
On-Device Training of Machine Learning Models on
Microcontrollers With a Look at Federated Learning

Marc Monfort Grau
Roger Pueyo Centelles

Felix Freitag
marc.monfort@gmail.com

rpueyo@ac.upc.edu
felix@ac.upc.edu

Technical University of Catalonia
Barcelona, Spain

ABSTRACT
Recent progress in machine learning frameworks makes it now
possible to run an inference with sophisticated machine learning
models on tiny microcontrollers. Model training, however, is typi-
cally done separately on powerful computers. There, the training
process has abundant CPU and memory resources to process the
stored datasets. In this work, we explore a different approach: train-
ing the model directly on the microcontroller. We implement this
approach for a keyword spotting task. Then, we extend the training
process using federated learning among microcontrollers. Our ex-
periments with model training show an overall trend of decreasing
loss with the increase of training epochs.

KEYWORDS
machine learning, keyword spotting, embedded systems, federated
learning

ACM Reference Format:
Marc Monfort Grau, Roger Pueyo Centelles, and Felix Freitag. 2021. On-
Device Training of Machine Learning Models on Microcontrollers With a
Look at Federated Learning. In Conference on Information Technology for
Social Good (GoodIT ’21), September 9–11, 2021, Roma, Italy. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3462203.3475896

1 INTRODUCTION
Inference with trained machine learning models is now possible on
tiny computing devices, while a few years ago this was only run
in the cloud [6]. This evolution has been enabled by the extension
of popular machine learning frameworks such as TensorFlow and
PyTorch to support lower capacity hardware, following the trend of
moving computing services from the cloud to the network edge [7].

In common applications using machine learning on microcon-
trollers, models are typically trained separately, off-line, on more

powerful computers. After training, the tools in the machine learn-
ing framework allow to optimize the model with regards to the
resources consumption (e.g., memory usage on the target device).
Some optimizations may involve a minor loss of accuracy, but the
off-line training allows leveraging all the potential and facilities
of these machine learning frameworks and using large training
datasets [3].

In comparison, training on the microcontroller itself has limi-
tations and is currently a niche approach only, but it may better
respond to specific needs and enable new application areas. As
to [5], training on the microcontroller allows to move from static
models into dynamic ones, which could adapt to new data. Scenar-
ios where such capacities have potential include a large number
of distributed and remote devices, where performing updates with
external models is not feasible. There could also be a potential for
energy savings, due to the low energy consumption of microcon-
trollers. Finally, for artificial intelligence applications development,
training on the device reduces the need to have access to higher-end
computing devices.

In recent years, the technique of federated learning has raised
the interest of the research community, as it provides a means
to train machine learning models on distributed devices without
sharing the local training data [8]. In federated learning, instead of
training a single model with a centralized dataset, local models are
trained with local datasets and then merged into a global model.
The inconvenience of having fewer data at each device can be
compensated by the capacity of the global model built upon the
local ones. Federated learning is also seen as a solution to train
with data which, for privacy reasons, cannot be sent to the cloud,
such as medical records [2].

In this paper, we aim to achieve a better understanding of the
feasibility of conducting the training process of machine learning
models on microcontrollers, and of the possibility of improving
the process via federated learning. We have developed a keyword
spotting (KWS) task with an Arduino Nano 33 BLE Sense board to
experiment this approach. Different words are spoken by the user
and the machine learning model on the device is trained online. In
the federated learning process, trained local models are exchanged
with a central server.

The final publication is available at ACM via http://dx.doi.org/10.1145/3462203.3475896

https://orcid.org/0000-0002-3133-0657
https://orcid.org/0000-0001-5438-479X
https://doi.org/10.1145/3462203.3475896


GoodIT ’21, September 9–11, 2021, Roma, Italy Monfort, Pueyo Centelles, and Freitag.

