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Resident physicians (residents) experiencing prolonged workplace stress are at risk of developing mental health symptoms.
Creating novel, unobtrusive measures of resilience would provide an accessible approach to evaluate symptom susceptibility
without the perceived stigma of formal mental health assessments. In this work, we created a system to find indicators of
resilience using passive wearable sensors and smartphone-delivered ecological momentary assessment (EMA). This system
identified indicators of resilience during a medical internship, the high stress first-year of a residency program. We then
created density estimation approaches to predict these indicators before mental health changes occurred, and validated
whether the predicted indicators were also associated with resilience. Our system identified resilience indicators associated
with physical activity (step count), sleeping behavior, reduced heart rate, increased mood, and reduced mood variability.
Density estimation models were able to replicate a subset of the associations between sleeping behavior, heart rate, and
resilience. To the best of our knowledge, this work provides the first methodology to identify and predict indicators of
resilience using passive sensing and EMA. Researchers studying resident mental health can apply this approach to design
resilience-building interventions and prevent mental health symptom development.
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1 INTRODUCTION
Individuals encounter a variety of stressors within the workplace, and navigating these stressors requires resilience.
In 2015, the American Psychological Association found that 65% of Americans believed work to be one of the top
two stressors within their lives [4]. In addition, those who work in psychologically demanding environments
are more likely to develop depression, anxiety, and substance abuse disorders [23, 73]. Under prolonged stress,
individuals may experience a decline in mental health [25, 31] which could be prevented with early-intervention.
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Resident physicians, both employees and trainees, work within a psychologically demanding environment,
which requires resilience. Resident physicians often work 80 hours per week [6], and experience a variety of
emotional stressors while treating patients [62]. This demand may contribute to higher rates of depression
(25-33%) [56] among resident physicians compared to graduate students overall, and other young adults within
the general population (8-15%) [32]. Ideally, residents could frequently assess their own mental health and seek
early-intervention, but residents are unlikely to engage with mental health services due to systemic factors
including the perceived stigma around mental health [9, 58], and a lack of time to seek professional mental
health support [32]. Thus, stress-mediated interventions often focus on coping mechanisms (eg, exercise) [84],
considering these systemic factors.

Finding unobtrusive indicators of resilience may provide a more accessible approach to identify mental health
risk without the associated stigma. Researchers have leveraged unobtrusive measurement, using smartphone
and wearable devices, to create personalized digital phenotypes of mental health and well-being [15, 38, 90].
Previous work has analyzed the potential for creating digital phenotypes of students [88, 97, 106], schizophrenia
patients [99, 100], and more recently employees [57] by combining features derived from passive sensors and
short, self-reported survey measures, called ecological momentary assessments (EMA). There is now potential to
develop equivalent unobtrusive measures of resilience [59, 67, 69].
The goal of this study was to identify unobtrusive indicators of resilience using data collected from mobile

devices. We specifically focused on finding indicators that could be identified or predicted early-on in the
internship, and thus be used to design preventive resilience-building interventions. Resilience was measured
within a specific population: medical interns (first-year resident physicians) experiencing prolonged workplace
stress. Thus, we specifically studied stress-resilience. We would like to state upfront that identifying indicators
of resilience for medical interns more broadly has both positive and negative implications. Residents may feel
uncomfortable with using passive data-collection technologies to understand their mental health and resilience.
We will review these implications in our discussion.

The contributions for this work are:

(1) We developed a system using passive sensing features collected from wearable devices and ecological
momentary assessment (EMA) to find indicators of stress-resilience.

(2) We used quarterly measures of depression symptoms, collected from medical interns, to identify stress-
resilient and stress-sensitive individuals. The stress-resilient individuals experienced minimal depression
symptom changes during the internship. Depression symptoms were measured via the nine-item patient
health questionnaire (PHQ-9).

(3) We then identified specific passive sensing and EMA features that were indicators of stress-resilience,
because they were significantly (𝛼 = 0.5) associated with distinguishing stress-resilient from stress-
sensitive individuals. We found significant links between resilience and physical activity (step count),
sleeping behavior (seconds of sleep and in bed), heart rate, and daily mood.

(4) We developed and validated novel density estimation approaches to predict during-internship stress-
resilience indicators from pre-internship data. We then validated if the predicted indicators followed the
same associations with stress-resilience as the actual indicators. We found that our generated data accurately
replicated a subset of the associations between sleeping behaviors, heart rate, and stress-resilience.

(5) We discussed the implications of this work for communities studying resilience, resident well-being, and
generative models, as well as the ethical implications of predicting employee mental health more broadly.
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2 BACKGROUND AND RELATED WORK

2.1 Resilience and Mental Health
Resilience can be described as a process in which individuals positively respond or adapt to changing circumstances
within their lives. Traditionally, when defining resilience, circumstances imply an adverse event, or negative life
circumstance, that requires some amount of adjustment within an individual [54]. That being said, resilience
can be applied to circumstances that individuals face day-to-day [14], rather than a specific adverse event, and
also many events that are viewed positively (eg, marriage, a job promotion, beginning school) might require
some amount of resilience [22]. Resilience also implies that individuals adapt positively to the circumstances they
face, which requires context-dependent indicators to describe whether individuals are resilient within a specific
situation [53].
There are multiple methods to measure resilience. Trait resilience measures describe resilience as a set of

personality traits that help individuals adapt to adverse circumstances. Trait resilience is measured using a variety
of rating scales, and the outcomes of these scales correlate with mental health symptoms [35]. However, reliability
between major trait resilience scales is low [104]. A potential better method to describe and measure resilience is
as an outcomes-based process (process resilience) [21, 40, 54] that occurs when individuals adapt to minimize the
impact of stress. Process resilience can be measured by tracking trajectories of mental health while individuals
are under stress [34]. Individuals who do not experience mental health changes over a prolonged period are
identified as stress-resilient, and this type of resilience tracking has become common in research studying the
effects of workplace stress on mental health [26, 31]. For convenience, we will use resilience, stress-resilience, and
process resilience interchangeably throughout the rest of this work.

2.2 Resident Physicians and Mental Health
Resident physicians, part employee and part trainee, are a specific population that experience a variety of
situational, personal, and professional stressors throughout the duration of their programs [50]. Residents can
experience prolonged sleep deprivation [41, 42, 50], often caused by extremely long shift hours [6, 27], and endure
emotional trauma through consistent encounters with fatalities, childhood illness, and chronic disability [16, 62].
After prolonged occupational stress, residents can develop burnout, which is described by emotional exhaustion,
cynicism, and a sense of self inefficacy [55, 89]. Burnout is dangerous for resident physicians’ mental health, and
is associated with increased depression and anxiety [44].

Resident physicians are particularly at risk for changes in mental health during the first year of their program,
called a medical internship. Research has shown that interns have high levels of depression, anxiety, fatigue, and
distress that can persist throughout the duration of their residency programs [7, 94]. There are a number of
pre-internship factors that are associated with changes in mental health and well-being during an internship
[31, 83], and behavioral changes that occur during the internship may be indicative of future mental health
changes [41, 42]. Understanding whether mental health will change early-on could offset the potential effects of
prolonged stress if residents are able to build resilient behaviors.

2.3 Identifying Methods to Improve Resident Physician Resilience
Introducing resilience-building programs early-on within a medical internship can reduce the impact of stress
on mental health. Researchers have proposed resiliency training programs and identified resilience-building
behaviors that reduced burnout and improved mental health [62, 109]. That being said, residents often choose not
to engage in interventions to improve resilience and mental health [58, 79, 93], citing that they do not have time
or access to treatment, they would prefer to self-manage their mental health, and they are concerned about the
confidentiality and potential social consequences of seeking external treatment (perceived stigma) [32]. Research
suggests that improving sleep and physical activity habits may improve resident mental health and well-being
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[47, 68], but it may be difficult for residents to modify these behaviors during the internship. Creating unobtrusive
measurement systems that can detect resilient behaviors early-on could help residents identify mental health risk
factors and take action before symptoms develop. This data could also be anonymized and aggregated to guide
program directors towards structural interventions (eg, increased schedule flexibility) that improve mental health.

2.4 Unobtrusive Mental Health Monitoring Using Passive Sensors and EMA
Passive sensing along with ecological momentary assessments (EMA) delivered through a smartphone application
(i.e. mobile sensing) can be used to predict trajectories of mental health and well-being. A passive sensor is any
sensor that can collect data with little-to-no human interaction. EMAs are in-the-moment assessments, often
delivered digitally, used to collect more frequent measurements of mental health outside of a clinic [30, 74, 86].
Thus, both passive sensing and EMA are unobtrusive on-device measurements. Previous studies leveraged
smartphone sensors, wearables, and EMAs to find significant correlations between the collected mobile sensing
data and mental health [15, 42, 61, 82, 88, 97, 98]. These technologies can also be used to predict trajectories
of serious chronic mental illness, including bipolar disorder [24], schizophrenia [2, 8, 11, 12, 99, 100, 102], and
depression [80, 81, 101].
In this work, we found unobtrusive indicators of medical intern stress-resilience using passive sensing and

EMA. We specifically focused on identifying indicators using data collected prior to the internship, or predicted
from data collected prior to the internship, because this information could guide interns and program directors
towards effective and targeted mental health symptom prevention strategies.

