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Figure 1: Installed belt mold spare part for the Airbus A300/A310 additively manufactured on demand.

ABSTRACT
In a global economy with many competitive participants, licensing
and tracking of 3D printed parts is desirable if not mandatory for
many use-cases. We investigate a blockchain-based approach, as
blockchains provide many attractive features, like decentralized ar-
chitecture and high security assurances. An often neglected aspect
of the product life-cycle management is the confidentiality of trans-
actions to hide valuable business information from competitors. To
solve the combined problem of trust and confidentiality, we present
a confidential licensing and tracking system which works on any
publicly verifiable, token-based blockchain that supports tokens of
different types representing licenses or attributes of parts. Together
with the secure integration of a unique eID in each part, our system
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provides an efficient, immutable and authenticated transaction log
scalable to thousands of transactions per second. With our confi-
dential Token-Based License Management system (cTLM), large
industries such as automotive or aviation can license and trace all
parts confidentially.
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1 INTRODUCTION
Driven by the current transformation in mechanical part design and
manufacturing from product-centric processes to data-centric pro-
cesses, both opportunities and challenges rise alike. Technologies
like additive layer manufacturing (ALM) enable an evolution from
legacy part warehouses, logistic centers and just-in-time arrivals to
a flexible manufacturing environment in which parts are produced
on demand at or near the place of operation. This decoupling of
the physical location where a part is either designed or ordered
from to the location where it is later manufactured has the potential
to lower costs and speed up availability since, e.g., transportation
costs and time are reduced to a minimum. However, as it implies
the transfer of highly sensitive design, development and production
data into an unregulated environment, new challenges in terms
of information security, intellectual property (IP) protection, and
validation/verification of manufactured parts against the original
design arise. In order to establish an end-to-end chain of trust in
such an ALM environment, every aspect from the design phase to
the materialization of the actual part needs to be secured with an
appropriate technology.

The identification of the part itself can be achieved easily by
the integration of a tamper resistant electronic identification (eID)
feature in the 3D-printed part as shown in [18], for example, by
embedding an RFID chip. Such an eID feature is an enabler for
identifying original parts, protecting intellectual property rights,
granting licenses, and for tracking and tracing of parts in prod-
uct life-cycle management systems (PLM-systems). A monolithic
integration of an eID feature in e.g. a 3D-printed aircraft part pro-
vides a high level of physical security, effectively preventing a
non-destructive removal of the eID and therefore increasing the
protection level against product piracy, fraud, and potential safety
risks arising from non-authorized parts.

A real life use-case is an actual Airbus A300/A310 spare part
which is only manufactured on demand due to unavailability of
the original supplier and lack of legacy manufacturing tools. The
so-called belt mold (Figure 1) is part of the flight attendant seat and
is currently manufactured with the aviation certified high perfor-
mance thermoplastic ULTEM™. Previous work [18] already proved
the practicability of integrating an eID into the belt mold on an
industrial grade 3D-Printer.

However, to realize a fully trusted supply chain it is necessary to
establish data continuity from the first design of the 3Dmodel to the
actual print job at the print service provider, i.e. the company which
operates the 3D printer and materializes the part. Such a trusted
supply chain enforces liability on each step and provides auditability.
As stated before, the described industrial environment is likely to be
inhomogeneous as the print service provider may be able to produce
parts for a variety of different industries. While forwarding of actual
printing data to printers can be established through traditional
IT-systems, like webservers providing the data for authenticated
download, the actual management and verification of licenses is
more challenging. The use of a blockchain-based approach is an
attractive solution, as it omits the necessity of trust-centers and
provides a high degree of data consistency and persistence for
all participants. The original design of blockchain technology is
based on exhaustive transparency of all transactions stored in the
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Figure 2: Setting of a license management system with enti-
ties and interactions

blockchain in order to ensure their consistency and that data cannot
be altered by anyone and unnoticed by the public. In our use-case,
this not only allows for a verification whether the printed part
matches its design, but also for a licensing system where customer
and contractor can handle their order management, adding a further
level of security. Together with the unique identification feature of
the manufactured parts, our proposed system effectively reduces
the risk of product piracy with a strict match between ordered parts
and the eIDs registered in the blockchain.

However, this transparency conflicts with the common approach
how data is handled and controlled in a company, especially in
industries where non-disclosure agreements (NDAs) are widely
used in order to protect IP. Storing the licensing data directly on
a transparent blockchain violates such agreements and is seen as
non-desirable or even prohibitive. To many companies considering
adopting blockchain-based systems, this problem is often not even
clear during initial planing of projects. To address this, we present
our novel confidential Token-Based License Management (cTLM)
which allows to satisfy both the requirement for a high level of
data security in an open industrial environment as well as the re-
quirement for a high level of privacy. We achieve this licensing
and tracking by representing licenses and attributes as tokens of
different types. In addition to persons and companies, parts are
also identified by accounts in these systems. The possession of a
token of some type is then interpreted as having a specific prop-
erty. All tokens are transferred on a privacy-preserving Blockchain
supporting multiple tokens, such as SwapCT [8].

2 USE CASE SETTING
In this section, we describe the general setting in which we apply
our license management system shown in Figure 2. First, there is a
designer creating a digital representation of a 3D object 1 . This 3D
file is then registered in our system by the designer, attributing this
design to the designer. Once registered, the designer sells licenses
either directly to manufacturers 3 or to intermediaries 2 . Anyone
with a license can manufacture the part and register it by perma-
nently binding the license to a unique identifier assigned to the
part 4 . Therefore parts are first-class citizens in our transaction
system and have their own accounts to which license tokens are
transferred. This allows someone handling the part to verify its
legitimacy 5 . Further attributes arising during the part’s life cy-
cle, e.g. assembly, disassembly, certification and recycling, are also
permanently logged to allow for continuous tracking of the part.
This process flow is especially relevant in industries where parts
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need to be meticulously documented like aviation. As licensing
and production data provides detailed insight and often leads to a
competitive advantage, the actions must only be visible to entities
involved in handling the parts.

