
Implicit Model Specialization through
DAG-based Decentralized Federated Learning

Jossekin Beilharz∗
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Charité – Universitätsmedizin Berlin
Berlin, Germany

jossekin.beilharz@hpi.de

Bjarne Pfitzner∗
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

bjarne.pfitzner@hpi.de

Robert Schmid∗
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

Charité – Universitätsmedizin Berlin
Berlin, Germany

robert.schmid@hpi.de

Paul Geppert
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
paul.geppert@hpi.de

Bert Arnrich
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
bert.arnrich@hpi.de

Andreas Polze
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

andreas.polze@hpi.de

ABSTRACT
Federated learning allows a group of distributed clients to train a 
common machine learning model on private data. The exchange 
of model updates is managed either by a central entity or in a 
decentralized way, e.g. by a blockchain. However, the strong gen-
eralization across all clients makes these approaches unsuited for 
non-independent and identically distributed (non-IID) data.

We propose a unified approach to decentralization and person-
alization in federated learning that is based on a directed acyclic 
graph (DAG) of model updates. Instead of training a single global 
model, clients specialize on their local data while using the model 
updates from other clients dependent on the similarity of their 
respective data. This specialization implicitly emerges from the 
DAG-based communication and selection of model updates. Thus, 
we enable the evolution of specialized models, which focus on a 
subset of the data and therefore cover non-IID data better than 
federated learning in a centralized or blockchain-based setup.

To the best of our knowledge, the proposed solution is the first 
to unite personalization and poisoning robustness in fully decen-
tralized federated learning. Our evaluation shows that the special-
ization of models emerges directly from the DAG-based communi-
cation of model updates on three different datasets. Furthermore, 
we show stable model accuracy and less variance across clients 
when compared to federated averaging.

KEYWORDS
decentralized machine learning, consensus protocol, blockchain, 
personalized federated learning

∗These authors contributed equally to this research

Middleware ’21, December 6–10, 2021, Virtual Event, Canada
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8534-3/21/12.
https://doi.org/10.1145/3464298.3493403

1

1

Model weights

Approvals of other model 
weights

Local Data

Biased Random Walk

Training

Publish Model

1.

3.

4.

Average Models2.

Cluster 1

Cluster 2

Evaluate next models

Biased random choice

Random Walk

Figure 1: We use a biased random walk through a DAG of
model updates to findmodels that performwell on local data,
resulting in clusters emerging in the DAG.

ACM Reference Format:
Jossekin Beilharz, Bjarne Pfitzner, Robert Schmid, Paul Geppert, Bert Arn-
rich, and Andreas Polze. 2021. Implicit Model Specialization through DAG-
based Decentralized Federated Learning. In 22nd International Middleware
Conference (Middleware ’21), December 6–10, 2021, Virtual Event, Canada.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3464298.3493403

310

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

https://doi.org/10.1145/3464298.3493403
https://doi.org/10.1145/3464298.3493403
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3464298.3493403&domain=pdf&date_stamp=2021-12-02


Middleware ’21, December 6–10, 2021, Virtual Event, Canada Beilharz, Pfitzner and Schmid, et al.

1 INTRODUCTION
Large datasets are often required in order to build powerful and
accurate machine learning and especially deep learning models.
This is problematic for many domains such as healthcare, since
privacy regulations hinder sharing the sensitive data to create cen-
tral databases. Instead, the data has to be used at the site where
it was collected, resulting in multiple, sub-optimal, local models.
As a solution, federated learning has been proposed, which allows
many widely distributed nodes to train a commonmachine learning
model on local data by exchanging updates to the model, but not
the data itself. [30] The common model is usually exchanged via
a central server, but the communication using decentralized con-
sensus protocols like blockchains has been proposed. [7, 41, 53, 63]
The model updates are stored on the chain and the participants
jointly form a consensus by agreeing on the latest changes, thus
defining the current global model parameters.

Another common challenge for federated learning and other
decentralized learning approaches is the difference in data distri-
butions present for different clients. [9, 24, 69] For this not inde-
pendent and identically distributed (non-IID) data, model updates
could counteract each other and hinder the training progress. [69]

In this paper, we demonstrate for the first time how the seemingly
diverse goals of distributed model training, model personalization
as well as robustness against poisoning attacks, can be addressed
by a single mechanism that is inspired by distributed ledgers and
federated averaging.

Specifically, we propose a fully-decentralized algorithm for solv-
ing a federated learning task, utilizing a model selection mecha-
nism that incorporates the performance of other models on the
local data: The so-called accuracy tip selection results in implicit
model specialization for clusters of clients holding similar data.
Using a synthetic dataset derived from MNIST, we demonstrate
how the algorithm creates model convergence while still allowing
specializations across different clusters. Furthermore, we show how
malicious clients are isolated within the network, limiting their
effects on other participants’ models.

Additionally, we discuss means to tune the balance between
generalization and specialization of local models as well asmeasures
for the impact of this balancing parameter on cluster formation.
In a quantitative evaluation, we compare the performance of our
novel algorithm against centralized federated averaging for two
more datasets, namely a dataset consisting of texts from William
Shakespeare and Johann Wolfgang von Goethe, as well as CIFAR-
100.

In this paper, terms that have different meanings in the context
of distributed systems, graph theory, blockchains and federated
learning are used. We use these terms with their following meaning:
When using the term node, it is always specified whether a node
of the graph or a compute node is meant. Transaction is only used
in its meaning in the context of blockchains. In our approach each
node of the directed acyclic graph represents a transaction, thus the
terms “node of the graph” and “transaction” are used to describe
different aspects of the same concept. Consensus is only used in its
meaning in distributed systems and blockchains. Weights are used
in three different contexts, which are clarified in each use: For the
trained parameters of the machine learning model we specify them

as “model weights”. “Weights of transactions” or “weights of the
random walk” are weights that are used in the random walk as part
of the DAG-based consensus. Finally, “edge weights” are only used
in Section 4.3 to talk about the modularity of a graph of clients that
is different from the DAG that is used for consensus.

The remainder of this paper is structured as follows. The next
section introduces the background to our work, while Section 3
discusses concrete examples of related work. Section 4 explains
our approach and the implications for model performance, cluster
identification, and poisoning robustness in detail. Section 5 presents
the datasets and models that we used to evaluate our approach,
as well as the results of the evaluation itself. Finally, Section 6
concludes this paper.

2 BACKGROUND
This paper builds upon research in the fields of federated learning
and decentralized consensus mechanisms. Combining ideas from
these fields, our approach is applied to the problem of multi-task
learning and learning with non-IID data.

2.1 Federated Learning
Initially proposed in 2016, federated learning is a novel research area
for developingmachine learningmethods for distributed datasets. [45]
Federated learning relies on a client-server architecture, where the
server defines a model to be trained, distributes the model weights
to clients, and aggregates new model weights received back from
clients. These are found after training the model for a number of
epochs on the private, local client data. In this iterative fashion, the
model is jointly improved until reaching optimal performance. In
contrast to the field of distributed machine learning, the training
facilitator does not have any control of, or access to client data.
This brings privacy benefits for collaborators, since their data never
leaves their location, but also entails problems with the training
process if data is not independent and identically distributed. [69]
Moreover, a key issue related to this is the communication cost,
which becomes one of the main hinderances for quick convergence.
Client devices may not always be available or have a bad internet
connection in addition to potentially not having fast hardware for
machine learning model optimization.

Recent works have suggested that the core goal of federated
learning, to jointly develop a single model for all participants, is
not ideal and has to be altered. [29] Instead, federated learning
should also consider optimizing for the mean model performance
per client, meaning that model personalization is desirable. A single
model might not be able to optimally adapt to the non-IID nature
of client datasets.