3 THE INTERN HEALTH STUDY AND DATASET
The Intern Health Study is an ongoing multi-site prospective cohort study to understand the links between
behaviors, mental health, and well-being as resident physicians adapted to the stress of their programs. The first
year of residency, also called a medical internship, is known to impact resident mental health and well-being
[7, 94]. Participating sites were located across the United States, and a full list of participating sites can be found
on the study websites [48, 87].
Interns starting their residency at a participating site were eligible to enroll online. After consenting to the

study, participants were mailed a Fitbit Charge 2 [18] for passive behavioral and physiological tracking, and
completed a baseline assessment via a smartphone study application 1-2 months prior to the commencement of
the internship. In addition, the study application sent notifications to complete daily mood ecological momentary
assessments (EMAs), and facilitated data transfer from the Fitbit to a secure storage platform. Participants were
asked to participate in Fitbit tracking and complete daily EMAs beginning 1-2 months prior to their internship
through the end of the internship (∼14 months total). Lastly, participants completed quarterly mental health
assessments for depression symptoms at internship months 3, 6, 9, and 12, to further gauge how they adapted to
their new work. Table 1 summarizes the passive sensing and EMA data.
This study was approved by the University of Michigan Institutional Review Board (IRB) and all subjects

provided informed consent after receiving a complete description of the study. The collected data was used for
research purposes only. Participants were incentivized to participate by receiving the Fitbit device and up to US
$125, distributed five times throughout the year (US $25 each time) with continued participation.

3.1 Passive Wearable Sensing
Participants were mailed a Fitbit Charge 2 [18]. The Fitbit device continuously tracked minute-by-minute step
count, heart rate, whether a participant was sleeping, and the type of sleep. Prior research has examined and
determined that Fitbits are an accurate consumer product for tracking sleep, activity, and heart rate for research
purposes [17, 60, 63]. Information about how Fitbit devices track heart rate, steps, and infer sleep states is available
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on the Fitbit website, but is limited due to the proprietary nature of Fitbit’s algorithms [19, 20]. We will briefly
describe what is known below.

Fitbit uses a three-axis accelerometer to infer step count information. To detect heart rate, LED lights installed on
the bottom of the Fitbit flash many times per second, and light-sensitive photodiodes then detect volume changes
within wrist capillaries to infer heart rate beats per minute (BPM). Lastly, Fitbit combines the accelerometer and
heart rate information to infer when an individual is sleeping, by measuring when an individual has stopped
moving for one hour, and then measuring changes in heart rate to infer the sleep stage. The Fitbit application
programming interface (API) outputs two different sleep categorizations, and a query to the API may respond in a
mix of the two categorizations. The classic categorization uses the accelerometer to infer general sleep categories
(asleep, restless), and the newer stages categorization uses the accelerometer and heart rate monitor to infer sleep
stages (deep, light, rapid eye movement). The Fitbit also collects data on short wake cycles (<3 minutes) that
occur between sleep.

Table 1. Passive sensing and EMA data collected during the Intern Health Study through the Fitbit and study application.

Data Type Description
Heart rate Heart rate each minute
Steps Step count each minute
Sleep The duration of sleep and short wake cycles, when the sleep event was recorded, as

well as the category
Mood EMA Question prompt: On a scale of 1 (low) to 10 (high), what was your average mood

today?

3.2 Mood Ecological Momentary Assessment (EMA)
Ecological Momentary Assessments (EMAs) are a standard method for assessing in-situ mental health and
well-being [30, 97, 99]. EMAs were completed once per day by participants through a smartphone application
created for this study at a participant-designated time between 5PM and 10PM. Please refer to the Intern Health
Study website for more information on the study application [87]. The EMA contained one question that asked
participants to rate their daily average mood from 1 (low) to 10 (high).

3.3 Baseline andQuarterly Assessments
Participants completed baseline (BL) and quarterly (Q1-4) assessments upon beginning their internship that
contained questions regarding demographics, including age, sex, ethnicity, and also information on their medical
specialty. In addition, at baseline and at the end of each quarter, interns completed the nine-question patient
health questionnaire (PHQ-9), a self-reported measure for depression symptoms [46]. A higher PHQ-9 score
indicates a higher severity of depression symptoms. A variety of other survey measures were taken baseline and
quarterly, but were not used in this work. Please refer to the Intern Health Study website [87] for more details.
We chose to not use the demographic variables or specialty information as indicators of resilience, but these

variables were used as controlled covariates in some analyses throughout this work. We decided that we did not
have enough contextual information to understand individuals’ circumstances that may explain why demographic
variables were related to resilience. We discuss potential methods to account for demographics within mental
health models in section 7.6.
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3.4 Feature Creation
Features were created from the Fitbit passive sensing and EMA data collected. We now briefly describe each
feature in more detail. A summary of features can be found in Table 2.

3.4.1 Heart Rate. The Fitbit tracks minute-by-minute heart rate. We computed the mean hourly heart rate for
each hour and participant. We chose to use the mean instead of the median as a summary feature, as we believed
extreme heart rate values recorded within an hour would be captured by using the mean as our summary statistic.
Heart rate variability, which can be used as an indicator for stress [43], was not available for all participants within
our dataset, and was not used within this study. We hope to analyze heart rate variability and its relationship to
intern stress within future research.

3.4.2 Daily Mood Ecological Momentary Assessment (EMA). Participants were notified to complete a daily mood
EMA through the study smartphone application. Modeling sensor data sampled at different frequencies is an
active area of research. For simplicity, we used local interpolation to approximate an hourly mood EMA from the
daily mood EMA. Prior work found that local interpolation of irregularly sampled features in time series still
preserves key characteristics of the original time series [45]. The interpolating procedure follows.

If a mood EMAwas completed on a given day, we filled the hours of that day with the EMA value, from the time
the participant woke up from a previous sleep cycle, up to the time when the participant woke up following the
next sleep cycle that was greater than two hours. Using sleep cycles as start and end points for the interpolation
procedure allowed us to capture the spirit of the mood EMA question prompt, which asked participants for
their average mood over the entire day (see Table 1). We expected most participants would answer this question
thinking back to when they woke up that day. If multiple mood EMAs were recorded on a day (implying the
participant completed the survey more than once), the average of the mood EMAs was taken, and this average
value was used for interpolation. Mood EMAs were filled up to 24 hours after the EMA was completed.

Similar to previous work, we added random noise 𝜖 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 0.2) to each mood EMA so that we could
model mood as a continuous variable [105]. 0.2 was chosen, because after averaging daily mood values, mood
EMA values existed on a scale from 1-10 with 0.5 increments. Adding noise ≤0.2 allowed us to create continuous
values, while preserving a gap between neighboring discrete mood values so they could be recovered.

3.4.3 Sleep. The Fitbit algorithm categorizes the type of sleep (see section 3.1), and records short wake cycles
that occur in-between sleep. For simplicity, we aggregated the recorded time sleeping within an hour (within any
type of sleep), and the total number of seconds in bed (which includes both sleep and short wake cycles). Note
that if a sleep cycle extends beyond an hour, the Fitbit may record one long multi-hour sleep cycle.

3.4.4 Steps. The Fitbit tracks minute-by-minute step counts. We summed through all steps taken within an hour
to create an hourly step count feature.

Table 2. Passive sensing and EMA features used within this work.

Data type Derived feature(s)
Heart rate The hourly mean heart rate
Mood EMA Interpolated daily self-reported EMA
Sleep Time (in seconds) spent sleeping and in bed over an hour
Steps Number of steps taken over an hour
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3.5 Data Cleaning
3.5.1 Missing Data. After creating the initial hourly features from raw data, we analyzed the data for missing
values and outliers. The following types of missing data were identified, with mitigation procedures:

• For step and sleep features, we identified hours that contained classified sleep, but no recorded steps, and
vice-versa. We deemed that these hours could be considered "non-random missing data", which assumed,
for example, that the reasoning behind the missing sleep values was due to an individual being awake.
Given this assumption, missing data for step and sleep features were filled with 0s during hours where
either of these cases occurred.

• After creating the interpolated mood EMA, we dropped all remaining data points without a mood score.
This occurred when a mood score had not been recorded within the past 24 hours.

• Heart rate data should be continuously recorded by the Fitbit. We dropped hours that did not contain any
heart rate data for a participant.

3.5.2 Outlier Filtering. After dropping missing values, we identified multivariate outliers within the hourly
features listed in Table 2. Prior work using mobile sensing data to model mental health included methodological
choices that reduced model sensitivity to outliers [99, 100]. There were two potential types of outliers within
this work: (1) extremely unrealistic sensor values (eg, walking 20,000 steps in a single hour) within the study
population, or (2) outliers that have an implication for mental health (eg, long sleep duration). We aimed to filter
outlier type (1), but not outlier type (2).
Outliers were filtered using an Isolation Forest [52] algorithm. Isolation forests recursively partition data

through randomly selected features. A set of partitions can be described as a path to a set of samples, and samples
that are partitioned by shorter paths are classified as outliers. We created an Isolation Forest using the scikit-learn
library [70], with 250 trees, and randomly partitioned samples into each tree. The maximum number of features
per tree was set to the length of the feature space.

