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ABSTRACT
In empirical software engineering, benchmarks can be used for
comparing different methods, techniques and tools. However, the
recent ACM SIGSOFT Empirical Standards for Software Engineer-
ing Research do not include an explicit checklist for benchmarking.
In this paper, we discuss benchmarks for software performance
and scalability evaluation as example research areas in software
engineering, relate benchmarks to some other empirical research
methods, and discuss the requirements on benchmarks that may
constitute the basis for a checklist of a benchmarking standard for
empirical software engineering research.
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1 INTRODUCTION
The recent ACM SIGSOFT Empirical Standards for Software En-
gineering Research [23] are meant to give reviewers guidelines to
evaluate manuscripts against expectations determined by a scien-
tific community. Empirical standards describe these community
expectations. If publication venues adopt these standards, authors
know the expectations in advance and can follow the essential
criteria laid out by the standard. Reviewers then check submitted
papers against the specific criteria in the relevant standards. These
standards may also help to educate the next generations of software
engineering researchers.

The ACM SIGSOFT Empirical Standards provide a catalog of
such standards, starting with the General Standard that applies to
all empirical research. Next, there is a set of methodology-specific
standards such as experiments, questionnaire surveys and case stud-
ies. Several supplements for cross-cutting concerns like information
visualization and sampling complement the catalog. The standards
catalog is modular to reduce duplication, so most research projects
will use multiple standards. Each empirical standard is essentially
a one-page checklist of specific criteria that can be used by au-
thors to conduct and report research, and by reviewers to evaluate
manuscripts.
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In empirical software engineering, benchmarks can be used for
comparing different methods, techniques and tools. Tichy [27] sum-
marizes the benefits for benchmarks for software research as fol-
lows:

“Software research could benefit tremendously from
benchmarks. Benchmarks can be tested repeatedly
and quickly without requiring human subjects. They
help weed out poor techniques quickly and direct
attention to the successful ones. There is a certain
upfront cost for constructing the benchmark, but that
effort could be shared among many researchers.”

Benchmarking should be added to the arsenal of empirical methods
in order to speed up progress [26, 27]. The creation and widespread
use of a benchmark within a research area is frequently accompa-
nied by rapid technical progress and community building [24]. The
Darpa Grand Challenge for self-driving cars represents an example
for rapid technical progress inspired by benchmarks [27]. The ex-
istence of a benchmark is indicative of the maturity of a scientific
discipline [24].

Benchmarks are used to compare different platforms, methods,
tools, or techniques. They define standardized measurements to
provide repeatable, objective, and comparable results [20]. In com-
puter science, benchmarks are used to compare, for instance, the
performance of database management systems [5], information
retrieval algorithms [21] and cloud services [3].

For (quantitative) simulations, for instance, there exists a check-
list in the Empirical Standards.1 So far, there exists no such checklist
for benchmarks in the Empirical Standards. However, benchmark-
ing – similar to simulation – is relevant for evaluating engineering
research, which is research that invents and evaluates technological
artifacts [22]. This is already mentioned in the following two quotes
of the Engineering Research Standard:2

• “[. . . ] empirically compares the artifact to one or more state-
of-the-art benchmarks”

• “Antipatterns: [. . . ] evaluation consists only of quantitative
performance data that is not compared to established bench-
marks or alternative solutions”

Thus, benchmarking is already mentioned to assess new results
of engineering research. However, benchmarking is not, as yet,
described as an empirical standards on its own.

Section 2 discusses benchmarks for software performance and
scalability evaluation as example research areas in software engi-
neering. We relate benchmarks to some other empirical methods

1https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/
QuantitativeSimulation.md
2https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/
EngineeringResearch.md
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in Section 3. Section 4 discusses the requirements on benchmarks
before Section 5 concludes the paper.

2 BENCHMARKS FOR SOFTWARE
PERFORMANCE AND SCALABILITY
EVALUATION

Performance benchmarks are part of the measurement-based ap-
proaches in the field of Software Performance Engineering [25].
The employment of performance benchmarks has contributed to
improve generations of systems [32].