3 CONFIDENTIAL TOKEN TRANSACTION
SYSTEM

Our system is built on top of an unspent transaction output (UTXO)
protocol for type aware tokens. Generally, a transaction output
is represented as a tuple (𝑎, ty, 𝑃) of amount 𝑎 in type ty owned
by party 𝑃 . All three values are hidden inside a one-time account
acc. A transaction in such a protocol take the form takes a list
of previous transaction outputs which are used as inputs to the
transaction. Their tokens are redistributed to a list of outputs. The
protocol has to assure that for each type, the sum of input amounts
must be equal to the sum of output amounts and the input must
belong to the transactor. The protocol additionally has to provide
a special transaction to create a new token type ty∗ and assign its
initial value 𝑣∗ to an account 𝑃∗.

Our System requires two types of long term accounts, one from
which tokens are spendable and receive only accounts. The regular
long term accounts, e.g. 𝑃∗, have a secret key ltswith (lts, ltv, ltp) $←−
AccGen() and lts is used to authorize spending. Receive only ac-
counts have no secret key and thereby are not be able to sign
outgoing transactions (ltv, ltp) $←− ItemGen(eID) where eID is any
identifier. A recipient retrieves all received tokens, from a read only
account or a standard account with View(ltv, acc) where ltv is the
long term view key available for regular account and receive only
account.

3.1 Concrete Scheme
One possible privacy preserving transaction system with confiden-
tial types is SwapCT [8]. It achieves sender and receiver anonymity
by one-time addresses and stores amounts and types in commit-
ments.

While SwapCT is focused on the conservation of tokens within
one transaction, we formalize additional parts of the transaction
system. I.e., Verify explicitly verifies a transaction in relation to a
state which captures all previous valid transactions. To support
receive only accounts, we add an explicit ItemGen algorithm to
generate an account without a spend key lts. New token types are
added to the system by CoinGen which generates a valid signature
𝜎 which is accepted by Verify. The SwapCT Receive algorithm is
split into View and Receive to allow viewing of received tokens
without requiring the spend key.

Definition 3.1. A privacy-preserving multi-type system based on
one-time accounts consists of the following algorithms which are a
close adaptation of SwapCT:

pp← Setup(1_): takes the security parameter _ and outputs
public parameters pp, implicitly given to the subsequent
algorithms.

(lts, ltv, ltp) ← AccGen(seed): optionally takes a seed, if non
provided uses a random seed and outputs a long term spend
key lts, view key ltv and the matching public key ltp.

(ltv, ltp) ← ItemGen(eID): takes a part eID ∈ {0, 1}_ and out-
puts a long term view key lts with matching public key ltp.

(acc, ck) ← OTGen(ltp, ty, 𝑎): generates a one-time account
from a long term public ltp, a type ty ∈ T and an amount 𝑎.
It returns an account acc and a coin key ck.

𝜎 ← Spend(S,T): takes a set of inputsS = {𝑎S
𝑖
, tyS

𝑖
, ckS𝑖 , sk𝑖 ,

accS
𝑖
} |S |
𝑖=1 with amounts 𝑎S

𝑖
of typ tyS

𝑖
with coin key ckS𝑖

and secret key sk𝑖 for the account accS
𝑖
. The outputs T =

(ckT𝑖 , 𝑎
T
𝑖
, tyT

𝑖
, accT

𝑖
) are defined by their amount 𝑎T

𝑖
of type

tyT
𝑖

hidden by coin key ckT𝑖 in the account accT
𝑖
. The algo-

rithm outputs a signature 𝜎 for the transaction tx which is
defined as tx(S,T) := ({auxS

𝑖
}S
𝑖=1, {acc

T
𝑖
} |T |
𝑖=1) with some

auxiliary information aux𝑖 anonymously referencing the
inputs.

𝜎 ← CoinGen(T ): takes a set of outputs defined as T = (ckT𝑖 ,
𝑎T
𝑖
, tyT

𝑖
, accT

𝑖
) and outputs a signature 𝜎 for the token initi-

ation transaction defined as tx(T ) := ({}, {tyT
𝑖
, accT

𝑖
} |T |
𝑖=1).

state′/⊥ ← Verify(state, tx, 𝜎): takes the state state of the sys-
tem and a transaction txwith its signature𝜎 . It either outputs
a new state state′ with the transaction included or ⊥.

(𝑎, ty, ck) ← View(ltv, acc): takes a long term view key ltv for
an account acc and outputs the containing amount 𝑎 of typ
ty with coin key ck.

sk← Receive(lts, acc): takes a long term secret key lts for an
account acc and outputs the corresponding account secret
key sk.

0/1← ChkKey(sk, acc): takes an account acc and a secret key
sk and outputs a bit depending on the validity.

0/1← ChkVal(ck, ty, 𝑎, acc): takes an account acc a coin key
ck and checks if the ty and amount 𝑎 match the account.

