Validating Formal Semantics by Property-Based
Cross-Testing

Péter Bereczky
Daniel Horpacsi
berpeti@inf.elte.hu

daniel-h@elte.hu

ELTE, E6tvos Lorand University
Budapest, Hungary

Abstract

To describe the behaviour of programs in a programming
language we can define a formal semantics for the language,
and formalise it in a proof assistant. From this semantics we
can derive the behaviour of each particular program in the
language. But there remains the question of validating the
formal semantics: have we got the formalisation right?

Our approach is to use property-based cross-testing of
formal semantics, which is based on the combination of a
number of existing approaches to validation. In particular,
we give a concrete implementation of our ideas for a set of
formalisations of Erlang and Core Erlang. We describe the
adjustments that need to be made to execute these seman-
tics, then we present and evaluate property-based testing in
the context of cross-checking semantics, including random
program generation and counterexample shrinking.

CCS Concepts: + Theory of computation — Operational
semantics; Program verification; Functional constructs;
General and reference — Validation.

Keywords: formal semantics, validation, property-based test-
ing, QuickCheck, Coq, K framework

ACM Reference Format:

Péter Bereczky, Daniel Horpacsi, Judit K8szegi, Soma Szeier, and Si-
mon Thompson. 2020. Validating Formal Semantics by Property-
Based Cross-Testing. In IFL 2020: Proceedings of the 32nd Symposium
on Implementation and Application of Functional Languages (IFL °20),
September 2—4, 2020, Canterbury, United Kingdom. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3462172.3462200

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

IFL °20, September 2—4, 2020, Canterbury, United Kingdom

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8963-1/20/09...$15.00
https://doi.org/10.1145/3462172.3462200

Judit Készegi
Soma Szeier
koszegijudit@elte.hu
szeier529@inf.elte.hu
ELTE, E6tvos Lorand University
Budapest, Hungary

Simon Thompson
S.J.Thompson@kent.ac.uk
University of Kent
Canterbury, UK
ELTE, E6tvés Lorand University
Budapest, Hungary

1 Introduction

Our work here is part of a wider project to reason about cor-
rectness of refactorings, and that requires a rigorous, formal
definition of the programming language under refactoring:
in our case, Erlang [9]. In earlier work, we defined and imple-
mented executable formal semantics for the sequential parts
of Erlang and Core Erlang [8], including a reduction seman-
tics for a subset of Erlang using the K framework [24], and a
natural semantics for a subset of Core Erlang, implemented
in Coq [1, 2]. In this paper we investigate how to validate
this work by using property-based testing techniques.

As Core Erlang is an intermediate language between Er-
lang and BEAM code [37], Erlang can be compiled to both
Core Erlang and BEAM, and the semantics of these three
languages, and the translations between them, can be com-
pared. There is no complete, up-to-date and precise language
specification for any of the above languages. We therefore
decided to take the Erlang/OTP compiler and the BEAM in-
terpreter (both in v. 22.0) as the reference implementations
for reasoning about the correctness of the semantics, due
to the high degree of social trust in these standard compo-
nents stemming from their history and extensive user base.
Moreover, if we verify refactorings using a formal seman-
tics consistent with this reference base, we shall preserve
program behaviour in the de facto implementation.

We therefore say that a formal semantics of Erlang is
correct if, for every Erlang program P, the behaviour of P
under the formal semantics is the same as the behaviour
of the BEAM interpreter running the code obtained from P
by trusted translation; we define correctness for a formal
semantics of Core Erlang in a similar way.

Not only can we test a semantics against the reference
implementation, we can also test different formal semantics
against each other. This cross-testing delivers further benefits:

e If both formal semantics show the same (or similar) in-
correct behaviour, that may indicate a generic miscon-
ception about the behaviour of a particular language
feature, rather than an error in the formalisation,

e If one is correct and the other not, the first can be used
to assist the debugging of the second, exploiting the
(trusted) transformation from Erlang to Core Erlang.

https://doi.org/10.1145/3462172.3462200
https://doi.org/10.1145/3462172.3462200

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

It is worth noting that the general idea of cross-testing
(or differential testing) of (executable) semantics can be gen-
eralised for any two languages provided that one can be
translated to the other, providing evidence that the defini-
tions are valid relative to each other.

In validating the (Core) Erlang semantics, we consider
two sources of test programs. Firstly, we run the ErLLVM
benchmark suite [16] and check the semantics on the small
test cases together with our own test suite. Secondly, we use
property-based testing with randomly generated programs.

The main contributions of this paper are to present:

e A general approach to validation of formal seman-
tic definitions of related languages by property-based
cross-testing, addressing shrinking of randomly gen-
erated programs and multiple result formats.

e An architecture supporting uniform execution, com-
parison and testing, built from two formal semantics
(given in different styles and implemented with differ-
ent tools) and a reference implementation.

e Extensive validation of formal semantics for sublan-
guages of sequential Core Erlang and Erlang, imple-
mented in Coq and in the K framework. These sub-
languages contain all salient features from a semantic
point of view: extending the semantics to the full lan-
guages would be a straightforward exercise.

The rest of the paper is structured as follows. Section 2 dis-
cusses the most common approaches to testing formal seman-
tics, then in Section 3 we overview the semantics definitions
to be validated. Section 4 explains our testing approach and
our implementation for validating Erlang and Core Erlang
semantics. Section 5 evaluates our approach and Section 6
summarises future work and concludes.

2 Related Work

Most programming languages lack a formal definition and
are instead defined by a reference implementation. Typically,
reference implementations can only be used for interpreting
programs, they do not define a formal semantics and there-
fore cannot be used for constructing formal proofs. Fortu-
nately, there is an increasing effort to equip mainstream lan-
guages with formal definitions. For example, C, Java, OCaml,
Scheme, Haskell, EVM are being formalised in the K frame-
work [23], while semantics for C [4], JavaScript [6], R [7]
and WebAssembly [22] are being developed in Coq.

Semantics validation. As other authors have pointed
out [5, 18, 38], it is crucial to validate the formal definitions
against the language specifications and the reference im-
plementations; otherwise, they could not be used to argue
about the behaviour of particular programs in the language,
or about general properties of the language itself. Accord-
ing to Blazy and Leroy [5], there are five basic methods to
validate formal semantics:

Péter Bereczky, Daniel Horpacsi, Judit Készegi, Soma Szeier, and Simon Thompson

M1 Manual review and debugging

M2 Proving properties of the semantics, such as type pres-
ervation and determinism

M3 Using verified translations and trusted semantics

M4 Validating executable semantics, e.g. testing against
test suites and experimental testing

M5 Using equivalent, alternate versions of the semantics

These methods, or combinations of them, are commonly
used when a formal semantics is to be validated. For instance,
the semantics of Lolisa [38] was validated with M2, M4 and
M5, while CompCert [4, 5] apparently uses all of them.

However, the most common way of validating a formal se-
mantics is method M4: developing an executable version
of the semantics and testing it against the reference im-
plementation. This is used for PHP [17], SQL queries [18]
and Erlang [24], as well as in the work by Politz et al. on
JavaScript [33] and in the work by Roessle et al. [35] on the
big-step semantics of x86-64 binaries.