The results of outlier filtering are summarized in Table 3. Note that some features, such as the seconds of sleep
per hour, are likely to have majority "0" values because individuals spend most of their hours awake. 73,722
samples (2.9% of the total samples) were classified as outliers, and removed. We would like to note that it is
possible some type 2 outliers were likely filtered during this process, which may affect our ability to find indicators
of resilience in this work. We provide further analysis to investigate the impact of outliers on distinguishing
stress-resilient from stress-sensitive individuals in section 4.2.

Table 3. Summary of the hourly feature outlier filtering results. Outlier filtering was conducted using an Isolation Forest
algorithm [52]. Results are listed in each cell using the following notation: (before filtering, after filtering). Some features, for
example the seconds of sleep, have "0" values for the lower percentiles because individuals are not sleeping during most
hours of the day. The mean heart unit is in beats per minute (BPM). Note that if sleep is continuous, the Fitbit may record
one long multi-hour sleep cycle, but these cycles are usually broken-up by short wake cycles when someone moves while
lying down or becomes restless.

Feature Minimum 25th Percentile Median 75th Percentile Maximum
Step Count (0, 0) (0, 0) (125, 135) (495, 494) (50017, 5496)
Seconds in Bed (0, 0) (0, 0) (0, 0) (600, 1320) (89580, 8190)
Seconds of Sleep (0, 0) (0, 0) (0, 0) (120, 870) (58920, 7740)
Mean Heart Rate (BPM) (35, 35) (63, 62) (72, 71) (82, 81) (204, 130)
Mood EMA (1, 1) (7, 7) (7, 7) (8, 8) (10, 10)
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3.5.3 Filtering Out Participants with Extremely Low Data Quality. Similar to previous work in mobile sensing for
mental health prediction [2, 92], we required participants to have a minimum number of hours of data collected
for training prediction models. We filtered out study participants that did not have at least 100 total hours of data
prior to the internship starting, and during the internship year. Though it is possible that low data availability for
a participant could have an implication for mental health, we still believed that having a minimum threshold was
important for modeling. To account for the effect of low data on mental health, we added an additional feature
for analysis to account for low data quality, described in the following sections. We lastly filtered out individuals
who had an hourly feature variance of zero, for any hourly feature. A summary of the data filtering procedure
can be found in Table 4.

Table 4. Overview of the data filtering process, including the total number of participants, total hours of data, and the
median (IQR) hours of data of across participants, split by baseline (BL) and each quarter (Q1-4). Each metric is listed for
both the raw and cleaned data used for analysis. The median is the 50th percentile, and the IQR is a range representing the
25-75th percentiles of the data. Note that we enforced participants to have 100 hours of collected data in BL, and within the
combined Q1-4, hence the median and 25th percentile increases in hours of data during certain periods after data cleaning.
In addition, it is possible that participants may have dropped out of the study and returned, resulting in an increase in
participants across specific periods of the study.

Period Number of Participants Total Hours of Data Hours of Data Across Participants
Raw Cleaned Raw Cleaned Raw Cleaned

BL 2,167 775 910,201 312,405 307 (28-634) 363 (237-532)
Q1 2,481 775 2,315,504 651,173 850 (20-1,850) 797 (408-1,220)
Q2 1,738 655 1,697,665 433,360 875 (60-1,867) 564 (205-1,060)
Q3 1,571 303 1,247,209 222,273 449 (18-1,667) 647 (275-1,130)
Q4 1,290 392 1,089,434 227,727 551 (20-1,719) 427 (155-939)

Total 2,668 775 7,260,013 1,846,938 495 (25-1,544) 508 (259-941)

The objective of this work was to find indicators of resilience when individuals experienced internship stress.
Ideally, we would have predicted changes that occurred at each quarter of the internship and developed a more
fine-grained notion of when individuals were resilient. As the internship progressed, the availability and quality of
participant data, specifically after the second quarter of the internship (see Table 4), decreased. Thus, we focused
on a simpler task, and grouped the hourly features together before the internship into a single multivariate baseline
distribution per participant, and the hourly features during the internship (Q1 to Q4) as another multivariate
internship distribution per participant. We then created indicators from these two distributions, described below.

3.6 Indicator Creation
We developed 37 different passive sensing and EMA indicators from the hourly features based upon multiple
characteristics from the multivariate baseline and internship distributions. A summary of the indicators can be
found in Figure 1. Similar indicators were used in prior work measuring the effect of mobile data on mood [42].
Let us define the multivariate baseline distribution of hourly features for an individual as 𝐴, and the multivariate
internship distribution of hourly features for an individual as 𝐵. Suppose we have 𝑚 features, and defining
𝑗 ∈ {1, ...𝑚}, 𝐴 𝑗 and 𝐵 𝑗 are the distributions for each hourly feature per participant. We computed the mean and
standard deviation of the hourly features in both the baseline (𝑋𝐴 𝑗

, 𝑆𝐷𝐴 𝑗
) and internship (𝑋𝐵 𝑗

, 𝑆𝐷𝐵 𝑗
) distributions.

In addition, to create a measure of missing data, we computed the number of hours of total data collected for
both the baseline (𝑛𝐴) and internship (𝑛𝐵) periods.
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Fig. 1. Summary of the 37 different indicators used in this work. Values are either specific to the period before (BL), during
(INTERN) the internship, or captured a difference in a specific metric between the INTERN and BL periods (Cohen’s 𝑑𝑠 ). The
indicators on the right are calculated for each metric listed in the same section on the left. For example, we calculated the
Mean, Standard Deviation, and Skew for both the BL and INTERN periods, as well as the Cohen’s 𝑑𝑠 for the mean heart rate.
This results in 7 total indicators for the mean heart rate, and this process can be repeated for each of the 5 hourly features
(35 indicators). 2 additional indicators were created to capture information about missing data, specifically the count of data
per participant in the BL and INTERN periods, resulting in 37 total indicators.

We computed the empirical skew for each feature in both the baseline internship distributions, which is
a measure of how "balanced" a distribution is. We expected many of the features in our dataset, such as the
mood EMA, to be non-gaussian. We initially created nonparametric indicators (eg, median and interquartile
range), but found these statistics were highly correlated with their parametric counterparts. Thus, the skew
indicator per feature was used to capture how the non-gaussian nature of each feature distribution was associated
with stress-resilience. We used the Pearson’s skew coefficient [95], which measures the difference between the
empirical mean (𝑋 ) and the median (a) divided by the standard deviation (𝑆𝐷). For example, for the baseline
distribution, a multivariate data point with𝑚 features, and a single hourly feature (𝐴 𝑗 ) for an individual:

𝑆𝑘𝑒𝑤𝐴 𝑗
=

3(𝑋𝐴 𝑗
− a𝐴 𝑗

)
𝑆𝐷𝐴 𝑗

𝑗 ∈ {1, ...,𝑚}

(1)

Finally, we computed the standardized difference in means, or Cohen’s 𝑑𝑠 , between the baseline and internship
period, for each hourly feature. The formula for the Cohen’s 𝑑𝑠 is found in equation 2. We will refer to the vector
of Cohen’s 𝑑𝑠 for each feature as 𝑑𝑠 , and the Cohen’s 𝑑𝑠 for each feature as 𝑑𝑠 𝑗 . For each feature, this is computed
as follows:
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𝑑𝑠 𝑗 =
𝑋𝐵 𝑗

− 𝑋𝐴 𝑗√
(𝑛𝐴−1)𝑆𝐷2

𝐴𝑗
+(𝑛𝐵−1)𝑆𝐷2

𝐵𝑗

(𝑛𝐴+𝑛𝐵−2)

𝑗 ∈ {1, ...,𝑚}

(2)

4 EVALUATION: IDENTIFYING INDICATORS OF RESILIENCE
Table 5 shows a summary of the data used for analysis after cleaning and outlier filtering. Table 6 displays
demographic information from the analysis cohort compared to sex and race/ethnicity 2018-19 statistics of
graduating medical students from the Association of American Medical Colleges (AAMC) [65, 66]. Significant
differences were found between the analyzed data and AAMC demographic information for both sex (𝜒2 =

12.46, 𝑃 < .001) and race/ethnicity (𝜒2 = 35.90, 𝑃 < .001). Table 7 describes the medical specialties of interns
within the dataset. Specialties were not compared to AAMC specialty statistics, as we only captured a subset of
specialties and thus categorical comparison was difficult.

Table 5. Overview of analyzed data.

Analyzed Data

Total Participants, n 775
Total Hours of Data, n 1,846,938
Total Days of Data, n 116,536
Baseline Hours of Data per participant, median (IQR) 363 (237-532)
Internship Hours of Data per participant, median (IQR) 1,411 (554-2,974)

Table 6. Demographic information of the analyzed data compared to U.S. medical graduates from 2018-19 [65, 66]. The
AAMC does not report the age of graduating medical students, and thus was excluded.

Analyzed Data U.S. Medical Graduates

Age, median (IQR) 27 (26-28) Not reported
Female, n (%) 422 (55) 9,555 (48)
White, n (%) 505 (65) 10,879 (55)
Black, African American, n (%) 36 (5) 1,238 (6)
Hispanic, Latino, Spanish Origin, n (%) 25 (3) 1,063 (5)
Asian, n (%) 133 (17) 4,299 (22)
Native Hawaiian, Other Pacific Islander, n (%) 0 (0) 9 (<1)
American Indian, Alaskan Native, n (%) 0 (0) 38 (<1)
Mixed Race/Ethnicity, n (%) 63 (8) 1,598 (8)
Other Race/Ethnicity, n (%) 12 (1) 380 (2)
Race/Ethnicity Unlisted, n (%) 1 (<1) 124 (1)
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Table 7. Intern medical specialties within the analyzed data.

