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Abstract
Edge applications, such as gaming, cooperative engineer-
ing, or in-the-field information sharing, enjoy immediate
response, autonomy and availability by distributing and repli-
cating data at the edge. However, application developers and
users demand the highest possible consistency guarantees,
and specific support for group collaboration. To address this
challenge, Colony guarantees Transactional Causal Plus Con-
sistency (TCC+) globally, strengthened to Snapshot Isolation
within edge groups. To help with scalability, fault tolerance
and security, its logical communication topology is forest-
like, with replicated roots in the core cloud, but with the
flexibility to migrate a node or a group. Despite this hybrid
approach, applications enjoy the same semantics everywhere
in the topology. Our experiments show that local caching
and peer groups improve throughput and response time sig-
nificantly, performance is not affected in offline mode, and
that migration is seamless.

CCS Concepts: • Computer systems organization →
Peer-to-peer architectures; • Networks→ Cloud com-
puting; • Information systems → Key-value stores; Dis-
tributed storage; •Computingmethodologies→Distributed
algorithms.
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1 Introduction
Internet-scale collaboration is a growing application area, as
evidenced by games such as Overwatch or Ingress, shared
editors such as Google Docs, Microsoft Office 365 or Apple
iWork, or file-sharing systems such as Dropbox or Nextcloud.
Mobile devices with Augmented Reality capabilities support
location-aware games such as Pokémon Go and Harry Pot-
ter Unite, or collaborative 3D modelling and manufacturing
applications [43, 49, 59].

Existing systems are cloud-based, sometimes providing ad-
hoc application-level caching. Consistency violations are
common, baffling users and vexing application developers
[10, 18, 19, 50, 63]. Support for offline operation is spotty.
Users interact through the cloud only, even when direct com-
munication would be possible. These systems lack collabora-
tion features such as group management or versioning.
This paper presents the Colony database and middleware
designed to address these issues. A top requirement is an
edge-first approach [24] that locates data on device, to pro-
vide availability, fast and seamless response independently
of network connectivity and of location, and so that users
have ownership of their data. However, this makes it chal-
lenging to satisfy consistency and freshness expectations.
To answer this challenge, Colony takes a hybrid approach,
and provides the highest consistency guarantees compati-
ble with availability (TCC+), strengthened further (to SI) in
well-connected zones. CRDT data types ensure convergence
without rollbacks. A related challenge is the overhead of
concurrency metadata (fat vector clocks), which we limit
thanks to a flexible forest topology and to SI zones.
To address group collaboration requirements, Colony ver-
sions data, enables an edge group to share without relying on
the cloud, and supports collaborative security features. Our
design provides uniform access to data across a spectrum
spanning core cloud to the far edge.
Finally, we address a number of design and implementa-
tion challenges, including disconnected operation, consis-
tency undermigration, total-order consensus at the edge, and
avoiding single points of failure despite the forest topology.
We claim the following contributions:
• A decentralised database architecture, designed for collab-
orative applications, that provides a continuum spanning
from the core cloud to the far edge.

• A hybrid consistency model, based on causal and trans-
actional guarantees globally, strengthened to total-order
consistency in edge collaboration groups and in geograph-
ical proximity.

• A scalable metadata and topology design that bounds the
overhead of the required consistency metadata, and that

2021-10-25 16:12. Page 1 of 1–16. 1

https://orcid.org/0000-0002-8953-9322
https://doi.org/10.1145/3464298.3493405


Middleware ’21, December 6–10, 2021, Virtual Event, Canada I. Toumlilt, P. Sutra, M. Shapiro

supports seamless disconnection or migration of a node
or of a whole group.

• A novel approach to access control that leverages the con-
sistency model.

• Efficient design and implementation of Colony and an
experimental evaluation showing our approach benefits.

Our experimental evaluation demonstrates that: local and
group caching improve throughput by 1.4× and 1.6× respec-
tively, and response time by 8× and 20×, compared to a
classical cloud configuration; performance in offline mode
remains the same as online; both the offline/online transition
and migration are seamless.