Property-based testing. Case-by-case testing can be sig-
nificantly improved by partially or fully generalising the
correctness checks over the test data. Property-based test-
ing (PBT) [19] is a technique that generalises unit tests into
properties containing universally quantified variables, test-
ing these properties at randomly generated values for the
variables. Applying PBT and its widely used implementation
QuickCheck brings the following benefits:

e General correctness properties are checked with ran-
domly generated values: universal properties are tested
for values defined by data generators, which generate
possible cases in increasing order of complexity.

o Automatic shrinking of counterexamples: the system
simplifies the failure cases found, so as to provide lo-
cally minimal, more comprehensible counterexamples.

o Automatic assembly of regression test suites: the ran-
domly generated test cases, especially those for bugs
that have been fixed, can be collected into a set of
regression test cases.

In performing property-based testing on semantics defini-
tions, or indeed language processors in general, the main
challenges are to build data generators capable of produc-
ing well-formed (compilable) programs with non-trivial ef-
fects and to define a useful simplification mechanism, called
shrinking. This problem was already addressed by Patka et
al. [31] in verifying a Haskell compiler, while Perényi and
Midtgaard [32] applied property-based testing to verify a
C to WebAssembly compiler. The latter reuses the official
syntax representation, uses an explicit recursion limit and
implments strict shrinking rules; our approach is similar.
For verifying refactoring tools, Horpacsi et al. [14] devel-
oped an attribute grammar based generator. In the latter, a
subset of Erlang was formalised as an attribute grammar,
ultimately synthesising a data generator for random Erlang

Validating Formal Semantics by Property-Based Cross-Testing

programs from the grammar description. We reused Hor-
pacsi’s solution in the validation of the formal semantics: we
took the grammar-based generator, revised the grammar, and
we also added support for shrinking of random programs. It
is worth noting that the generator is expected to emit well-
formed programs, but not necessarily meaningful algorithms.
Some rules restrict the set of generated programs (ensuring
static semantics, eliminating infinitely recursion), yet the be-
haviour is mostly random and it is likely to include unusual,
edge cases. We discuss this in more detail in Section 4.

3 Semantics Under Test

In this section we give formal semantics definitions and a
reference implementation for the three languages compared
in this work. We first introduce the languages, and then we
explain some of the issues that arise when the semantics is
to be used to interpret particular programs, efficiently.

3.1 Erlang and its Core Language

In the standard Erlang compilation process, the Erlang source
code is compiled to Core Erlang (as an intermediate lan-
guage), which is then compiled to BEAM bytecode (the ac-
tual target code). These translations are official, trustworthy
pieces of software. In addition, we trust the Erlang/OTP
providing a reference implementation for the semantics of
the low-level code, BEAM. So the reference interpreter for
BEAM can be used as a frame of reference when checking
the formal semantics of the higher level languages, Erlang
and Core Erlang. The Erlang snippet

main() -> (1 + 1) + 2.
(with optimisations turned off) translates to

'main'/@ = fun() ->
case <> of
<> when 'true' -> let <_0> =
call 'erlang':'+'(1, 1) in
call 'erlang':'+'(_0, 2)
<> when 'true' -> primop 'match_fail'
({'function_clause '})
end

demonstrating the abstraction gap between these languages.
It can be seen that Core Erlang is more explicit about control
flow and is lacking some high-level features of Erlang.

We have developed formal semantics for both Core Erlang
and Erlang, and compare these to the reference semantics of
BEAM. The formal definitions are given in different styles,
and in different implementation frameworks: the Erlang def-
inition [24] is a reduction-style semantics implemented in
the K framework (v. 3.6), while the more recent Core Erlang
definition [1, 2] was specified in the Coq proof assistant (v.
8.12.1).

In the setting of testing the two formal semantics with
the “same” input, it is important to ensure that the language

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

features covered by the Erlang definition translate to fea-
tures covered by the Core Erlang definition. This is an issue
to be taken into account as our definitions do not cover the
entire languages. As a matter of fact, we made sure that both
the Erlang and Core Erlang formal definitions support most
sequential constructs, and so does the random program gen-
erator. The formalisation of the concurrent language parts is
future work. We note that it is also an interesting question
whether full coverage of Erlang expressions ensures full cov-
erage of Core Erlang, that is, whether all expressions in Core
Erlang can be generated from some Erlang expression. We
discuss this topic in Section 5.2.

For historical reasons, these formal definitions were sup-
posed to serve different purposes: the Erlang definition was
developed mainly for the precise specification of the lan-
guage, program execution and simple expression equivalence
proofs, whilst the Coq-based Core Erlang definition was cre-
ated with the need for more advanced proofs in mind. Indeed,
the inductive big-step semantics definition in Coq brought
the freedom in expressing and proving complex properties
of the language semantics, but the automatic execution of
such a definition proved to be challenging.

3.2 Execution

We check the validity of the semantics by dynamically testing
them against the reference implementation. This requires
that the semantics can “run” programs, just like an inter-
preter does.

Erlang. The (sequential) Erlang definition was given as
reduction semantics with evaluation contexts in the K frame-
work, a language workbench that supports simple and effec-
tive syntax and semantics definitions, and generates various
execution and analysis tools based on a single definition.

One of the most helpful features of K for our work is that
it has a reasonably effective search technique for finding
small-step derivations, basically it synthesises an interpreter
for the semantics definition. This means that the small-step
semantics of Erlang is inherently executable with the help
of K and does not need any special care in this regard. For
the details of this language definition, we refer to previous
work by K&szegi [24].

Core Erlang. The big-step semantics of sequential Core
Erlang was formalized in Coq as an inductive relation. Beside
the basic language features, it includes exceptions and side
effects [1, 2, 27], so it provides a decent coverage of the
sequential sublanguage.

As mentioned already, the inductive definition is good for
reasoning, but not necessarily for interpretation [5]. In fact,
the typical operational semantics is not computable (either
because it is not syntax-directed or it is not terminating) and
the execution is essentially a proof-search on the transition
relation with existential variables. In Erlang and in Core Er-
lang, both exceptions and divergence are present, thus in our

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

semantics definitions there can be several derivation rules
applicable to a particular configuration. There are two op-
tions to mitigate the issue: either implement the proof-search
on the inductive definition (presumably with tactics [11]), or
(re)define the semantics in a computable style (also in Coq).
The latter may be done in the functional big-step seman-
tics style of Owens et al. [30] or as a definitional interpreter
(“equivalent alternate semantics” [5]), but in either case, com-
posing the denotational definition and proving it equivalent
to the inductive definition requires significant effort. We
refer to Bereczky et al. [3] for more details.

On our first attempt we went for the first option and
developed a proof search tactic to “execute” programs in the
big-step semantics. This tactic [11] uses pattern-matching on
the evaluable expression to determine the derivation rules to
be used. Since we have exceptions formalised, for one goal
there may be multiple rules applicable (i.e. the proof-search
is not syntax-driven); however, because our semantics is
deterministic', we can apply one of the rules, see whether it
leads to results, and if not, we can try another matching rule
instead. This process can be seen as a backtracking proof-
search for the correct evaluation steps. We have implemented
this search in Coq’s tactic language, Ltac [11].

Unfortunately, such an automatic backtracking proof-search
is not efficient enough when run in the Coq interpreter. Us-
ing a pretty-big-step style semantics [10] can significantly
reduce the number of applicable rules on the concrete goals,
but it cannot eliminate all decision points: for instance, execu-
tions may terminate either normally or with exceptions, and
even if the semantics is deterministic, we cannot tell in ad-
vance which branch leads to the normal form (e.g. in [3] the
potential exceptions of function applications). Moreover, the
proof-search still needs a large amount of time and memory.
We tried to make searches faster by adding lemmas about
evaluating specific expressions, but this had little effect. In
the end, we had to go for the other option of execution and
develop a computable variant of the semantics.

