (𝑡)⟩ (2)

where ℏ is set to unity for convenience and 𝐻 (𝑡) represents
the linear Hermitian operator (Hamiltonian) of the closed
system. The dynamics of the quantum system are completely
described by the Hamiltonian operator acting on the state |𝜓 ⟩
such that |𝜓 (𝑡)⟩ = 𝑈 (𝑡) |𝜓 (𝑡 = 0)⟩. In density operator nota-
tion, this is represented as 𝜌 (𝑡) = 𝑈 (𝑡)𝜌 (𝑡0)𝑈 (𝑡)†. Typically
solving the continuous form of the Schrödinger equation is
intractable or infeasible, so a discretised approximation as a
discrete quantum circuit (where each gate𝑈𝑖 is run for a suf-
ficiently small time-step Δt) is used (e.g. via Trotter-Suzuki
decompositions).

The Hamiltonian 𝐻 (𝑡) of a system is the most important
tool for mathematically characterising dynamics of a system,
encoding the computational processing of data encoded into
quantum states and specifying how the quantum computa-
tion may be controlled. To the extent that computational
processes or outcomes are important to ethical criteria (for
example, understanding the dynamics giving rise to bias
or discriminatory outcomes, or ensuring fair representation
learning in a quantum setting), they must usually be encoded
in the Hamiltonian of quantum systems. Unitary evolution
is a requirement to preserve quantum coherence and proba-
bility (which give rise to the enhanced computational power
of quantum systems). Thus modifications to computational
subroutines in quantum computing must be done indirectly,
via adjustments to the Hamiltonian which steer quantum
systems towards target states using unitary evolution.

(3) Measurement: quantum measurements are framed as sets of
measurement operators {𝑀𝑚}, where𝑚 indexes the outcome
of a measurement (e.g. an energy level or state indicator).
The probability 𝑝 (𝑚) of outcome𝑚 upon measuring |𝜓 ⟩ is
represented by such operators acting on the state such that
𝑝 (𝑚) = ⟨𝜓 |𝑀†

𝑚𝑀𝑚 |𝜓 ⟩ (alternatively, 𝑝 (𝑚) = tr(𝑀†
𝑚𝑀𝑚𝜌))

with the post-measurement state |𝜓 ′⟩ given by:

|𝜓 ′⟩ = 𝑀𝑚 |𝜓 ⟩√︃
⟨𝜓 |𝑀†

𝑚𝑀𝑚 |𝜓 ⟩
(3)

The set of measurement operators
∑
𝑚 𝑀

†
𝑚𝑀𝑚 = 𝐼 , reflect-

ing the probabilistic nature of measurement outcomes. In
more advanced treatments, POVM formalism more fully de-
scribes the measurement statistics and post-measurement
state of the system. There we define a set of positive opera-
tors {𝐸𝑚} = {𝑀†

𝑚𝑀𝑚} satisfying ∑
𝑚 𝐸𝑚 = I in a way that

gives us a complete set of positive operators (such formalism
being more general than simply relying on projection opera-
tors). As we are interested in probability distributions rather
than individual probabilities from a single measurement,
we calculate the probability distribution over outcomes via
Born rule using the trace 𝑝 (𝐸𝑖 ) = tr(𝐸𝑖𝜌). This formulation
is important to quantum fairness metrics discussed below.

(4) Composite systems: states |𝜓 ⟩ in the Hilbert space may be
composite systems, described as the tensor product of states
spaces of the component physical systems, that is |𝜓 ⟩ =

⊗𝑖 |𝜓𝑖 ⟩. We also mention here the importance of open quan-
tum systems where a total system Hamiltonian 𝐻 can be
decomposed as𝐻 = 𝐻𝑆 +𝐻𝐸 +𝐻𝐼 , comprising a closed quan-
tum system Hamiltonian 𝐻𝑆 , an environment Hamiltonian
𝐻𝐸 an interaction Hamiltonian term 𝐻𝐼 , which is typically
how noise is modelled in quantum contexts. Open quantum
systems are modelled usually by master equations (beyond
the scope of this introductory paper), but they are relevant
to quantum fair machine learning in particular because mod-
elling the dissipative effects of system/environment interac-
tion, or engineering dissipation so as to simulate dissipative
characteristics of neural networks (see [25]) will require in
certain contexts open systems’ formulations.

Other key concepts necessary to understand the formalism below
include: (a) relative phase, that for a qubit system, where ampli-
tudes 𝑎 and 𝑏 differ by a relative phase if 𝑎 = exp(𝑖𝜃 )𝑏, 𝜃 ∈ R (as
discussed below, classical information is typically encoded in both
basis states e.g. |0⟩ , |1⟩ and in relative phases); (b) entanglement,
certain composite states (known as EPR or Bell states), may be
entangled. For example, for a two-qubit state:

|𝜓 ⟩ = |00⟩ + |11⟩
√
2

(4)

measurement of 0 on the first qubit necessarily means that a mea-
surement of the second qubit will result in the post-measurement
state |0⟩ also i.e. the measurement statistics of each qubit correlate.
Entangled states cannot be written as tensor products of component
states i.e. |𝜓 ⟩ ≠ |𝜓1⟩ |𝜓2⟩; (c) expectation, expectation values of an
operator 𝐴 (e.g. a measurement) can be written as 𝐸 (𝐴) = tr(𝜌𝐴);
(d)mixed and pure states, quantum systems whose states are exactly
known to be |𝜓 ⟩, i.e. where𝜓 = |𝜓 ⟩ ⟨𝜓 | are pure states, while where
there is (epistemic) uncertainty about which state the system is sin,
we denote it a mixed state i.e. 𝜌 =

∑
𝑖 𝑝𝑖𝜌𝑖 where tr(𝜌2) < 1 (as

all 𝑝𝑖 < 1); (e) commutativity, where two measurements are per-
formed on a system, the outcome, unlike in the classical case, will
be order-dependent if they do not commute, that is, if [𝐴, 𝐵] ≠ 0;
and (f) no cloning, unlike classical data, quantum data cannot be
copied (for to do so requires measurement which collapses the state
destroying the coherent superpositions that encode information in
amplitudes). We omit a vast universe of other characteristics of rele-
vance to quantum fair machine learning, including error-correcting
codes (encoding mechanisms designed to limit or self-correct er-
rors to achieve fault-tolerant quantum computing) which, while
relevant, are beyond the scope of this paper.



2.2 Quantum metrics.
Metrics play a central technical role in fair machine learning, fun-
damentally being the basis upon which technical definitions of
fairness are constructed. Metrics for quantum information process-
ing are related but distinct from their classical counterparts. This
means translating fair machine learning metrics to the quantum
realm requires different (albeit related) metric formalism. As dis-
cussed in [9, 11, 12], classical fairness metrics vary according to
particular objectives, optimisation aims and data sources. Metrics
and distance measures are an important feature of quantum infor-
mation processing, with a variety of metrics deployed depending
on context. For a classical bit string, there are a variety of classical
information distance metrics used in general [20]. For fair machine
learning in quantum contexts, where the similarity of either input
or outputs to a function is important for fairness measures (such
as for Lipschitz-conditioned fairness measures below), quantum
generalisations of classical distance are applicable. As information
is encoded in quantum states, quantum measures of distance are
therefore applicable.