2 BACKGROUND
TinyML targets at running machine learning applications on micro-
controllers [1]. Typical TinyML applications perform the training
phase outside the microcontroller. Popular machine learning frame-
works such as TensorFlow provide the tools to train a model on
powerful computing machines, such as PCs, or in the cloud. Af-
ter training, the model is pruned and quantized to reduce its size.
Finally, the optimized model is uploaded to the microcontroller
board.

In this off-device training approach it is not possible to modify
the model once it has been deployed. For instance, users cannot
improve the model with their own local data once the model is
flashed on the device. Such an option could be of interest for training
the model with a user’s own voice characteristics, and have an
application with more personalized performance. However, model
training is a computationally intensive task.

Some of the biggest neural networkmodels can take up tomonths
to be trained, accessing enormous datasets, and spending huge
amounts of energy. It is clear that, for microcontrollers, the tar-
get scenario must be different, since computing power and energy
are typically very restricted. Therefore, instead of training big and
general-purpose models, the opportunity seems to be there for train-
ing small and specific models. The keyword spotting task which we
present in this work is an example for those kind of applications.
Given these boundaries, it is computationally possible to train a
tiny model using a microcontroller device for a real application.

Transfer learning is a technique that can significantly reduce the
time and the computing power required to train a new model. As
such, it is principally relevant for resource-constraint environments
such as microcontrollers. This technique takes advantage of the
training performed on previous models to produce a new one. This
could be as simple as training a model to recognize cats in images,
making use of a pre-existing model that recognized dogs. Instead
of training a new model from the beginning, it takes some of the
weights and biases from an already trained model. Usually, the
weights and biases of the first layers are used, since they recognize
the most basic patterns on the data. The newmodel only has to train
the layer closer to the output, which is responsible to recognize the
most specific patterns. Therefore, the advantage of transfer learning
is that only a subset of the total layers of the neural network needs
to be trained. However, transfer learning has its limitations: if the
purpose of the previously trainedmodel is not related to the purpose
of the new model, the result will be very poor. The problem to be
solved needs to be similar enough, which sometimes may be hard
to discern. If used wisely, transfer learning can suppose a great
benefit on the training time of new models.

An important requirement for training a neural network model
is to have high floating point precision. The gradient descent tech-
nique used in backpropagation is an iterative optimization algo-
rithm for finding a local minimum of a derivative of a function
(e.g., the loss function). Each iteration of the gradient descent takes
a small step in the opposite direction of the function’s gradient.
The value of the gradient can be very small and therefore requires
a high precision floating point unit to represent it. This is not a
problem in an off-device training scenario when a general-purpose
computer is used to train the model, since it has high floating point

Figure 1: An Arduino Nano 33 BLE Sense board and the but-
tons to control the training and inference process on a bread-
board.

precision available. However, microcontrollers can be of different
architectures, and not all of them even have floating point support.
The ones with an FPU unit can perform the gradient descent calcu-
lations with the required floating point precision while, otherwise,
specific solutions need to be given [4]. The microcontroller of the
Arduino Nano 33 board we use in this work does have a FPU unit,
which enables the training on the device.

3 APPLICATION DEVELOPMENT
This section describes the development of the keyword spotting
application to study the training of a model on the microcontroller.
The application shall be able to recognize up to three different
keywords, which will be decided by the user when starting to
train the model. The user can switch to an inference mode to test
the keyword detection with the trained models. Currently, the
detected keyword is notified to the user by illuminating the color
corresponding to the keyword on the RGB LED of the Arduino
board.

3.1 Hardware setup
To interact with the application we need to prepare the hardware.
The application is deployed on an Arduino Nano 33 BLE Sense
board, which already integrates several of the required components.
The board has an integrated microphone, that will be used to record
the keywords. It also has an integrated white LED and an RGB one.
The white LED will be used to visualize the application stage (e.g.
IDLE, busy), and the RGB LED will be used to show the output
class of the keyword spotting model. To train the model with three
keywords, we connect three button to the digital inputs of the board.
Each button allows to train one of the keywords. A fourth button
is added for testing the model (i.e., to perform inference). Figure 1
shows how the Arduino board is connected with the buttons.