Specialty Analyzed Data, n (%)

Internal Medicine 173 (22)
Surgery 76 (10)
Ob/Gyn 50 (6)
Pediatrics 108 (14)
Psychiatry 35 (5)
Emergency Medicine 70 (9)
Med/Peds 25 (3)
Family Practice 70 (9)
Transitional 28 (4)
Anesthesiology (w/o transitional year) 36 (5)
Neurology (w/o transitional year) 13 (2)
Otolaryngology (w/o transitional year) 7 (1)
Other 84 (11)

4.1 Identifying Stress-Resilient and Sensitive Participants
Resilience is defined as adaptation to circumstance. We looked to identify a set of individuals within the population
whose depression symptoms changed minimally throughout the internship. Previous studies [25, 31] labeled
population subsets that experienced minimal mental health changes as the "stress-resilient" population. By
identifying this population, we could then find passive sensing and EMA indicators that distinguished stress-
resilient and stress-sensitive individuals. We used quadratic growth mixture models (GMMs) [75] to identify
distinct trajectories of depression symptom changes across the population, measured using recorded PHQ-9
changes during baseline and the internship. Previous work used GMMs to identify mental health trajectories
distinguishing stress-resilient from stress-sensitive individuals [25, 31]. GMMs are similar to linear mixed-effects
models, but the key difference is that GMMs identify distinct latent classes within a dataset, and fit a curve to each
of these distinct classes. Expectation-maximization is used to optimize both the model parameters and fit classes
across individuals as a latent variable [76]. Quadratic models were chosen over linear models, as previous studies
modeling resilience within medical interns [31] found that depression symptoms increased when individuals
experienced stress, and decreased after a period of time.

We experimented with identifying 2-5 distinct classes within our dataset. We then chose the number of classes
that minimized both the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The
resulting AIC and BIC for each pre-defined number of classes can be found in Table 8. We found the 4-class model
minimized the AIC (17,127) and BIC (17,215). The depression symptom change (Δ𝑃𝐻𝑄 − 9) trajectories from the 4
class model can be found in Figure 2. The majority class (𝑛 = 525, 68% of participants) who experienced minimal
PHQ-9 (depression symptom) changes was qualitatively determined to be the "stress-resilient" population, and
the combined other classes (𝑛 = 250, 32% of participants) were determined to be the "stress-sensitive" population.
We acknowledge that the stress-sensitive population combined the trajectories from 3 distinct classes, and we
plan to analyze distinct stress-sensitive classes in future work.

4.2 The Impact of Outliers on Identifying Stress-Resilient Participants
We analyzed if our outlier filtering procedure affected our ability to distinguish stress-resilient versus stress-
sensitive individuals. If outlier values were characteristic of stress-sensitivity, we would expect that a higher
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Table 8. Results from using growth mixture models to identify different trajectories of depression symptom changes within
our population. We used the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) to assess
model performance.

# of classes AIC BIC

2 17,267 17,318
3 17,184 17,254
4 17,127 17,215
5 17,135 17,242

number of outliers would be filtered out for stress-sensitive compared to stress-resilient participants. A Shapiro-
Wilk test showed that the outlier count distribution across participants was non-normally (𝑃 < .05) distributed.
A Mann-Whitney𝑈 test was performed to examine if the number of outliers identified across stress-sensitive
participants was significantly greater than the number of outliers identified across stress-resilient participants.
The test was non-significant (𝑈 = 69, 510.5, 𝑃 > .05). We also confirmed that participants were not entirely
filtered out of our dataset during the outlier removal procedure. Thus, we believe these outliers did not contain
information that distinguished stress-resilient from stress-sensitive individuals.

4.3 Identifying Passive Sensing and EMA Indicators of Resilience
4.3.1 Generalized Estimating Equations (GEE). We used generalized estimating equations (GEE) [33, 100] to find
which indicators, defined in Figure 1, significantly differentiated stress-resilient and stress-sensitive individuals.

Fig. 2. The resulting trajectories from the 4-class quadratic growth mixture model. Each curve represents the change in
depression symptom trajectory for the subset of the population within that class. Points represent the mean Δ𝑃𝐻𝑄 − 9
(change in depression symptoms) for that period and population subset represented by that trajectory, and error bars are
a 95% confidence interval around the mean. The y-axis, Δ𝑃𝐻𝑄 − 9, are the changes in depression symptoms compared to
baseline (BL). The x-axis describes the period in which depression symptoms were measured, including the baseline period
before the internship (BL), and each quarter, or 3-month period (Q1-4), of the year-long internship. One class was labeled the
"Stress-Resilient" class, because it contained a subset of the population who experienced minimal changes in depression
symptoms throughout the internship. The legend shows the labels for each class, as well as the size of the population subset
(n) the trajectories represent.
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We initially used logistic regression, a simpler generalized linear model, but the regression failed to identify
indicators that distinguished stress-resilient from stress-sensitive individuals. GEE is a type of linear model that
can be applied to measure population effects on clustered or grouped data, and GEE can be more robust compared
to other grouped linear models such as linear mixed-effects models because GEE requires less assumptions on the
underlying data distributions [37]. Sex and age were controlled for within each model. Sex and age were chosen
as controls because we believed these are two characteristics that an individual might be more comfortable
to share with an implemented resilience-measurement system, compared to a characteristic like ethnicity, or
baseline depression status. We used the internship specialty as the grouping variable, because the intensity of
work can vary by specialty [6]. Continuous indicators were standardized by subtracting the mean and dividing
by the standard deviation prior to conducting the regression. In addition, a constant term of "1" was added to the
regression model as a y-intercept.

A summary of the indicators used within the GEE can be found in Figure 1. We first created a set of "univariate
GEE" models with each potential indicator isolated and controls, to first find which features significantly differen-
tiated stress-resilient and sensitive individuals. We then conducted a "multivariate GEE" where we modeled the
significant indicators and controls together, after removing indicators that were highly correlated. More informa-
tion on identifying and removing correlated indicators can be found in Appendix I, within the supplementary
material.

4.3.2 GEE Results. The univariate and multivariate GEE results are listed in Table 9. A positive GEE 𝛽 coefficient
shows a positive association between an indicator and the likelihood an individual is stress-resilient with all
other independent variables held constant. The magnitude of the 𝛽 coefficient can be interpreted as the strength
of the association.

Out of the 37 potential indicators, 17 were significantly associated with stress-resilience within the univariate
GEEs. For space, we only describe the most significant (𝑃 < .001) indicators within the text. Having a higher
average number of seconds in bed and sleep during the internship increased the likelihood of resilience. Hourly
sleep distributions are skewed (most individuals are not sleeping during the day). Increasing the skew translates
to the tail of the distribution (more hours with higher seconds of sleep) becoming larger, and this increase
in skew during the internship increased the likelihood of stress-resilience. The mood EMA feature showed a
number of significant associations with stress-resilience, which was expected given low mood is a direct symptom
of depression on the PHQ-9 [46]. A higher mood score during the baseline and internship, as well as lower
fluctuations in mood (decreased standard deviation) increased the likelihood of stress-resilience. An increased
mood score (positive Cohen’s 𝑑𝑠 ) increased the likelihood of stress-resilience.

After removing correlated features, 3 indicators were included in the multivariate GEE model. The 3 indicators
were the INTERN step count skew, seconds in bed Cohen’s 𝑑𝑠 , and mood EMA Cohen’s 𝑑𝑠 . The high number of
filtered indicators showed that the potential indicators were highly correlated. All 3 indicators were significantly
associated with resilience, and we describe them further. The step count distributions are skewed because there
are many hours during the day when an individual is not moving (hourly step count = 0). Thus, decreasing this
skew shifts the mode of the distribution away from 0, i.e. there are more hours spent with nonzero step counts.
This decrease during the internship period increased the likelihood of stress-resilience (𝛽𝑀 = −0.16, 𝑃𝑀 < .01).
Increasing the amount of time spent in bed increased the likelihood of stress-resilience (𝛽𝑀 = 0.11, 𝑃𝑀 < 0.05), as
well as increasing one’s mood (𝛽𝑀 = 0.26, 𝑃𝑀 < 0.05).

5 PREDICTIVE MODELING APPROACH

5.1 Motivation
The results in Table 9 showed that there were a variety of indicators that summarized both the baseline and
internship hourly feature distributions and were significantly associated with distinguishing stress-resilient versus
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Table 9. Results from conducting GEE to understand how each potential passive sensing and EMA indicator distinguishes
stress-resilient and stress-sensitive individuals. Specialty was used as a grouping variable, and we controlled for sex and age
in the model. We list only significant results (𝛼 = 0.05) from the univariate regressions. The 𝛽𝑈 and 𝑃𝑈 are the univariate
significance and p-value respectively. Multivariate regression was performed after filtering out highly-correlated indicators.
𝛽𝑀 and 𝑃𝑀 are the coefficient and significance values for the 3 indicators included in the multivariate regression. Values
were either specific to the period before (BL), during (INTERN) the internship, or captured a difference in a specific metric
between the INTERN and BL periods (Difference).