2.2 Permissionless Consensus
Consensus is a fundamental problem of distributed computing with
a large body of research. Traditionally, consensus research focused
on permissioned consensus, where the participating nodes of the
consensus are known and authenticated to each other. Since the
publication of Bitcoin [46] in 2008, there has been more research
in permissionless decentralized consensus schemes. [3, 19, 31] In
a blockchain, as introduced by Bitcoin, consensus on the order-
ing of transactions is reached. Network participants are selected

311



Implicit Model Specialization through
DAG-based Decentralized Federated Learning Middleware ’21, December 6–10, 2021, Virtual Event, Canada

to propose the next block, often through a proof-of-work (PoW)
mechanism. Participants then select the longest chain of blocks as
the correct chain, thus abandoning forks that were introduced by
other compute nodes at the same time. [46]

There are scalability limits of linear blockchains that lead to
congestion in the network. [27] Different proposals have been made
to solve these constraints. [4, 12, 42, 52] Recent distributed ledger
technologies (DLTs), such as Byteball, Spectre, IOTA, Snowflake,
and Conflux [10, 37, 55, 58, 61], have replaced the linear blockchain
with a DAG. Similar to a blockchain, the DAG can be used to create
consensus in a distributed system. The main goal of DAG-based
DLTs is to allow for higher throughput of the system by allowing
multiple concurrent blocks to be added simultaneously. Thus, while
blockchains try to avoid forks and always select one winning chain,
these forks are expected in DAG-based consensus mechanisms.
Because forks are common, the question becomes now how the
blocks are reintegrated to form the consensus. For this, each new
block selects not only one, but multiple previous blocks to approve.
Thus, over time, all valid blocks will be approved in the DAG.

Because of the potential for higher throughput, DAG-based con-
sensus protocols are often seen as especially suited for use cases that
involve large numbers of widely distributed resource-constrained
devices like the internet of things, fog, and edge computing.

2.3 Multi-Task Learning and Non-IID Data
The domain of multi-task learning deals with solving multiple re-
lated tasks simultaneously by transferring knowledge between
them during the training process. [6] For convex optimization prob-
lems such as training a linear or logistic regression model the chal-
lenge of multi-task learning often lies in finding a similarity matrix
between tasks which is incorporated in the global optimization
formulation. [68] An extension to multi-task learning called clus-
tered multi-task learning further has the premise that some of the
tasks are more related than others, forming clusters which all have
similar model parameters. [28, 71]

For deep learning model architectures, multi-task learning is usu-
ally modeled as soft and hard parameter sharing between tasks. [56]
In the former case, multiple models are learned, one per task, but
the weights from different models influence each other, for instance
by bounding the distance between them. The latter type re-uses
some of the model layers completely, splitting the model at some
point to end up with multiple prediction layers for the various tasks.

Federated learning with non-IID data can also be seen as a
multi-task learning problem with the clients forming the different
tasks. [11, 60] As simplification, clients can be clustered together
if their datasets are similar and thus also their training task will
be similar. Federated learning with cluster specialization is thus
comparable to multi-task learning with soft parameter sharing.

3 RELATEDWORK
The related work falls into two areas: decentralized federated learn-
ing, that is federated learning without a central server, and special-
ization in federated learning. Research in the area of decentralized
federated learning relies on peer-to-peer networks to distribute
the learning progress. One body of research focuses on the us-
age of blockchain architectures to create a global consensus on

the learned model, while another, called gossip learning, relies on
the participants themselves to merge models received from peers.
While there is a significant interest in specialization or personaliza-
tion in federated learning recently, this still is an emerging field of
research.

3.1 Decentralized Federated Learning with DLTs
Many related works investigate the use of blockchains to commu-
nicate model updates in federated learning. [8, 32, 33, 59, 66, 67]

In these works, the gradient updates are inserted into the dis-
tributed ledger. The current network consensus on the global model
is then defined by the model contained in the latest transaction that
has a sufficiently high probability of being part of the longest chain
of blocks.

Different manifestations of this general architecture have been
proposed for different domains, such as health [35, 54], smart
home [70] or railway operation [26].

For urban mobile networks, Lu et al. [41] address privacy and
security concerns for federated learning. They propose a federated
learning scheme where all nodes publish model updates and the
corresponding mean absolute error. Interesting for our work is the
use of a directed acyclic trust graph by Lu et al. to mitigate the risk
of malicious nodes publishing wrong mean absolute errors, which
would lead to biased averaging in their system. Schmid et al. [57]
describe how a learning tangle, similar to the IOTA ledger, can
be adapted for a decentralized, asynchronous implementation of
federated averaging.

One topic in the research on federated learning in open networks
is the question of fairness. That is, how to ensure the participants
only benefit from the common machine learning model as much as
they contributed to it. DeepChain [67] aims to guarantee fairness
by a monetary incentive mechanism. Participants need to deposit
monetary value, which is distributed to the other participants if a
participant is found to be dishonest.

The FPPDL framework [43] transmits differentially private ar-
tificial samples and encrypted model updates via the blockchain.
To ensure fairness, the mutual evaluation mechanism is based on
points that can be earned by sharing model updates and then traded
for the updates of other participants. The usage of local models
instead of a global one is particularly relevant for this paper. How-
ever, in FPPDL these local models are only meant to restrict the
model performance to be in line with the local contribution.

3.2 Decentralized Gossip Learning
Gossip learning algorithms [2, 15, 18, 21–23, 51, 64] also utilize a
peer-to-peer network, but while blockchain approaches store learn-
ing progress on the ledger, this decentralized learning paradigm lets
the participants deal with the way they include new information
from their neighbors into their model. Clients periodically send out
their current model paramters to a (randomly) selected peer. Upon
receival of new parameters, a client merges their own model and
the new one, for instance by taking the average, and updates the
resulting model with their local data. Gossip learning research has
investigated different sampling and merging algorithms to improve
accuracy [13, 15, 22, 64], different compression schemes to improve

312



Middleware ’21, December 6–10, 2021, Virtual Event, Canada Beilharz, Pfitzner and Schmid, et al.

the communication efficiency [25], as well as different models such
as GANs [21].

Hegedűs et al. [23] evaluated gossip learning against regular
federated learning and found that for IID scenarios both approaches
reach similar model performances. If the data is non-IID, however,
gossip learning can struggle to converge quickly due to the lack
of a central component. Looking at the communication efficiency,
the authors claim that even though gossip learning requires more
network traffic due to the peer-to-peer nature rather than having a
single point of contact for all clients, the difference in convergence
speed is relatively modest.

Some gossip learning research specifically investigates algo-
rithms for creating personalized models. For instance, Vanhaese-
brouck et al. [64] assume different training objectives per partic-
ipant and propose two algorithms for incorporating knowledge
from other people’s models. Dinani et al. [15] put their focus on a
dynamic network structure by example of a vehicular ad hoc net-
work and incorporate the other models considering their marginal
utility.

Compared to our approach, specialization for gossip learning can
be reliant on the availability of related peers in the network which
could slow down convergence speed [18]. Moreover, many gossip
learning algorithms do not consider robustness against poisoning at-
tacks. Even though recent work found, that peer-2-peer approaches
may be more resilient than federated learning in real-world scenar-
ios with many clients, they also state that more research is required
to further investigate this topic [62].

3.3 Specialization in Federated Learning
One approach to allow for personalization in federated learning is
to represent different client characteristics within a single global
model. FedProx [39] generalizes and reparameterizes FedAvg to bet-
ter account for both non-IID data distributions as well as stragglers
that only submit partially trained updates into the synchronized
averaging rounds. Ditto [38] defines fairness and robustness in
federated learning and provides an updated optimization objective
for the global model.

Other approaches use local models to improve the machine
learning performance for individual clients. The benefit of this
personalization has been shown for the language model of a virtual
smartphone keyboard. [65] One personalized federated averag-
ing algorithm, called Per-FedAvg [16] uses model-agnostic meta-
learning [17] methods to find an initial shared model that users can
adapt to their local data with comparably little training. Mansour
et al. [44] propose three different approaches for the personalization
of models: user clustering, data interpolation, and model interpo-
lation. The user clustering is especially relevant for this paper. As
part of this approach, hypothesis-based clustering is proposed to in-
corporate the machine learning task into the clustering. The idea of
democratized learning [49, 50] aims to provide flexible distributed
learning systems in which learning agents self-organize in a hi-
erarchical structure to perform learning tasks together. Adaptive
personalized learning [14] proposes the mixing of local and global
models to form a personalized model that performs better than
either the local or the global one.

4 APPROACH
In our approach of a Specializing DAG, the training runs in four
steps for each client, as described in Figure 1: the biased random
walk (1) selects two tips in the DAG, the models of these two tips are
then averaged (2), the averaged model is improved by training (3) it
on local data and, if the training improved the model, published (4).

This section describes our approach in detail. We discuss the me-
chanics of our DAG-based decentralized federated learning in two
rounds: Section 4.1 explains the fundamental consensus mechanics
applied to federated learning and Section 4.2 discusses in detail
how the accuracy of foreign machine learning model updates can
be incorporated. We then go on to explore its ability for implicit
specialization and finally discuss implications for the robustness
against poisoning attacks.