(1) Hamming distance, the number of places at which two bit
strings are unequal. Hamming distance is important in error-
correcting contexts (of relevance to FML as quantum FML
will require encoding of data in codes to achieve fault toler-
ance).

(2) Trace distance or 𝐿1-Kolmogorov distance, where, given two
probability distributions {𝑝𝑥 }, {𝑞𝑥 } we have 𝐷 (𝑝𝑥 , 𝑞𝑥 ) =
1
2

∑
𝑥 |𝑝𝑥 − 𝑞𝑥 | (used in [14] a valid distance due to satisfac-

tion of metric axioms. For quantum states represented by
density matrices 𝜌, 𝜎 [20], their trace distance is given by:

𝐷 (𝜌, 𝜎) = 1

2
tr|𝜌 − 𝜎 | (5)

where |𝜌 | =
√︁
𝜌†𝜌 is taken as the positive square root. Trace

distance has the benefit of being preserved under unitary
transformations.

(3) Fidelity, which is a common measure to assess state or op-
erator similarity and is given by 𝐹 (𝜌, 𝜎) = tr

√︃
𝜌1/2𝜎𝜌1/2.

Along with trace distance, it is among the most important
metric for similarity in quantum computing. Fidelity can
be interpreted as a metric via, for example, calculating the
angle 𝜁 = arccos 𝐹 (𝜌, 𝜎). It is related to trace-distance via
𝐷 (𝜌, 𝜎) =

√︁
1 − 𝐹 (𝜌, 𝜎)2.

(4) quantum relative entropy, which is the quantum analogue of
Shannon entropy, and is given by 𝑆 (𝜌) = −tr(𝜌 log 𝜌) with
the quantum analogue of (binary) cross-entropy given by:

𝑆 (𝜌 | |𝜎) = tr(𝜌 log 𝜌) − tr(𝜌 log𝜎) (6)

Both measures provide a further basis for similarity met-
rics required to determine if fairness criteria are met in the
quantum context.

2.3 Encoding data in quantum systems
A first step in applying quantum algorithms to solve optimisation
problems involving quantum data involves encoding such classical
data into quantum systems in a process known as state prepara-
tion. Encoding data fits within the preprocessing stage of typical

FML taxonomies. Standard encoding methods include [25]: (a) basis
encoding, (b) amplitude encoding, (c) qsample encoding and (d)
dynamic encoding. Basis encoding encodes classical information,
typically involves transforming data into classical binary bit-strings
(𝑥1, ..., 𝑥𝑑 ), 𝑏𝑖 ∈ {0, 1} then mapping each bit string to the basis
state of a set of qubits of a composite system. For example, for
𝑥 ∈ R𝑁 , say a set of decimals, is converted into a 𝑑-dimensional bit
string (e.g. 0.1 → 00001...,−0.6 → 11001..) suitably normalised
such that 𝑥 =

∑𝑑
𝑘
(1/2𝑘 )𝑥𝑘 . The sequence 𝑥 is then represented

via |𝜓 ⟩ = |000001 11001⟩ (see [25]). Amplitude encoding associates
normalised classical information e.g. for an 𝑛-qubit system (with 2𝑛
different possible (basis) states | 𝑗⟩), a normalised classical sequence
𝑥 ∈ C2𝑛 ,∑𝑘 |𝑥𝑘 |2 = 1 (possibly with only real parts) with quantum
amplitudes 𝑥 = (𝑥1, ..., 𝑥2𝑛 ) can be encoded as |𝜓𝑥 ⟩ =

∑2𝑛

𝑗 𝑥 𝑗 | 𝑗⟩.
Other examples of sample-based encoding (e.g. Qsample and dy-
namic encoding are also relevant but not addressed here. From
a classical machine learning perspective, such encoding regimes
also enable both features and labels to be encoded into quantum
systems.

2.4 Quantum measurement and learning
Quantum measurement. . Quantum measurement is integral to

any program of ethical quantum computation. Quantum systems
cannot be accessed directly. Instead, information about quantum
systems depends on measurements whose outcomes are probabil-
ity distributions over measurement results. For machine learning
contexts, the first key difference is that measurement outcomes
in quantum computation are inherently probabilistic. As distinct
from classical computing whereby stochastic processes may be sim-
ulated, quantum computation is necessarily stochastic, such that
measurement outcomes are represented as probability distributions
obtained using POVMs. Secondly, one usually only ever can sample
a subspace of H , so full probability distributions for higher-order
quantum systems may be unobtainable, adding additional uncer-
tainty. Thirdly, where basis states are not orthogonal, then it can
be proven that those states cannot be reliably distinguished (see
[20]), which impacts for example the ability to distinguish states
in a way necessary to measure their metric distance, thus whether
fairness constraints have been met.

Quantum learning. A second distinct feature of quantum algo-
rithms is in the nature of quantum learning. The ways in which one
can learn about quantum systems and deploy learning strategies as
part of measurements on or queries of quantum systems. One of the
challenges of mapping classical FML to quantum computing arises
in machine learning contexts. The nature of quantum information
(including classical information encoded in quantum states) means
that typical learning protocols, such as backpropagation, are not di-
rectly applicable because quantum information cannot be updated
directly in the way that say a neural network weight operator can
be. For example, the use of classical backpropagation algorithms
requires classical parameterisation, say of a unitary𝑈 (𝜃 ) (where
𝜃 ∈ R), where online- or offline-feedback between the outcomes of
measurements and classical inputs that evolve those parameters,
thus the unitaries and thus the quantum states of the system, is
implemented [25, 29]. More broadly, quantum algorithm formalism
is usually concerned with finding optimal quantum circuits to solve



an objective, however the means by which algorithms or quan-
tum systems ‘learn’ or ‘update’ differs (for example, see quantum
annealling-based QAOA [15]). In this paper, we include such quan-
tum learning algorithms within the meaning of QFML, though their
theoretical and implementation details will differ from hybridised
classical-quantum circuits.

3 PART II: CLASSICAL FAIRNESS MEASURES
IN QUANTUM CONTEXTS

In this section, we compare how the unique features of quantum
computation affect the applicability of techniques from classical
fair machine learning to quantum settings. For convenience, we
adopt the taxonomy set-out in recent reviews by Caton et al. [9]
and del Barrio et al. [12].

3.1 Fairness measures
Definitions of fairness are diverse across the FML literature. Here
we briefly review the main categories of classical fairness (for ma-
chine learning) before presenting a quantum analogue of quantum
fairness. Following [9], fairness definitions can be categorised into
parity fairness, confusion-matrix based fairness, calibration fair-
ness.

(1) Parity metrics. In a classification context, parity metrics com-
pare parity of positive rates 𝑃 (𝑌 = 1) across different groups.
These include: (a) statistical parity, namely equal (and thus)
probability of positive classification 𝑃 (𝑌 = 1|𝑔𝑖 ) = 𝑃 (𝑌 =

1|𝑔 𝑗 ) without considering group differences; (b) disparate
impact, the probability of being classified with a positive
label, generally considering the ratio between groups i.e.
𝑃 (𝑌 = 1|𝑔𝑖 )/𝑃 (𝑌 = 1|𝑔 𝑗 ) where fairness requires the ratio
above a threshold (e.g. 80%).