Hourly Feature Metric Period 𝛽𝑈 (95% CI) 𝑃𝑈 𝛽𝑀 (95% CI) 𝑃𝑀

Step Count Skew BL -0.19 (-0.37 to -0.01) <.05
Step Count Skew INTERN -0.16 (-0.26 to -0.06) <.01 -0.16 (-0.26 to -0.06) <.01
Seconds in Bed Cohen’s 𝑑𝑠 Difference 0.15 (0.04 to 0.25) <.01 0.11 (0.00 to 0.22) <.05
Seconds in Bed Mean INTERN 0.17 (0.08 to 0.27) <.001
Seconds in Bed Skew INTERN 0.15 (0.06 to 0.24) <.01
Seconds in Bed Standard Deviation INTERN 0.13 (0.03 to 0.22) <.05
Heart Rate Mean BL -0.13 (-0.25 to -0.01) <.05
Heart Rate Mean INTERN -0.16 (-0.30 to -0.03) <.05
Seconds of Sleep Cohen’s 𝑑𝑠 Difference 0.15 (0.05 to 0.25) <.01
Seconds of Sleep Mean INTERN 0.18 (0.09 to 0.27) <.001
Seconds of Sleep Skew INTERN 0.16 (0.07 to 0.25) <.001
Seconds of Sleep Standard Deviation INTERN 0.13 (0.03 to 0.23) <.01
Mood EMA Cohen’s 𝑑𝑠 Difference 0.25 (0.12 to 0.37) <.001 0.26 (0.13 to 0.39) <.001
Mood EMA Mean BL 0.31 (0.14 to 0.48) <.001
Mood EMA Mean INTERN 0.54 (0.42 to 0.67) <.001
Mood EMA Standard Deviation BL -0.23 (-0.33 to -0.12) <.001
Mood EMA Standard Deviation INTERN -0.51 (-0.60 to -0.41) <.001

stress-sensitive individuals. An application of this analysis would be to use the found indicators to guide interns
towards wellness interventions [47, 68], or help residency program directors create interventions that improve
resilience. Interns may be more willing to engage in these interventions before they are time-constrained by
their residency program, and are impacted by internship stress. For example, if the system indicates an individual
is less likely to engage in physical activity during the internship, which is linked to higher stress-sensitivity, an
intern could begin to build exercise goals into their routine before the internship begins [47].
13 out of 17 of the found indicators were associated with mobile data collected during the internship. These

indicators are unknown during the baseline period. We aimed to predict these indicators using mobile data
collected during the baseline period, which would be needed for early-assessment and intervention. We first
experimented with regression models, including random forests, gradient boosting trees, and multilayer percep-
trons, to approximate the resilience indicators from baseline data. We found that these models were unable to
achieve accurate predictions across all indicators.

We thus pivoted our analysis to a more complex approach, specifically using density estimation techniques, to
predict a multivariate distribution of the hourly features per-individual. Per these multivariate distributions, we
would be able to calculate a set of predicted resilience indicators, and verify whether the relationships between
the predicted indicators and resilience aligned with the actual indicators and resilience. Figure 3 summarizes our
analysis.
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Fig. 3. The full analysis pipeline in this work. We let 𝐴 be the multivariate hourly baseline (BL) feature distributions per-
individual, and 𝐵′ be the predicted multivariate hourly internship (INTERN) feature distribution per-individual. (1) We first
found relationships between the actual mobile sensing indicators using both the baseline and internship data and resilience
(see Table 9). We then built conditional generative adversarial networks (CGANs) to predict the internship data (𝐵′) from
the baseline data (A) per-individual. We calculated predicted mobile sensing indicators using both 𝐴 and 𝐵′. Lastly, in (3),
we validated whether the associations between the predicted indicators and resilience were equivalent to the relationships
between the actual indicators and resilience (see Table 12 and Figure 7).

5.2 Overview of Density Estimation Models Used in this Work
We now give an overview of the density estimation techniques used to generate the during-internship multivariate
hourly feature distributions from the multivariate hourly baseline distributions per participant. More specific
details, including the equations, architecture, and hyperparameters for each model can be found in Appendix II
within the supplementary material.

5.2.1 Conditional Generative Adversarial Networks (CGAN). We specifically chose to use generative adversarial
networks (GANs) for predicting the multivariate internship distributions 𝐵 from the multivariate baseline
distributions 𝐴. We decided to use this approach because GANs can generate high quality samples of complex
data distributions [29] compared to simpler density estimation approaches (eg, kernel density estimation), and
there is a large amount of previous work using GANs in a supervised format to predict a specific distribution
from an input distribution [3, 39, 108]. GANs are also easier to optimize compared to other generative models
(eg, variational autoencoders), because GANs do not attempt to approximate intractable likelihoods [29]. GANs
are a type of deep learning model, and the models we used were based upon different encoder-decoder neural
networks, similar to [39].
In this work, we wanted to generate a specific multivariate hourly feature internship distribution 𝐵, from a

multivariate hourly feature baseline distribution 𝐴, per participant. There is a family of GANs, called conditional
GANs (CGAN), that are used to teach a GAN to generate distributions in a supervised manner. The input to
the CGAN was a multivariate hourly baseline data point, for a participant 𝑎 ∈ 𝐴, 𝑎 ∈ R𝑚 (assuming we have
𝑚 features), and the output was a generated multivariate hourly internship data point 𝑏 ′ ∈ 𝐵′, 𝑏 ′ ∈ R𝑚 . After
inputting multiple different baseline hourly data points,𝐴 for a participant, the CGAN can generate a multivariate
hourly internship distribution 𝐵′ for the same participant. Distribution characteristics from the actual 𝐵 and
generated 𝐵′ multivariate hourly distributions can then be compared to assess density estimation performance.

5.2.2 Multitask CGANs. Multitask learning (MTL) is a machine learning technique used to train separate, but
related prediction tasks together [13]. Previous work [88, 92] using mobile sensing data to predict mental health
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Table 10. Overview of the data used for model training and validation (80% of the total data), as well as the held-out data
(20%) used to report model results.

Training (80%) Testing (20%)

Participants, n 611 154
Hours of data, n 1,452,667 394,271
Days of data, n 91,804 24,732

leveraged MTL to improve model performance. We experimented with MTL approaches based upon the following
two assumptions:
(1) Data generation for each hourly feature is a separate, but related prediction task. Adding separate neural

network output layers for each feature could improve the data generation performance for each feature.
(2) Participants experienced a variety of feature changes when beginning the internship, but training a model

for each participant would result in overfitting, and not generalize to unseen individuals. MTL can prevent
this overfitting by training individual-level models together.

We created three new multitask learning models based upon the CGAN framework. These models were
composed of fully connected neural networks, and similar to [88], the models had input "shared layers" where
neural network parameters were shared across tasks, and output "single-task" layers, where parameters were
specific to each task:
(1) Feature Multitask Learning CGAN (F - CGAN): We treated predicting each internship hourly feature

distribution (eg, step count, mood EMA) as a separate, but related, prediction task.
(2) ParticipantMultitask Learning CGAN (P - CGAN): We treated clusters of individuals who experienced

similar feature changes when they began the internship as a separate task. We first identified clusters of
participants who experienced similar feature changes, by clustering participants based upon their Cohen’s
𝑑𝑠 . We experimented with different clustering approaches and varied the number of clusters. The clustering
with the highest silhouette score was chosen (see Appendix II within the supplementary material).

(3) Feature and Participant Multitask Learning CGAN (FP - CGAN): We integrated both feature and
participant multitasking into one model. In this model, output single-task layers were specific to each
feature and cluster.

5.3 Training and Testing Procedure
All predictive models were trained using data from 80% (𝑛 = 611) of the study participants, and we used a form of
leave-subject-out validation [99, 100] to report each model results with different hyperparameter choices for a
held-out 20% (𝑛 = 154) of participants. The results from the 20% hold-out set simulate the prediction accuracy of
predicting data from new participants who have recently joined the study. For simplicity, we will refer to the 80%
training set as the "training" data, and the held-out 20% dataset as the "test" data. An overview of the training and
testing data can be found in Table 10. Hyperparameter choices for each model are further explained in Appendix
II, within the supplementary material. Clusters for participant multitasking models were created using both
baseline and internship training data. For test participants, we predicted data for each cluster, and selected the
cluster that minimized the error between the predicted and actual internship first quarter (Q1) data distributions.
In addition to the CGANs, we created two baseline density prediction models, and two baseline multilayer

perception regression models. The first model was a density prediction model composed of a fully connected
neural network (not a CGAN) trained to input an hourly baseline data point, and output an internship data point
(GEN), and the second model was the GEN model with separate participant multitasking output layers (P - GEN).
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The baseline multilayer perception regression models predicted each feature’s Cohen’s 𝑑𝑠 from the baseline mean
of the hourly features. We created a model with (P - MLP) and without (MLP) separate participant multitasking
output layers. We show the baseline MLP models to predict the Cohen’s 𝑑𝑠 as examples, but other baseline models
with similar architectures could be trained to predict the variety of resilience indicators described in Table 9.