Model weights

Approvals of other 
model weights

Time

Figure 2: Communicating model updates in federated learn-
ing through a DAG: The nodes in the graph are model weight
updates and the edges connect a weight update to the two
other weight updates that were used as a basis for its training.
Tips of the DAG (gray) are updates that didn’t receive any
approvals yet.

4.1 A DAG of Machine Learning Model Updates
We propose using a DAG of model updates for decentralized learn-
ing. Specifically, updated model weights are published as nodes in
this DAG, while edges represent approvals of previous models that
have been the basis of the current one, as illustrated in Figure 2.

OurDAG-based consensus is based on the approach of Popov [58],
altered in a few key ways to adapt it to our use case of decentral-
ized learning with implicit specialization. To publish a new model,
a client averages two previously proposed models and trains the
resulting averaged model on the local data. The new model update
is then published on the DAG as approving the two models it was
derived from. Clients only publish their model update if the training
resulted in a model that performs better on the test data than the
current consensus model.

Thus, compared to traditional federated learning, we propose
to remove the central entity that averages the model weights and
replace it with a decentralized consensus mechanism. Unlike many
previous works on federated learning with decentralized models
that communicate the model updates via a blockchain, using a DAG
for the communication has two benefits. Firstly, the DAG allows
for better scalability: multiple transactions can be proposed at the
same time and still be reconciled because the newer transactions

313



Implicit Model Specialization through
DAG-based Decentralized Federated Learning Middleware ’21, December 6–10, 2021, Virtual Event, Canada

approve more than one other transaction. Secondly, and more im-
portantly, the structure of a DAG allows for more flexibility in the
model communication which is harnessed to create an implicitly
specializing system as discussed in the next section.

Our use of the DAG results in a few important differences to
traditional DAG-based consensus. In DAG-based consensus mecha-
nisms as used for cryptocurrencies, each transaction can be checked
for consistency with other transactions. In our DAG of models, the
transactions don’t fall into the absolute categories ’valid’ or ’not
valid’. Rather, the quality of the model is a relative measure. A
further difference in semantics of the DAG is that this quality of
a model is dependent on the data the model should be applied to.
When applied to federated learning with strong non-IID data, the
quality of a model is very different for each client with its local
data.

4.2 Enabling Implicit Specialization through
Accuracy-Aware Tip Selection

In DAG-based consensus mechanisms, one important aspect is
the tip selection algorithm - the algorithm that selects the tips
that should be approved when publishing the next transaction.
Schmid et al. [57] showed the general applicability of using DAG-
based consensus for decentralized federated learning.

3

1

1

1

6

5

6

8

Time

Figure 3: In DAG-based consensus schemes, traditionally
weights of transactions are calculated by counting the num-
ber of approving transactions (also considering all transac-
tions as self-approving). Thus, the weights are a global prop-
erty of the DAG itself. The dashed red arrows show a random
walk that always chooses the highest weight.

In this paper, we change this fundamental part of the consensus
algorithm by integrating the model performance on the local data
as bias of the tip selection algorithm. The tip selection algorithm is
a random walk through the DAG in the opposite direction of the
approvals. Traditionally, the random walk is biased by assigning
each transaction a weight proportional to the size of the subgraph
that spans behind it, as illustrated in Figure 3.

We change the bias of the random walk to be specific to a par-
ticipating client. In each step during the walk, all potential next
models, i.e. those reachable by taking one step in the DAG, are
evaluated on the local test data, as shown in Algorithm 1.

The WeightedChoice chooses from these models randomly,
weighted by the accuracies of the children on the local data. These
accuracies are normalized by subtracting the maximum accuracy
(see Eq. 1), resulting in negative normalized values. The weight

Algorithm 1 Random Walk of the Specializing DAG

procedure RandomWalk(Node 𝑛)
children← GetChildren(𝑛)
initialize accuracies
for each 𝑐ℎ𝑖𝑙𝑑 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

accuracieschild ← EvaluateOnLocalData(child)
nextNode←WeightedChoice(accuracies, children)
RandomWalk(nextNode)

between 0 and 1 is then calculated by taking the natural exponential
of the normalized values scaled by a parameter 𝛼 (see Eq. 2).

normalized = accuracy −max(accuracies) (1)
weight = exp(normalized × 𝛼) (2)

The amount of randomness in the walk can be determined by
the 𝛼 parameter, where higher values result in larger differences be-
tween the weights and thus less randomness and more determinism.
Smaller values for 𝛼 , on the other hand, lead to converging weights
and thus more randomness. The expected differences in accuracies
between models is dependent on the machine learning problem
our approach is applied to, as well as the hyperparameters such
as learning rate, batch size, and local epochs. In order to allow for
good specialization even with small changes in accuracy between
models and good generalization even with large differences, we
include the spread of accuraciesmax(accuracies) −min(accuracies)
in each step as part of an altered normalized accuracy normalized∗:

normalized∗ =
accuracy −max(accuracies)

max(accuracies) −min(accuracies) (3)

We show the superiority of this altered normalization for certain
values of 𝛼 in our evaluation in Section 5.

This change in the tip selection of the consensus algorithm fun-
damentally changes the goal of the algorithm: from solely creating
a consensus between the distributed clients on a central model to
striking a balance between the generalization and specialization of
the multiple client-local models.

1

1

Time

Cluster 1

Cluster 2

Figure 4: Tip selection using random walks biased by the
model performance on local data leads to specialization and
clustering in the directed acyclic graph.

314



Middleware ’21, December 6–10, 2021, Virtual Event, Canada Beilharz, Pfitzner and Schmid, et al.

4.3 Measuring Implicit Specialization
As described in the previous sections, the clients participating in the
network implicitly form communities through mutual approvals of
each other’s transactions. Since the borders and memberships of
these client communities are not directly expressed by the DAG, this
section will introduce derived metrics for quantifying the degree
of implicit specialization in the network.

The illustration in Figure 4 suggests that clusters in the DAG
are visually easy to identify. However, in visualizations of actual
experiment runs with many more model updates, this is not the
case, especially since the randomness in the tip selection leads to
frequent updates that connect two otherwise disjoint clusters. This
is also the reason why finding the minimum cut within the DAG is
not helpful in identifying large subgraphs that can be regarded as
clusters.

Since in our experiments the set of participating clients is fixed
and known in advance, we instead use a derived graph of clients
𝐺clients to identify communities: In this graph, the edge weight
between two clients 𝑐𝑎 and 𝑐𝑏 is determined by the number of
transactions that were published by 𝑐𝑎 and directly approve a trans-
action of 𝑐𝑏 or vice versa.

The modularity 𝑚 ∈ [− 1
2 , 1] is a measure for the existence of

meaningful communities within a graph. Specifically, given a parti-
tioning of the clients in𝐺clients , it expresses the difference between
the accumulated edge weights within the partitions and the ex-
pected edge weights if they were randomly distributed among all
clients in the graph. [47, 48] To obtain a fast approximation of the
optimal graph partitioning achieving the highest modularity, we
use the Louvain algorithm [1].

Since the accuracy-biased tip selection consistently selects mod-
els created by clients with similar data characteristics, the modular-
ity of 𝐺clients should be positive for every DAG of model updates.
Furthermore, once all clients have participated in training at least
once, the edge weights within their communities are expected to
continuously increase. Accordingly, the modularity should eventu-
ally converge to 1 during the course of our experiments.

As an additional measure of the specialization quality, we com-
pare the clusters obtained by the Louvain algorithm with the clus-
tering of clients that is known in advance. The misclassification
fraction describes how many clients end up in a cluster where the
relative majority of clients belongs to a different cluster according
to the input labels.

The ability to identify groups of clients with similar character-
istics can have negative implications on data privacy when par-
ticipating in the network: Although clients publish their model
updates anonymously, small clusters increase the potential for de-
anonymization attacks. Furthermore, if characteristics of a single
client in a cluster are known, it may be possible to draw conclusions
about private data of other clients that belong to the same cluster.

Section 5.3 discusses in detail how the previously introduced
metrics can be used to optimize the random walk in the DAG.

4.4 Improved Robustness
For their decentralized learning DAG [57], Schmid et al. discussed
two types of attacks that can be carried out to degrade the prediction
accuracy for other participants in the network: Submitting random

weights as well as weights that were trained using a mislabeled
dataset, i.e. one in which labels of two classes are flipped. We adopt
their threat model for this paper.