The system has to fulfill the following correctness criteria:

Definition 3.2 (Correctness). A multi-type transaction system is
correct if

correctly generated one-time accounts are viewable:
For all ty ∈ T and all 𝑎 ∈ {0, . . . , 264−1} and (lts, ltv, ltp) ←
AccGen() or (ltv, ltp) ← ItemGen(eID) the account
(acc, ck) ← OTGen(ltp, ty, 𝑎) is viewable with (𝑎′, ty′, ck′)
← View(ltv, acc) such that (𝑎, ty, ck) = (𝑎′, ty′, ck′).

correctly generated one-time accounts from AccGen is
receivable: For all ty ∈ T and all 𝑎 ∈ {0, . . . , 264 − 1} and
(lts, ltv, ltp) ← AccGen() the account
(acc, ck) ← OTGen(ltp, ty, 𝑎) is receivable with
sk← Receive(lts, acc) such that ChkKey(sk′, acc) = 1.

honestly generated transactions should verify: For any tu-
ple S,T with the structure from Spend, where
• ∀𝑖 ∈ [|S|] : ChkKey(sk𝑖 , accS𝑖 ) = 1

• ∀𝑖 ∈ [|S|] : ChkVal(ckS𝑖 , ty
S
𝑖
, 𝑎S

𝑖
, accS

𝑖
) = 1

• ∀𝑖 ∈ [|T |] : ChkVal(ckT𝑖 , ty
T
𝑖
, 𝑎T

𝑖
, accT

𝑖
) = 1

• ∀ty ∈ {tyT
𝑖
} |T |
𝑖=1 :

∑
{𝑖:tyS

𝑖
=ty} 𝑎

S
𝑖

=
∑
{𝑖:tyT

𝑖
=ty} 𝑎

T
𝑖

holds and all input accounts accS
𝑖
are spendable in state, it

holds for any proof 𝜎 ← Spend(S,T) that
Verify(state, tx, 𝜎) ≠ ⊥ with tx = tx(S,T).
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new generated types are valid: For all tuples T where all
tyT
𝑖

are not previously registered in state and ∀𝑖 ∈ [|T |] :
ChkVal(ckT𝑖 , ty

T
𝑖
, 𝑎T

𝑖
, accT

𝑖
) = 1, it holds for any

𝜎 ← CoinGen(T ) that Verify(state, tx, 𝜎) ≠ ⊥ with tx =

tx(T ).

3.2 Construction for missing algorithms
For the algorithmswhich have no equivalent in SwapCT, we present
the construction in this section. Spend is the immediate combina-
tion of Seal(Offer(S,T)). To generate a receive only account, we
us a key derivation function KDF : 0, 1∗ × 𝐷 → K where 𝐷 is the
domain of labels for what the key is used and K is the appropri-
ate key space. We present ItemGen in Algorithm 1. The tracking
and view long term secret keys tsk, vsk are derived from the eID
and their corresponding public keys are generated with the public
key function PK. Importantly, the spending long term public key
pk is directly generated by the KDF such that the private key is
infeasible to calculate.

Algorithm 1 ItemGen

Require: eID
tsk← KDF(eID, track)
vsk← KDF(eID, view)
vpk← PK(vsk)
tpk← PK(tsk)
pk← KDF(eID, own)
ltp = (vpk, tpk, pk)
ltv = (vsk, tsk) return ltv, ltp

3.3 Our requirements on a private transaction
System

If the above mentioned operations are supported in a privacy-
preserving manner, the protocol is suitable for our application. We
require the following privacy guarantees from the token protocol,
for our system to be secure:

Sender-Anonymity: The owners of transaction inputs must
only be known to the transaction creator.

Recipient-Anonymity: The owners of outputs of a transac-
tion must only be known to the sender, i.e. the creator of the
transaction.

Confidentiality: The amounts and types of tokens transferred
in a transaction must only be known to the sender. Each
recipient should only have access to the amount and type of
their respective output.

3.4 Generic Operations
As most operations of our proposed system require a transfer of to-
kens or issuing a new token type, we present high level operations.

Given a state, an amount 𝑎 for a new type with domain 𝑑 ∈ 0, 1∗
and pre-image 𝑝 ∈ 0, 1∗ to the owner of the long term key ltp
we issue a token type with Algorithm 2. We use a random oracle
H : 𝐷 × 0, 1∗ → T from the set of domains 𝐷 and arbitrary input
to a type.

Algorithm 2 Issue Token
Require: state, 𝑎, 𝑑, 𝑝, ltp

ty←H(𝑑 ∥𝑝)
(acc, ck) ← OTGen(ty, 𝑎, ltp)
𝜎 ← CoinGen(T = {(ck, 𝑎, ty, acc)})

return Verify(state, tx(T ), 𝜎)

Given a state, an amount 𝑎 of tokens of typ ty from a one-time ac-
count acc with keys (lts, ltv, ltp), Algorithm 3 transfers the tokens
to the owner of the long term key ltpT .

Algorithm 3 Transfer Token

Require: state, 𝑎, ty, accS, (ltsS, ltvS, ltpS), ltpT
sk← Receive(ltsS, accS)
(ty′, 𝑠, ck) ← View(ltvS, accS)
if ty′ ≠ ty ∨ 𝑠 < 𝑎 then return ⊥
(accT , ckT ) ← OTGen(ty, 𝑎, ltpT )
S = {(𝑠, ty, ck, sk, accS)}
if 𝑠 − 𝑎 = 0 then

𝜎 ← Spend(S,T = {(ckT , 𝑎, ty, accT )})
else
(acc𝑅, ck𝑅) ← OTGen(ty, 𝑠 − 𝑎, ltpS)
T = {(ckT , 𝑎, ty, accT ), (ck𝑅, 𝑠 − 𝑎, ty, acc𝑅)}
𝜎 ← Spend(S,T)

return Verify(state, tx(S,T), 𝜎)

4 OUR TOKEN-BASED LICENSING SYSTEM
Given the scenario above and a multi-type confidential transaction
protocol as explained before, our system requires to track licenses
and the state of objects in a distributed system. The persisted in-
formation must be immutable and should be visible only to those
parties concerned. To achieve the persistence and immutability
without a trusted third party, we use a distributed ledger.