3.3 Efficient Execution

The findings described in the previous paragraphs support
the suggestion of Blazy and Leroy, so we decided to imple-
ment a computable variant of our big-step semantics of Core
Erlang, using functional big-step style [30]. The semantics
in this style is basically a recursive function equipped with a
recursion depth limit. Obviously, we had to prove the equiv-
alence between this computable semantics and the inductive
version, so that testing this semantics is sufficient to test the
other one. The entire formalisation is open-source and it is
available on GitHub [29].

Note that Core Erlang is nondeterministic in theory [8], we followed the
footsteps of Neuhaufier and Noll [28] and the reference implementation,
and employed a leftmost-innermost evaluation strategy in the formalisation.

Péter Bereczky, Daniel Horpacsi, Judit Készegi, Soma Szeier, and Simon Thompson

The functional big-step definition shows an order of mag-
nitude better performance in terms of execution time, which
is a notable improvement over the evaluation tactic. Even
though in this sense the functional big-step style semantics
seems to be superior to the classic big-step, the inductive
big-step semantics can be more suitable when it comes to
proving properties of programs by induction.

Extracting Haskell from Coq. Once we developed the
computable variant of the big-step semantics in Coq, there
was one obvious option to try: whether extracting Haskell
from Coq brings further improvements in speed and reli-
ability. Coq has not been developed as a general purpose
functional language, it has been designed to write formal
specifications and develop mathematical proofs. The intro-
duction to Coq [12] also highlights this possibility of ex-
tracting executable programs (Haskell or OCaml) from the
specifications.

This means that the execution of the specifications with
the Coq interpreter is not yet the optimal option for seman-
tics execution. Just to mention a concrete example, in our
case, we need a recursion depth limit to execute the func-
tional big-step semantics. This limit is basically a natural
number in Cogq, but in practice the Coq interpreter can only
compute small natural numbers, which limits the size of the
evaluable Core Erlang programs. To overcome these limi-
tations, we decided to implement the option to extract the
functional big-step semantics to Haskell (GHC 8.10.4), and
execute this extracted semantics to obtain the results. We
have obtained improvements this way, especially for evalu-
ating large programs which was impossible in Coq due to
the limitations of natural numbers.

4 Property-Based Cross-Testing

After reviewing the semantics to be checked, we discuss
in detail the property-based cross-testing approach we de-
veloped. In particular, Section 4.1 gives an overview of the
approach as a derivative of the methods introduced in Sec-
tion 2, then Section 4.2 explains the program generator and
the counterexample shrinking mechanism, and in Section 4.3
we provide some technical details about the implementation.

4.1 Overview of the Method

Our testing approach is a combination of the fundamen-
tal semantics validation techniques outlined by Blazy and
Leroy [5], which have been discussed in Section 2. In our
particular case of cross-testing Erlang and Core Erlang se-
mantics,

e We adapt method M3 by using verified translation (i.e.
the official Erlang/OTP compiler) from Erlang to Core
Erlang, and from Core Erlang to BEAM. Our trusted
semantics component is the executable definition of
BEAM (i.e. the official Erlang/OTP interpreter).

Validating Formal Semantics by Property-Based Cross-Testing

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

Program generator Program text
Translated program text

Language 1 Executed result 1

Language 2 Executed result 2

Proved result 1 Formal semantics 1

oo Comparison [€-----

Proved result 2 Formal semantics 2

Figure 1. The general design of our approach

e We adapt method M4 by using a test suite as well as
randomly generated programs to test our semantics
against the reference implementation (i.e. the official
Erlang/OTP interpreter). For this, we needed to make
both the small-step semantics for Erlang and the big-
step semantics for Core Erlang executable. We sought
to gather execution information from the inductively
defined big-step semantics, namely the final configura-
tions and the corresponding proofs in the operational
semantics, and we also developed an equivalent, func-
tional version [30] of this semantics to speed up the
testing process.

o Finally, we adapt method M5 in two different ways:

— Firstly, by having semantics in two different styles
(even though for two slightly different languages):
the Erlang semantics is in small-step (reduction style
with evaluation contexts), while the Core Erlang se-
mantics is given as a (functional) big-step semantics.

— Secondly, for Core Erlang, we developed inductive
and functional big-step semantics which we also
proved equivalent, so that testing the functional def-
inition is sufficient to verify the inductive version.

We believe that this combination (as opposed to simple com-
position) of methods results in an even more effective formal
semantics validation technique.

As seen in Figure 1, our method can be summarised as
follows. We consider two programming languages with ref-
erence implementations and executable formal semantics
(possibly in different semantics frameworks), as well as a
translator between the two languages. We use a data gener-
ator to sample random programs in the first language, and
we translate each program into the second language. Then
we feed the original and translated programs into the cor-
responding implementations and semantics, and finally we
compare the results. This latter step is of interest mainly
from the technical point of view; in general, it is a structural
equality check on the resulting values. The comparison is
implemented within a QuickCheck property, thus failing
tests are shrunk automatically in a local search for related
but simpler failing tests.

4.2 Program Generator

As stated in Section 2, to apply property-based testing on
Erlang semantics definitions, we need a data generator for
random programs. Composing a syntax tree generator from
the basic generator functions is cumbersome and error-prone,
although there exist implementations [26, 34] that rely on
the lower-level description of the data type of well-formed
abstract syntax trees. The canonical way of defining the
language is specifying it with a formal grammar that can be
used for sampling programs [20, 25, 34]. Since programming
languages are typically context-sensitive, the notation has
to be an enhanced variant of context-free grammars.

In our previous work on validating refactoring tools [14,
21], we already defined part of Erlang with an attribute gram-
mar and developed a translator that turns attribute grammars
into equivalent generators, where a grammar and a genera-
tor are equivalent if they generate the same language. This
solution allows us to easily define and refine the (weighted)
set of (syntactically and semantically valid) Erlang abstract
syntax trees, and then it synthesises a QuickCheck generator
from the grammar automatically.

However, in this work we made two important improve-
ments to the existing generator. On one hand, we had to
tailor the grammar to the language coverage of the seman-
tics, so that we generate programs that we can evaluate in the
formal definition. More importantly, we added support for
proper shrinking of programs. None of the existing Erlang
program generators, including our previous work, addresses
how counterexample programs are shrunk. There are default
mechanisms for shrinking, but those may not be suitable for
syntax tree generators.

What illustrates the complexity of the problem very well
is that QuviQ’s program generator? [34] crashes with “out
of memory” every time a program of generator size larger
than 3 (about a hundred lines of code) needs to be shrunk.
Furthermore, if a tiny program is generated with a smaller
generator size, it is shrunk to -module([]). which is not
even a well-formed program. We provide a fairly generic
solution by means of the grammar-based generator.