Submitting manipulated weights as a model update can prevent
other nodes from publishing their training results because the fi-
nal model does not improve, thus compute resources are wasted.
Furthermore, if the malicious updates are dominating the network
activity, they can take over the consensus, which leads to a degraded
prediction performance for others.

With the accuracy-aware random walk, the effects of randomly
generated model updates are effectively limited since their predic-
tion accuracy is close to zero. Thus, given that attackers can only
publish malicious updates at a limited rate, they must now make
a compromise between poisoning effects and the probability that
their transactions are selected by other clients during the biased
random walk.

Furthermore, if attackers are aiming to influence the consensus
model accuracy for the entire network, they would likely not use
the accuracy-aware tip selection strategy as this would limit the
effects of their attack to only a subset of the clients in the network.
For targeted attacks at a cluster of clients, the success probability
is increased since fewer transactions are necessary to dominate
a subgraph of the DAG. Accordingly, for the sake of poisoning
resistance, is is necessary to limit the degree of specialization by
choosing a low value for the specialization parameter 𝛼 .

In the remainder of this paper, we discuss a flipped-label attack
scenario in which an attacker is able to manipulate the labels in
the dataset of one or many clients, e.g. by installing forged sens-
ing hardware. This means that attackers do not directly submit
transactions into the network and cannot influence the tip selection
process of the client. For the overall network, it is now desirable
that (1) other clients remain unaffected from the data manipulation
and (2) the affected clients are able to detect the data forgery.

In Section 5, we discuss if these objectives can be met using the
proposed accuracy-aware random walk.

5 EVALUATION
We evaluated our approach on three datasets using a prototype
implementation.

This section discusses the datasets and models used, and shows
how the specialization emerges in the DAG for each of the datasets.
Furthermore, we compare the performance of our approach against
two other federated learning approaches on different machine learn-
ing tasks: Federated Averaging (FedAvg) is the original centralized
federated learning process and FedProx is a state-of-the-art exten-
sion of FedAvg that accounts for non-iid data distributions amongst
clients. Finally, we evaluate the poisoning resistance and scalability
of our approach.

The prototype implementation of our approach and simulation
used for this evaluation was published online.1

5.1 Datasets
We used three datasets with different characteristics to show the
impact of our approach in different scenarios. Firstly, we evaluate a
Handwriting recognition task on a synthetically clustered version
1https://github.com/osmhpi/federated-learning-dag

315

https://github.com/osmhpi/federated-learning-dag


Implicit Model Specialization through
DAG-based Decentralized Federated Learning Middleware ’21, December 6–10, 2021, Virtual Event, Canada

of the FEMNIST dataset, in addition to next character prediction on
a new dataset from texts by Shakespeare and Goethe, and finally
an image classification task on the CIFAR-100 dataset. Every client
dataset has a train-test-split of 90:10.

5.1.1 FMNIST-Clustered. One of the most commonly used datasets
for image classification is the MNIST dataset of 28x28 pixel hand-
written digits [36] and its extension Extended MNIST (EMNIST)
which also includes handwritten letters. For the federated case, the
LEAF project [5] includes a dataset where the images are associated
with the person who wrote the digits/letters (FEMNIST). To better
show the effects of our approach, we opted for synthetically clus-
tering clients by class, i.e. digit, and abandoning the split by author.
Specifically, we constructed three disjoint clusters for classes {0, 1,
2, 3}, {4, 5, 6}, and {7, 8, 9} and assigned an equal number of clients
to each cluster.

5.1.2 Poets. Our poets dataset is an extension of the Shakespeare
dataset which is often used as a benchmark for federated learning.
We evaluate the applicability of our approach to the task of next
character prediction on this dataset. Poets combines texts from
William Shakespeare and Johann Wolfgang von Goethe. The Shake-
speare subdataset was preprocessed by the LEAF framework [5]. In
addition, we extracted Goethe’s plays from Project Gutenberg [20]
and preprocessed them in the same way as the Shakespeare data.
Both subdatasets were cleaned from clients with less than 1000
samples. To have an equal split between the number of English and
German data samples, we reduced the Shakespeare data to 30% of
its size by random sampling. We assigned the English and German
datasets to separate clusters.

5.1.3 CIFAR-100. As image dataset with a non-synthetic clustering
we investigated CIFAR-100 [34], including 32x32 pixel RGB images
of different animals, objects or landscapes, belonging to 100 classes,
which are each categorized into one of 20 superclasses.We use those
superclasses as the clusters for our learning approach. The client
data allocation was done using the Pachinko Allocation Method
(PAM) [40] based on random draws (without replacement) from
symmetric Dirichlet distributions over the superclasses and associ-
ated subclasses, as used by the Tensorflow Federated framework. In
our experiments, all clients have both training and test data, which
is required for calculating the weights of the random walk. We man-
ually split each client’s data into train and test partitions. In this
dataset, clients possess data from more than one superclass/cluster,
meaning there is no clear client-cluster affiliation. For analysis, we
choose the cluster per client to be the most common one in its data,
choosing randomly in case of a tie. Our CIFAR-100 dataset consists
of 94 clients, the number of clients per cluster lies between three
and six.

5.2 Models
The models for both the FMNIST-clustered and Poets dataset are
based on models from the LEAF framework [5]. Prediction of
FMNIST-clustered digits is done using a Convolutional Neural Net
(CNN) with two ReLu activated convolutional layers with kernel
size 5, and 32 and 64 filters, respectively, each followed by a max
pooling layer with pool size and stride length 2. Afterwards, a fully
connected layer with 2048 neurons and a ReLu activation function

leads to the final fully connected layer with 10 output neurons and
softmax activation for prediction.

For the Poets dataset, the LSTM model is fed an embedding of
dimension 8, calculated from the 80 character sequence. The input
is then fed through LSTM layers with 256 units each. Finally there
is a dense output layer for prediction.

The classification model for CIFAR-100 is also a CNN similar to
the one for FMNIST-clustered. After the two convolutional layers
which are the same for both datasets, there is a third one with 128
filters, also followed by a max pooling layer. Finally, the model
includes two fully-connected hidden layers and an output layer
with 256, 128, and 100 neurons, in order.

The fixed training hyperparameters are shown in Table 1.

FMNIST-
clustered Poets CIFAR-100

Training rounds 100 100 100
Clients / round 10 10 10
Local epochs 1 1 5
Local batches 10 35 45
Batch size 10 10 10
Optimizer SGD(0.05) SGD(0.8) SGD(0.01)

Table 1: Hyperparameters chosen for the evaluation. The
number of local batches is fixed in order to equalize the
number of batches used for training per client in case of an
uneven distribution.

5.3 Results
We evaluated our approach with a prototypical Python implemen-
tation based on the work in LEAF [5]. For simplicity, we simulate
the distributed training process in discrete rounds. We present our
findings on three topics: optimizing the random walk by choosing
good values for 𝛼 for the FMNIST-clustered dataset, comparing the
overall performance of our approach with federated learning as
well as the poisoning robustness of our approach.

5.3.1 Optimizing the Random Walk. Section 4.2 describes how the
𝛼 parameter controls the randomness involved in the biased random
walk through the DAG. When configuring a decentralized learning
task, it is necessary to determine a value of 𝛼 that strikes a good bal-
ance between specialization and generalization for the learning task
and non-IID data characteristics at hand. Specifically, we leverage
the 𝐺𝑐𝑙𝑖𝑒𝑛𝑡𝑠 graph and the metrics introduced in Section 4.3.

There are three criteria that indicate an appropriate choice of
𝛼 : Firstly, the tip selection should be consistent enough so that in
a majority of cases clients approve transactions only from other
clients from the same cluster. This can be observed through the
approval pureness metric. Additionally, themodularity metric of the
𝐺𝑐𝑙𝑖𝑒𝑛𝑡𝑠 graph can show how clusters of clients emerge from the
approvals without requiring pre-provided cluster labels.

Moreover, the corresponding partitioning of clients should con-
sist of an appropriate number of partitions. If these are unreasonably
many, 𝛼 is set too high and the client models likely don’t generalize

316



Middleware ’21, December 6–10, 2021, Virtual Event, Canada Beilharz, Pfitzner and Schmid, et al.

well. Finally, the model differences between clusters should be-
come more distinct over time, which corresponds to a continuously
decreasing misclassification fraction.