An easy approach for a blockchain based license transaction
system is to store the state of the licenses and tracked objects in a
smart contract and programmatically update their state according
to the smart contract rules. We show that a license management
system does not require arbitrary state changes, as is possible with
e.g. Ethereum, but can work on a much simpler transaction model.
Our approach achieves this using a transaction logic for multiple
token types. The benefit of this reduced requirement is an enhanced
level of privacy. We propose an application on a blockchain based
system to confidentially store the license and life-cycle information
of parts which relies on distributed trust and zero knowledge proofs
achieving a publicly verifiable history of operations. Therefore,
we represent licenses and attributes of objects as tokens. Each
3D model is linked to its own type. Every token of this type is a
license. Abstract attributes are types too and the tokens of this type
certify that their owner holds the attribute. All tokens are then
transferred confidentially. To assign a license or attribute to an
object, the according tokens are transferred to the account of the
object. Access to the eID of a part allows reconstruction of the part’s
account for the verification of its attributes. In the remainder of the
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work, we use a multi-type system conforming to the requirements
of Section 3.

The following sections describe the actions of the participants in
more detail. First a new design is created and issued. Then license
tokens of this design are traded. Once the part is manufactured, it
gets a unique identifier and an account in the system. By transfer-
ring a license to the part it is permanently registered to the system.
Any further actions in the life-cycle of the part, such as post pro-
cessing or quality assurance, are then logged by attributes bound to
the part’s account. The actions are verifiable by anyone with access
to the unique identifier.

4.1 Design Issuance
The process starts with a designer creating a 3D object as a CAD
file. The designers and engineers or their companies, respectively,
own the intellectual property of the object’s design. As our goal is
to manage licenses of such designs, we have to identify the first and
original owner and prevent others from claiming the property rights
after the first registration. We identify a design by a cryptographic
hash value of its CAD file.

Small adaptations of the CAD file lead to different object iden-
tities, but the exact same file always results in the same identity.
Automatically assessing the similarity of two designs is difficult
and out of scope of our work. Various authors [5, 11, 13, 15] pro-
posed different approaches of similarity measures, all ineffective
in a malicious setting due to heuristic approaches. In our setting
the designers are malicious entities trying to claim ownership of
an existing design of another designer.

The designer derives a new token type

𝐹□ = H(’design’∥file.cad)

and registers it in our system with an initial amount as a new
token on the ledger. The designer now owns the initial supply
of tokens of type 𝐹□. This initial supply should be chosen large
enough because no new tokens of the same type can be generated
again. For general parts, we suggest to have an initial supply of
e.g. 264 − 1 which is plentiful. On the other hand, artificial scarcity
is achieved by, e.g., issuing only 100 tokens. The designer is now
in possession of the newly issued tokens. A transfer requires the
matching private key of the designer. For all other participants, the
registration process reveals only that someone registered a token
type. Everyone can verify that this type was not registered before
but gains no additional information.

Algorithm 4 shows the steps to register a design and requires
an amount 𝑎, by default 𝑎 = 264 − 1, the file and the long term
public key of the designer ltp𝐷 generated by AccGen. The domain
’design’ is used to separate tokens representing a CAD design
from other token types in the system.

Algorithm 4 Issue Design
Require: state, 𝑎, file.cad, ltp𝐷

return IssueToken(state, 𝑎, ’design’, file.cad, ltp𝐷 )

4.2 Trading
For any registered design, the designer initially owns all license
tokens. Each token represents a license that allows the owner to
manufacture one physical object. Most of the designers are not
manufacturing the objects themselves but rather sell licenses to
manufacturing companies, e.g. 3D print services. License tokens
are therefore traded for other tokens in the system, most likely (but
not limited to) representing fiat currencies.

To exchange tokens of different types when using SwapCT, it
provides a swap mechanism which ensures atomic execution. Ei-
ther both parties receive each other’s tokens, or the swap is not
performed at all. The exchanged tokens can either be used to man-
ufacture the object or be traded again by performing another swap
transaction. Each owner of a license token can use it to manufacture
and register a legitimate object of this type.

The representation of a license as a token deviates slightly from
a license in most legal systems. Tokens of a specific type are indif-
ferentiable from each other and not batched together in purchases.
Another difference is that there might be many intermediary own-
ers of the license token, before it reaches the manufacturer which
is uncommon in legal licensing contracts. Given such intermediary
owners and due to the sender anonymity, the reconstruction of a
transaction path back to the designer requires all previous owners
to cooperate. Nevertheless, every participant of the system can
verify that the total amount of tokens per type stays constant.

In a multi-type system which supports additional attributes, it is
possible to implement an additional attribute which specifies the
age of a token. The conservation non-interactive zero-knwoledge
proof of each transaction then assures that all output tokens are one
epoch older than the inputs. Thereby the token owner can verify
the number of intermediaries.

4.3 Manufacturing
A manufacturer owning a license for an object can download the
corresponding file from the designer or any shared storage. Our
system implicitly protects the integrity of the file by linking it to the
token type of the license. To verify the integrity, the file is hashed
to a type 𝐹 ′ = H(’design’∥file.cad) and then compared to the
token type 𝐹 ′ ?= 𝐹□. If the two hash values match, the fetched file
is correct and can be printed.