2eqc_erlang_program:module/1

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

Syntax tree format. What is an abstract syntax tree in
Erlang? In the Erlang/OTP Syntax Tools [15], abstract syn-
tax trees are represented by so-called tagged tuples, where
the subtrees of a node are given in a list. For example, the
following verbatim shows the syntax tree that represents the
concrete expression {1, 2 + 3}:

{tree, tuple,{attr,0,[],none},
[{tree,integer ,{attr,0,[]1,none},1},
{tree,infix_expr ,{attr,0,[],none},
{infix_expr,'+",
{tree,integer ,{attr,0,[]1,none},2},
{tree,integer ,{attr,0,[]1,none},3}}3}1}

In our experience, generating these tuples directly may
be error-prone (accidentally constructing tuples that do not
represent valid syntax trees), and on the other hand, built-in
shrinking may work improperly for them. We can overcome
the first issue by generating symbolic calls to the abstract syn-
tax constructors defined in the erl_syntax module in the Syn-
tax Tools. Symbolic calls are of the form {call, M, F, As},
where M and F determine the module and function names,
while As is the argument list. The second issue, shrinking,
will be addressed in the following paragraphs.

This snippet shows the symbolic call that reduces to the
previous syntax tree:

{call, erl_syntax, tuple,
[[{call, erl_syntax,integer, [1]},
{call, erl_syntax,infix_expr,
[{call, erl_syntax,integer, [2]1}, '+',
{call, erl_syntax,integer, [3]1}13}11}

Syntax tree generator. To sample programs for testing,
we create a generator that produces random symbolic calls
building syntax trees. Both the syntactic constructors and
the subtrees can be randomized, yielding test programs vary-
ing in the used language features and in their structural
complexity.

In particular, expressions may be either simple or com-
pound (this alternative can be achieved by using the oneof>
combinator), and compound expressions with arbitrary num-
ber of subexpressions can be generated with the list combi-
nator: the tuple expression will have an arbitrary number of
elements, and the infix expression will contain random oper-
ator and operands. With this, we can generalise the previous
concrete syntax tree into the following generator function
for expressions:

expr() ->
oneof ([
PLET(I, int(Q),
{call, erl_syntax, integer, [I1}),
?2LET(E1, expr(),

3In fact, we use the frequency combinator to weight the base and recursive
cases, and the ratio is a parameter to the testing tool.

Péter Bereczky, Daniel Horpacsi, Judit Készegi, Soma Szeier, and Simon Thompson

?LET(Op, oneof (['+', '=', 'x' '"/']),
?LET(E2, expr(),
{call, erl_syntax,
infix_expr,
[E1, Op, E21}))),
?LET(Es, list(expr()),
{call, erl_syntax, tuple, [Es]})1).

In the grammar-based approach, we obtain such a gen-
erator from the following piece of grammar (and all other
language elements can be formalized with similar notations):

expr ->
int :: {call,erl_syntax,integer, ['$1'1})
| {expr} {call,erl_syntax,tuple, ['$1']}

| expr infix_op expr

{call,erl_syntax,infix_expr,

['$1',"'%2","$3"']13

The grammar description we actually use in our imple-
mentation is more sophisticated in a number of aspects: re-
cursive generators are equipped with an explicit recursion
limit, all symbols are extended with a set of attributes, and
the attributes can be automatically inherited, split and ag-
gregated. Last but not least, the grammar-based generator
treats recursive and repeated symbols in a special way from
the shrinking point of view.

Shrinking. During property based testing, QuickCheck
controls the size of the generated data. It starts with small
terms and keeps increasing the size progressively, until it
finds a counterexample. Even though it is not desired for us
to generate large test programs (which are expensive to run
and hard to comprehend), some bugs in the semantics might
only be revealed with complex combinations of language fea-
tures rendered as long program texts. One of the prominent
features of property-based testing is the generators’ ability
to automatically simplify their sampled value and present
(locally) minimal counterexamples.

For built-in generators, shrinking is straightforward: for
instance, natural numbers are shrunk by decreasing their
value toward zero, intervals shrink toward the empty inter-
val, while the built-in list generator starts dropping elements.
However, for generators as complex as defining a program-
ming language, this built-in mechanism needs to be be over-
ridden by using the shrink and letshrink combinators. As
Palka et al. [31] point out, the main problem is to make sure
the programs are shrunk structurally whilst maintaining
well-formedness. We apply the following shrinking methods
in our grammar-based generation:

e Recursive symbols: shrinking to subtrees. By default,
the ?LET combinator shrinks bottom-up; in the gen-
erator ?LET(Pat, G1, G2), “the result is shrunk by
first shrinking the value generated by G1 while the
test still fails, then shrinking the value generated by
G2” [34]. For instance, if an infix expression is defined

Validating Formal Semantics by Property-Based Cross-Testing

like above, the shrinking will try to shrink the left
subexpression, then the right subexpression, but will
never try to simplify the entire expression into one
of its subexpressions, preventing it to become struc-
turally simpler. In our solution, the recursive rules are
automatically reordered so that the generator can use
the letshrink combinator to allow shrinking to any
of the recursive subexpressions. This can reduce the
structural complexity of the generated tree in a very
intuitive way. For instance, the following are valid
simplification steps:

e Recursive symbols: shrinking to base cases. In some
cases, it may prove useful to shrink compound ex-
pressions into non-recursive, base cases (by using the
shrink combinator). This, unlike the previous method,
does not keep any of the original subtrees, but gener-
ates a new, simpler subtree. Like the above method, this
shrinking results in decreasing the structural complex-
ity of the generated program. Ultimately, it simplifies
any compound expression toward the smallest literal
of its type. For instance:

1T+ 2 - Q

® Repeated symbols. Our grammar description supports
EBNF-like notations of repetition. If a grammar symbol
is enclosed in curly braces (e.g. {expr}), it is generated
repeatedly in a list — if the symbol is preceded by a
value, it is the list size, otherwise we generate a list
of an arbitrary size. Actually, these constructs could
be generated by using the built-in QuickCheck combi-
nators list and vector, respectively, but the shrinking
of list only “drops elements from the list” [34], while
the shrinking of the vector combinator is not specified
in the documentation [34] at all. Thus, we defined our
own list generators, which, when shrunk, first simplify
the list items as much as possible (preserving the coun-
terexample), and then start dropping the elements. For

instance:

{1 + 2, true} — {1, true}
{1 + 2, true} — {2, true}
{1 + 2, true} — {0, true}
{1 + 2, true} — {0, false}
{1 + 2, true} — {0}

{1 + 2, true} — {false}

{1 + 2, true} — {3}

Our current implementation can be configured to ei-
ther shrink the simplified list to single-element lists
(e.g. tuples shrink to singleton tuples of their elements
and functions are simplified to one of their clauses),
or to shrink lists to any of their sublists. We plan to

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

make it configurable whether the elements are shrunk
first or they are dropped from the list first.

An example shrinking. Let us discuss a simple example
briefly. In one of our experiments, there was a 150LOC pro-
gram generated, containing three functions and compound
expressions with lots of clauses. Like in many similar cases,
the shrinking was able to reduce it to just 4 lines of code.
The example contained the following match expression, sur-
rounded by a number of different expressions:

main() ->

Q = list_to_tuple([go ||
YwTEHsy <- [] ++
[pain, []1, [J], 'PRESENT'],
length (YwTEHsy) < 0,
false or false or not false,
not (true or true),
length(YwTEHsy) /= 171),

This was a counterexample indeed, which uncovered an
interesting bug in one of the semantics. The evaluation of
the above expression yields the value list_to_tuple([])
as the guards of the list comprehension are never satisfiable.
The tricky part is that one of the guard expressions throws
an exception (“bad argument”), but in Erlang that should be
treated as false. However, the Erlang semantics evaluated
this expression to the “bad argument” exception. It is far
from trivial to tell the cause of the bug by only looking at
the 150LOC program.