(2) Confusion-matrix based metrics.Confusion-matrix basedmet-
rics consider other typical measures such as true positive
rate (TPR), true negative rate (TNR), false positive rate (FPR)
and false negative rate (FNR), providing a richer analysis of
fairness and discrimination. The key measures include: (a)
equal opportunity, where TPR is the same across all groups
𝑃 (𝑌 = 1|𝑦 = 1, 𝑔𝑖 ) = 𝑃 (𝑌 = 1|𝑦 = 1, 𝑔 𝑗 ); (b) equalised odds
(conditional procedure accuracy equality) where FPR are
considered as well, mandating equal probability of false pos-
itive and true positive rates conditional upon groups 𝑔𝑖 , 𝑔 𝑗 ;
(c) overall accuracy equality concerns the overall percentage
of correct (true positives TP and true negatives TN) with
(𝑇𝑁 + 𝑇𝑃)/(𝑃 + 𝑁 ), where fairness measures [4] are rela-
tivised so as to require equal accuracy within groups; (d)
conditional use accuracy equality assess the predictive val-
ues by demanding the probabilities of (positive/negative)
classification given positive/negative prediction be equal,
that is 𝑃 (𝑦 = 1|𝑌 = 1, 𝑔𝑖 ) = 𝑝 (𝑦 = 1|𝑌 = 1, 𝑔 𝑗 ) and simi-
larly for 𝑦 = 0; (e) treatment equality, the ratio of FNR to
FPR conditioned on each group should be equal; (f) equal-
ising disincentives, which requires equality of the difference
between TPR and FPR conditioned upon groups; and (g) con-
ditional equal opportunity, applicable where data is drawn
from a distribution 𝑦 ∼ D, such fairness measure require

equal probability of prediction above some threshold 𝜏 con-
ditioned on groups, 𝑦 being below 𝜏 and the data satisfying
some attribute 𝐴 = 𝐴 (of form 𝑃 (𝑦 > 𝜏 |𝑔𝑖 , 𝑦 < 𝜏,𝐴 = 𝑎).

(3) Calibration. A third approach compares the predicted proba-
bility score 𝑆 into account. Such approaches include: (a) test
fairness/calibration, where for different group members, the
same predicted probability score should yield the same prob-
ability of actually being classified, that is 𝑃 (𝑦 = 1|𝑆 = 𝑠, 𝑔𝑖 ) =
𝑃 (𝑦 = 1|𝑆 = 𝑠, 𝑔 𝑗 ); (b)Well calibration, the same as test fair-
ness calibration but where the probability of classification
must equal 𝑠 itself.

(4) Score-based metrics. Finally, score-based metrics based upon
expectation values are also a feature of the literature: (a) posi-
tive/negative class balance, where fairness is characterised as
equality of expected predicted score which should be equal
conditioned on predicted score and group; and (b) Bayesian
fairness measures.

Such definitions of fairness are commonly based on equivalences
or equality across probability distributions, with differences arising
in what such probabilities are conditioned upon. In the quantum
context, measurement results in a probabilistic distribution over
(eigenvalues) over chosen measurement operators. These in turn
are abstracted as the quantum state |𝜓 ⟩ residing in a subspace of
Hilbert space |𝜓 ⟩ ∈ H𝑖 ⊆ H . Fairness criteria in quantum fair
machine learning must be reflected in an available set of measure-
ment operators (or POVM) that realises such fairness criteria. This
motivates our first definition of quantum fairness.

Definition 1: Quantum Fairness. Given a suitable POVM {𝐸𝑚} =

{𝑀†
𝑚𝑀𝑚}, vectors in H and quantum state |𝜓 ⟩ ∈ H (i.e. 𝜌), the

POVM partitions H (and states) into (possibly disjoint) subspaces
H𝑚 ∈ H𝑚 . A state |𝜓 ⟩ satisfies quantum fairness with respect to
operators 𝐸𝑚 that partition the Hilbert space if |𝜓 ⟩ is equally likely
to reside in each subspaceH𝑚 , that is:

⟨𝜓 |𝑀†
𝑚𝑀𝑚 |𝜓 ⟩ = ⟨𝜓 |𝑀†

𝑛𝑀𝑛 |𝜓 ⟩ 𝑚 ≠ 𝑛 (7)
tr(𝜌𝑀𝑚) = tr(𝜌𝑀𝑛) (8)

Note that we assume that 𝜌 =
∑
𝑖 𝜌𝑖 where 𝜌𝑖 encode individual

data in quantum states. This general definition of fairness stipulates
that |𝜓 ⟩ has an equal probability of residing within each subspace
H𝑚 . Meeting a classification𝑚 is equivalent to |𝜓 ⟩ residing in the
partition H𝑚 associated with the measurement POVM operator
𝐸𝑚 that yields measurement (classification)𝑚.

Conditional probabilities, where for example parity (fairness)
across multiple classifications, of the type articulated above, become
reframed as sequences of measurements on |𝜓 ⟩ by operators. For
example, elementary statistical parity among 𝑛 groups with regard
to a classifiers {𝐺𝑖 }, {𝑌𝑘 } with classification outcomes (which may
be binary or multivariate) 𝑔𝑖 and 𝑦𝑘 respectively would first require
a measurement𝐺𝑖 whose outcome 𝑔𝑖 was interpretable as member-
ship of group |𝜓 ⟩ ∈ H𝑔𝑖 , followed by a measurement operator 𝑌𝑘
whose realisation 𝑦𝑘 indicated classification. The outcome of such
measurements would give rise to joint probability distributions (as
in the classical case) allowing assessment of whether the multi-
classification fairness criteria have been met. However, note that,
uniquely in the quantum case as distinct from the classical case, the



commutation relations of operators (and thus their order of applica-
tion) matters: if the operators do commute [𝐺𝑖 , 𝑌𝑘 ] = 0 commute,
order of measurement will not matter, while if [𝐺𝑖 , 𝑌𝑘 ] ≠ 0 it will.
In the latter case, this means the joint distribution obtained will
differ depending on whether 𝐺𝑖 or 𝑌𝑘 is applied first. In this paper,
for simplicity, we assume commutativity of measurement operators.
This definition of fairness is that we apply in Part III below.

3.2 Individual and counterfactual fairness.
Extensive research has been undertaken into quantitative measures
of individual fairness for several decades. Among these include: (a)
Lipschitz conditioned fairness [14] imposing individual statistical
parity by requiring the difference (measured via metric distance 𝑑𝑌 )
between outcomes 𝑓 (𝑥1), 𝑓 (𝑥2) ∈ 𝑌 (usually expressed in terms of
distributions) as a result of some function or algorithm 𝑓 : 𝑋 → 𝑌

for similar individuals 𝑥1, 𝑥2 ∈ 𝑋 to be a bounded function (e.g.
constant multiple 𝐾 ) of the metric distance 𝑑𝑋 of those individuals
themselves, that is 𝑑𝑌 (𝑓 (𝑥1), 𝑓 (𝑥2) ≤ 𝐾𝑑𝑋 (𝑥1, 𝑥2). The condition
is expressed typically as a constraint an optimisation problem;
(b) counterfactual fairness, where given causal models (𝑈 ,𝑉 , 𝐹 )
(𝑈 latent background variables, 𝑉 = 𝑆

⋃
𝑋 are observables, 𝑆 are

sensitive variables and 𝐹 structural equation models), fairness re-
quires that individual outcomes are equivalent if sensitive variables
had varied; (c) generalised entropy comparing individualised pre-
diction to average prediction accuracy (see [26] where fairness
measures are drawn from axiomatic approaches in economics). In
the quantum setting, outcomes are also probability distributions
but available metrics are more limited where metrics must compare
the similarity of quantum input states (the quantum analogue of
𝑑𝑋 (𝑥1, 𝑥2)) and final output states). Unlike the classical Lipschitz
condition for fairness [14], we cannot measure the same quantum
state before state evolution𝑈 |𝜓 (𝑡 = 0)⟩ at 𝑡 = 0 (to determine met-
ric similarity of individual data encoded in quantum states) and then
afterwards, because |𝜓 ⟩ will have collapsed to a post-measurement
state (3). With an identical state preparation procedure, we can
measure initially and then rely on the creation of identical states
with which to evolve. This motivates a second definition.