In most cases, the CAD file is fed into a CNC mill or a 3D printer
to create the object. After a successful object of the design exists,
the manufacturer is trusted to, e.g., either measure (microscopic sur-
face structure patterns, physically unclonable functions) or assign
a unique identifier eID to this part. Ideally, this eID is integrated
monolithically in the part in order to prevent an undesirable non-
destructive extraction or alternation of the eID. A typical represen-
tation of an electronic identification feature is a radio-frequency
identification (RFID) tag. RFID tags are widely used in a variety of
branches like logistics, commerce, and identification documents.

Aminimal RFID system consists of a tag and a reader, where both
tag and reader can either be a passive or an active component. The
most typical setup for our setting is the Active Reader Passive Tag
(ARPT) system [14]. The reader transmits an electromagnetic (EM)
field which is used to send both signals and energy. The energy from
the EM field induces a current in the antenna of the tag. This current
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is sufficient enough to power the tag’s small integrated circuit (IC).
Depending of the programming of the IC, the tag usually sends
back a series of numbers, e.g. a simple eID or a cryptographic
signature. This allows for long-term, low-cost, and maintenance
free identification system as the tag itself does not need any battery
supply. From a security perspective, the eID must not be guessable
for an object. According to the NIST SP800 [6] publication, this is
achieved by a random bit-string of at least 96 bit. More importantly
the eID needs to be a unique feature of the part and difficult to
copy to another part. For high stake parts, where identification is
important, an integrated smart card might be used [19]. The smart
card has the benefit of generating a unique random private key and
supports authentication challenges to prove the authenticity. This
is much harder to copy onto another part as an RFID identifier, but
is orders of magnitude more expensive.

From the eID, the manufacturer generates a new read only ac-
count (ltv, ltp) = ItemGen(eID). This enables anyone knowing the
eID to verify which tokens were sent to the part by View(ltv). To
identify this part as legitimately manufactured, the license token
has to be transferred to the part’s account. The special feature of
such an account, generating an immutable log of properties (re-
ceived tokens), is the absence of a spend key. Algorithm 5 denotes
the steps to register a valid part with an eID, the CAD file and the
manufacturer’s funding account acc𝑀 along with the long term
secret keys (lts𝑀 , ltv𝑀 , ltp𝑀 ).

Algorithm 5 Register Item
Require: state, eID, file.cad, acc𝑀 , (lts𝑀 , ltv𝑀 , ltp𝑀 )

ty←H(’design’∥file.cad)
(ltv𝐼 , ltp𝐼 ) = ItemGen(eID)
returnTransferToken(state, 1, ty, acc𝑀 , (lts𝑀 , ltv𝑀 , ltp𝑀 ), ltp𝐼 )

4.4 Post Processing & Quality Assurance
After manufacturing, parts regularly undergo post-processing and
inspections. To attest such processes in the history of the part, the
testing entity transfers a token to the part.

These tokens are not license tokens, but behave the same and
can therefore use the same underlying confidential transactions. A
property of parts is also represented in a new token type. Instead of
the hash value of a CAD file, the new type is derived from hashing a
unique string, e.g. "Quality Assured by A. Inc." in the domain
’property’. The creator should publish this unique string to allow
others to verify if a token really originated from them. The new
type 𝐹𝑄 is then registered on the ledger by Algorithm 6 taking the
unique string 𝑄 , the authorities ltp𝑄 and a large initial amount 𝑎.
Every time the company decides to tag a part with this property,
they transfer one token of the type to the part’s account.

Algorithm 6 Issue Certificate Tokens
Require: state, 𝑎,𝑄, ltp𝑄

return IssueToken(state, 𝑎, ’property’, 𝑄, ltp𝑄 )

The part then has the license token and the 𝐹𝑄 token of the
manufacturer. The absence of a private key for the part locks these

tokens forever to the part. Thus, the tokens cannot be secretly
transferred to a different part, given the unique identifier cannot
be copied or cloned.

This process is repeated, if required, to log multiple properties
to the part. On publication of a transfer, the transaction is times-
tamped persisting the date and time when the part received the
property. The transaction to a part’s account is not limited to sim-
ple binary properties. Small to medium scalar values can be stored
by transferring multiple tokens of the same type to the object. Al-
gorithm 7 requires the part eID, the type of certificate 𝑄 and the
spending key lts𝑄 of the owner of acc𝑄 . The amount of tokens 𝑎
transferred represents the value. An example could be the quality
of the part on a scale from one to five, depending on the number of
𝑄 tokens received. Instead of scalar values, the number of tokens
can be interpreted as a map to strings.

Algorithm 7 Attest Post-Processing
Require: state, eID, 𝑄, 𝑎 = 1, acc𝑄 , (lts𝑄 , ltv𝑄 , ltp𝑄 )

ty←H(’property’∥𝑄)
(ltv𝐼 , ltp𝐼 ) = ItemGen(eID)
return TransferToken(state, 𝑎, ty, acc𝑄 , (lts𝑄 , ltv𝑄 , ltp𝑄 ), ltp𝐼 )

4.5 Verification
Anyone with physical access to the part can retrieve the eID from
the object and derive the account key with the same steps as the
manufacturer previously did. With this key, all tokens transferred
to the part can be recovered from the public ledger. The license
token is checked to verify the original designer, 𝑄 tokens attest a
correct print and quality check by a known manufacturer and any
further properties. This is shown in Algorithm 8 which requires
the parts eID and recovers all received tokens. The transactions of
the tokens are all timestamped, which allows the reconstruction of
the part’s history.