5.4 Evaluation Metric
We calculated the skipped correlation (𝑟 ∈ [−1, 1]) between the actual and predicted Cohen’s 𝑑𝑠 for each hourly
feature to measure model performance. The skipped correlation is less sensitive to bivariate outliers compared to
other correlation coefficients (eg, Pearson’s, Spearman’s), which often overestimate model fit [71, 78, 103]. We
measured model performance using the Cohen’s 𝑑𝑠 because it captures both the central tendency (mean) and
variation (standard deviation) within the baseline and generated distributions, and is familiar to both technical
and clinical audiences [2, 42, 49]. In addition, the majority of indicators within the multivariate GEE (Table 9)
were calculated using the Cohen’s 𝑑𝑠 . We also evaluated the squared error between the predicted Cohen’s 𝑑𝑠 for
each model, and the squared error calculated by assigning each test participant the average Cohen’s 𝑑𝑠 value
within the training data. The squared error calculated using the average Cohen’s 𝑑𝑠 was the baseline error in our
analysis, and we analyzed if our model error was significantly lower than the error using the average training
Cohen’s 𝑑𝑠 for each feature.

6 EVALUATION: PREDICTING INDICATORS OF RESILIENCE
In this section, we evaluate whether the generative models were able to predict indicators of resilience. We
first evaluate the generative models’ performance on the held-out test data, and then we validate whether the
predicted indicators calculated using the generated data hold the same associations with resilience as the actual
indicators.
Figure 4 shows the Cohen’s 𝑑𝑠 distributions for each feature split into the train (𝑛 = 611) and test (𝑛 = 154)

sets. We highlighted the interquartile ranges of each feature’s Cohen’s 𝑑𝑠 , which were considerably larger in the
training data for the hourly mean heart rate (0.33) and daily mood EMA (0.78) compared to the step count (0.22),
seconds of sleep (0.18), and seconds in bed (0.19) per hour.

Fig. 4. The distribution (histograms) of Cohen’s 𝑑𝑠 for training (𝑛 = 611) and testing (𝑛 = 154) data. Within each histogram,
the boxplots show the median and interquartile range (IQR) of each Cohen’s 𝑑𝑠 . The numbers below the x-ticks are the IQR
of the Cohen’s 𝑑𝑠 for the specified dataset.
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6.1 Clustering for Participant Multitask Learning Models
We clustered training participants using their Cohen’s 𝑑𝑠 to create each task (each cluster) for the participant
multitask learning models. The clustering that achieved the highest silhouette score (0.32) used Agglomerative
Clustering with four principle components (using principal components analysis for noise-reduction), and resulted
in two clusters with 510 and 111 training participants in each cluster respectively. Figure 5 shows the training
data distributions of the passive sensing features and EMA split by cluster. We conducted either an independent
two-sample t-test or Mann-Whitney 𝑈 test, with the null hypothesis that the feature means between the two
distributions were equal. A Mann-Whitney𝑈 test was used if a Shapiro-Wilk test revealed that the Cohen’s 𝑑𝑠
distribution for a feature was non-normally distributed (𝑃 < .05). We found significant differences between the
feature means for the hourly step count (𝑈 = 24, 998, 𝑃 < .05), seconds of sleep per hour (𝑈 = 1, 989, 𝑃 < .001),
seconds in bed per hour, (𝑈 = 1, 991, 𝑃 < .001), and hourly mean heart rate (𝑈 = 13, 135, 𝑃 < .001). There were no
significant differences between clusters for the daily mood EMA.

Fig. 5. The distribution (histograms) of Cohen’s 𝑑𝑠 for the two clusters created for participant multitasking models within the
training data. Cluster 0 contained 𝑛 = 510 participants and cluster 1 contained 𝑛 = 111 participants. Within each histogram,
the boxplots show the median and interquartile range (IQR) of each Cohen’s 𝑑𝑠 . The 𝑃 values listed above each boxplot
are the result of either a two-sample t-test or Mann-Whitney𝑈 test with the null-hypothesis that the feature distribution
centers of each cluster were equal.

6.2 Model Performance
We calculated the actual and predicted Cohen’s𝑑𝑠 , using each predictive model, across test participants and feature.
We then calculated the skipped correlation coefficient (𝑟 ∈ [−1, 1]) [103] and correlation significance between
the actual and predicted Cohen’s 𝑑𝑠 . The resulting 𝑟 values are found in Table 11. The FP - CGAN model had both
significant (𝛼 = 0.05) and relatively high correlations between all features, with values of (𝑟 = 0.31, 𝑃 < .001) for
the hourly step count, (𝑟 = 0.50, 𝑃 < .001) seconds of sleep per hour, (𝑟 = 0.49, 𝑃 < .001) seconds in bed per hour,
(𝑟 = 0.21, 𝑃 < .05) hourly mean heart rate, and (𝑟 = 0.37, 𝑃 < .001) for the daily mood EMA.

In addition, we compared the squared error between the predicted and actual Cohen’s 𝑑𝑠 for each participant
and model to a baseline squared error achieved by assigning each individual the average Cohen’s 𝑑𝑠 for each
feature from the training data. Shapiro-Wilk tests revealed that each feature error distribution was non-normally
distributed (𝑃 < .05). We conducted a Wilcoxon signed-rank test to assess if the squared errors using the models
were significantly less (𝛼 = 0.05) than the error achieved by assigning the average Cohen’s 𝑑𝑠 . Within the
highest performing model (FP - CGAN), we found that the errors were significantly less for the seconds of sleep
(𝑊 = 4, 066, 𝑃 < .001) and seconds in bed (𝑊 = 4, 030, 𝑃 < .001) features.
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Table 11. Skipped correlation coefficient [103] (𝑟 ∈ [−1, 1]) values and significance between the predicted and actual
individual-level Cohen’s 𝑑𝑠 for each model and feature. * 𝑃 < .05, ** 𝑃 < .01, *** 𝑃 < .001. † indicates significant (𝛼 = 0.05)
values within a Wilcoxon signed-rank test, testing the hypothesis that the squared error between the actual and predicted
Cohen’s 𝑑𝑠 is less than the squared error achieved from assigning the mean Cohen’s 𝑑𝑠 from the training distribution to
each individual. MLP = baseline multilayer perceptron regression model. GEN = baseline density estimation models. CGAN =
conditional generative adversarial network. P = participant multitasking, F = feature multitasking.

Model Step Count Seconds of Sleep Seconds in Bed Mean Heart Rate Mood EMA

MLP 0.27 ** 0.23 ** -0.05 0.13 0.33 ***†
P - MLP 0.22 ** -0.18 *† 0.11 † -0.05 0.34 ***
GEN 0.32 ***† 0.14 0.08 0.07 0.37 ***
P - GEN 0.46 *** 0.15 † 0.08 † 0.20 * 0.35 ***
CGAN 0.12 0.02 0.00 0.15 0.41 ***
F - CGAN 0.38 *** 0.12 0.09 0.15 0.35 ***
P - CGAN 0.19 * 0.43 ***† 0.42 ***† 0.24 ** 0.36 ***
FP - CGAN 0.31 *** 0.50 ***† 0.49 ***† 0.21 * 0.37 ***

6.3 Comparing CGAN Performance to Other Models
Figure 6 highlights differences in performance between the P - MLP, P - GEN, P - CGAN, and FP - CGAN models.
The left column bar charts show that all models achieved better performance around the mode of the distribution
because the boxplots, which represent the error between the predicted and actual Cohen’s 𝑑𝑠 , fall within higher
magnitude error for individuals whose Cohen’s 𝑑𝑠 are on the tails of the distribution. The histograms in the
middle column highlight that the CGAN models were able to predict a wider range of Cohen’s 𝑑𝑠 compared to
both the P - MLP and P - GEN models, which only predicted values around the cluster modes. The right column
scatterplots shows the improved prediction accuracy of the CGAN models at a participant-level.

6.4 Identifying Predicted Passive Sensing and EMA Indicators of Resilience
6.4.1 GEE. We performed the univariate GEE analysis described in section 4.3 with the predicted passive sensing
and EMA indicators to explore if the predicted indicators also differentiated stress-resilient and stress-sensitive
individuals. The indicators were calculated using internship data generated from the FP - CGAN model, and we
used data from both the train and test sets for this analysis. Specifically, we focused on the indicators of resilience
identified in section 4.3. The GEE results are found in Table 12. We did not include any indicators exclusive
to the BL period, because they would be equivalent to what was shown in Table 9. Out of the 13 predicted
indicators, 5 were significant. This included the seconds in bed skew during the internship, the mean heart rate
during-internship, the mood EMA Cohen’s 𝑑𝑠 , mean, and standard deviation. The step count and seconds of
sleep skew were marginally significant (𝛼 = 0.10). After conducting the univariate GEE, we conducted the same
multivariate GEE described in section 4.3 using the predicted indicators. There were no significant indicators
within the multivariate GEE.

6.4.2 Comparing Actual and Predicted GEE Coefficients. We then compared the coefficients of the significant
predicted (Table 12) and actual (Table 9) passive sensing and EMA indicators associated with differentiating
stress-resilient and stress-sensitive individuals. For this comparison, we concatenated the datasets containing
the calculated actual and predicted features. We then created two variables: (1) a binary variable that dictated
whether a given feature value was from the predicted or actual data, and (2) an interaction term between (1) and
the feature values. We then used GEE with the same controls and specialty grouping to explore the associations
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Table 12. Results from conducting a univariate GEE using each indicator of resilience identified in Table 9 calculated from
the predicted distributions. The GEE modeled the relationship between predicted passive sensing and EMA indicators and
stress-resilience, with intern specialty as a grouping variable, and controlling for age and sex. 𝛽𝑈 is the coefficient value,
and 𝑃𝑈 is the significance level. Indicators exclusive to the baseline (BL) period are not shown because they would have the
equivalent 𝛽𝑈 coefficient and significance level from Table 9. Predicted values were either specific to during the internship
(INTERN), or captured a difference in a specific metric between the INTERN and BL periods (Difference).