2 Support for cooperation at the edge
Edge computing enables a new class of distributed coop-
erative applications.1 Consider for instance a distributed
multiplayer game; the state of the game universe is shared,
persistent, and mutable, typically stored in a database. In-
stead of a centralised cloud, state should be decentralised,
distributed and replicated across edge devices, to enable
quick application response (no waiting for a network round-
trip) and availability (the application can read and write
data, even when disconnected from any remote server). The
local-first approach provides users with a sense of ownership
and helps with confidentiality [24]. Nonetheless, we lever-
age the strengths of the cloud infrastructure, i.e., stronger
consistency and well-managed, abundant resources.
Edge applicationsmust remain available despite unpredictable
network connectivity, disconnection, and mobility. In this
context, strong consistency is not possible globally [16].
Consistency anomalies frustrates users and complicate cor-
rect application coding. We take a hybrid approach: globally,
provide the strongest model compatible with availability;
and locally, strengthen the guarantees where possible.

2.1 Global consistency guarantee: TCC+
In the edge context, two different consistency models have
been explored. Although they are incomparable, both have
been proved to be a strongest possible model compatible with
availability under partition. One is Monotonic Prefix Consis-
tency (MPC), which combines the per-process orders into a
global total order; however a process is exposed to arbitrary
rollbacks [17]. We argue that a client losing an unpredictable
amount of work is an unacceptable user experience.
Our preferred alternative is Causal Consistency (CC) [4].
Intuitively, if a client observes some update, it also observes
1Loosely, we distinguish three areas in the network. The core cloud is made of a
few tens of resource-rich, well-managed data centres (DCs). At the opposite end
of the spectrum, millions of resource-limited and mismanaged far-edge devices,
such as mobile phones or IoT devices. In between, thousands of border nodes,
such as CDN Points-of-Presence (PoPs), metropolitan data servers, or 5G MEC
servers. We refer as “edge” to the union of the border and far edge, and as
“infrastructure” to the union of the core and border.

all preceding updates. Only concurrent updates may be ob-
served in different orders.
CC can be enforced locally and does not require consensus;
the drawback is that tracking the partial order in CC can
have a heavy metadata cost, as we discuss later. On top of
CC, atomic transactions and convergence guarantees can be
supported without impacting availability [1, 64], a model we
call Transactional Causal Plus Consistency (TCC+). Section 3.1
formalises the TCC+ guarantees.

2.2 Local strengthening: data centre
Nodes that are strongly connected to each other can provide
even stronger guarantees, totally ordering updates upfront,
for instance Snapshot Isolation (SI). SI is stronger than MPC,
as it does not suffer rollbacks, and than CC, as it totally orders
updates; its metadata cost is low. We call a set of nodes that
enjoy SI among themselves an SI zone.
One kind of SI zone is a data centre (DC). A DC has a
large number of parallel servers, connected through a high-
quality network. Colony executes transactions across multi-
ple servers in the same DC under SI [1, 12].
From the perspective of global TCC+, a DC behaves like a
single sequential process, thus limiting metadata size.

2.3 Local strengthening: Peer groups
Another kind of SI zone is the peer group. Inconsistency is
especially problematic to users who communicate directly,
outside of the database. For instance, in the enhanced-reality
game Pokémon Go, there is an anomaly where two users in
close proximity can both become the owner of the same game
character, confusing them [28]. This and similar examples
argue for groups with stronger consistency.
In Colony, edge nodes that are close to each other can form
an SI zone, called peer group. Their mutual strong consis-
tency improves user experience and metadata management.
To maintain availability, the system should support discon-
necting and/or migrating the group, without losing the con-
sistency guarantees.

2.4 Security requirements
To support collaboration, Colony supports versioning and
trust management.
As the edge device executes and merges updates, data can
remain encrypted end-to-end; the untrusted cloud serves
merely for transport and persistence [26].2

However, the edge use case poses new security challenges.
Information is exposed on compromised edge nodes [57];
concurrent changes to the security policy changes and to
data weaken security [60, 62]; and decentralised key man-
agement is problematic [26]. We alleviate these difficulties

2End-to-end encryption is not yet implemented in the current prototype.
2 2021-10-25 16:12. Page 2 of 1–16.