In the following subsections, we briefly present a few exem-
plar benchmarks for software performance and scalability evalua-
tion to illustrate benchmarking in software engineering research.
Section 2.1 presents the TeaStore benchmark that provides an ex-
ample microservice-based software application together with syn-
thetic workloads to execute the benchmarks. Section 2.2 presents
the MooBench benchmark to measure the performance overhead
of monitoring frameworks, with an emphasis on integrating re-
gression benchmarking into continuous integration pipelines. The
Theodolite scalability benchmark for distributed stream processing
engines is presented in Section 2.3.

2.1 The TeaStore Benchmark for Performance
and Scalability Benchmarking

The TeaStore is an online store for tea and tea related utilities [34].
The TeaStore benchmark application has been used as a distributed
system for evaluating and extracting software performance mod-
els, for testing single and multi-tier auto-scalers, and for software
energy-efficiency analysis and management.

The TeaStore software architecture consists of five distinct ser-
vices and a Registry service as shown in Figure 1. All services
communicate with the Registry. Additionally, the WebUI service
issues calls to the Image-Provider, Authentication, Persistence and
Recommender services. The TeaStore uses a client-side load bal-
ancer to allow replication of instances of one service type.

Figure 1: TeaStore Architecture [34].

As the TeaStore is a benchmarking application, it is open source
and available to instrumentation using available monitoring solu-
tions. Pre-instrumented Docker images for each service include the
Kieker monitoring framework [9, 31].

Besides the TeaStore application, the benchmark provides syn-
thetic user profiles for automated load testing. Figure 2 shows the
Browse user profile. Users log in, browse the store for products, add
these products to the shopping cart and then log out. The number
of users is chosen depending on the maximum load. Besides such ar-
tificial user profiles, TeaStore employs synthetic workloads that are
derived from two real-world traces (FIFA World Cup 1998 [1] and
BibSonomy [2]). The TeaStore application employs an auto-scaler
to automatically scale the store at run-time as the load intensity
varies. The scaling behavior on both the FIFA and BibSonomy traces
are shown in Figure 3 and in Figure 4. Both figures are structured as
follows: The horizontal axis shows the experiment time in minutes;
the vertical axis represents the current number of scaling units.

In Figure 3, for example, the system is in an under-provisioned
state in the entire interval between minute 2 and 5. Overall, the
under-provisioning and over-provisioning time-shares indicate
good scaling behavior in this experiment [34].

2.2 The MooBench Monitoring Benchmark
The MooBench [37] micro-benchmark has been developed to quan-
tify the overhead for application-level monitoring frameworks un-
der controlled and repeatable conditions. MooBench has also been
used by other researchers for replicable performance experiments
comparing monitoring frameworks [18]; thus, fostering research
on monitoring frameworks.

Waller & Hasselbring [37] employ the MooBench benchmark to
evaluate the monitoring overhead of the Kieker [9, 31] monitoring
framework and to measure the influence of different configurations
for multi-core processors in this context. Fig. 6 shows the linear
increase of the overhead with MooBench, when applied to Kieker.

Moobench has been integrated into the continuous integration
pipeline of Kieker, allowing for automatic regression benchmark-
ing [36]. An example visualization of a series of regression bench-
mark results is presented in Figure 7. It shows a performance re-
gression that happened in March 2013 with Kieker release version
1.7, and later diagnosed as a bug in the implementation of adaptive
monitoring. The daily results of Kieker with MooBench may be con-
sulted at http://kieker-monitoring.net/performance-benchmarks/.

2.3 The Theodolite Scalability Benchmark for
Distributed Stream Processing Engines

Scalability is usually defined as the ability of a system to continue
processing an increasing workload with additional resources pro-
vided [11]. Whereas benchmarking the performance of stream pro-
cessing engines such as throughput or latency is heavily performed
by academia and industry [17], approaches for benchmarking their
scalability are scarce. Theodolite [10] provides a method for bench-
marking the scalability of distributed stream processing engines.
With Theodolite, individual benchmarks are designed based on
typical use cases for stream processing within microservices [7, 8].
Microservice architectures aim, in particular, at scalability [6, 19].
Theodolite supports evaluating scalability independently along dif-
ferent dimensions of increasing workloads. As an example, Fig. 5
compares the results for Kafka Streams and Flink via Theodolite’s
benchmark for aggregating time attributes.

http://kieker-monitoring.net/performance-benchmarks/
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Figure 2: Browse user profile [34].