3.2 Workflow
The application starts when the program is flashed to the Arduino
board (or the board is restarted with the program already flashed).
Every time the board is powered up, a new model is created. The
weights and biases of the model are initialized to random numbers.
After the model is initialized, the user can start training their own
model using any of the three training buttons. Each button allows



On-Device Training of Machine Learning Models on Microcontrollers With a Look at Federated Learning GoodIT ’21, September 9–11, 2021, Roma, Italy

to train one of the three keywords. When a training button is
pressed, the RGB LED will light up with a color identifying the
button (red, green or blue).When the button is released, the Arduino
built-in microphone will start recording audio for one second. The
keyword must be spoken within this second. The recorded audio is
then processed to obtain the feature vector. The model is trained
in a supervised fashion with the feature vector corresponding to
the spoken word giving the label (the label is known from the
button pressed). The fourth button has the same workflow as the
three training buttons, but it does not train the model. Instead, in
inference mode, it lights up the RGB LED with the corresponding
color upon keyword recognition.

3.3 Feature extraction
In order to train the model, a feature vector needs to be obtained. As
mentioned above, just after releasing any of the buttons the micro-
phone starts recording for one second. The recording uses a sample
rate of 16 kHz, and the result is stored in an array of 16000 values.
Each value is represented by a 16-bit signed integer. Therefore, the
recorded audio has a size of 32 kB. Given the recorded audio, we ob-
tain the features that will be used to train the model. A popular way
to extract features from human voice is using the Mel Frequency
Cepstral Coefficients (MFCCs). Computing the MFCCs (with 13
coefficients) for our recorded audio we obtain a spectrogram of
13 rows and 50 columns. Figure 2 shows an example of the spec-
trogram obtained from the MFCCs calculation. This spectrogram
represents the feature vector used to train the model.

Figure 2: MFCC spectrogram for 1 second recording of the
keyword "Montserrat".

3.4 Neural network model
Our application aims at training a model on a microcontroller. For
that, the neural network model needs to be small enough to fit in the
Arduino board. That being said, the model used in our application
is a feedforward neural network with a single hidden layer of 16
nodes. The size of the hidden layer was determined following best
practices from similar keyword spotting applications. The input
layer has 650 nodes, the same number as the size of the feature
vector obtained from the MFCCs algorithm (13*50). The output
layer only has 3 nodes, each one representing a keyword. This
architecture gives a sum of 10448 weights and 19 biases.

The data type used to represent the weights and biases are 4-byte
floats (the maximum precision float allowed by the Arduino board).
Therefore, the model has a final size of 41868 bytes. These bytes are
not stored on the slow Arduino flash memory (1MB) because they
are constantly modified during the training phase, so they need to
be stored in the RAM (preferably in the heap region). This is not

an issue in the Arduino Nano 33 BLE Sense board, for it has 256 kB
of SRAM. Figure 3 shows the neural network just described.

Input Layer Hidden Layer Output Layer

...

6
5
0

Figure 3: Neural network architecture.

3.5 Model training
The model is trained using an online learning approach. As men-
tioned, themodel is initialized every time the application is restarted.
When a training button is pressed and released, the board records
a keyword, spoken by the user, and generates the feature vector
(as MFCCs). Then, the feature vector is sent to the model to per-
form a forward propagation and to obtain the values of the three
output nodes. With these output values and the expected values
(the label is known from the button pressed), the mean square error
is obtained. The final step is to calculate the delta (which reflects
the magnitude of the error) of each neuron in order to perform the
step in the backpropagation algorithm and update the weights and
biases.

To optimize the model training, we can fine-tune the hyperpa-
rameters. The learning rate, which controls how much the model is
updated in response to the estimated error of each training epoch, is
among the most important ones. Choosing the correct learning rate
is quite challenging. Too small a value may result in a long train-
ing phase, and too high a value may result in an unstable training
process. The default learning rate we use in the application is 0.3.
This value is quite high when compared with values used for the
training of more complex models. However, since the application
needs the user’s active participation to become fully trained, it is
advisable to not extend the training phase for too long.