In our experiments, the approvals in the DAG show perfect
pureness (approval pureness of 1.0) for 𝛼 = 10 and 𝛼 = 100, while
𝛼 = 1 shows less than half of the model updates approving other
model updates from within the same cluster (approval pureness of
0.47). Still, the pureness for 𝛼 = 1 is higher than the 0.33 that would
be expected for random approvals with three clusters.

0 50 100
0

0.2

0.4

0.6

0.8

Rounds

𝛼 = 1 𝛼 = 10 𝛼 = 100

(a) Modularity

0 50 100
0

2

4

6

8

10

Rounds

(b) # Partitions

0 50 100
0

0.2

0.4

0.6

Rounds

(c) Misclassification

Figure 5: Choosing𝛼 : On the FMNIST-clustered dataset,𝛼 = 10
strikes the best balance with regards to the three metrics of
𝐺𝑐𝑙𝑖𝑒𝑛𝑡𝑠 .

Figure 5 shows the effects of choosing different values of 𝛼 on
the FMNIST-clustered dataset. Only a subset of 100 clients were
included in these experiments, since distinct clusters within𝐺𝑐𝑙𝑖𝑒𝑛𝑡𝑠

can only be observed if the number of nodes in the graph is not
continuously increasing. Nevertheless, the conclusions regarding
the choice of 𝛼 are valid also for experiments including a greater
amount of clients.

A low value 𝛼 = 1 leads to decreasing modularity and performs
poorly with regards to client similarities within clusters, as can
be observed by the high fraction of misclassified clients. On the
other hand, a high value 𝛼 = 100 also shows high and constant
modularity, whereas the number of modules can be regarded as too
high considering the three clusters in the training data. The medium
value 𝛼 = 10 performs best: modularity is increasing slightly over
time, there is a low number of modules and virtually all clients are
assigned to a cluster corresponding to their label.

Besides evaluating the impact of of choosing the parameter 𝛼 on
the specialization, we also investigated its impact on the accuracy
with the FMNIST-clustered dataset. Figure 6 shows the results for
𝛼 values between 100 and 0.1.

For values of 10 and higher for 𝛼 , the accuracy improves earlier
than for values of 1 and lower. After 100 rounds, the accuracy still
comes close to 1 for all values of 𝛼 . For the lower values of 𝛼 , no
specialization emerges in the DAG for this dataset.

The good accuracy of the model after 100 rounds is due to the
fact that eventually a generalized model learns to solve the task
for all clusters. In the FMNIST-clustered dataset, the task is simple
enough to solve for a generalized model.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Rounds

A
cc
ur
ac
y

𝛼 = 0.1
𝛼 = 1
𝛼 = 10
𝛼 = 100

Figure 6: Higher values of 𝛼 improve the accuracy for the
FMNIST-clustered dataset.

While we would expect the accuracy to become worse for very
high values of 𝛼 this doesn’t happen for fully clustered datasets (i.e.
no class overlap between clients from different clusters) as there is
no value in generalization.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Rounds

A
cc
ur
ac
y

𝛼 = 0.1
𝛼 = 1
𝛼 = 10
𝛼 = 100

Figure 7: Choosing a dynamic normalization in calculating
theweights ofmodels during the tip selection results in better
performance for 𝛼 = 1

The evaluation so far was done using the simple normalization
calculation as explained in Section 4.2. Figure 7 shows the accuracy
per round when using the altered normalized accuracy normalized∗

to calculate the weights in the random walk.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

Rounds

A
cc
ur
ac
y

𝛼 = 0.1
𝛼 = 1
𝛼 = 10
𝛼 = 100

Figure 8: The effect that better accuracies are achieved faster
remains with the relaxed dataset.

317



Implicit Model Specialization through
DAG-based Decentralized Federated Learning Middleware ’21, December 6–10, 2021, Virtual Event, Canada

FMNIST-clustered Poets CIFAR-100

Fe
dA

vg
Sp

ec
ia
liz
in
g
D
A
G

Figure 9: The accuracy on client-local data compared between federated averaging (FedAvg) and our approach (Specializing
DAG), grouped over 5 rounds. FedAvg uses a central averaged model, while the DAG uses the specialized local models.

The usage of this altered normalization improves the accuracy
slightly for 𝛼 = 1. This corresponds to a higher approval pureness
of 0.51 for 𝛼 = 1 when using the dynamic normalization, compared
to 0.40 with the standard normalization.

To evaluate the performance of our approach on not fully clus-
tered data we created a relaxed FMNIST-clustered dataset, where
each cluster contains between 15 and 20 percent of data from other
clusters. Figure 8 shows the accuracy for different values of 𝛼 for
this relaxed dataset.

In general the relaxation of the clusters helps the model to gen-
eralize faster, resulting in better performance even for low values
of 𝛼 . At the same time, the performance of the well specialized
cases with high values of 𝛼 improve slightly slower because of the
relaxation. Thus, while the same effect remains in this dataset, it is
weaker than in the fully clustered dataset.

5.3.2 Comparison with Federated Averaging. We compare our ap-
proach with federated averaging as a baseline using the three differ-
ent datasets. We first present the approval pureness of our approach
for each dataset and then discuss the accuracy results.

Dataset # clusters base pureness pureness
FMNIST-clustered 3 0.33 1.0

Poets 2 0.5 0.95
CIFAR-100 20 0.05 0.51

Table 2: The approval pureness in the DAG after 100 rounds
of training with our approach.

To quantify how strong the DAG specialized in these experi-
ments, we show the approval pureness in Table 2. In the FMNIST-
clustered dataset there are three clusters for the groups of classes,
Poets has the two clusters for texts by Goethe and Shakespeare
and CIFAR-100 is clustered into the 20 superclasses. The base pure-
ness is the approval pureness expected if the approvals would be
randomly spread over all clusters.

The approvals in the DAG show perfect pureness for the FMNIST-
clustered dataset. That is, all approvals of models are from within
the same cluster, which is sensible for a completely clustered dataset
where the integration of models from other clusters will not lead to
better performance. For Poets and CIFAR-100, the approval pure-
ness is lower and shows the balance between generalization and
specialization into the clusters.

Figure 9 shows an overview of the accuracy of our approach
compared to federated averaging. The values show the accuracy
distribution on the local data of all clients selected in five consecu-
tive rounds using the aggregated model in FedAvg and the locally
optimized and published model for the Specializing DAG.

The accuracy evaluation shows that our approach performs bet-
ter for the FMNIST-clustered dataset, where the accuracy improves
faster. The larger deviation in federated averaging shows the miss-
ing ability to specialize. Consequently, the DAG is the first mech-
anism that enables training of a machine learning model on het-
erogeneous client datasets in a decentralized and asynchronous
way.

For the Poets and CIFAR-100 datasets, the DAG achieves similar
accuracy results compared to federated averaging. This also shows
the feasibility of the decentralized approach: the central server can

318



Middleware ’21, December 6–10, 2021, Virtual Event, Canada Beilharz, Pfitzner and Schmid, et al.

be removed without an accuracy penalty for the evaluated datasets.
Further improving the training accuracy on these datasets is an
area of future work.

5.3.3 Comparison with FedProx. FedProx [39] is a state-of-the-art
extension of FedAvg that guarantees model convergence even with
non-IID client data distributions. The authors claim that in realistic
scenarios, FedAvg only receives partial information from the clients,
which it does not properly account for. These partial information
can stem from statistical heterogeneity (non-IID data distributions)
as well as stragglers, i.e. clients that were only able to submit par-
tially trained models in time. Thus, the authors propose to add a
proximal term to FedAvg that improves the convergence behavior
in such heterogenous networks theoretically and empirically.

In the case of the specializing DAG, there are no stragglers due
to its asynchronous nature: In a distributed implementation, each
client continuously runs the training process as often as its re-
sources permit, independent from all other clients. We only intro-
duce the concept of rounds to be able to compare the performance
of the DAG with centralized approaches.

For comparing ourselves with FedProx and unmodified FedAvg,
we used the synthetic dataset proposed by FedProx: It is parame-
terized with 𝛼 = 0.5, 𝛽 = 0.5, 𝛼, 𝛽 ∈ [0; 1], where 𝛼 and 𝛽 control
the dissimilarity of the local training samples for each client and
between clients, respectively.

Figures 10 and 11 show the average accuracy and loss in a sce-
nario with 30 clients in total and 10 active clients per round. The
variance in accuracy and loss of the DAG is generally higher com-
pared to the centralized approaches which can be explained by the
statistical tip selection process as part of training and inference.
However, the Specializing DAG eventually outperforms FedAvg in
both accuracy and loss without the need for a central parameter
server. Regarding the loss, the DAG results come close to the Fed-
Prox baseline, which shows how implicit specialization in the DAG
effectively helps to accomodate differences in the data distribution
among clients.