Figure 3: Scaling behavior for the FIFA trace [34].

Figure 4: Scaling behavior for the BibSonomy trace [34].

A benchmark such as Theodolite does not only consist of bench-
marking data, but it provides a software framework for executing
the benchmarks. Figure 8 depicts the Theodolite framework ar-
chitecture for executing scalability benchmarks. It consists of the
following components:

Figure 5: Comparison of Kafka Streams and Flink via
Theodolite’s benchmark for aggregating time attributes
[10].

Experiment Control The central experiment control is started
at the beginning of each scalability benchmark and runs
throughout its entire execution. For each experiment, it starts
and configures the workload generator component to gener-
ate the current workload of the tested dimension. Further, it
starts and replicates the SUT (system under test) according
to the evaluated number of instances. After each experiment,
this component resets the messaging system, ensuring no
queued data can be accessed by the following subexperiment.

Workload Generator This component generates a configurable
constant workload of a configurable workload dimension.
It fulfills the function of a data source in a big data stream-
ing system, such as an IoT device or another microservice.
Since different use cases require different data input formats,
Theodolite allows for individual workload generators per
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Figure 6: Benchmarking the performance overhead of monitoring frameworks with the MooBench benchmark [37].
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Figure 7: Scenario for detecting performance anomalies between releases via benchmarks in continuous integration [36].

use case. However, individual workload generators can share
large parts of their implementations.

Messaging System In event-driven, microservice-based archi-
tectures, individual services usually communicate with each
other via a dedicated messaging system. The Theodolite
benchmarking architecture therefore contains such a system,
serving as a message queue between workload generator
and stream processing engine and as a sink for processed
data. State-of-the-art messaging systems already partition
the data for the stream processing engine and are, thus, likely

to have high impact on the engine’s scalability. They pro-
vide plenty of configuration options, making it reasonable
to benchmark different configurations against each other.

Microservice (SUT) This component acts as a microservice
that applies stream processing and, thus, is the actual SUT.
This microservice fulfills a specific use case. An implemen-
tation of this microservice uses a certain stream processing
engine along with a certain configuration, which should be
benchmarked. The stream processing engine receives all data
to be processed from the messaging system and, optionally,
writes processing results back to it.
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Figure 8: The Theodolite framework architecture for executing scalability benchmarks [10].

Monitoring The monitoring component collects runtime in-
formation from both the messaging system and the stream
processing engine. This includes data to be displayed by
the dashboard and data required to actually measure the
scalability of the SUT.

Dashboard Our Theodolite architecture contains a dashboard
for observation of benchmark executions. It visualizes mon-
itored runtime information of the execution environment,
the messaging system, and the SUT. Thus, it allows to verify
the experimental setup (e.g., number of deployed instances
and number of generated messages per seconds).

Offline Analysis Based on the raw monitoring data, a ded-
icated component evaluates the scalability of the SUT by
computing the required metrics. This component is executed
offline after completing all experiments. Since Theodolite
stores monitoring data persistently, you can repeat all com-
putations at any time without re-executing the underlying
experiments.

The Theodolite benchmarking framework can be configured by
the following parameters:

(1) An implementation of the use case that should be bench-
marked

(2) Configurations for the SUT including messaging system and
execution environment

(3) The workload dimension for scalability benchmarking
(4) A workload generator generating workloads along the con-

figured dimensions

(5) A list of workloads for the configured dimension to be tested
(6) A list of numbers of instances to be tested

For details refer to Henning & Hasselbring [10].