The second hyperparameter is the momentum. The momentum
tries to maintain a consistent direction on the gradient descent
algorithm. It works by combining the previous heading vector and
the new computed gradient vector. The default momentum value
used in our setup is 0.9, which adds 90 % of the previous direction
to the new direction. We note that the use of the momentum con-
sumes additional RAM, since it is necessary to store the previously
obtained gradient.



GoodIT ’21, September 9–11, 2021, Roma, Italy Monfort, Pueyo Centelles, and Freitag.

3.6 Software implementation
We implement the keyword spotting application for a federated
learning architecture as shown in Figure 4. This architecture con-
sists of a central server and several workers. The central server
calculates the model averaging with the received local models after
a determined number of training epochs in the worker nodes. This
model averaging leads to a new global model. This updated global
model is sent back to the worker nodes, which train again their
local model with the data available on each node.

Figure 4: Implemented federated learning components.

To build the components, we have implemented from scratch
the federated learning server in Python. The server runs on a PC. It
communicates with the worker nodes over serial lines. It sends and
receives model data from the worker nodes. Furthermore, for the
experimental evaluation, the server receives the model accuracy
given by the loss which is computed in the forward path when the
model processes new data (i.e., a spoken word). The development
of the worker nodes uses publicly-available code of a neural net-
work implementation 1 and code from EdgeImpulse 2 for the speech
processing and MFCCs calculation.

An important part of federated learning is the aggregation of
the models. The technique used in our implementation is FedAvg,
which stand for federated average. In contrast to FedSGD (stochastic
gradient descent) where the aggregation is done on the gradients,
with FedAvg, the aggregation is done on the model’s parameters
(weights and biases). After the server receives all the models from
the clients, the parameters are averaged in order to produce the
new global model. The implementation of the application used in
this work is publicly available at https://github.com/MarcMonfort/
TinyML-FederatedLearning.

4 EXPERIMENTAL RESULTS
The experiments presented in this section are divided into two
groups: the first one focuses on how the training of the model on
the device performs; the second group of experiments performs the
model training in combination with federated learning.
1http://robotics.hobbizine.com/arduinoann.html
2https://www.edgeimpulse.com/

4.1 Single device training
Model training on device with two keywords. In order to evalu-

ate the performance of on-device training, the model is trained
with a set of keywords. This set of keywords contains two spoken
words, namely Montserrat and Pedraforca (two iconic mountains in
Catalonia) and a third type to classify silence. The keywords are
spoken to the device in alternate order. Figure 5 shows the result
of the training process. It can be seen that the overall trend is that
loss decays with the increase of training epochs. The apparently
erratic small-scale behavior is produced by the online learning ap-
proach, where each epoch is using a single audio recording and,
therefore, the accuracy obtained can vary significantly between
one word and the next. However, the important observation is that
loss progressively decays over the epochs.

Figure 5: Loss vs. epochs during the training of the three
keywords (Montserrat, Pedraforca and silence). Number of
observations is 130, learning rate 0.1, momentum 0.9.

Model training on device with three keywords. We use a second set
of keywords with tree keywords, which are vermell, verd and blau
(which stand for red, green and blue, in Catalan). We trained the
model with the hyperparameters learning rate 0.3 and momentum
0.9. Figure 6 shows the results of the training. It can also be seen
how loss decays over the training epochs. As in the first experiment,
the learning rate is relatively large. A reason for choosing a high
learning rate was that the training data is scarce, since we use just
one spoken words for each training epoch.

4.2 Training in a federated learning scenario
In order to perform the training process with federated learning we
deploy the scenario shown in Figure 4. Two Arduino Nano 33 BLE
Sense boards are used, with identical hardware setup as previously
shown in Figure 1. The devices are connected via the USB serial
interface to a PC, where the federated learning server runs.