5.3.4 Poisoning. In order to investigate the robustness of the ap-
proach, we conducted experiments with flipped-label poisoning
attacks using the original FMNIST dataset that is split by the authors

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Rounds

A
cc
ur
ac
y

FedAvg
DAG
FedProx

Figure 10: Initially, the average accuracy is more consistent
using the centralized approaches; later, theDAGperformance
stabilizes and outperforms FedAvg.

0 20 40 60 80 100
0

1

2

3

4

Rounds

Lo
ss

FedAvg
DAG
FedProx

Figure 11: TheDAG consistently performs better with regards
to the average loss compared to FedAvg. A small margin
remains compared to the centralized FedProx approach.

100 120 140 160 180 200
0

20

40

60

80

100

Rounds

Fl
ip
pe
d
pr
ed
ic
tio

ns
[%
]

𝑝 = 0.0 𝑝 = 0.2
𝑝 = 0.2, random tip selector 𝑝 = 0.3

Figure 12: Flipped predictions of samples in the classes 3 and
8.

of the handwritten digits. Specifically, we exchanged the labels 3
and 8 for a subset of clients after 100 training rounds without any
data poisoning.

Figure 12 illustrates the success of the poisoning attack in differ-
ent scenarios: It shows how many samples of the classes 3 and 8
in the clients’ test datasets were mispredicted as belonging to the
other class using the reference model that the clients selected from
the DAG. The parameter 𝑝 defines the fraction of clients that used
poisoned training and test data. As a baseline, we also measured
the behavior of the original, purely random tip selector.

Compared to the baseline results, the effects of the attack with
𝑝 = 0.2 on the overall network are very limited and almost within
the variance that is also present with 𝑝 = 0.0. When increasing the
number of poisoned clients to 𝑝 = 0.3, the effects are noticeable,
but still below 30% mispredictions overall.

Looking at the selected reference transactions in more detail,
we can observe that, although the poisoning did not have severe
effects, a high number of poisoned updates are included in the
reference transactions by direct or indirect approvals. Especially
noteworthy is that the poisoning impact on the mispredictions
is higher for the random tip selector with 𝑝 = 0.2 than for the

319



Implicit Model Specialization through
DAG-based Decentralized Federated Learning Middleware ’21, December 6–10, 2021, Virtual Event, Canada

100 120 140 160 180 200
0

50

100

150

200

Rounds

𝑝 = 0.2 𝑝 = 0.2, random tip selector
𝑝 = 0.3

Figure 13: Average number of approved poisonous transac-
tions in the consensus.

accuracy tip selector with 𝑝 = 0.3, even though the number of
approved poisoned transactions is lower for the former.

This can be explained by the containment of poisoned trans-
actions within a subset of clients. While a poisoned transaction
may be incorporated into another clusters’ consensus from time
to time, leading to a high number of indirectly approved poisoned
transactions, in most cases it is other malicious clients that approve
a poisoned transaction:

Figure 14 depicts the distribution of poisoned clients over the
clusters reconstructed by the Louvain algorithm. Most of them end
up in clusters where a majority of other clients are also affected by
the attack.

While this protects other network participants, it also means
that the attack is difficult to detect for the affected clients. If the goal
of the attack is known in advance, clients could use the random
tip selector to obtain a reference transaction that is most likely not
affected by the attack in order to cross-check their locally trained
model.

5.3.5 Scalability. Compared to gossiping approaches for federated
learning, the main overhead of the proposed DAG consists of the
time that each client needs to perform the random walk and to
evaluate models on the local data as part of it. If the time needed
for the random walk increases with the number of updates in the
DAG or the number of participating clients, this would limit the
scalability of the approach. This section evaluates the time needed

0

20

40

60

80
benign
poisoned

Figure 14: Distribution of poisoned clients over 15 inferred
clusters for 𝑝 = 0.3.

0 20 40 60 80 100
0

1

2

3

Rounds

Ra
nd

om
W
al
k
D
ur
at
io
n
[s
]

5 active clients 10 active clients
20 active clients 40 active clients

Figure 15: Development of time required for the randomwalk
for different numbers of concurrently active clients over the
course of 100 training rounds. The differences for increasing
numbers of active clients are marginal which indicates a
good scalability of the approach.

for the random walk when training the original FMNIST dataset
with increasing numbers of clients that are concurrently performing
model training.

Generally, the random walk makes up a significant amount of
the required compute resources compared to model training: In our
example, training the FMNIST model takes about 300ms whereas
the time required for the random walk ranges from 600-1200ms
(cf. Figure 15). However, in a real-world implementation, the time
required for the random walk can be hidden between training runs,
since it would be sensible for a client to only perform training in
set intervals or when new training data arrives.

In our scalability experiments, we started the random walk at a
transaction sampled at a depth of 15-25 transactions from the tips,
as proposed by Popov [58].

Figure 15 shows the average time that a single client spends on
the randomwalk, for increasing numbers of clients that are training
concurrently. The concurrency in the network has an impact on
the random walk because well- performing models will generally
have a greater number of direct child transactions that were created
simultaneously and all of which have to be evaluated on local data
during the random walk.

Especially in the early phases of the collaborative training pro-
cess, this number is not well balanced among the transactions since
there are still large differences in accuracy between them. However,
as the trained models improve, the variance in the number of child
transaction levels out. In practice, this would also require ideal net-
work conditions, i.e. all new transactions are broadcasted equally
well among network participants.

In conclusion, the concurrency in the network has little impact
on the costs incurred by the DAG algorithm, and hence it can be
expected to scale well also for larger numbers of clients.

6 CONCLUSION AND FUTUREWORK
We presented a novel approach to achieve specialized models in
federated learning without a central server: by using a DAG for the

320



Middleware ’21, December 6–10, 2021, Virtual Event, Canada Beilharz, Pfitzner and Schmid, et al.

communication of models and an accuracy-biased random walk,
we show the manifestation of clusters of clients with similar local
data. This specialization emerges directly from the way the DAG
is used to communicate model updates, thus creating a unified
solution for decentralized and personalized federated learning. We
enable a tradeoff between reaching a consensus on a generalized
model and specializing (personalizing) the models to local data. We
evaluated this approach with our prototypical implementation on
three datasets and showed equal or better learning performance
in a simulation. Finally, we showed the poisoning resistance and
scalability of our approach.

In the future we would like to integrate ideas from multi-task
and personalized federated learning such as training only some
layers of the machine learning model.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their helpful
comments on earlier versions of this paper. We are also thankful
for the comments by Felix Eberhardt and Daniel Richter from our
research group.

This research was partly funded by the Federal Ministry for Eco-
nomic Affairs and Energy of Germany as part of the program ”Smart
Data” (project number 01MD19014C), by the German Federal Min-
istry of Transport and Digital Infrastructure through the mFUND
(project number 19F2093C) and by the Federal Ministry of Educa-
tion and Research of Germany in the framework of KI-LAB-ITSE
(project number 01IS19066).

REFERENCES
[1] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast Unfolding of Communities in Large Networks. Journal of Statistical
Mechanics: Theory and Experiment (Oct. 2008). https://doi.org/10.1088/1742-
5468/2008/10/P10008

[2] Michael Blot, David Picard, Nicolas Thome, and Matthieu Cord. 2019. Distributed
optimization for deep learning with gossip exchange. Neurocomputing 330 (2019),
287–296. https://doi.org/10.1016/j.neucom.2018.11.002

[3] Vitalik Buterin. 2014. A Next-Generation Smart Contract and Decentralized
Application Platform. white paper (2014).

[4] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.
arXiv preprint arXiv:1710.09437 (2017).

[5] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný,
H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2019. LEAF: A
Benchmark for Federated Settings. arXiv:1812.01097 [cs, stat] (Dec. 2019).