2.4 Summary
TeaStore, MooBench and Theodolite are example benchmarks for
software performance and scalability evaluation. So far, the Empiri-
cal Standards do not include review guidelines for such benchmark-
ing experiments.
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3 BENCHMARKS RELATED TO OTHER
EMPIRICAL RESEARCH METHODS

Empirical research methods related to benchmarking are simula-
tions, case studies and experiments.

3.1 Benchmarks vs. Simulations
A simulation study involves developing and using a mathematical
model that imitates a real-world system’s behavior. In computa-
tional science [15], such as ocean science [14, 16], we have a clear
separation between the model and the real world. In computer sci-
ence and software engineering this is not always the case: both,
the implemented model and the real-world system are software
systems.

Let us take a look at Peer-to-Peer (P2P) systems as an example
domain. In the process of developing P2P systems, simulation has
proved to be an essential method for the evaluation of new P2P
algorithms and system architectures. The separation between a sim-
ulation model of a P2P system and a real P2P system that operates
on a real physical network hinders the transition of simulation mod-
els to real systems. To bridge this gap, RealPeer [12, 13] introduces
the idea of simulation-based development of P2P systems [4]. With
RealPeer, an initial simulation model of a P2P system is iteratively
transformed into the intended real P2P system. The RealPeer frame-
work supports a developer in modeling, simulating and ultimately
developing P2P systems.

Fig. 9 illustrates the use of layered models for simulation-based
development of P2P systems with RealPeer. Initially, for each layer
of the model a developer creates a model of the corresponding
aspect (left hand side). These models are incrementally refined
until they correspond to the intended real P2P system at the end of
the development process (right hand side). The last step (separated
by a dashed line) is a special case. In this step, each element of the
model is replaced by its real counterpart. For a full introduction to
RealPeer, refer to Hildebrandt & Hasselbring [13].

RealPeer supports the modeling and simulation as well as the
development of P2P systems. The resulting real P2P system – not
the simulation – could eventually become a candidate for a P2P
benchmark.

Simulations and benchmarks have a lot in common, for instance,
we can measure the performance of software systems via bench-
marks or assess the performance via simulation [35]. However, the
essential difference is that simulations execute a model of a sys-
tem while benchmarks execute the actual system (within some
experiment setup).

3.2 Benchmarks vs. Case Studies
Benchmarks require specified, synthetic workloads [29], while case
study workloads should originate from real-live usage. Case studies
are an empirical inquiry that investigates a contemporary phe-
nomenon (the ‘case’) in depth and within its real-world context.
Unfortunately, the label ‘case study’ is often misused in the soft-
ware engineering literature [38]. For instance, illustrative examples
are often called case study. But neither examples nor benchmarks
are case studies according to the Empirical Standards.3

3https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/CaseStudy.md

The synthetic workloads for benchmarks may be derived from
real-live usage [30, 33], but for comparative and reproducible evalua-
tion of the systems under test we need defined synthetic workloads.

An advantage of benchmarking over case studies is that replica-
tion is built into the method.

3.3 Benchmarks vs. Controlled Experiments
Experiments require a high level of control over all variables affect-
ing the outcome but also provide reproducibility and easy compa-
rability. Similar to experiments, benchmarks aim for a high control
of the influencing variables and for reproducibility. On the other
hand, the actual platform, tool, or technique evaluated by the bench-
mark can be highly variable, thus each benchmark run is similar
to an experiment. However, the Empirical Standards only cover
experiments with human participants.4 Benchmarking is a from of
controlled experimentation [27], but not yet included in the Empir-
ical Standards. Benchmarks require and provide particularly high
levels of control.

4 REQUIREMENTS ON BENCHMARKS
Benchmarking is not only relevant for research, but has also a long
history in industry. Kistowski et al. [28] introduce the primary
concerns of benchmark development from the perspectives of the
SPEC and TPC committees, thus industrial consortia. Benchmark
candidates must undergo a process of several steps, including the
definition of measurement methodologies, workload selection, and
a number of rigorous benchmark acceptance tests. Kistowski et
al. [28] provide a definition of the term benchmark in the context
of performance evaluation, and define a benchmark as a standard
tool for the competitive evaluation and comparison of competing
systems or components according to specific characteristics, such
as performance, dependability, or security.