Algorithm 8 Item Verification
Require: state, eID
𝑡 = ∅
(ltv𝐼 , ltp𝐼 ) = ItemGen(eID)
for all acc ∈ state do

𝑑 ← Receive(ltv𝐼 , acc)
if 𝑑 ≠ ⊥ then

parse 𝑑 as (ty, 𝑎, ck)
𝑡 = 𝑡 ∪ (ty, 𝑎, ck)

return 𝑡

All digital systems are only as reliable as the information inserted
into it. The interface between the physical world and the immutable
ledger has to be trusted. At least our system incentivizes actors to act
correctly, as an immutable documentation proves their operations
in case of dispute.

For all other participants of the system without the part or the
part number (eID), it is impossible to identify which tokens the
part possesses. Thereby, the information is available to parties with
legitimate interests only.
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Our system can be a basis for a complete tracking and tracing
system of parts which is often desired by industries, especially in
the aviation industry, where a life-long tracking of parts is not only
done in production but also during the full life-cycle of a part. This
can easily be used to establish a real digital twin not only on system
level, but on part level. While there are already several tracking and
tracing systems on part level in aviation industry, none of them
presents a complete end-to-end solution as our proposed system
would.

4.6 Proxy Accounts for Sensitive Parts
For sensitive parts, it might be interesting to limit the scope of
which parties have insight into the tokens owned by the part. While
the ownership of tokens is directly derived from the eID and every
token received by the part is not spendable, we provide an extension
where tracking and viewing of tokens is limited to a part owner. In
this case, the view secret key ltv is not derived from the eID directly
but randomized by the owner by concatenating randomness 𝑠 . For
verification, the owner creates a designated verifier proof that the
item received a specific amount of a given type without disclosing
possible other tokens of the part. For a designated verifier party
with key ltp𝑉 , the part owner creates a zero knowledge proof of
knowledge (PoK):

PoK
(
stmt = (acc, ltp𝑉 , ty, 𝑎, eID)∃wit = (lts𝑉 , ck, 𝑠)

s.t. ItemGen(eID∥𝑠) = (ltv𝐼 , ltp𝐼 ) ∧ View(ltv𝐼 , acc) = (ck, ty, 𝑎)
∨ ltp𝑉 = PK(lts𝑉 )

)
Such a proof transcript still reveals the one-time account acc

belonging to the part. To improve privacy at the cost of performance,
the proxy party creates an anonymous reference with an anonymity
set of 𝑛 accounts {acc𝑖 }𝑛𝑖=1:

PoK
(
stmt = ({acc𝑖 }𝑛𝑖=1, ltp𝑉 , ty, 𝑎)∃wit = (lts𝑉 , 𝑗 ∈ {1, . . . , 𝑛}, ck)

s.t. ItemGen(eID∥𝑠) = (ltv𝐼 , ltp𝐼 ) ∧ View(ltv𝐼 , acc𝑗 ) = (ck, ty, 𝑎)
∨ ltp𝑉 = PK(lts𝑉 )

)
This does not reveal to the verifier which transaction output con-
tains the license or property.

4.7 Life cycle
The digital representation of properties in an immutable ledger
is especially relevant during the manufacturing process, but also
provides multiple benefits during the life-cycle of the part. Parts
being resold or refurbished are tracked by a token of a new type. As
an example, B. Inc.’s business model is to buy old parts, refurbish
them and then sell them again. This is realised with a token of
type "refurbished by B. Inc.", which is transferred to the
refurbished part. Everyone trusting that this token is really from B.
Inc. can then check if a part is genuine and can view the history of
production. This is again performed by Algorithm 6 and 7.

The identifier of the type belonging to known companies might
be signed in a traditional PKI based system of which the root is
controlled by a regulatory authority of the industry sector. E.g.,
aviation authorities such as the European Union Aviation Safety
Agency (EASA) can sign token types from Original Equipment

Manufacturer (OEM) or Tier-1 Suppliers in order to verify the
originality of parts or services such as a refurbishment.

Once a property token is transferred to a part, it is impossible to
take it away due to the lack or a private key. If removing tokens is
desired, a simple convention can resolve this, by issuing a secondary
token type, which negates the original one. Any part with only
the positive token is valid, but if the part also owns the negated
one, it is invalid. Once negated, no one can remove the negated
token from the part. One example for such a negated token is the
revocation of a part. Assume a company’s inventory of parts get
stolen. In this scenario, the company can issue a revocation token
type "revoked by A. Inc." and transfer tokens to the stolen
parts. Everyone trusting A. Inc. can check whether the part was
revoked. Such revocation tokens have to be carefully verified if they
are genuine or not, as they enable a denial of service attack, if such
a token is transferred to a still working part.

4.8 Transient Properties
For many tokens owned by parts, it is crucial that they cannot be
transferred away from the part to a different account belonging to
a different part. This would facilitate the theft of license tokens and
certification of subpar parts. However, some life-cycle properties
are transient and being passed around between the part and people
or machines interacting with it. This can e.g. be used for a per item
payment system. Each part processed earns one token which is
then used to claim a reward.

For this requirement, participants must be able to transfer tokens
away from the object. This is achieved by a secondary account of
each item with a spend key 𝑃 = AccGen(eID). A set of 𝑎 tokens of
type𝑇 is applied to a part eID from some operator with private key
lts𝑂 from account acc𝑂 with Algorithm 9.