[6] Rich Caruana. 1997. Multitask Learning. Machine Learning (July 1997). https:
//doi.org/10.1023/A:1007379606734

[7] Haoye Chai, Supeng Leng, Yijin Chen, and Ke Zhang. 2020. A Hierarchical
Blockchain-Enabled Federated Learning Algorithm for Knowledge Sharing in
Internet of Vehicles. IEEE Transactions on Intelligent Transportation Systems (2020).
https://doi.org/10.1109/TITS.2020.3002712

[8] Xuhui Chen, Jinlong Ji, Changqing Luo, Weixian Liao, and Pan Li. 2018. When
Machine Learning Meets Blockchain: A Decentralized, Privacy-Preserving and
Secure Design. In 2018 IEEE International Conference on Big Data (Big Data). IEEE.
https://doi.org/10.1109/bigdata.2018.8622598

[9] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. 2020. Asyn-
chronous Online Federated Learning for Edge Devices with Non-IID Data.
arXiv:1911.02134 [cs] (Oct. 2020).

[10] Anton Churyumov. 2016. Byteball: A Decentralized System for Storage and
Transfer of Value. (2016). https://byteball.org/Byteball.pdf

[11] Luca Corinzia and Joachim M. Buhmann. 2019. Variational Federated Multi-Task
Learning. arXiv:1906.06268 [cs, stat] (June 2019).

[12] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, and Emin Gün Sirer. 2016.
On Scaling Decentralized Blockchains. In International Conference on Financial
Cryptography and Data Security. Springer.

[13] Gábor Danner and Márk Jelasity. 2018. Token Account Algorithms: The Best of
the Proactive and Reactive Worlds. In 2018 IEEE 38th International Conference on

Distributed Computing Systems (ICDCS). 885–895. https://doi.org/10.1109/ICDCS.
2018.00090

[14] Yuyang Deng, MohammadMahdi Kamani, andMehrdadMahdavi. 2020. Adaptive
Personalized Federated Learning. arXiv:2003.13461 [cs, stat] (Nov. 2020).

[15] Mina Aghaei Dinani, Adrian Holzer, Hung Nguyen, Marco Ajmone Marsan,
and Gianluca Rizzo. 2021. Gossip Learning of Personalized Models for Vehicle
Trajectory Prediction. In 2021 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW). 1–7. https://doi.org/10.1109/WCNCW49093.
2021.9420038

[16] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized Fed-
erated Learning: A Meta-Learning Approach. arXiv:2002.07948 [cs, math, stat]
(Oct. 2020).

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. arXiv:1703.03400 [cs] (July
2017).

[18] Lodovico Giaretta and Šarūnas Girdzijauskas. 2019. Gossip Learning: Off the
Beaten Path. In 2019 IEEE International Conference on Big Data (Big Data). 1117–
1124. https://doi.org/10.1109/BigData47090.2019.9006216

[19] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling Byzantine Agreements for Cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Systems Principles.

[20] Project Gutenberg. 2020. Project Gutenberg. https://www.gutenberg.org/.
[21] Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. 2018. Gossiping GANs:

Position Paper. In Proceedings of the Second Workshop on Distributed Infrastruc-
tures for Deep Learning (Rennes, France) (DIDL ’18). Association for Computing
Machinery, New York, NY, USA, 25–28. https://doi.org/10.1145/3286490.3286563

[22] István Hegedűs, Gábor Danner, and Márk Jelasity. 2019. Gossip Learning as a
Decentralized Alternative to Federated Learning. In Distributed Applications and
Interoperable Systems, José Pereira and Laura Ricci (Eds.). Springer International
Publishing, Cham, 74–90.

[23] István Hegedűs, Gábor Danner, and Márk Jelasity. 2021. Decentralized learning
works: An empirical comparison of gossip learning and federated learning. J.
Parallel and Distrib. Comput. 148 (2021), 109–124. https://doi.org/10.1016/j.jpdc.
2020.10.006

[24] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons. 2020. The
Non-IID Data Quagmire of Decentralized Machine Learning. arXiv:1910.00189
[cs, stat] (Aug. 2020).

[25] Chenghao Hu, Jingyan Jiang, and Zhi Wang. 2019. Decentralized Feder-
ated Learning: A Segmented Gossip Approach. CoRR abs/1908.07782 (2019).
arXiv:1908.07782 http://arxiv.org/abs/1908.07782

[26] G. Hua, L. Zhu, J. Wu, C. Shen, L. Zhou, and Q. Lin. 2020. Blockchain-Based
Federated Learning for Intelligent Control in Heavy Haul Railway. IEEE Access
(2020). https://doi.org/10.1109/ACCESS.2020.3021253

[27] Gur Huberman, Jacob Leshno, and Ciamac C. Moallemi. 2017. Monopoly without
a Monopolist: An Economic Analysis of the Bitcoin Payment System. Bank of
Finland Research Discussion Paper (2017).

[28] Laurent Jacob, Jean-philippe Vert, and Francis Bach. 2008. Clustered Multi-Task
Learning: A Convex Formulation. Advances in Neural Information Processing
Systems (2008).

[29] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. 2019. Improv-
ing Federated Learning Personalization via Model Agnostic Meta Learning.
arXiv:1909.12488 [cs, stat] (Sept. 2019).

[30] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh
Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco
Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson,
Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný,
Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang
Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh,
Mariana Raykova, HangQi, Daniel Ramage, Ramesh Raskar, Dawn Song,Weikang
Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr,
Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X.
Yu, Han Yu, and Sen Zhao. 2019. Advances and Open Problems in Federated
Learning. arXiv:1912.04977 [cs, stat] (Dec. 2019).

[31] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.
Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Annual
International Cryptology Conference. Springer.

[32] H. Kim, J. Park, M. Bennis, and S. Kim. 2019. Blockchained On-Device Federated
Learning. IEEE Communications Letters (2019). https://doi.org/10.1109/LCOMM.
2019.2921755

[33] Y. J. Kim and C. S. Hong. 2019. Blockchain-Based Node-Aware Dynamic
Weighting Methods for Improving Federated Learning Performance. In 2019
20th Asia-Pacific Network Operations and Management Symposium (APNOMS).
https://doi.org/10.23919/APNOMS.2019.8893114

[34] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

321

https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1016/j.neucom.2018.11.002
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1109/TITS.2020.3002712
https://doi.org/10.1109/bigdata.2018.8622598
https://byteball.org/Byteball.pdf
https://doi.org/10.1109/ICDCS.2018.00090
https://doi.org/10.1109/ICDCS.2018.00090
https://doi.org/10.1109/WCNCW49093.2021.9420038
https://doi.org/10.1109/WCNCW49093.2021.9420038
https://doi.org/10.1109/BigData47090.2019.9006216
https://doi.org/10.1145/3286490.3286563
https://doi.org/10.1016/j.jpdc.2020.10.006
https://doi.org/10.1016/j.jpdc.2020.10.006
http://arxiv.org/abs/1908.07782
https://doi.org/10.1109/ACCESS.2020.3021253
https://doi.org/10.1109/LCOMM.2019.2921755
https://doi.org/10.1109/LCOMM.2019.2921755
https://doi.org/10.23919/APNOMS.2019.8893114


Implicit Model Specialization through
DAG-based Decentralized Federated Learning Middleware ’21, December 6–10, 2021, Virtual Event, Canada

[35] Rajesh Kumar, Abdullah Aman Khan, Sinmin Zhang, Jay Kumar, Ting Yang,
Noorbakhash Amiri Golalirz, Zakria, Ikram Ali, Sidra Shafiq, and WenYong
Wang. 2020. Blockchain-Federated-Learning and Deep Learning Models for
COVID-19 Detection Using CT Imaging. arXiv:2007.06537 [cs, eess] (Dec. 2020).

[36] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[37] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao.
2018. Scaling Nakamoto Consensus to Thousands of Transactions per Second.
arXiv:1805.03870 [cs] (Aug. 2018).

[38] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. [n.d.]. Ditto: Fair
and Robust Federated Learning Through Personalization. arXiv:2012.04221 [cs,
stat] http://arxiv.org/abs/2012.04221

[39] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. [n.d.]. Federated Optimization in Heterogeneous Networks.
arXiv:1812.06127 [cs, stat] http://arxiv.org/abs/1812.06127

[40] Wei Li and Andrew McCallum. 2006. Pachinko Allocation: DAG-Structured
Mixture Models of Topic Correlations. In Proceedings of the 23rd International
Conference on Machine Learning (ICML ’06). Association for Computing Machin-
ery, New York, NY, USA. https://doi.org/10.1145/1143844.1143917

[41] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.
2020. Differentially Private Asynchronous Federated Learning for Mobile Edge
Computing in Urban Informatics. IEEE Transactions on Industrial Informatics
(March 2020). https://doi.org/10.1109/TII.2019.2942179

[42] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A Secure Sharding Protocol for Open Blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security.