Fortunately, once the counterexample was found, shrink-
ing kicked in gear and did a whole lot of simplifications. On
one hand, it was able to simplify the function to this single
expression that caused the bug, as well as it dropped the rest
of the generated functions. The 1ist_to_tuple and length
calls remained while the list generator got simplified to a
singleton list with the 'PRESENT' atom, some of the guards
were dropped, only one of the length checks remained, which
was just enough to keep the bug in the program. From the
shrunk code, we can see that the cause of the error was that
the Erlang semantics does not handle guards evaluating to
exceptions as false guards.

main() ->
Q = list_to_tuple([go ||
YwTEHsy <- ['PRESENT '],
length (YwTEHsy) /= 0]),
0.

Why did @ remain in the function if it is not needed to
reproduce the error? In the current grammar definition, each
function clause has a number of statements and a final expres-
sion (which is not a matching). This restriction could be easily
relaxed by changing the attribute grammar specification.

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

Property and shrinking

Péter Bereczky, Daniel Horpacsi, Judit Készegi, Soma Szeier, and Simon Thompson

Erlang AST Erlang AST in Erlang
generator

Erlang/OTP compiler

Core Erlang AST in
Erlang

Erlang text

A(core Erlang result
AST converter

Erlang semantics in K

Core Erlang AST in Coq Core Erlﬁlngc:)sqemanhcs

Figure 2. The components of our testing framework

Shrinking strategies. Our current prototype implements
an expensive but rather exhaustive shrinking strategy: it al-
lows expressions to shrink to any if their subexpressions, and
if none of them breaks the property, compound expressions
are replaced with simple base cases. Note that these rules
apply to each and every expression in the tree, thousands
of syntax nodes in any average size program, resulting in
the shrinking time (along with the branches in the tree of
possible simplifications) being exponential to the number
of syntax nodes. This strategy is likely to find significantly
reduced counterexamples, but it is very computation-heavy.

We have found that if shrinking is defined as above, the
sampled programs’ size needs to be kept down by the genera-
tor manually, otherwise the shrinking may take up unreason-
able amounts of time. If the programs get larger, shrinking
is better be made more aggressive: for instance, one can
disable shrinking to subexpressions and reduce expressions
to the default value of their type immediately, cutting the
shrinking tree and therefore the average time for shrink-
ing significantly. Apparently, this weakened strategy is less
expensive, but in some cases it yields considerably more
complex counterexamples.

4.3 Implementation

In this section, we give an overview of the structure and the
behaviour of our implementation of the semantics validation
system (see Figure 2). It is an open-source project and it is
available on Github [13]. Basically, it compares the behaviour
of the above-mentioned small-step semantics of Erlang im-
plemented in the K framework and the big-step semantics
of Core Erlang implemented in Coq (or the Haskell extrac-
tion, see Section 3.3) with each other and with the behaviour
of the reference implementation. In property-based testing
mode, it relies on QuickCheck (we use QuickCheck Mini
2.01) to sample random programs, check the equivalence
property and do counterexample shrinking.

The Erlang/OTP Compiler. The reference implementa-
tion Erlang/OTP compiler and interpreter 22.0 is a trusted

component and reference for reasoning in our solution. It
plays different roles in the testing process:

e Pretty-prints randomly generated Erlang syntax trees

e Preprocesses Erlang code for the Erlang semantics in
K (this step was necessary to unfold macros)

e Translates Erlang to Core Erlang and emits the abstract
syntax tree (AST)

e Translates Erlang to BEAM and interprets the bytecode
(i.e. executes the program to be tested and provides
the result expected from the semantics definitions)

e Compares the outcomes emitted by the semantics with
the expected (BEAM) result

e Feeds back the result of the test case into QuickCheck

In the Erlang to Core Erlang translation, we disable opti-
misation in order not to reduce the original code complexity.
We plan to refine this solution and perform the validation
with both the optimised and the unoptimised versions of the
Core Erlang object code.

Conversions. We also adapted a glue component that
helps feeding the Core Erlang program into the Coq im-
plementation of the semantics. Unlike the Erlang semantics
in K, the Core Erlang formalisation in Coq does not imple-
ment a parser and therefore it takes trees rather than text as
input. As we ought to avoid developing a Core Erlang parser
in Coq, we opted for pretty-printing the Core Erlang AST
into Coq text defining the same AST within Coq (in case if
the extracted Haskell code is in use, the converter emits the
AST in Haskell).

Orchestration. In our implementation, the validation pro-
cess is controlled by an Erlang script that coordinates the rest
of the components. In particular, it uses the QuickCheck gen-
erator to synthesise random programs, invokes Erlang/OTP
to obtain the expected result, does the conversions to obtain
representations to be fed into the formal semantics in K and
Coq, invokes the semantics, and finally, compares the results.

Validating Formal Semantics by Property-Based Cross-Testing

The script can run either unit test suites or random tests,
and it can provide coverage information both for the seman-
tics rules and for the generator grammar. The user can adjust
the complexity of the randomly generated programs, and
can turn on or off shrinking of counterexamples.

5 Evaluation

In this section, we evaluate our approach from different
points of view: we present some faults we found in the se-
mantics and we measure the mean time to failure, which
characterises how quickly these faults can be found. We also
measure the coverage of the generators and the semantics,
and the shrinking time for programs of different sizes. For
our testing, we used an average performance laptop (8GB
RAM, Intel i5 8th-gen 8-core 1.6GHz processor).

5.1 Bugs found

Naturally, the main goal of our testing was to find faults in
the semantics which may be hard to spot by only using hand
written test cases. The key errors found (and fixed) include:

e Both semantics handled list append operations incor-
rectly, but in the same way: neither of them handled
improper lists initially (e.g. [1,2] ++ 3). However,
both semantics were corrected in the same way.

e Value lists and try expressions were only partly sup-
ported in the Core Erlang semantics; to overcome this
issue, a major rework of the semantics was needed.

e The Core Erlang semantics used Coq’s div function
instead of quot for the formalisation of Erlang’s div
operator, which carried a slightly different semantics.

e Comparison operators were not implemented for all
kinds of values in the Erlang semantics. We could use
the comparison formalised in the Core Erlang seman-
tics as a guide to supplement the missing cases.

o The generator expression of the list comprehension in
the Erlang semantics was assumed to be a list literal
(while it should evaluate to one).

e List normalisation (e.g. transforming the listof [1, 2, 3]
to [1|[2|[3|[]1]1]1] syntactically) rewrite rules did not
apply anywhere in the configuration in the Erlang se-
mantics, which in some cases prevented progress in
the small-step derivation.

We also found two potential internal faults in the K frame-
work (deprecated 3.6 version). In an operator chain, andalso
(and similarly orelse) operators could have been also parsed
as the and operator and also atom. We avoided this parsing
ambiguity by marking the syntax of andalso preferred, that
is the parsing rule for andalso will be used whenever there
are other matching rules; this error is fixed in version 5.0.
Secondly, a chain of infix operators and operands (without
parentheses), where some of the operands in the middle of
the chain are function calls, resulted in parsing errors.

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

5.2 Coverage

To measure the effectiveness of our testing, first we present
the coverage of it, that is the coverage of the generator (i.e.
what kind of expressions are generated) and rule coverage
for both semantics.