Definition: Quantum Lipschitz Fairness. We are given a set of input
states 𝜌𝑖 = 𝜌𝑖 (𝑡 = 0) and unitary quantum algorithmA(𝑡) evolving
the state to output state after time 𝑡 given by 𝜌 ′

𝑖
= A(𝑡)†𝜌𝑖A(𝑡).

The quantum equivalent of input metrics 𝑑𝑋 and output metrics
𝑑𝑌 are quantum metrics 𝐷𝑋 , 𝐷𝑌 such as trace distance 𝐷 (𝜌𝑖 , 𝜌 𝑗 ) =
1
2 tr|𝜌𝑖−𝜌 𝑗 |, which is away tomeasure state similarity. The quantum
analogue of individual fairness (similar output classification/measurement
for similar input classification/measurement) is then expressed as a
Lipschitz constraint:

𝐷𝑌 (𝜌 ′𝑖 , 𝜌
′
𝑗 ) ≤ 𝐾 (𝐷𝑋 (𝜌𝑖 , 𝜌 𝑗 )) (9)

where𝐷 is a quantummetric described above, such as trace distance,
0 < 𝐾 ≤ 1 and 𝜌 ′ = A†𝜌A i.e. the state after application of the
algorithm A. Alternatively, one can compare the distance between
sets of inputs and sets of outputs via an entropy-based measure
such as quantum relative entropy above such that the quantum

Liptschitz condition becomes:

|tr(𝜌𝑖 log 𝜌𝑖 ) − tr(𝜌𝑖 log 𝜌 𝑗 ) | ≤ 𝐾 |tr(𝜌 ′𝑖 log 𝜌
′
𝑖 ) − tr(𝜌 ′𝑖 log 𝜌

′
𝑗 ) |
(10)

A third alternative is to specify two POVMs (i) {𝑆𝑠 } which measure
input states after preparation but before application of A and (ii)
{𝐸𝑚} which measures outputs and compare probability distribu-
tions for states 𝜌𝑖 , 𝜌 𝑗 and 𝜌 ′𝑖 , 𝜌

′
𝑗
with respect to those POVMs. For

convenience, the POVMs give rise to a distribution over output
measurements of both inputs and outputs (one must repeatedly
prepare identical input states for this process). In each case, one
must select an appropriate quantum metric to compare distances
between input states 𝜌𝑖 and output states 𝜌 ′

𝑖
.

3.3 Mitigating unfairness
Typical techniques within FML literature to mitigate or remedy
unfairness are varied. One of the key differences between classical
and quantum FML lies in the different mitigation strategies that can
be adopted. We explore these more fully below (in the case of binary
classification), including preprocessing, model processing and post-
processing of outcomes to mitigate biases. Typical methods include
the following.

(1) Blinding. Firstly, (a) blinding, where classifiers (and algo-
rithms) are ‘blind’ to protected attributes which are not direct
inputs or features in the computation, either via ‘immunity’
(against/to sensitive variables) or omission (which can reduce
model accuracy). One challenge is that proxies for sensitive
variables can remain (or be reconstructed), leading to po-
tential increases in bias or concealment of discrimination.
The inability access information about quantum processes
directly will make it difficult to apply similar techniques in
the quantum setting. Secondly, (b) causal methods in which
causal models (such as graphical or probabilistic models)
between sensitive and non-sensitive variables, including
adding or varying training data in order to meet specific
fairness criteria or debiasing, though their effectiveness is
varied. Quantum causal models off a quantum analogue that
may be applicable.

(2) Sampling and subgroups. A third approach is in (c) sampling
and subgroup analysis focused on (i) sampling strategies that
alter training data to eliminate unfairness or bias (such as
oversampling close to decision-boundaries or thinning out
of data away from such boundaries) and (ii) identification
of groups or subgroups discriminated against by classifiers,
such as via subgroup analysis. Sampling theory and strate-
gies are integral to quantum computing given that one rarely,
if ever, has the ability to query the entire Hilbert space H .
We assume in this work that we do have such access in a
simplified setting, however, understanding how sampling
techniques in quantum computing may be used to satisfy
fairness criteria is an open an important direction of research.

(3) Other techniques. Other mitigation techniques whose appli-
cability quantum settings motivates further research include:
(a) relabelling and perturbation, the inclusion of perturbative
noise in datasets to both improve generalisation [13]; (b)
re-weighting, where achieving fairness satisfaction occurs



via adjusting quantum amplitudes (we explore this in Part
III below); (c) regularisation and constraint optimisation there
is an extensive literature on constraint optimisation, such
as in quantum control contexts [24] where, in particular,
fairness constraints (and regularisation terms) are encoded
in Hamiltonians 𝐻 in order to steer the controllable part of
quantum systems towards desired target states.

4 PART III: STATISTICAL PARITY VIA
AMPLITUDE AMPLIFICATION

In this section, we demonstrate how amplitude application using
Grover’s quantum search algorithms may be used to achieve a mea-
sure of statistical parity among groups (or subgroups). This example
is designed to illustrate how specifically quantum algorithmic tech-
niques may be used to specific FML objectives or optimisations. In
reality, as discussed above, statistical parity will likely still mean
outcomes remain unfair by some other measures. While the ap-
propriateness of statistical parity as a fairness measure is itself
contested within the literature, it remains relevant as a measure in
many contexts, including jurisprudential [8].

4.1 Dataset and statistical parity
We begin by considering a dataset comprising two groups of individ-
ual data, binarised into bit strings of length𝑚 i.e. (𝑥1, .., 𝑥𝑘 , ..., 𝑥𝑚)
corresponding to the set 𝑀 of indicator features 𝑘 ∈ 𝑀 where
|𝑀 | =𝑚. Each bit encodes whether an individual has or does not
have a particular attribute i.e. indicator features (for this simple
case, we can consider ordinal or continuous variables encoded into
indicator variables e.g. an age of 50 would mean the indicator vari-
able for age-range 50 to 69 years would be 1 and all other age
interval indicators 0). Let one of the features, 𝑘 = 𝑠 , indicate that
the individual has characteristic (feature) 𝑠 and is thus a member of
a protected class (or subgroup) 𝑆 . Let the dataset 𝐷 , for simplicity,
be partitionable into disjoint subsets such that 𝐷 = 𝑆 ⊕ 𝐺 , where
𝐺 comprises individuals without the protected attribute 𝑠 . The op-
timisation problem is to classify members of 𝑆 and 𝐺 in order to
achieve statistical parity without removing protected variables (for
reasons discussed above, including decline in accuracy).