Hourly Feature Metric Period 𝛽𝑈 (95% CI) 𝑃𝑈

Step Count Skew INTERN 0.14 (-0.02 to 0.30) <.1
Seconds in Bed Cohen’s 𝑑𝑠 Difference 0.07 (-0.05 to 0.19)
Seconds in Bed Mean INTERN 0.10 (-0.03 to 0.22)
Seconds in Bed Skew INTERN 0.12 (0.00 to 0.24) <.05
Seconds in Bed Standard Deviation INTERN 0.04 (-0.08 to 0.15)
Heart Rate Mean INTERN -0.17 (-0.29 to -0.05) <.01
Seconds of Sleep Cohen’s 𝑑𝑠 Difference 0.07 (-0.06 to 0.19)
Seconds of Sleep Mean INTERN 0.09 (-0.03 to 0.21)
Seconds of Sleep Skew INTERN 0.12 (-0.00 to 0.24) <.1
Seconds of Sleep Standard Deviation INTERN 0.04 (-0.07 to 0.15)
Mood EMA Cohen’s 𝑑𝑠 Difference -0.21 (-0.35 to -0.07) <.01
Mood EMA Mean INTERN 0.36 (0.18 to 0.53) <.001
Mood EMA Standard Deviation INTERN -0.33 (-0.43 to -0.22) <.001

(a)

(b)
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(c)

(d)

Fig. 6. Comparing test set results across different models for the seconds of sleep per hour feature. (a) shows results for
the participant multitasking multilayer perceptron (P - MLP) model, (b) the participant multitasking generator model (P -
GEN), (c) the participant multitasking conditional generative adversarial network (P - CGAN) model, and (d) the feature and
participant multitasking conditional generative adversarial network (FP - CGAN) model. The left column plots show the
error (predicted - actual) distributions between the individual-level actual and predicted Cohen’s 𝑑𝑠 . The boxplots overlay a
histogram describing the number of participants whose actual Cohen’s 𝑑𝑠 fell into a designated range. Each box represents
the error distribution for the participants within the underlying Cohen’s 𝑑𝑠 range. The middle column shows a histogram
comparing the actual and predicted Cohen’s 𝑑𝑠 , and the right column shows this information in a scatterplot, where each
point represents a test individual with the skipped correlation coefficient [103] values (𝑟 ) labeled.

between these two new features and the original feature for differentiating stress-resilient individuals. The
interaction term coefficients modeled the change in the 𝛽 coefficient when using the actual versus the predicted
values for regression. If the coefficient was significant (𝛼 = 0.05), the difference between the actual and predicted
coefficients were significantly different. We conducted this analysis for both the univariate GEE coefficients (𝛽𝑈 )
and multivariate (𝛽𝑀 ).
Figure 7a shows the comparison between the actual and predicted coefficients for the univariate GEEs. We

found 3 indicator coefficients were not significantly different. These included the seconds in bed skew, the mean
heart rate, and the seconds of sleep skew during the internship. Figure 7b shows the comparison between the
actual and predicted coefficients for the 3 multivariate GEE indicators. We found 1 feature coefficient that was
not significantly different, specifically the seconds in bed Cohen’s 𝑑𝑠 .
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(a)

(b)

Fig. 7. Plots of the shared significant coefficients from GEE using calculated features from the actual and predicted data. All
features were either calculated using generated data from the internship (INTERN) or a difference between the internship
and baseline periods (Difference). (a) shows the coefficient differences from the univariate and (b) from the multivariate
GEE. There is a single plot per feature. The y-axis on each plot is the resulting 𝛽 coefficient from conducting GEE to measure
the effect of the feature from distinguishing stress-resilient versus sensitive individuals. The x-axis dictates whether the
plotted values are from the GEE using the actual or predicted values. Points are the mean value of the coefficient, and error
bars represent 95% confidence intervals. * indicates that the coefficients are significantly (𝛼 = 0.05) different.

7 DISCUSSION
In this work, we found indicators of resilience using passive sensing and EMA features, and then presented a
novel method to predict these indicators. We then validated that the predicted and actual indicators showed the
same associations with resilience. This discussion focuses on interpreting the research.

7.1 Implications
This research found specific passive and active sensing indicators of stress-resilience from mobile sensing data in
a large (𝑛 = 775) population of medical interns. The associations between the indicators and stress-resilience are
quantified in Table 9. These results show the potential for developing completely passive methods for measuring
stress-resilience, and the mood EMA indicator shows that we may be able to develop less obtrusive active
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measures for monitoring resilience than repeated PHQ-9 measurements. These findings could help to identify
both who may be most at risk for depression and, most importantly, provide an early signal of when they are most
at risk. This knowledge can help inform more effective and targeted depression prevention and early detection
strategies.
We also developed novel density estimation approaches that were able to approximate during-internship

indicators. We then compared the associations between stress-resilience and the generated indicators to the
original associations that existed between stress-resilience and the actual indicators. Figure 7 shows that we were
able to generate data that held accurate associations between stress-resilience and the internship seconds in bed
skew and Cohen’s 𝑑𝑠 , sleep duration skew, and average heart rate. The implication is that we can potentially
anticipate sleep and heart rate changes that individuals may experience. We can then apply the found associations
in Table 9 and translate these predicted changes into stress-related mental health symptoms early-on during the
internship. Only three months of internship data are required to generate these accurate predictions, and the
relationships to resilience they hold pertain to the entirety of the 12-month internship.

Based upon our findings, one might ask: if an individual were to change their sleeping patterns or partake in
activities that lower average heart rate, would stress-resilience increase? This is a question that requires researchers
to understand the causal associations between behavior and stress-resilience, either through conducting a
randomized-control trial (RCT) with specific behavior change interventions, or applying methods such as
propensity score matching [5] to observational data, which can estimate a treatment effect. Propensity score
matching requires careful design of the study cohort such that all meaningful confounding variables are controlled
for and the sample is representative of the true study population. This study, though large, was not representative
(see Tables 6 and 7), and thus we are hesitant to conclude our associations are causal. Even with propensity score
matching, an RCT is the gold-standard for measuring the treatment effect. The associations in Table 9 identify
behavioral targets that can be incorporated into RCTs to measure how modulating these behavioral targets affect
resilience. The findings in Figure 7 indicate the potential to design predictive interventions, which tested through
RCTs, may anticipate behavioral changes and offset the future effects of prolonged stress.

7.2 Interpreting Mobile Sensing Indicators of Resilience
We found 17 mobile sensing features (Table 9) that were significantly associated with distinguishing stress-
resilient and sensitive individuals within the univariate GEE models. These indicators included information
across all created hourly features. We now briefly discuss these indicators in more context, and point to literature
to understand how they impact stress-resilience more broadly.
First, step count was intended as a proxy for physical activity. Physical activity mediates the effect of stress

on impacting health [59, 77] and exercise can help individuals cope with stress [28]. We cannot state that the
"step count" feature had a specific relationship to exercise, but we did find that individuals with less skew in
their hourly step count distributions were more likely to be resilient. Since the step count distributions are
right-skewed with a mode near 0, we can interpret this association to mean that individuals who spend more
time walking tend to be resilient. On the other hand, increased heart rate can be associated with stress, and it
was not surprising that a lower heart rate was associated with higher stress-resilience [67, 96].

Maintaining regular sleep habits has an effect on mediating depression symptoms [41, 46], and poor sleep
quality is associated with increased stress [36] and stress-sensitivity [51]. Thus, it is not surprising that the 4
indicators we found significantly associated with sleep and resilience all showed that increased sleep increases
the likelihood of resilience. One important note is that increased sleep duration does not necessarily translate
to increased sleep quality, and quality is more associated with fatigue [72]. We had hypothesized that time
in bed would have less of an effect on resilience than time spent sleeping, but the differences between these
features within the GEE were minimal. Lastly, higher mood scores were associated with an increased likelihood of
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resilience, which is not surprising given many PHQ-9 questions are associated with mood [46]. In addition, lower
mood variability was associated with an increased likelihood of resilience, and mood instability is associated
with depression, anxiety, and post-traumatic stress disorder (PTSD) [10].

The multivariate GEE (see Table 9) revealed 3 indicators that were significantly associated with stress-resilience.
These indicators had the same relationships with resilience as their equivalent univariate GEE associations,
including a negative association with internship step count skew (𝛽𝑀 = −0.16), a positive association with
increased time in bed (𝛽𝑀 = 0.11), and a positive association with increased mood (𝛽𝑀 = 0.26). These indicators
all used data from the internship period, and thus showed that understanding the internship data and its
relationship to resilience may be more important than using the baseline data alone.