Generator coverage. Our attribute grammar-based pro-
gram synthesiser supports the generation of a representative
subset of Erlang. It generates a module with a number of top-
level functions that use the following language constructs:
literals and compound expressions for integers, booleans,
atoms, tuples and lists (including list comprehensions), local
variables, match and case expressions, function application.
In addition, a representative set of built-in functions (e.g.
arithmetic, boolean and cast operators) are generated. In
fact, these are the language elements that are implemented
by both of the semantics, and we keep the generator and the
semantics in sync in terms of language coverage.

Semantics coverage. For both semantics, we measured
rule coverage, that is how many rules of the semantics were
used compared to the number of all rules. These rules are
the rewrite rules in case of the Erlang semantics, while the
different branches of the recursive functional semantics are
considered as derivation rules in case of Core Erlang (more-
over, the use of built-in functions is also included in both
cases). We used an additional cell in the configuration, to log
how many times different derivation rules were used. The
statistics are described in Table 1.

Erlang Core Erlang
semantics | semantics
Number of rules 69 70
Coverage 75.36% 75.71%
Number of exception-free rules | 51 53
Exception-free coverage 86.28% 92.45%
Test suite coverage 100% 80%

Table 1. Semantics rule coverage after 1000 tests

We note that the generated programs are static semanti-
cally valid, which reduces (for some expressions it eliminates)
the probability of generating expressions that yield excep-
tions. This is one of the reasons why we do not get full rule
coverage (only 75.36%) with the random testing. The other
reason is that some expressions (e.g. nameless functions and
their application) are supported in the Core Erlang semantics,
but have not been generated in the random testing yet.

After finding and correcting the faults and misconceptions
in the semantics, we assembled a test suite (including well-
known sequential Erlang benchmarks [16, 36]) that provides
maximal rule coverage on the Erlang semantics. The advan-
tage of using official benchmarks is that they contain small
but meaningful, pragmatic examples. This test suite uncov-
ered that the Erlang semantics lacked the formalisation of
some exceptions. In this case, the semantics of Core Erlang
was useful again to supplement these.

IFL °20, September 2-4, 2020, Canterbury, United Kingdom Péter Bereczky, Daniel Horpacsi, Judit Készegi, Soma Szeier, and Simon Thompson

Semantics Error type Time (s) | Number of tests
Core Erlang Wrong addition 148.523 | 384
Core Erlang Missing rem 17.812 4,4
Core Erlang Wrong case guard semantics 4.56 1
Core Erlang Environment is not updated in let 5.705 1.4
Core Erlang Div instead of quot 800.445 | 204
Core Erlang Wrong app 214.048 54.64
Core Erlang Division by zero 10.98 2.65
Erlang List normalisation without anywhere 15.886 4
Erlang Missing rem 15.556 4
Erlang Wrong addition 21.756 4.5
Erlang Wrong rewrite rule for app 14.052 3.25
Erlang List comprehension wrong guard 317.24 81.56
Erlang Generator of list comprehension assumed to be a list | 22.473 5.68
Erlang Wrong tuple comparison 205.497 | 53

Table 2. Mean time to failure using few hundred LOC programs

While we reached the maximal rule coverage on the Erlang Size LOC | AST node count | AST height
semantics (at least together with the test suite), we cannot small 19.65 | 407.7 123.27
say the same about the Core Erlang semantics, where only medium | 83.63 | 2233.29 680.06
80% of the rules were covered by the test suite. large 161.02 | 4033.29 1227.94

Although every kind of expression (formalised in the Core Table 3. Size terminology
Erlang semantics) is translated from Erlang (based on our
observations), this does not imply maximal rule coverage
of the Core Erlang semantics. Actually, there is a simple ex-
planation: during the translation process of the Erlang code,
among other transformations, the evaluation order of pa-
rameters is explicitly determined by nested let expressions
in Core Erlang (see Section 3) and for case expressions, the
compiler generates a “catch-all” clause where an exception is
thrown. That is, we cannot produce Core Erlang code trans-
lated from Erlang such that an exception occurs during the
evaluation of parameters, or because there was no match-
ing clause in the case expression; for these corner cases we
needed to write tests by hand in Core Erlang which can be
included in this testing process only for the semantics of
Core Erlang.

The general message of this observation is that when there
are two languages, say L; and L,, and L; can be translated to
L,, it should be considered whether all kinds of expressions

Generating only large programs. The statistics about
the re-injected bugs are described in Table 2. These mea-
surements represent our initial approach only using large
random programs, and do not include the time of shrinking.

The mean times as well as the number of tests needed to
trigger particular bugs shows significant differences. This is
because some of the bugs can be hidden (e.g. the difference
between div and quot during evaluation only appears when
one of their parameters is negative) while others are easy
to encounter (e.g. missing rem operation appears every time
such a construct is evaluated).

To speed up execution, the Core Erlang semantics was
extracted to Haskell; moreover, the generator for random
programs was extended with options to configure the shape
of generated programs (e.g. size, number of binary operators
and compound expressions, etc.):

or statements can be translated from L; to L,. Moreover, e Recursion depth limit determines how many times a
even if this is the case, it does not necessarily mean that full recursive rule can be used within an expression.

rule coverage on L; semantics guarantees full rule coverage e Expression size determines the complexity of base val-
on L, semantics. ues and the size of collections.

e Recursive rule probability determines the probability

5.3 Execution Speed of using recursive rules over base cases.

The other important aspect of effectiveness is execution Testing with programs of different sizes. Using the ex-
speed. We re-injected some of the bugs mentioned above and tracted Haskell semantics and adjusting the options men-
we measured the average time and the average number of tioned above and the recursion depth limit of the generator
test cases until the error was found (mean time to failure). We (which allows us to set the size of generated programs), we
provide two different measurements in the next paragraphs managed to speed up the process to find specific faults. We
(the terminology in Table 3 will be used to denote program present our preliminary results in Table 4 targeting two spe-

complexity). Thereafter, we also discuss the shrinking speed. cific bugs.

Validating Formal Semantics by Property-Based Cross-Testing

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

Semantics Error type Program size | Time (s) | Number of tests
Core Erlang Missing rem small 26.96 6.44

Core Erlang Missing rem medium 12.89 3.63

Core Erlang Missing rem large 12.66 3.33

Core Erlang | Div instead of quot | small 560.89 167.33

Core Erlang | Div instead of quot | medium 250.11 62.5

Core Erlang | Div instead of quot | large 218.47 50.83

Table 4. Mean time to failure using programs of different sizes

As the preliminary data suggests, we managed to improve
our initial corresponding results, even in case of generating
large programs. Moreover, while program size grows, the
number of tests and time to find the failure decreases. This is
because the execution path contains more and more language
constructs to evaluate. On the other hand, the decrease in
time is less and less significant as the size grows, so it does
not worth testing with very large programs.

Program size | Shrinking time (s)
small 126.83
medium 177.55
large 978.47

Table 5. Mean shrinking time for programs of different sizes

Shrinking speed. We have measured the shrinking speed
of the counterexamples depending on their size (Table 5).
Not surprisingly, these showed exponential growth as the
size increased. From the point of view of execution times, it
is worth generating medium-sized programs, and shrinking
them to discover well-hidden errors in the semantics; how-
ever, for simpler bugs, it is more efficient to use small random
programs which can be understood without shrinking.