[43] Lingjuan Lyu, Jiangshan Yu, Karthik Nandakumar, Yitong Li, Xingjun Ma, Jiong
Jin, Han Yu, and Kee Siong Ng. 2020. Towards Fair and Privacy-Preserving
Federated Deep Models. IEEE Transactions on Parallel and Distributed Systems
(Nov. 2020). https://doi.org/10.1109/TPDS.2020.2996273

[44] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020.
Three Approaches for Personalization with Applications to Federated Learning.
arXiv:2002.10619 [cs, stat] (July 2020).

[45] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Artificial Intelligence and Statistics. PMLR.

[46] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).
[47] M. E. J. Newman. 2006. Modularity and Community Structure in Networks.

Proceedings of the National Academy of Sciences (June 2006). https://doi.org/10.
1073/pnas.0601602103

[48] M. E. J. Newman and M. Girvan. 2004. Finding and Evaluating Community
Structure in Networks. Physical Review E (Feb. 2004). https://doi.org/10.1103/
PhysRevE.69.026113

[49] Minh N. H. Nguyen, Shashi Raj Pandey, Tri Nguyen Dang, Eui-Nam Huh,
Choong Seon Hong, Nguyen H. Tran, and Walid Saad. 2020. Self-Organizing
Democratized Learning: Towards Large-Scale Distributed Learning Systems.
arXiv:2007.03278 [cs, stat] (July 2020).

[50] Minh N. H. Nguyen, Shashi Raj Pandey, Kyi Thar, Nguyen H. Tran, Mingzhe
Chen, Walid Saad, and Choong Seon Hong. 2020. Distributed and Democratized
Learning: Philosophy and Research Challenges. arXiv:2003.09301 [cs, stat] (Oct.
2020).

[51] Róbert Ormándi, István Hegedűs, and Márk Jelasity. 2013. Gossip learning
with linear models on fully distributed data. Concurrency and Computation:
Practice and Experience 25, 4 (2013), 556–571. https://doi.org/10.1002/cpe.2858
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.2858

[52] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable
off-Chain Instant Payments.

[53] Youyang Qu, Longxiang Gao, Tom H. Luan, Yong Xiang, Shui Yu, Bai Li, and
Gavin Zheng. 2020. Decentralized Privacy Using Blockchain-Enabled Federated
Learning in Fog Computing. IEEE Internet of Things Journal (June 2020). https:
//doi.org/10.1109/JIOT.2020.2977383

[54] M. A. Rahman, M. S. Hossain, M. S. Islam, N. A. Alrajeh, and G. Muhammad.
2020. Secure and Provenance Enhanced Internet of Health Things Framework: A
Blockchain Managed Federated Learning Approach. IEEE Access (2020). https:
//doi.org/10.1109/ACCESS.2020.3037474

[55] Team Rocket. 2018. Snowflake to Avalanche : A Novel Metastable Consensus
Protocol Family for Cryptocurrencies. /paper/Snowflake-to-Avalanche-%3A-A-
Novel-Metastable-Family/85ec19594046bbcfe12137c7c2e3744677129820.

[56] Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural
Networks. arXiv:1706.05098 [cs, stat] (June 2017).

[57] Robert Schmid, Bjarne Pfitzner, Jossekin Beilharz, Bert Arnrich, and Andreas
Polze. 2020. Tangle Ledger for Decentralized Learning. In 2020 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). https:
//doi.org/10.1109/IPDPSW50202.2020.00144

[58] Serguei Popov. 2017. The Tangle.
[59] Muhammad Shayan, Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2018.

Biscotti: A Ledger for Private and Secure Peer-to-Peer Machine Learning. arXiv

preprint arXiv:1811.09904 (2018).
[60] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S. Talwalkar. 2017.

Federated Multi-Task Learning. Advances in Neural Information Processing Sys-
tems (2017).

[61] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. 2016. SPECTRE: A Fast
and Scalable Cryptocurrency Protocol. IACR Cryptology ePrint Archive (2016).

[62] Richard Tomsett, Kevin Chan, and Supriyo Chakraborty. 2019. Model poisoning
attacks against distributed machine learning systems. In Artificial Intelligence
and Machine Learning for Multi-Domain Operations Applications, Tien Pham
(Ed.), Vol. 11006. International Society for Optics and Photonics, SPIE, 481 – 489.
https://doi.org/10.1117/12.2520275

[63] Kentaroh Toyoda and Allan N. Zhang. 2019. Mechanism Design for An Incentive-
Aware Blockchain-Enabled Federated Learning Platform. In 2019 IEEE Interna-
tional Conference on Big Data (Big Data). IEEE, Los Angeles, CA, USA. https:
//doi.org/10.1109/BigData47090.2019.9006344

[64] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. 2017. Decentralized
Collaborative Learning of Personalized Models over Networks. In Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics (Pro-
ceedings of Machine Learning Research, Vol. 54), Aarti Singh and Jerry Zhu (Eds.).
PMLR, 509–517. https://proceedings.mlr.press/v54/vanhaesebrouck17a.html

[65] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beau-
fays, and Daniel Ramage. 2019. Federated Evaluation of On-Device Personaliza-
tion. arXiv:1910.10252 [cs, stat] (Oct. 2019).

[66] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong
Qi. 2018. Beyond Inferring Class Representatives: User-Level Privacy Leakage
from Federated Learning. CoRR (2018).

[67] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo. 2019. DeepChain:
Auditable and Privacy-Preserving Deep Learning with Blockchain-Based Incen-
tive. IEEE Transactions on Dependable and Secure Computing (2019). https:
//doi.org/10.1109/TDSC.2019.2952332

[68] Yu Zhang and Dit-Yan Yeung. 2010. A Convex Formulation for Learning Task
Relationships in Multi-Task Learning. In Proceedings of the Twenty-Sixth Confer-
ence on Uncertainty in Artificial Intelligence (Catalina Island, CA) (UAI’10). AUAI
Press, Arlington, Virginia, USA, 10 pages.

[69] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-
dra. 2018. Federated Learning with Non-IID Data. arXiv:1806.00582 [cs, stat]
(June 2018).

[70] Yang Zhao, Jun Zhao, Linshan Jiang, Rui Tan, Dusit Niyato, Zengxiang Li,
Lingjuan Lyu, and Yingbo Liu. 2020. Privacy-Preserving Blockchain-Based Fed-
erated Learning for IoT Devices. IEEE Internet of Things Journal (Aug. 2020).
https://doi.org/10.1109/JIOT.2020.3017377

[71] Jiayu Zhou, Jianhui Chen, and Jieping Ye. 2011. ClusteredMulti-Task Learning Via
Alternating Structure Optimization. In Advances in Neural Information Processing
Systems.

322

https://arxiv.org/abs/2012.04221
http://arxiv.org/abs/2012.04221
https://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
https://doi.org/10.1145/1143844.1143917
https://doi.org/10.1109/TII.2019.2942179
https://doi.org/10.1109/TPDS.2020.2996273
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1002/cpe.2858
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.2858
https://doi.org/10.1109/JIOT.2020.2977383
https://doi.org/10.1109/JIOT.2020.2977383
https://doi.org/10.1109/ACCESS.2020.3037474
https://doi.org/10.1109/ACCESS.2020.3037474
https://doi.org/10.1109/IPDPSW50202.2020.00144
https://doi.org/10.1109/IPDPSW50202.2020.00144
https://doi.org/10.1117/12.2520275
https://doi.org/10.1109/BigData47090.2019.9006344
https://doi.org/10.1109/BigData47090.2019.9006344
https://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://doi.org/10.1109/TDSC.2019.2952332
https://doi.org/10.1109/TDSC.2019.2952332
https://doi.org/10.1109/JIOT.2020.3017377

	Abstract
	1 Introduction
	2 Background
	2.1 Federated Learning
	2.2 Permissionless Consensus
	2.3 Multi-Task Learning and Non-IID Data

	3 Related Work
	3.1 Decentralized Federated Learning with DLTs
	3.2 Decentralized Gossip Learning
	3.3 Specialization in Federated Learning

	4 Approach
	4.1 A DAG of Machine Learning Model Updates
	4.2 Enabling Implicit Specialization through Accuracy-Aware Tip Selection
	4.3 Measuring Implicit Specialization
	4.4 Improved Robustness

	5 Evaluation
	5.1 Datasets
	5.2 Models
	5.3 Results

	6 Conclusion and Future Work
	References