We run two experiments in which, after 10 training epochs on
each worker, the local model is sent to the server, to be averaged.
Then, a new global model is sent back to both workers for the next
local training round. Two spoken keywords are used for training,

https://github.com/MarcMonfort/TinyML-FederatedLearning
https://github.com/MarcMonfort/TinyML-FederatedLearning
http://robotics.hobbizine.com/arduinoann.html
https://www.edgeimpulse.com/


On-Device Training of Machine Learning Models on Microcontrollers With a Look at Federated Learning GoodIT ’21, September 9–11, 2021, Roma, Italy

Figure 6: Loss vs. epochs during the training of the three key-
words ("vermell", "verd" and "blau"). Number of observations
is 60. learning rate 0.3, momentum 0.9.

Montserrat and Pedraforca. The difference lays in which of the local
training data are spoken to each of the boards.

Federated learning with IID data . In this experiment, the two
keywords are spoken in alternating order to both workers (nodes),
to represent the scenario of training with independent and iden-
tically distributed (IID) data. Figure 7 shows the obtained results
for the training loss. It can be seen that, in both nodes, the loss
decreases over the training epochs.

Figure 7: Loss vs. epochs during training with federated
learning in IID data scenario (10 training epoch per aggre-
gation).

Federated learning with non-IID data . In this experiment, the
two keywords are split among the workers (i.e., each keyword is
spoken to only one of the workers). This setup aims at presenting
the scenario of training with non-IID data. It can be seen in Figure 8
how, after averaging the model every 10 epochs, loss increases. This

can be explained by the fact that the model averaging merges the
characteristics of the two models which were trained with different
keywords.

Figure 8: Loss vs. epochs during training with federated
learning in non-IID data scenario (10 training epoch per ag-
gregation).

4.3 Discussion
The results from the experiments showed the feasibility of com-
bining on-device training on the microcontrollers with federated
learning. We could train a global keyword spotting model, by aggre-
gating local models trained on distributed devices. However, we also
identified several improvements or changes that can be made for
the application. For example, the devices could be allowed to start
with a pre-trained model. Such a configuration would reduce the
training time if the keywords in the application are kept unchanged.
Another issue to tackle is found in the current communication pro-
tocol, which is slow due to the small size of the Arduino’s USB port
buffer (64 bytes). In order to avoid a buffer overflow, in the current
implementation the server only sends four bytes at once, before
checking that the board (i.e. client) has received them. Therefore,
the sending time in the application from server to client is signifi-
cantly longer (≈3 sec) than the receiving time from client to server
(≈1 sec).

While federated learning has an important potential in avoiding
to share the local training data (e.g., private health records), it also
faces challenges when applied to embedded devices. In the learning
phase, there is frequent communication between the server and
the clients and the amount of data corresponding to the model
parameters can be high. Depending on the aggregation methods, it
may be necessary to exchange several times the model’s parame-
ters between the clients and the server. Depending on the wireless
communication link available on the embedded device, this tech-
nology may not be designed for an intense data payload and the
communication link may become the bottleneck of the training
phase. Moreover, the clients on embedded systems involved in fed-
erated learning may be unreliable. For instance, they commonly use



GoodIT ’21, September 9–11, 2021, Roma, Italy Monfort, Pueyo Centelles, and Freitag.

less powerful radio communication chips and usually depend on
batteries. As a consequence, they may drop out from the training
phase more frequently than devices in other environments. Lastly,
in real environments, the local data at each device will probably not
be independent and identically distributed (IID) and, furthermore,
the amounts of local data available for training at each device may
be very heterogeneous. Such circumstances will require to apply
more advanced algorithms in the server to properly determine the
new global model.