For illustrative purposes, set𝑚 = 3, with the first bit designating
membership of the protected class 𝑆 if 𝑥1 = 1 and the other two
features non-protected attributes. The possible combinations of
individuals (indexed by 𝑖) are set-out in Table 1.

We assume that we have a quantum algorithm which we desig-
nate (following [7]) asA acting as a function 𝑓 (𝑥) designed to solve
a particular optimisation problem, such as for example classifying
individuals for whom to offer some benefit, like home loans. The
motivation for using a quantum (as opposed to classical) algorithm
is not important in this example (it might be that a quantum algo-
rithm more feasibly solves the optimisation problem of interest).
The raw optimisation problem itself makes no mention of measures
of statistical parity or other measures of parity. The sole objective
of applying A is to maximise utility via optimal classification. The
specific details of what A could be and, relevantly for quantum
approaches, what type of quantum algorithms might implement
such a function are left abstract, though we assume that (a) the
quantum algorithm A uses no quantum measurements and (b) the

𝑖 (index) 𝑥1 (protected) 𝑥2 𝑥3 |𝑥𝑛
𝑖
⟩

1 1 1 1 |111⟩
2 1 1 0 |110⟩
3 1 0 1 |101⟩
4 1 0 0 |100⟩
5 0 1 1 |011⟩
6 0 1 0 |010⟩
7 0 0 1 |001⟩
8 0 0 0 |000⟩

Table 1: Basis encoding of individuals with features 𝑏𝑘 into
quantum states |𝑥𝑛⟩

classical input data to such a problem i.e (𝑥1, 𝑥2, 𝑥3) are (i) encoded
in states |𝑥𝑛

𝑖
⟩ (note: when used in the ket, 𝑥𝑛

𝑖
indexes the three-

qubit state where 𝑛 = 3, not to be confused with the individual
qubits which we designate via numerical subscripts 𝑥1, 𝑥2, 𝑥3 etc)
and then (ii) placed in a superposition state. Examples might in-
clude a typical hybrid model of quantum algorithmic learning using
quantum variational eigensolvers, for example see [27].

4.2 Encoding features
The first step is to basis-encode the classical data as set-out in Table
1, mapping inputs (𝑥1, 𝑥2, 𝑥3) → 𝑐 |𝑥1𝑥2𝑥3⟩ , 𝑥 ∈ {0, 1}. Here 𝑐
represents the amplitude for the state (which, when a measurement
is performed on all three qubits, renders the state as the output
with probability |𝑐 |2). Upon basis encoding the datasets 𝐷 into the
qubits and placing them into an equal superposition, the state of
the system |𝜓 ⟩ will be:

|𝜓 ⟩ = 1

2𝑛

2𝑛∑︁
𝑖=1

|𝑥𝑛𝑖 ⟩ (11)

where the amplitude of any state is 1/2𝑛 . The next step is the
application of the quantum optimisation algorithm A, which must
be a unitary algorithm without measurement. After applying A,
|𝜓 ⟩ is in the form:

|𝜓 ⟩ =
2𝑛∑︁
𝑖=1

𝑐𝑖 |𝑥𝑛𝑖 ⟩ (12)

where 𝑐𝑖 ∈ C represent the amplitudes for the state |𝑥𝑛
𝑖
⟩ subject

to the probability measure constraints that
∑
𝑖 |𝑐𝑖 |2 = 1. The algo-

rithm A optimises for some objective via adjusting the amplitudes
𝑐𝑖 so they are no longer equal. To optimise for the particular ob-
jective, each qubit is then measured in the computational basis. If
the algorithm A is indeed optimal, then the most probable mea-
surements obtained from repeating measurements on |𝜓 ⟩ will be
those with the highest amplitudes (thus highest probabilities of
being measured), reflecting the optimal choice of states and thus
individuals for satisfying the objective in question. Doing so, how-
ever, is unlikely to satisfy the fairness constraint of statistical parity
between individuals in the protected class (with 𝑥1 = 1) and those
not in the protected class (with 𝑥1 = 0).

If we assume the existence of an (oracle) function that indicates,



prior to measurement, whether a state |𝑥𝑛
𝑖
⟩ is in a protected class

or not (i.e if the first qubit 𝑥1 = 1 or 0), defined by:

𝜒 ( |𝑥𝑛𝑖 ⟩) =
{
1 𝑥1 = 1

0 𝑥1 = 0
(13)

then to achieve statistical parity, we want to approximately equalise
the conditional probability of measuring states in protected subclass
(𝑥1 = 1) and those not in the protected subclass (𝑥1 = 0), that is:

𝑃𝑟 ( |𝜓 ⟩ |𝑥1 = 0) ≈ 𝑃𝑟 ( |𝜓 ⟩ |𝑥1 = 1) (14)

One approach is to simply randomly equalise outcomes via post-
processing, but this ignores the fact that certain combinations of
states with 𝑥1 = 1 will minimise the loss function embedded in A
than others (that is, certain choices of states with 𝑥1 = 1 will be
more optimal than others). Our problem is thus a typical constrained
optimisation problem, in this case in the context of some ethically
mandated fairness criteria (here, approximate statistical parity). We
assume that the optimisation algorithm A has run in a way that
has set amplitudes to satisfy the optimisation problem disregarding
fairness. We then apply amplitude amplification to evolve initial
states with 𝑥1 = 1 in H in a way that minimises the objective
loss (in relation to A) by comparison with alternative means of
achieving statistical parity, such as disregarding 𝑥1 and randomly
equalising outcomes between the two classifications, which are
inconsistent with the objective of optimisation via A.

4.3 Amplitude amplification
To solve the constrained optimisation problem, we apply amplitude
amplification methods from [6, 7, 16, 17, 25, 28] adopting in part the
formulation from [20]. Amplitude amplification is a generalisation
of techniques applied to generate a quadratic speedup, of which
Grover’s algorithm [16, 18] (one of the seminal results of theoret-
ical quantum algorithm design) is the most well-known example.
The method (set-out in detail in [7]) consists of a series of trans-
formations of quantum data that amplify amplitudes of quantum
states that satisfy some optimisation criteria, such as a searching
criteria. By amplifying the amplitudes of desirous quantum states,
the probability of measuring such states is thereby increased.