7.3 Modeling Choices and Impact
7.3.1 Identifying Mobile Sensing Indicators of Resilience. We identified only 3 indicators of resilience in our
multivariate GEE, compared to the 17 indicators of resilience identified within the univariate GEEs. The 3
indicators that remained in the multivariate GEE involved the internship step count skew, and the seconds in bed
and mood EMA Cohen’s 𝑑𝑠 . The heart rate and seconds of sleep features were not included in the multivariate
GEE, nor any indicators specific to the baseline period. This reduction could have been caused by our outlier
filtering procedure, which may have homogenized our dataset and reduced differences between these indicators.
In addition, we followed a strict method to reduce multicollinearity. The reduction of indicators showed that
many indicators were correlated. This is expected for indicators such as seconds in sleep and in bed, where an
increase in sleep increases time in bed. It also is reasonable when comparing indicators that are based upon a
Cohen’s 𝑑𝑠 metric and the mean value, as modifying the mean value directly changes the Cohen’s 𝑑𝑠 . In the
future, a richer multimodal dataset could be used to find more diverse associations to resilience without high
multicollinearity.

7.3.2 Predicting Mobile Sensing Indicators Using CGANs. We developed novel CGAN models and applied these
models to predict sensor and EMAdata. Figure 6 highlights how using a conditional GAN (CGAN) andmultitasking
improved model performance for one example feature. Both the P - MLP and P - GEN models performed well
around the modes of each participant multitasking cluster, but could not generate diverse Cohen’s 𝑑𝑠 even with
participant multitasking, a problem that may be similar to mode collapse [85]. Using a CGAN improved the
model’s ability to generate diverse samples, as the middle column in Figure 6 shows a greater match between the
actual and predicted Cohen’s 𝑑𝑠 distributions in both the P - CGAN and FP - CGAN models. Feature multitasking
without participant multitasking did not appear to create noticeable model improvements (Table 11). Future
work should seek to understand why the CGAN architecture created more sample diversity compared to direct
prediction and specific multitasking adjustments did or did not improve prediction performance.
That being said, all models still predicted a lower range of Cohen’s 𝑑𝑠 compared to the actual data (Figure 6).

Underestimating the magnitude of the Cohen’s 𝑑𝑠 could have implications towards modeling stress-resilience if
we expect individuals with larger mental health changes to also experience larger feature changes between the BL
and INTERN periods. Future models can integrate re-sampling strategies to increase the prediction performance
at the tails of the distribution.
We saw larger error variability across models for the seconds of sleep, in bed, and mean heart rate features

(Table 11). Participant multitasking CGAN models appeared to improve the performance of predicting these
features, and a qualitative error analysis reveals that the clusters (Figure 5) had more differentiated modes for
these three features compared to the step count and mood EMA. The clusters for the participant multitasking
models were created using the Cohen’s 𝑑𝑠 . We found 2 clusters, and the differences between these clusters can be
found in Figure 5. We were surprised that there was not a greater amount of heterogeneity in our population.
Our outlier filtering procedure, and the dropping of missing hours of data, may have reduced the population
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heterogeneity and contributed to the small number of clusters. In the future, more modeling work should be
performed to analyze how outliers affect model performance.

7.3.3 Analyzing the Relationships between Predicted and Actual Indicators of Resilience. We found 5 significant
and 2 marginally significant associations with resilience in the univariate GEEs using the predicted indicators of
resilience, and analyzed their associations with coefficients from the same indicators using actual data (Figure 7a).
3 predicted indicators produced coefficients that were not significantly different with the actual indicators. The
4 predicted indicators that did produce significantly different coefficients included 3 indicators from the mood
EMA and 1 indicator based upon the step count skew. The correlation between the actual and predicted mood
EMA Cohen’s 𝑑𝑠 was smaller (𝑟 = 0.37) than other features, so it is understandable that the predicted mood had a
different relationship with resilience than the actual mood data. That being said, for both the mood EMA mean
and standard deviation, the predicted associations (𝛽𝑈 = 0.36 and 𝛽𝑈 = −0.33) were in the same direction as the
actual associations (𝛽𝑈 = 0.54 and 𝛽𝑈 = −0.51) with stress-resilience, but the magnitude of the associations was
less, potentially due to less variability within the GAN predictions.
The relationship between step count skew and resilience was positive in the predicted data, but negative in

the actual data. There are a number of potential reasons why this association may be different. First, we did not
directly optimize for the median value within the CGAN models, which is a component of the skew equation.
Second, our models appeared to generate less diverse distributions than the actual data distributions (see Figure
6). Skew is a direct measure of extreme values within a dataset, and thus, if we were unable to generate extreme
values, it is likely our generated distributions would be less skewed than the actual distributions.

The multivariate GEE using the predicted indicators showed 1 indicator whose coefficient was not significantly
different than the multivariate GEE coefficients using the actual features and 2 that were (Figure 7b). The 2
coefficients that were significantly different were the step count count skew and mood EMA Cohen’s 𝑑𝑠 , and
these differences are likely due to the same reasoning described above. The seconds in bed predicted and actual
Cohen’s 𝑑𝑠 had the same association with resilience. It is important to note that the predicted indicator was
not significant in the multivariate regression, so it is difficult to state whether the prediction follows the same
association as the actual data, or the variation around the predicted coefficient happens to intersect with the
actual coefficient value.

7.4 Ethics, Privacy, and Paths Forward
Passive sensing data can contain sensitive information, and individuals have expressed concerns with having
this information collected for mental health monitoring [91]. This concern may be exacerbated among residents
who already experience heightened perceived stigma for receiving mental health support [32]. Thus, we must be
extremely careful when framing appropriate-use of technology to protect user-privacy and affirm the supportive
role of passive data collection for improving resilience.

We propose that any intervention deploying our methods, or similar methods outlined in this paper should be
codesigned by technologists and residents. Within this codesign process, ethical standards should be created by
residents to articulate the capabilities and limitations of the technologies deployed, and these standards should
become direct requirements of the intervention system. In addition, researchers should investigate integrating
privacy-preserving machine learning methods into symptom monitoring models such that training and prediction
can occur without individual-level data leaving a user’s device [1, 107]. The same approach could be used for
collecting sensitive information from mobile devices to monitor mental health more broadly.

7.5 Limitations
The analyzed population in this work was not representative of medical school graduates by sex and race/ethnicity
(see Table 6), and thus the results only apply to the analyzed cohort, and may not generalize beyond this cohort.
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Also, we used a specific measure of stress-resilience by analyzing PHQ-9 (depression symptom) changes over
time, and labelled individuals who experienced minimal PHQ-9 changes as the "stress-resilient" population.
Our results may differ if we chose to use trait resilience scales as a resilience measure, or a different mental
health measure (eg, GAD-7). In addition, our held-out test dataset (𝑛 = 154) was large compared to other studies
[97, 100] that have assessed feasibility for using mobile sensing data to model mental health, but a larger and
more representative dataset would be needed to improve generalizability and approximate causal estimates.
The FP - CGAN model, which resulted in the best performance, required Q1 data for cluster matching. In

addition, adherence to wearing the Fitbit and completing EMAs decreased across participants during the internship
year, particularly between Q2 and Q3. Thus, the predicted passive sensing and EMA features were more specific
to the first 6 months of the internship. We still believe this work is meaningful despite this limitation. Previous
work [31] has found that by the end of Q2, mental health symptoms have peaked across a majority of interns.
Most of our 775 participants (n=655, Table 3) had Q2 data, and we also found that the majority of participants’
(n=763, Figure 2) mental health symptoms peaked by the end of Q2.

In addition, we did not capture all features that could have been calculated from the Fitbit (eg, standard
deviation of heart rate in an hour), and we did not collect EMAs that captured more information relevant to
resilience other than mood. Future work should explore a richer feature space.

7.6 Future Work
Medical school graduates, who then begin their internship, are unequally represented across sex and race/ethnicity
within the true population [65, 66]. Model performance may be inaccurate within specific demographic groups
that are underrepresented even if the collected data is representative of medical school graduates. Future work
should analyze whether the algorithms presented are biased in prediction due to underrepresentation and develop
methods to reduce this bias.

GANs and stress-resilience models have not been rigorously studied in the context of survey and longitudinal
behavioral and physiological data. Many of our design choices, including our interpolation of the mood EMA,
adding noise to force mood EMA continuity, outlier filtering, and other data preprocessing procedures may have
affected model performance. Follow-up work should be conducted to study the effects of these design choices on
generative model performance using similar multivariate mobile sensing and survey data. We also wish to collect
data that has better reliability, which would allow us to explore whether temporal features are associated with
resilience. In addition, researchers could broaden the passive sensing feature set to capture other information
about mental health. For example, prior studies have found that location-based [80, 81] and sleep regularity
features [64] are associated with mental health symptoms.

Lastly, researchers should work with residents and other relevant program stakeholders to design interventions
that use unobtrusive monitoring to improve mental health and well-being. While we have mentioned potential
use cases that involve both the resident (eg, routine changes) and program administration (eg, increased schedule
flexibility), it is difficult to design the appropriate effective intervention without engaging with residency programs.

7.7 Concluding Remarks
To the best of our knowledge, we created the first approach to identify and predict indicators of resilience using
passive sensing data collected from Fitbit devices and EMA. We formulated novel generative adversarial networks
(GANs) that applied multitask learning to predict behavioral, physiological, and well-being features associated
with starting a medical internship, and validated if the predicted features could also be used as indicators of
resilience. We hope this work adds a meaningful contribution to communities studying ubiquitous computing,
generative modeling, and psychology, and paves the way forward for leveraging unobtrusive measurement for
resilience-building interventions.
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