5 CONCLUSIONS AND FUTUREWORK
A keyword spotting application, which performs on-device training
of a neural network model using an Arduino Nano 33 BLE Sense
boards, was presented. We described how a user can train this
application by speaking keywords to the board’s microphone and,
using the buttons connected to the digital inputs, indicate the label
for each of the keywords. This way, supervised learning is carried
out. We observed, by evaluating the loss function in the forward
path of the training process, how the model trained on the device
improves during the training of tens of spoken words. Afterwards,
the training was extended to a federated learning scenario with a
central server and two worker nodes. The keyword spotting was
trained again, now in a distributed way. The experiments showed
also a decreasing loss trend as the training rounds increased.

The work gave practical insights on how on-device training
can be implemented on a recent microcontroller board. Future
work will explore further the raised scenario of non-IID data and
federated learning training to understand deeper its capacity to
obtain versatile models if there is only limited local training data.

ACKNOWLEDGMENTS
This work was partially funded by the Spanish Government un-
der con-tracts PID2019-106774RB-C21, PCI2019-111850-2 (DiPET
CHIST-ERA), PCI2019-111851-2 (LeadingEdge CHIST-ERA), and
the Generalitat de Catalunya as Consolidated Research Group 2017-
SGR-990.

REFERENCES
[1] Colby R. Banbury, Vijay Janapa Reddi, Max Lam, William Fu, Amin Fazel, Jeremy

Holleman, Xinyuan Huang, Robert Hurtado, David Kanter, Anton Lokhmotov,
David Patterson, Danilo Pau, Jae sun Seo, Jeff Sieracki, Urmish Thakker, Marian
Verhelst, and Poonam Yadav. 2021. Benchmarking TinyML Systems: Challenges
and Direction. arXiv:2003.04821 [cs.PF]

[2] Olivia Choudhury, Aris Divanis, Theodoros Salonidis, Issa Sylla, Yoonyoung Park,
Grace Hsu, and Amar Das. 2020. Differential Privacy-enabled Federated Learning
for Sensitive Health Data. arXiv:1910.02578 [cs.LG]

[3] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K.
Leung, and Leandros Tassiulas. 2020. Model Pruning Enables Efficient Federated
Learning on Edge Devices. arXiv:1909.12326 [cs.LG]

[4] Ashish Kumar, Saurabh Goyal, and Manik Varma. 2017. Resource-efficient
Machine Learning in 2 kB RAM for the Internet of Things. In Proceedings of
the 34th International Conference on Machine Learning (Proceedings of Machine
Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR,
http://proceedings.mlr.press/v70/kumar17a.html, 1935–1944. http://proceedings.
mlr.press/v70/kumar17a.html

[5] Haoyu Ren, Darko Anicic, and Thomas Runkler. 2021. TinyOL: TinyML with
Online-Learning on Microcontrollers. arXiv:2103.08295 [cs.LG]

[6] Fouad Sakr, Francesco Bellotti, Riccardo Berta, and Alessandro De Gloria. 2020.
Machine Learning on Mainstream Microcontrollers. Sensors 20, 9 (2020), 1–25.
https://doi.org/10.3390/s20092638

[7] M. Satyanarayanan. 2017. The Emergence of Edge Computing. Computer 50, 1
(Jan 2017), 30–39. https://doi.org/10.1109/MC.2017.9

[8] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated Machine
Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol. 10, 2, Article
12 (Jan. 2019), 19 pages. https://doi.org/10.1145/3298981

https://arxiv.org/abs/2003.04821
https://arxiv.org/abs/1910.02578
https://arxiv.org/abs/1909.12326
http://proceedings.mlr.press/v70/kumar17a.html
http://proceedings.mlr.press/v70/kumar17a.html
https://arxiv.org/abs/2103.08295
https://doi.org/10.3390/s20092638
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1145/3298981

	Abstract
	1 Introduction
	2 Background
	3 Application development
	3.1 Hardware setup
	3.2 Workflow
	3.3 Feature extraction
	3.4 Neural network model
	3.5 Model training
	3.6 Software implementation

	4 Experimental results
	4.1 Single device training
	4.2 Training in a federated learning scenario
	4.3 Discussion

	5 Conclusions and future work
	Acknowledgments
	References