Algorithm 9 Apply Transient
Require: state, eID,𝑇 , 𝑎, acc𝑂 , (lts𝑂 , ltv𝑂 , ltp𝑂 )

ty←H(’attribute’∥𝑇 )
(ltv𝐼 , lts𝐼 , ltp𝐼 ) = AccGen(eID)
return TransferToken(state, 𝑎, ty, acc𝑂 , (lts𝑂 , ltv𝑂 , ltp𝑂 ), ltp𝐼 )

All tokens held in this account can be claimed from the object by
anyone having access to the eID, the type 𝑇 , an amount 𝑎 (mostly
𝑎 = 1) and a recipient operator ltp𝑂 with Algorithm 10. Even after a
token was transferred away from the part, it is still possible to verify
that the object once owned the property token. The receiving and
removal transactions even leave timestamps for both operations.

Algorithm 10 Recover Transient
Require: state, eID, 𝑎, acc𝐼 , ltp𝑂
(ltv𝐼 , lts𝐼 , ltp𝐼 ) = AccGen(eID)
sk← Receive(lts𝐼 , acc𝐼 )
(ty, 𝑠, ck) ← View(ltv𝐼 , acc𝐼 )
return TransferToken(state, 𝑎, ty, acc𝐼 , (lts𝐼 , ltv𝐼 , ltp𝐼 ), ltp𝑂 )
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5 SECURITY ANALYSIS
The confidentiality of the transaction data is important for the
participants. Transfers of licenses quite always reflect some business
interactions, which gives competitors valuable insight into metrics
private to a company. The public nature of a blockchain requires all
transactions to be public, so that a consensus can be reached. Our
approach uses a blockchain which reaches a consensus and allows
to verify the conservation rules publicly without revealing the data.
This is achieved by using privacy-preserving transactions [8]. Each
transaction includes non-interactive zero knowledge (NIZK) proofs
to convince other participants of the system that the transactor
created the transaction according to the conservation rules. These
NIZK proofs are publicly verifiable and are used to reach consensus
about the validity of a transaction.

5.1 Attacker Model
We assume all actors of the system are malicious with the exception
that they honestly provide inputs from the physical world. Meaning
they try to attack the transaction system but do not insert bogus
measurements. The requirement for honest interfaces cannot be
solved by any purely digital system. However the persistent logging
incentivizes all participants to report correct data as they can be
held accountable retrospectively.

The verification and persistence of transactions is performed by
the entirety of actors following a consensus protocol. We assume
that the majority of actors are honest and we therefore model the
verification party as honest-but-curious.

5.2 Security Reduction
All operations of our system either create transactions or receive
transaction outputs in a way that the security model of the under-
lying transaction system is taking care of. So regarding anonymity
and confidentiality, our system provides the same guarantees as the
used privacy-preserving transaction system. An efficient attacker to
the security of our system can be directly used to break the security
properties of the underlying UTXO transaction system.

To securely deploy our token licensing system, several com-
ponents require special attention. In the following sections, we
elaborate on specific areas of confidentiality, which are important
to license transactions and life-cycle tracking.

5.3 Revealing Transactions
In some circumstances, transactors have to reveal past transac-
tions to third parties or authorities. If the underlying ledger uses
anonymity sets, where each transactor is hidden in a set of unre-
lated transactors and too many transactions in a system are publicly
known, it gets more and more difficult to stay anonymous within
the network of transactions. So revealing some selected transac-
tions to business partners or regulatory entities does not interfere
with the anonymity in the system. It is generally in the participants’
interest to keep their transactions secret from the general public
and especially from competitors.

However, in some industries access to information needs to be
granted to certain institutions or authorities. Example use-cases are
regular audits to ensure compliance or an investigation following an
accident. To achieve this, an escrow key of the involved companies

is stored at a safe place. The escrow key cannot be abused to gain
insights into transactions of other participants.

If it is sufficient for the auditing entity, the part owners may
present zero knowledge proofs of compliance instead of revealing
the secret keys. This is achieved equivalently to the proxy accounts
from Section 4.6.

5.4 Item eID Enumeration
Another important issue to care about, are eIDs of parts. As they
are the seed of the public account keys, they must not be guessable
by someone not owning or having access to the part. Otherwise the
part’s account can be revealed. Also enumeration attacks where
parts have consecutive numbers can lead to attacks on the confiden-
tiality of tokens sent to these parts. A reliably non guessable source
as of NIST-SP800 [6] is to use 96 bits of uniformly random data.
From this, a part account is derived which is not guessable. This
keeps the tokens transferred to the part secret to the owners of the
part only. As previously mentioned, another option is to integrate
a smart card with a randomly generated private key.

It is still important to know that everyone who had access to
the part in its history is able to store the eID and track future
transactions of the part.

6 PERFORMANCE
To evaluate the performance of the system we take a closer look
at the operations required and estimate a number of transactions
per second. Operations are defined as the transfer of tokens from
one account to another. Going back to the example of the aircraft
industry an airplane is made up of around 350,000 [16] to 6 million
[3] parts from hundreds of different suppliers and subsuppliers.
All those parts could be integrated into our license management
system. Airbus and Boeing manufacture around 800 airplanes per
year [2]. This equals to around 8,87 operations per second for a
company like Airbus. Taking into account other industries like car
manufacturing the numbers of operations are significantly higher.
A car is made up of around 7,000 [3] to 15,000 [12] parts and 97
Million cars and commercial vehicles were produced in 2017 [17].
If every part is produced based on a token transfer, this results in
around 46,000 operations per second. Extending to the multitude
of manufacturing sectors where a confidential license management
system could be integrated the potential number of operations
could be manifold.