For amplitude amplification, we assume the existence of a classi-
fier (an oracle) which disjunctively partitions (classifies) quantum
vectors in our Hilbert space |𝜓 ⟩ ∈ H into the direct sum of mu-
tually orthogonal subspaces H1, the space of quantum states to
be classified as 1 and H0, the space of quantum states to be clas-
sified as 0. The partitioning of such states is dependent upon this
classifier, which is an oracle 𝜒 , in the form a unitary operator. The
oracle indicates a solution to our search problem 𝑓 (𝑥1) = 1. Finding
𝑥1 = 1 and can be represented via:

𝜒 : H → H1 (15)

|𝑥⟩ ↦→ (−1) 𝑓 (𝑥) |𝑥⟩ (16)

which indicates solutions to our classification problem, in this case
classifying into 𝑥1 = 1, 0, via a phase shift for the desired solution,
i.e. phase-shifting (multiplying by -1) all states where, for the first
qubit, 𝑥1 = 1. The quantum state |𝜓 ⟩ belongs to the Hilbert space
H . The oracle allows us to partitionH into two subspaces, one for

𝑥1 = 1 and another for 𝑥0 = 0. We denote |𝜓 ⟩ depending on which
subspace it inhabits as follows:

{|𝜓1⟩} = {|𝜓 ⟩ | |𝜓 ⟩ ∈ H1} (17)
{|𝜓0⟩} = {|𝜓 ⟩ | |𝜓 ⟩ ∈ H0} (18)

Statistical parity (14) is then achieved when there is an equal prob-
ability of measuring |𝜓 ⟩ ∈ H1 and |𝜓 ⟩ ∈ H0. That is, in quantum
fair machine learning, statistical parity among subgroups is repre-
sented by |𝜓 ⟩ equally likely to inhabit regions of Hilbert classified
(and partitioned) by the applicable fairness criteria. This is a re-
sult for statistical parity among disjoint subgroups in general. In a
typical amplitude amplification setup, such as applying Grover’s
algorithm, the basis states are initialised in a uniform superposition
such that their amplitudes are initially identical, this means that it
is equiprobable to measure a state in either subspace. Our approach
is different. We want to evolve |𝜓 ⟩ to such an equiprobable state
without uniform amplitudes for each state.

4.4 Grover’s algorithm
It is instructive to understand this process in its simpler form, such
as articulated in [20]. First, we express the space of all states satis-
fying the search criteria i.e. with 𝑥1 = 1 and all states with 𝑥1 = 0
as two different sums

∑
𝑥1=1 |𝑥

𝑚⟩ and ∑𝑥1=0 |𝑥
𝑚⟩. We then define

normalised states:

|𝜓1⟩ =
1

√
𝑀

∑︁
𝑥1=1

|𝑥𝑚⟩ (19)

|𝜓0⟩ =
1

√
𝑁 −𝑀

∑︁
𝑥1=0

|𝑥𝑚⟩ (20)

Our state |𝜓 ⟩ may be expressed using these two states as a basis
such that:

|𝜓 ⟩ =
√︂
𝑀

𝑁
|𝜓1⟩ +

√︂
𝑁 −𝑀
𝑁

|𝜓0⟩ (21)

To achieve the amplification sought via a rotation of 𝜃 , we define
a unitary operator (so as to preserve quantum coherences and
probability measure) 𝑄 (𝜓, 𝑃) = 𝑆𝜓𝑆𝜒 using the operators:

𝑆𝜓 = 2 |𝜓 ⟩ ⟨𝜓 | − I (22)
𝑆𝜒 = 2𝑂 − I (23)

where 𝑂 an oracle that partitions the Hilbert space based on the
protected attribute (see (32) below). The operator 𝑆𝜒 flips phase of
states in H1, i.e. so functions effectively as an oracle. The operator
𝑆𝜓 flips the phase of the initial state |𝜓 ⟩. Each operator can be
geometrically interpreted as a reflection. The product of these two
reflections is a rotation, leading to:

|𝜓 ⟩ = sin(𝜃/2) |𝜓1⟩ + cos(𝜃/2) |𝜓0⟩ (24)

where cos(𝜃/2) =
√︁
(𝑁 −𝑀)/𝑁 . Applying 𝑄 then results in:

𝑄𝑘 |𝜓 ⟩ = sin

(
2𝑘 + 1

2
𝜃

)
|𝜓1⟩ + cos

(
2𝑘 + 1

2
𝜃

)
|𝜓0⟩ (25)

Apply𝑄 iteratively has the effect of rotating |𝜓 ⟩ by 𝜃 (geometrically,
counterclockwise) so as to increase the amplitude of |𝜓1⟩. The



Figure 1: Diagram of amplitude amplification for statistical
parity where H = H0 ⊕ H1. (1) initial state |𝜓 ⟩ lies closer
to H0, aim is to rotate vector to 𝜋/4 angle between both
subspaces. (2) 𝑆𝜒 operator reflects |𝜓 ⟩ about the H0 axis:
𝜓 → 𝑆𝜒 |𝜓 ⟩. (3) Applying 𝑆 |𝜓 ⟩ results in 2𝜃 rotation of origi-
nal |𝜓 ⟩ vector. Quantum 𝜖-statistical parity is achieved after
𝑚 = ⌊arcsin

√︁
(0.5 − 𝜖/2𝜃 − 𝜖⌋ iterations of 𝑄 = 𝑆 |𝜓 ⟩𝑆𝜒 .

probability of measuring a state in H1 (i.e. the probability that
|𝜓 ⟩ ≡ |𝜓1⟩) is then:

𝑃𝑟 ( | |𝜓1⟩ |) = sin2
(
2𝑘 + 1

2
𝜃

)
(26)

By applying 𝑄 a sufficient number of times, the probabilities of
measuring a state in H0 and H1 can be approximately equalised
so that:

sin2
(
2𝑘 + 1

2
𝜃

)
≈ cos2

(
2𝑘 + 1

2
𝜃

)
(27)

The Grover algorithm amplifies amplitudes such that the prob-
ability of measuring a state |𝜓 ⟩ ∈ H1 is significantly increased.
Our approach is slightly different: in our case, we do not have a
uniform superposition, for we have assumed that the algorithm
A has weighted the amplitudes 𝑐𝑖 of each basis state (according
to some optimisation criteria). Achieving statistical parity across
the two groups means obtaining an approximately equal average
probability of measuring a state inH1 orH0. We can use the same
technique, however, to boost amplitudes for H1 without requiring
equiprobability of each state in H1. We work through our example
below in some detail in order to elucidate technical details of how
the algorithm works.

4.5 Statistical parity by amplitude
amplification

To amplify amplitudes, we define projection operators which, when
applied toH , act to project-out (leave remaining) only those states

inH1 via:
𝑃 = |1⟩ ⟨1| ⊗ I ⊗ I (28)

As can be seen using density-matrix formalism, this operator acts
on the first qubit (leaving the remainder unmeasured, as symbolised
by the identity in the tensor product) when applied to |𝜓 ⟩ results
only in states with 𝑥1 = 1. The projection operator is not applied
directly to states (for it is not unitary), but rather is used in linear
combination with other operators (see below) in order to construct
the oracle unitary and the desired amplifying unitary operator.
Recalling the basis postulates of measurement described above, if a
measurement of |𝜓 ⟩ is made then the probability of |𝜓 ⟩ being in a
state with 𝑥1 = 1 is given by the amplitude squared:

𝑃𝑟 ( |𝜓1⟩) = |𝑐100 |2 + |𝑐101 |2 + |𝑐111 |2 + |𝑐110 |2 (29)

The initial probability will not be 50% in our example because |𝜓 ⟩
has been subject to A, which has adjusted amplitudes, beforehand.
The post-measurement state |𝜓 ′⟩ is:

|𝜓1⟩ =
𝑐100 |100⟩ + 𝑐101 |101⟩ + 𝑐111 |111⟩ + 𝑐110 |110⟩√︁

|𝑐100 |2 + |𝑐101 |2 + |𝑐111 |2 + |𝑐110 |2
(30)

The amplification operator𝑄 (𝜓, 𝑃) = 𝑆𝜓𝑆𝜒 is then described as the
product of the following two operators:

𝑆𝜓 = 2 |𝜓 ⟩ ⟨𝜓 | − I (31)
𝑆𝜒 = 2𝑃 − I (32)

i.e. equivalent to (23) where 𝑂 = 𝑃 . The unitarity of 𝑄 means that
H has an orthonormal basis given by the two eigenvectors of Q
with which we can decompose |𝜓 ⟩ as:

|𝜓±⟩ =
1
√
2
( |𝜓1⟩ ± 𝑖 |𝜓0⟩) (33)

Note that in contrast to [7], we have omitted the prefactors of 1
√
𝑎

for |𝜓1⟩ and 1
√
1 − 𝑎 for |𝜓0⟩ for convenience, including them in

the definition of the states |𝜓1⟩ and |𝜓0⟩ respectively. In that work,
such 𝑎 is designated as the probability of measuring |𝜓1⟩ and 1 − 𝑎
the probability of measuring the state |𝜓0⟩. The inclusion of these
prefactors in [7] can be thought of as having taken the numerator
of (30). To algebraically show the rotational effect of the unitary,
we note that the eigenvalues of (33) are given by:

𝜆± = 𝑒±𝑖2𝜃 (34)

using which, we can express |𝜓 ⟩as:

|𝜓 ⟩ = − 𝑖
√
2

(
𝑒𝑖𝜃 |𝜓+⟩ − 𝑒−𝑖𝜃 |𝜓−⟩

)
(35)

Which is equivalent in form to (24) with 𝜃 ∈ [0, 𝜋/2]. Applying Q
iteratively𝑚 times on |𝜓 ⟩ results in:

𝑄𝑚 |𝜓 ⟩ = − 𝑖
√
2

(
𝑒𝑖 (2𝑚+1)𝜃 |𝜓+⟩ − 𝑒−𝑖 (2𝑚+1)𝜃 |𝜓−⟩

)
(36)

= sin((2𝑚 + 1)𝜃 ) |𝜓1⟩ + cos((2𝑚 + 1)𝜃 ) |𝜓0⟩ (37)

Each application of 𝑄 rotates |𝜓 ⟩ by angle 2𝜃 , thereby projecting
more of the state into H1. The probability that |𝜓 ⟩ ∈ H1 is then
sin2 ((2𝑚 + 1)𝜃 ), consistent with (26). Each rotation by 2𝜃 adjusts
the amplitudes for measuring |𝜓 ⟩ ∈ H1 and |𝜓 ⟩ ∈ H0. A dia-
grammatic representation of this process is set-out in Figure 1. The
rotation effectively updates the quantum weights (amplitudes) at



each step in a unitary. By applying 𝑄 a sufficient number of times,
we can achieve what we designate as (quantum) 𝜖-statistical parity
(namely equal probability within 𝜖) such that:

| ⟨𝜓1 |𝜓 |𝜓1⟩ − ⟨𝜓0 |𝜓 |𝜓0⟩ | = 𝜖 (38)

which can be expressed as:

|0.5 − 𝜖 | = sin2 ((2𝑚 + 1)𝜃 ) (39)

Such statistical parity can be approximated by applying the ampli-
tude amplification operator 𝑄 iterative𝑚 times where𝑚 is given
by:

𝑚 =

⌊
arcsin

√︁
( |0.5 − 𝜖 |)
2𝜃

− 𝜃
⌋

(40)

The proportional amplification of the amplitude of states in H1

is accompanied by a proportional reduction in the amplitude of
states in H0, preserving overall probability measure. Because of
the unitarity of 𝑄 , the adjustment of amplitudes preserves quan-
tum coherence in a way that measuring and classically adjusting
probabilities post-measurement would not.

Subgroup parity. The quantum 𝜖-statistical parity method we
describe above above can be deployed to achieve statistical parity
among any number of 𝑛 disjoint subgroups so long as there exists
a unitary operator 𝑂 which partitions the Hilbert spaceH into a
direct sum of subspaces i.e such that:

𝑂H → ⊕𝑛
𝑖 H𝑖 = H1 ⊕ ... ⊕ H𝑛 (41)

In our worked example above, simply setting the projector 𝑃 to
project-out into a particular state of one or more qubits will im-
plement such an operator via 2𝑃 − I. However, as with classical
subgroup parity (see [19]), disjunctively partitioning into one set
of subgroups will likely lead to statistical disparity across others.
For example, defining the set of projection operators 𝑃 as:

𝑃𝑎𝑏 = I ⊗ |𝑎⟩ ⟨𝑎 | ⊗ |𝑏⟩ ⟨𝑏 | (42)

where 𝑎, 𝑏 ∈ {0, 1} will partitionH into for subspaces which can
be amplitude amplified into statistical parity. However, there are
no guarantees that this retains statistical parity for measurements
of the first qubit.

5 PART IV: CONCLUSION AND FUTURE
WORK

In this first paper on quantum fair machine learning, we have ex-
amined foundational characteristics of undertaking fair machine
learning involving quantum systems. We have set-out a (by no
means exhaustive) comparison between quantum and classical tech-
niques of relevance to FML on quantum systems, elucidating ways
in which FML techniques are or are not directly transferable to
quantum FML. We have provided a number of quantum analogues
for use in quantum FML contexts. As a practical example, we have
demonstrated the use of Grover’s amplitude amplification algo-
rithm to achieve statistical parity among subgroups and set-out
definitions of quantum fairness and quantum Lipschitz-conditioned
(individual) fairness. As a new cross-disciplinary field, there are a
multitude of open questions and potential research programmes
extending from our work including: (a) formalising quantum ana-
logues of existing techniques in FML, (b) exploring QFML in noisy

contexts, especially in dissipative open quantum systems, (c) exam-
ining how fairness outcomes and computation differs as a result
of using quantum-specific resources, such as entanglement and (d)
the role of cryptographic and quantum analogues of differential
privacy for satisfying fairness criteria for quantum computations.

ACKNOWLEDGMENTS
This work is part of the author’s research into quantum ethics at
the ANU Humanising Machine Intelligence programme and Centre
for Quantum Software and Information at UTS, Sydney. The au-
thor thanks colleagues at both institutions for their constructive
comments and feedback.