Key characteristics of benchmarks are [28]:

• Relevance How closely the benchmark behavior correlates
to behaviors that are of interest to consumers of the results.

• Reproducibility The ability to consistently produce simi-
lar results when the benchmark is run with the same test
configuration.

• Fairness Allowing different test configurations to compete
on their merits without artificial limitations.

• Verifiability Providing confidence that a benchmark result
is accurate.

• Usability Avoiding roadblocks for users to run the bench-
mark in their test environments.

Similar and complementary to these characteristics, Gray [5]
postulates relevance, portability, scalability and simplicity as basic
benchmark requirements. Essential components of benchmarks
are [24]:

• Motivating Comparison The purpose of a benchmark is
to compare, and the motivation aspect refers to the need for
the research area, and in turn the benchmark itself.

4https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/Experiments.
md

https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/CaseStudy.md
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/Experiments.md
https://github.com/acmsigsoft/EmpiricalStandards/blob/master/docs/Experiments.md
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Figure 9: Simulation-based development of P2P systems with RealPeer [13].

• Task Sample The tests in the benchmark should be a repre-
sentative sample of the tasks that the method, tool or tech-
nique is expected to solve in actual practice. For performance
evaluation this is a representative workload as part of the
benchmark.

• Performance Measures The measurements can be made
by a computer or by a human, and can be quantitative or
qualitative.

Tichy [26, 27] explicates that constructing benchmarks is hard
work, best shared within a community. Furthermore, benchmarks
need to evolve from narrowly targeted tests to broader, generaliz-
able tests in order to prevent overfitting for a specific goal. Sim et al.
[24] further pursue the community idea and state that benchmarks
must always be developed and used in the community, rather than
by a single researcher.

However, it should be sufficient to start the development process
of a new benchmark with a small group of researches as an offer to
a larger scientific community. Such a proto-benchmark [24] can act
as a template to further the discussion of the topic and to initialize
the consensus process. A proto-benchmark is a set of tests that is
missing some of the above-mentioned requirements. The most com-
mon proto-benchmarks lack a performance measure [24]. Defining
appropriate performance measures will be difficult in some areas
of software engineering that involve human activities.

These requirements may constitute the basis for a checklist of
a benchmarking standard for empirical software engineering re-
search. However, it is necessary to continuously scrutinize and
adapt benchmarks to avoid over-optimization of research towards
the benchmarks.

5 SUMMARY AND OUTLOOK
This proposal paper does not report on an empirical research project;
thus, it cannot be evaluated on the basis of the Empirical Standards.
Instead, based on previous experience and literature on bench-
marking in software engineering research we argue for including

benchmarks into the Empirical Standards for Software Engineering
Research.

If the community (for this paper the PROPSER Workshop on
Properties of Software Engineering Research) confirms my assess-
ment that we should include benchmarking as an empirical stan-
dard, I will prepare an appropriate pull request for a benchmark-
ing checklist at https://github.com/acmsigsoft/EmpiricalStandards/.
This benchmarking checklist could constitute a separate document,
or it could be an addition to the Engineering Research and/or Exper-
iments standards. Some specific evaluation criteria for benchmarks,
which are not yet included in these standards, are the following:

Essential Attributes
• Justifies the relevance of the benchmark.
• Describes the experimental setup for the benchmark with
sufficient detail.

• Specifies the synthetic workload with sufficient detail.
• Allows different test configurations to compete on their
merits without artificial limitations.

• Provides confidence that a benchmark result is accurate.
• Avoids roadblocks for users to run the benchmark in their
test environments.

• Provides a replication package including datasets and an-
alytical scripts
(for Engineering Research this a desirable attribute, for
benchmarks this is an essential attribute).

Desirable Attributes
• Reports on independent replication of the benchmark.
• Reports on a large community that uses the benchmark.
• Reports on an independent organization that maintains
the benchmark.
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