We should also note that the use of the inductive big-step
semantics would have increased the execution time by orders
of magnitude, given that the computer would not have run
out of memory first. Just to mention concrete numbers, for a
smaller Erlang program (around one hundred lines of code)
which contained only arithmetic operations, the Core Erlang
inductive semantics execution run for 30 minutes on average.

6 Conclusion and Future Work

In conclusion, we have described an approach to validat-
ing formal semantics by testing them against each other
and a reference implementation in a property-based setting,
combining a number of semantics validation methods. The
grammar-based random generator for test programs uses
well-defined rules for simplifying counterexamples. We ap-
plied our approach to testing Erlang and Core Erlang se-
mantics against the reference implementations of these lan-
guages, also covering technical issues such as the efficient
execution of formal semantics. We evaluated our approach,
measuring its performance and coverage.

We found that our testing approach is effective and useful.
Property-based testing excels in finding “sneaky” problems
(e.g. using div or quot in the Core Erlang semantics to for-
malise Erlang’s div), and the automatic simplification of
counterexamples is invaluable in these cases. In addition,
cross-testing allows us to solve similar problems in both se-
mantics the same way, and one semantics definition can aid
the rectification of the other.

We have also found some disadvantages of the approach.
Full rule coverage for the higher level language semantics
does not ensure full rule coverage in the translation language
semantics; in such cases, additional tests must be written
for the latter (Core Erlang in our case). Furthermore, when
applying moderate shrinking rules, simplification of large
programs takes an unreasonable amount of time; this needs
tweaking the generator to promote smaller syntax trees.

We are working on speeding up the testing process: we
are porting the Erlang semantics to the latest version of the
K framework, and fine-tuning the generator to get more ex-
haustive coverage with smaller but more complex programs
(see preliminary data in Table 4). We will also investigate
QuickCheck’s parallel testing capabilities for scalability.

In the future, we plan to increase the language coverage of
the semantics and the generator, including concurrency fea-
tures of Erlang and Core Erlang. Our long-term goal is to use
the validated formalisations of these languages for reasoning
about behaviour-preservation of program transformations.

Acknowledgments

This work has been supported by the European Union, co-
financed by the European Social Fund projects EFOP-3.6.2-
16-2017-00013, “Thematic Fundamental Research Collabo-
rations Grounding Innovation in Informatics and Infocom-
munications (3IN)” and “Integralt kutat6i utanpotlas-képzési
program az informatika és szamitastudomany diszciplinaris
teriiletein (Integrated program for training new generation
of researchers in the disciplinary fields of computer science)”,
No. EFOP-3.6.3-VEKOP-16-2017-00002.

It has also received support from the National Research,
Development and Innovation Fund of Hungary, financed
by the Thematic Excellence Programme TKP2020-NKA-06
(National Challenges Subprogramme) scheme, project “Ap-
plication Domain Specific Highly Reliable IT Solutions™.

IFL °20, September 2-4, 2020, Canterbury, United Kingdom

Supported by the UNKP-20-4 New National Excellence
Program of the Ministry for Innovation and Technology
from the source of the National Research, Development and
Innovation Fund.

References

(1]

[11]
[12]
[13]

[14]

[15]

[16]
[17]

[18]

[19]

Péter Bereczky, Daniel Horpacsi, and Simon Thompson. 2020. A Proof
Assistant Based Formalisation of a Subset of Sequential Core Erlang. In
Trends in Functional Programming, Aleksander Byrski and John Hughes
(Eds.). Springer International Publishing, Cham, 139-158. https://doi.
org/10.1007/978-3-030-57761-2_7

Péter Bereczky, Daniel Horpacsi, and Simon J. Thompson. 2020.
Machine-Checked Natural Semantics for Core Erlang: Exceptions
and Side Effects. In Proceedings of Erlang 2020. ACM, 1-13. https:
//doi.org/10.1145/3406085.3409008

Péter Bereczky, Daniel Horpacsi, and Simon Thompson.
2020. A Comparison of Big-step Semantics Definition Styles.
arXiv:2011.10373 [cs.PL]

Sandrine Blazy. 2007. Experiments in validating formal semantics for
C. In C/C++ Verification Workshop. Oxford, United Kingdom, 95-102.
https://hal.inria.fr/inria-00292043

Sandrine Blazy and Xavier Leroy. 2009. Mechanized Semantics for the
Clight Subset of the C Language. Journal of Automated Reasoning 43,
3 (Jul 2009), 263-288. https://doi.org/10.1007/s10817-009-9148-3
Martin Bodin et al. 2014. A Trusted Mechanised JavaScript Specifica-
tion. SIGPLAN Not. 49, 1 (Jan. 2014), 87-100. https://doi.org/10.1145/
2578855.2535876

Martin Bodin, Tomas Diaz, and Eric Tanter. 2018. A Trustworthy
Mechanized Formalization of R. SIGPLAN Not. 53, 8 (Oct. 2018), 13-24.
https://doi.org/10.1145/3393673.3276946

Richard Carlsson et al. 2004. Core Erlang 1.0.3 language specification.
Technical Report. https://www.it.uu.se/research/group/hipe/cerl/doc/
core_erlang-1.0.3.pdf

Francesco Cesarini and Simon Thompson. 2009. ERLANG Programming
(1st ed.). O’Reilly Media, Inc.

Arthur Charguéraud. 2013. Pretty-Big-Step Semantics. In Programming
Languages and Systems, Matthias Felleisen and Philippa Gardner (Eds.).
Springer. https://doi.org/10.1007/978-3-642-37036-6_3

Coq documentation 2021. Ltac documentation. Retrieved April 21st,
2021 from https://coq.inria.fr/refman/proof-engine/ltac.html

Coq introduction 2021. A short introduction to Coq. Retrieved April
21st, 2021 from https://coq.inria.fr/a-short-introduction-to-coq
Cross-testing semantics 2021. Erlang semantics testing. Retrieved April
21st, 2021 from https://github.com/harp-project/erlang-semantics-
testing

Déniel Drienyovszky, Daniel Horpacsi, and Simon Thompson. 2010.
Quickchecking Refactoring Tools. In Proceedings of Erlang °10. ACM,
75-80. https://doi.org/10.1145/1863509.1863521

Erlang/OTP Syntax Tools 2021. Erlang/OTP Syntax Tools. Retrieved
April 21st, 2021 from http://erlang.org/documentation/doc-11.1.4/lib/
syntax_tools-2.4/doc/pdf/syntax_tools-2.4.pdf

ErLLVM-bench 2021. ErLLVM-bench. Retrieved April 21st, 2021 from
https://github.com/cstavr/erllvm-bench

Daniele Filaretti and Sergio Maffeis. 2014. An Executable Formal
Semantics of PHP. In ECOOP 2014, Richard Jones (Ed.). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-44202-9_23

Paolo Guagliardo and Leonid Libkin. 2017. A Formal Semantics of
SQL Queries, Its Validation, and Applications. Proc. VLDB Endow. 11,
1 (Sept. 2017), 27-39. https://doi.org/10.14778/3151113.3151116

F. Hebert. 2019. Property-Based Testing with PropEr, Erlang, and Elixir:
Find Bugs Before Your Users Do. Pragmatic Bookshelf. https://books.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Péter Bereczky, Daniel Horpacsi, Judit Készegi, Soma Szeier, and Simon Thompson

google.hu/books?id=SGIOuUQEACAA]J
Renata Hodovan, Akos Kiss, and Tibor Gyiméthy. 2018. Grammarina-

tor: A Grammar-Based Open Source Fuzzer. In Proceedings of A-TEST
2018. ACM, 45-48. https://doi.org/10.1145/3278186.3278193

Daniel Horpacsi. 2018. Verification and Application of Program Trans-
formations. Ph.D. Dissertation. E6tvos Lorand University.