To show the applicability of our scheme, we evaluated the perfor-
mance relevant for different scenarios. The transaction generation
for e.g. registering items is most likely performed by the 3D printer.
We use a Raspberry Pi first generation to represent the resource
constraint device. Figure 3 shows that usual transactions with few
inputs and outputs require less than one minute, negligible in rela-
tion to the printing duration.

Transaction verification ismost likely performed in an on-premise
data center with powerful machines. As test payload we used trans-
actions with 2 inputs and 2 outputs, as they will be most frequent in
the system. On an dual socket AMD EPYC 7281 Server (64 threads)
with Ubuntu 20.04, we achieved a median of 591 transaction verifi-
cations per second with a worst case performance of 582.
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Figure 3: Transaction generation time of our prototype im-
plementation on a Raspberry Pi first generation, represent-
ing an embedded systemwithin a printer. As the secret keys
are only required in part of the transaction, it is sufficient to
execute the Pre-Spend on the embedded device and the re-
maining part can be offloaded to a powerful computer with
minimal privacy loss. We use an anonymity set size of 27.
The error bars are the minimum and maximum runtime of
10 executions.

Another relevant time is scanning all transaction outputs for
ones belonging to a part or an account. Only with the eID it is
possible to detect an output. We measured a median of 260,000
output verifications per second on the above mentioned server.

From these measurements and an estimation of 50,000 opera-
tions per second and 5 kB storage per transaction, we derive the
computational requirements of our system. Depending on the time
by which a transaction output is reused in a subsequent transaction,
the verification of transactions can be massively parallelized. For
the verification to keep up with the transaction generation, each
participant requires around 100 servers to verify all transactions in
real time and one server to track new outputs. This is comparable
to other systems with similar throughput. To store all transactions,
around 20 TB per day are required. An efficient consensus mech-
anism easily achieves this throughput resulting in a global total
order of transactions.

Within a trusted environment, e.g. in a single company, only one
node is required to verify and store all transactions. Smaller nodes
trusting the central entity can validate part properties based on the
central, verified storage. For a system tracking each part of every
car manufactured, these requirements are possible with current
commodity hardware and allow an immutable, publicly verified log
of all operations

6.1 Concurrency
Every state change of a part is reflected with a transaction. How-
ever, the order of the persisted transactions cannot be determined
in advance. Transacting two tokens to the account of a part at
approximately the same instant will result in an arbitrary order.
There are no guarantees like first in first out, even for a single part,
as each transaction is hiding the recipient and there might be a
separate actor transmitting a token to said part. To implement strict
conditional dependencies, it is necessary to query the persisted log,
if the condition is persisted.

The certification accounts have to split their initial output, after
issuing, into multiple smaller outputs. Using the change output
from the previous part is only possible after the transaction is
persisted, so repetitively using the change to attest many parts in
short succession is not possible. This issue is mitigated by using
smaller outputs in a round robin fashion.

7 RELATEDWORK
As our system combines privacy-preserving blockchain protocols
with blockchain based license management, we present recent re-
search results from both areas.

7.1 Privacy Perserving Blockchains
Cloaked Assets (ZkVM). The team of Stellar1 introduces a zero

knowledge virtual machine [4], which executes smart contracts in
a privacy-preserving manner. This enables management of typed
tokens and provides the necessary functionality to be used as a
basis for our application. We chose SwapCT as Cloaked Assets do
not provide sender and receiver anonymity.

Conficential Assets on MimbleWimble. Yi Zheng et al. [20] ex-
tended the MimbleWimble protocol with confidential assets to sup-
port multiple tokens in a confidential way. This chain may be used
as a basis for our system with the limitation, that transactions are
created interactively with the recipients. The aggregation character-
istics of MimbleWimble are highly favourable for high throughput
applications at the cost of reduced privacy.

7.2 Blockchain PLM/DRM
Multiple authors have described the use of blockchain technol-
ogy for product life-cycle management [1, 7, 9]. Unfortunately, all
previously presented solutions neglect the crucial confidentiality
of operations. With all transactions in public, valuable business
metrics are analysed by everyone and may be used for harm. The
alternative to deploy a private ledger in a consortium does not solve
the confidentiality requirement, as the very competitors, to who
insight is most valuable, still have access as they most likely belong
to the same consortium. Our solution maintains the confidentiality
and is therefore also suitable for private consortia as well as public
ledgers, depending on the participants and the public interest.

Herbert and Litchfield [10] propose two blockchain based soft-
ware license managements. The first uses additional semantics of
standard bitcoin transactions, providing no confidentiality. In their
second scheme, the vendor is trusted to manage encrypted licenses
persisted within transactions. While improving data protection,
they require an honest entity to achieve the same confidentiality
as our protocol.

8 CONCLUSION
The tracking and tracing of parts in complex industries such as auto-
motive or aviation is a fundamental task, especially having intricate
business relations. In addition, reliably differentiating legitimately
licensed parts from reputable sources is a difficult feat. On top, the
information about parts must remain secret from competitors and
alike.
1https://www.stellar.org/
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Our proposed system is able to provide all required functionality
while maintaining confidentiality of operations in an untrusted en-
vironment. We defined protocols to represent the complex life-cycle
actions in the form of basic transfers of tokens. By building the
system on top of a privacy-preserving multi token blockchain, our
system inherits the confidentiality guarantees. Given an efficient
consensus mechanism for transaction ordering, the verification is
massively parallelizable and can handle up to 10 transactions per
core per second. These features combined with a decent perfor-
mance makes our system directly applicable to many real world
life-cycle management scenarios.
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