REFERENCES
[1] Scott Aaronson. 2011. Why Philosophers Should Care About Computational

Complexity. (Aug. 2011). arXiv:quant-ph/1108.1791
[2] Scott Aaronson. 2019. Opinion | Why Google’s Quantum Supremacy Milestone

Matters. The New York Times (Oct. 2019). https://www.nytimes.com/2019/10/30/
opinion/google-quantum-computer-sycamore.html

[3] Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. 2006. Machine Learning in
a Quantum World. In Advances in Artificial Intelligence (Lecture Notes in Com-
puter Science), Luc Lamontagne and Mario Marchand (Eds.). Springer, Berlin,
Heidelberg, 431–442. https://doi.org/10.1007/11766247_37

[4] Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth.
2017. Fairness in Criminal Justice Risk Assessments: The State of the Art. Sociolog-
ical Methods & Research (2017), 1–42. https://doi.org/10.1177/0049124118782533

[5] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. 2018.
Characterizing quantum supremacy in near-term devices. Nature Physics 14
(June 2018), 595–600. https://doi.org/10.1038/s41567-018-0124-x

[6] Gilles Brassard and Peter Hoyer. 1997. An Exact Quantum Polynomial-Time
Algorithm for Simon’s Problem. Proceedings of the Fifth Israeli Symposium on
Theory of Computing and Systems (1997), 12–23. https://doi.org/10.1109/ISTCS.
1997.595153

[7] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. 2000. Quantum
Amplitude Amplification and Estimation. (May 2000). arXiv:quant-ph/0005055

[8] Michelle M. Burtis, Jonah B. Gelbach, and Bruce H. Kobayashi. 2017. Error Costs,
Legal Standards of Proof, and Statistical Significance. Supreme Court Economic
Review 25 (Jan 2017), 1–57. https://doi.org/10.1086/694607

[9] Simon Caton and Christian Haas. 2020. Fairness in Machine Learning: A Survey.
(Oct. 2020). arXiv:cs/2010.04053

[10] Alexandra Chouldechova and Aaron Roth. 2018. The Frontiers of Fairness in
Machine Learning. (Oct. 2018). arXiv:cs/1810.08810

[11] Sam Corbett-Davies and Sharad Goel. 2018. The Measure and Mismeasure
of Fairness: A Critical Review of Fair Machine Learning. (July 2018). arXiv:
cs/1808.00023

[12] Eustasio del Barrio, Paula Gordaliza, and Jean-Michel Loubes. 2020. Review
of Mathematical frameworks for Fairness in Machine Learning. (May 2020).
arXiv:cs/2005.13755

[13] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, and Nana Liu. 2020.
Quantum noise protects quantum classifiers against adversaries. (March 2020).
arXiv:quant-ph/2003.09416

[14] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference (ITCS ’12). Association for Comput-
ing Machinery, New York, NY, USA, 214–226. https://doi.org/10.1145/2090236.
2090255

[15] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. 2000. Quan-
tum Computation by Adiabatic Evolution. (Jan 2000). arXiv:quant-ph/0001106

[16] Lov K. Grover. 1996. A fast quantummechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing
(STOC ’96). Association for Computing Machinery, New York, NY, USA, 212–219.
https://doi.org/10.1145/237814.237866

[17] Lov K. Grover. 1997. Quantum Mechanics Helps in Searching for a Needle in a
Haystack. Physical Review Letters 79, 2 (July 1997), 325–328. https://doi.org/10.
1103/PhysRevLett.79.325

[18] Lov K. Grover. 1998. Quantum Computers Can Search Rapidly by Using Almost
Any Transformation. Physical Review Letters 80, 19 (May 1998), 4329–4332.
https://doi.org/10.1103/PhysRevLett.80.4329

[19] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. 2019. An
Empirical Study of Rich Subgroup Fairness for Machine Learning. In Proceed-
ings of the Conference on Fairness, Accountability, and Transparency (FAT* ’19).

arXiv:quant-ph/1108.1791
https://www.nytimes.com/2019/10/30/opinion/google-quantum-computer-sycamore.html
https://www.nytimes.com/2019/10/30/opinion/google-quantum-computer-sycamore.html
https://doi.org/10.1007/11766247_37
https://doi.org/10.1177/0049124118782533
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1109/ISTCS.1997.595153
https://doi.org/10.1109/ISTCS.1997.595153
arXiv:quant-ph/0005055
https://doi.org/10.1086/694607
arXiv:cs/2010.04053
arXiv:cs/1810.08810
arXiv:cs/1808.00023
arXiv:cs/1808.00023
arXiv:cs/2005.13755
arXiv:quant-ph/2003.09416
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
arXiv:quant-ph/0001106
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.79.325
https://doi.org/10.1103/PhysRevLett.80.4329


Association for Computing Machinery, New York, NY, USA, 100–109. https:
//doi.org/10.1145/3287560.3287592

[20] M.A. Nielsen and I.L. Chuang. 2010. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press.

[21] Carmen Palacios-Berraquero, Leonie Mueck, and Divya M. Persaud. 2019. Instead
of ‘supremacy’ use ‘quantum advantage’. Nature 576, 7786 (Dec. 2019), 213–213.
https://doi.org/10.1038/d41586-019-03781-0

[22] Elija Perrier. 2021. Ethical Quantum Computing: A Roadmap. (2021). arXiv:
quant-ph/2102.00759

[23] John Preskill. 1997. Fault-tolerant quantum computation. (Dec. 1997). arXiv:
quant-ph/9712048

[24] Yu. L. Sachkov. 2009. Control theory on lie groups. Journal of Mathematical
Sciences 156, 3 (Jan. 2009), 381. https://doi.org/10.1007/s10958-008-9275-0

[25] Maria Schuld and Francesco Petruccione. 2018. Supervised Learning with Quan-
tum Computers. In Supervised Learning with Quantum Computers, Maria Schuld
and Francesco Petruccione (Eds.). Springer International Publishing, Cham, 1–19.

https://doi.org/10.1007/978-3-319-96424-9_1
[26] Till Speicher, Hoda Heidari, Nina Grgic-Hlaca, Krishna P. Gummadi, Adish Singla,

AdrianWeller, andMuhammad Bilal Zafar. 2018. A Unified Approach to Quantify-
ing Algorithmic Unfairness. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining - KDD ’18. 2239–2248.

[27] Dave Wecker, Matthew B. Hastings, and Matthias Troyer. 2015. Progress towards
practical quantum variational algorithms. Physical Review A 92, 4 (Oct. 2015),
042303. https://doi.org/10.1103/PhysRevA.92.042303

[28] Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. 2016. Quantum perceptron
models. In Proceedings of the 30th International Conference on Neural Information
Processing Systems (NIPS’16). Curran Associates Inc., Red Hook, NY, USA, 4006–
4014.

[29] Akram Youssry, Gerardo A. Paz-Silva, and Christopher Ferrie. 2020. Beyond
Quantum Noise Spectroscopy: modelling and mitigating noise with quantum
feature engineering. (March 2020). arXiv:quant-ph/2003.06827

https://doi.org/10.1145/3287560.3287592
https://doi.org/10.1145/3287560.3287592
https://doi.org/10.1038/d41586-019-03781-0
arXiv:quant-ph/2102.00759
arXiv:quant-ph/2102.00759
arXiv: quant-ph/9712048
arXiv: quant-ph/9712048
https://doi.org/10.1007/s10958-008-9275-0
https://doi.org/10.1007/978-3-319-96424-9_1
https://doi.org/10.1103/PhysRevA.92.042303
arXiv:quant-ph/2003.06827

	Abstract
	1 Introduction
	1.1 Results and contributions
	1.2 Structure

	2 Part I: Quantum information processing
	2.1 Postulates
	2.2 Quantum metrics.
	2.3 Encoding data in quantum systems
	2.4 Quantum measurement and learning

	3 Part II: Classical fairness measures in quantum contexts
	3.1 Fairness measures
	3.2 Individual and counterfactual fairness.
	3.3 Mitigating unfairness

	4 Part III: Statistical parity via amplitude amplification
	4.1 Dataset and statistical parity
	4.2 Encoding features
	4.3 Amplitude amplification
	4.4 Grover's algorithm
	4.5 Statistical parity by amplitude amplification

	5 Part IV: Conclusion and future work
	Acknowledgments
	References