Xuan Huang. 2019. A Mechanized Formalization of the WebAssembly
Specification in Coq. https://www.cs.rit.edu/~mtf/student-resources/
20191_huang_mscourse.pdf

K projects 2021. K framework project catalogue. Retrieved April 21st,
2021 from https://github.com/kframework

Judit K&szegi. 2018. KErl: Executable semantics for Erlang. CEUR
Workshop Proceedings 2046 (2018), 144-160. http://ceur-ws.org/Vol-
2046/koszegi.pdf

P. M. Maurer. 1990. Generating test data with enhanced context-free
grammars. [EEE Software 7, 4 (1990), 50-55. https://doi.org/10.1109/
52.56422

Module proper_erlang_abstract_code 2021. PropEr generator of abstract
code. Retrieved April 21st, 2021 from https://github.com/proper-
testing/proper/blob/master/src/proper_erlang_abstract_code.erl
Natural Semantics for Core Erlang 2021. Core Erlang Formalization.
Retrieved April 21st, 2021 from https://github.com/harp-project/Core-
Erlang-Formalization

Martin Neuhdufler and Thomas Noll. 2007. Abstraction and model
checking of Core Erlang programs in Maude, In Proceedings of the
6th International Workshop on Rewriting Logic and its Applications.
ENTCS 176, 4, 147-163. https://doi.org/10.1016/j.entcs.2007.06.013
Official Core Erlang Parser 2018. Core Erlang YECC Parser Grammar.
Retrieved April 21st, 2021 from https://github.com/erlang/otp/blob/
master/lib/compiler/src/core_parse.yrl

Scott Owens et al. 2016. Functional Big-Step Semantics. In Program-
ming Languages and Systems, Peter Thiemann (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 589-615. https://doi.org/10.1007/978-
3-662-49498-1_23

Michatl H. Patka, Koen Claessen, Alejandro Russo, and John Hughes.
2011. Testing an Optimising Compiler by Generating Random Lambda
Terms. In Proceedings of AST’11. ACM, New York, NY, USA, 91-97.
https://doi.org/10.1145/1982595.1982615

Arpad Perényi and Jan Midtgaard. 2020. Stack-Driven Program Gen-
eration of WebAssembly. In Programming Languages and Systems,
Bruno C. d. S. Oliveira (Ed.). Springer International Publishing, Cham,
209-230. https://doi.org/10.1007/978-3-030-64437-6_11

Joe Gibbs Politz et al. 2012. A Tested Semantics for Getters, Setters,
and Eval in JavaScript. SIGPLAN Not. 48, 2 (oct 2012), 1-16. https:
//doi.org/10.1145/2480360.2384579

QuickCheck Documentation 2017. QuviQ QuickCheck. Retrieved
January 7th, 2021 from http://quviq.com/documentation/eqc

Ian Roessle, Freek Verbeek, and Binoy Ravindran. 2019. Formally
Verified Big Step Semantics out of x86-64 Binaries. In Proceedings of
CPP 2019. ACM, New York, NY, USA, 181-195. https://doi.org/10.1145/
3293880.3294102

Konstantinos Sagonas, Chris Stavrakakis, and Yiannis Tsiouris. 2012.
ErLLVM: An LLVM Backend for Erlang. In Proceedings of the Eleventh
ACM SIGPLAN Workshop on Erlang Workshop. ACM, 21-32. https:
//doi.org/10.1145/2364489.2364494

The BEAM Book 2020. The Erlang Runtime System. Retrieved April
21st, 2021 from https://github.com/happi/theBeamBook/releases/
download/0.0.14.fix/beam-book.pdf

Zheng Yang and Hang Lei. 2018. Lolisa: Formal Syntax and
Semantics for a Subset of the Solidity Programming Language.
arXiv:1803.09885 [cs.PL]

https://doi.org/10.1007/978-3-030-57761-2_7
https://doi.org/10.1007/978-3-030-57761-2_7
https://doi.org/10.1145/3406085.3409008
https://doi.org/10.1145/3406085.3409008
https://arxiv.org/abs/2011.10373
https://hal.inria.fr/inria-00292043
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/2578855.2535876
https://doi.org/10.1145/3393673.3276946
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://doi.org/10.1007/978-3-642-37036-6_3
https://coq.inria.fr/refman/proof-engine/ltac.html
https://coq.inria.fr/a-short-introduction-to-coq
https://github.com/harp-project/erlang-semantics-testing
https://github.com/harp-project/erlang-semantics-testing
https://doi.org/10.1145/1863509.1863521
http://erlang.org/documentation/doc-11.1.4/lib/syntax_tools-2.4/doc/pdf/syntax_tools-2.4.pdf
http://erlang.org/documentation/doc-11.1.4/lib/syntax_tools-2.4/doc/pdf/syntax_tools-2.4.pdf
https://github.com/cstavr/erllvm-bench
https://doi.org/10.1007/978-3-662-44202-9_23
https://doi.org/10.14778/3151113.3151116
https://books.google.hu/books?id=SGI0uQEACAAJ
https://books.google.hu/books?id=SGI0uQEACAAJ
https://doi.org/10.1145/3278186.3278193
https://www.cs.rit.edu/~mtf/student-resources/20191_huang_mscourse.pdf
https://www.cs.rit.edu/~mtf/student-resources/20191_huang_mscourse.pdf
https://github.com/kframework
http://ceur-ws.org/Vol-2046/koszegi.pdf
http://ceur-ws.org/Vol-2046/koszegi.pdf
https://doi.org/10.1109/52.56422
https://doi.org/10.1109/52.56422
https://github.com/proper-testing/proper/blob/master/src/proper_erlang_abstract_code.erl
https://github.com/proper-testing/proper/blob/master/src/proper_erlang_abstract_code.erl
https://github.com/harp-project/Core-Erlang-Formalization
https://github.com/harp-project/Core-Erlang-Formalization
https://doi.org/10.1016/j.entcs.2007.06.013
https://github.com/erlang/otp/blob/master/lib/compiler/src/core_parse.yrl
https://github.com/erlang/otp/blob/master/lib/compiler/src/core_parse.yrl
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1145/1982595.1982615
https://doi.org/10.1007/978-3-030-64437-6_11
https://doi.org/10.1145/2480360.2384579
https://doi.org/10.1145/2480360.2384579
http://quviq.com/documentation/eqc
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/3293880.3294102
https://doi.org/10.1145/2364489.2364494
https://doi.org/10.1145/2364489.2364494
https://github.com/happi/theBeamBook/releases/download/0.0.14.fix/beam-book.pdf
https://github.com/happi/theBeamBook/releases/download/0.0.14.fix/beam-book.pdf
https://arxiv.org/abs/1803.09885

	Abstract
	1 Introduction
	2 Related Work
	3 Semantics Under Test
	3.1 Erlang and its Core Language
	3.2 Execution
	3.3 Efficient Execution

	4 Property-Based Cross-Testing
	4.1 Overview of the Method
	4.2 Program Generator
	4.3 Implementation

	5 Evaluation
	5.1 Bugs found
	5.2 Coverage
	5.3 Execution Speed

	6 Conclusion and Future Work
	Acknowledgments
	References