Highly-Available and Consistent Group Collaboration at the Edge with Colony Middleware ’21, December 6–10, 2021, Virtual Event, Canada

Figure 1. Example Colony topology. A small number of DCs
forms the core. A far edge device connects either directly to
a DC, or via a point-of-presence (PoP) server at the border. A
peer group contains devices in geographical proximity. Note
the device migrating between subtrees.

by leveraging the cloud, e.g., for authentication and key man-
agement.

Our focus in the security area is support for group collab-
oration. Every data object comes with an Access Control
List (ACL) that describes what updates users are allowed to
perform. The system preventatively enforces ACL in edge
devices. Because an edge device may be compromised, every
node double-checks the updates it receives, and masks an
update that is not allowed by the corresponding ACL, and
transitively any update that depends on it. Thus a correct
node never depends upon a state that violates the security
policy.

3 Protocol design
We turn now to a system design for satisfying the above
requirements efficiently. Our design is an extension of the
SwiftCloud approach [64]. Colony uses caching and replica-
tion to ensure that a client can execute locally. The system
must remain safe at all times; specifically, the data observed
by a client always satisfies the TCC+ and security invariants
defined below. It should also remain available.

The trade-off is that, during some failures, liveness cannot
be ensured. A client cannot make progress in two cases: if
it requires data that cannot be retrieved; or if it runs out of
storage. Furthermore, there are corner cases (described later)
where a client commits updates, but they cannot become
visible. The above situations are temporary, and last only
until the problem is repaired.

Our system ensures convergence by using operation-based
CRDTs, which merge concurrent conflicting operations de-
terministically [44]. As underlined in the Introduction, sup-
porting causal consistency (CC) can have high metadata

overhead; our design bounds metadata to a small size. Simi-
larly to recent CC designs [1, 8], Colony separates (internal)
state management from (external) visibility: the backend
layer transmits and stores states efficiently, without regard
for correctness, whereas the visibility layer manages meta-
data and ensures that an application observes only those
states that satisfy the TCC+ guarantees.

3.1 The TCC+ guarantees
We now tersely specify the TCC+ guarantees. We use the
following notations and definitions. Nodes (at any level of
the topology) are noted 𝑝, 𝑝 ′. A node behaves sequentially,
executing one transaction at at time. A node might fail, in
which case it ceases executing (fail-stop); a node that does not
fail is said correct. 𝑥,𝑦 designate data objects. Transactions
are noted𝑇,𝑇 ′. A transaction consists of a sequence of reads
and updates. A transaction is interactive, i.e., the objects
it accesses are not known in advance. A read has no side
effect; an update does not return a response value. We write
𝑎 ∈ 𝑇 when operation 𝑎 (a read or an update) belongs to
transaction 𝑇 . A transaction executes at a single replica; if it
commits, its updates are broadcasted to be replayed by the
other replicas. An operation is noted 𝑎, 𝑏, . . . ; in more detail,
updating 𝑥 is written 𝑢 (𝑥), and a read 𝑟 (𝑥). The response
value of 𝑟 (𝑥) is res(𝑟 (𝑥)).
Following Viotti and Vukolić [58], an abstract execution
𝐴 = (𝐻, vis→,

ar→) consists of an interleaving of operations
executed by the nodes, or history (𝐻 ), a visibility relation (

vis→),
a partial order that accounts for the propagation of updates
in the system, and the arbitration relation (

ar→), a total order
over𝐻 that helps to resolve concurrency conflicts. The order
in which nodes execute operations is called the program
order. The happened-before relation (≺) is the transitive
closure of the union of visibility and program order [58].

Hereafter, we consider only transactions that commit; we
can safely ignore the operations of a transaction that aborts,
since it has no effect.

The phrase “visible in node 𝑝” refers to an operation that is
visible by some operation executed at node 𝑝 .

Each object starts in some known initial state. The return
value of a read is computed according to the semantics of
prior updates to the object (including updates in the same
transaction). That is, for each read operation 𝑟 (𝑥), res(𝑟 (𝑥))
results from some linearization 𝑙𝑟 (𝑥) of the updates visible to
𝑟 (𝑥) consistent with ≺.
TCC+ is defined by the following invariants.

Causal Consistency (CC). Causal consistency requires that
every update that happened-before an operation is visible
to that operation, and that arbitration is consistent with
happened-before. Formally, (≺⊆ vis→) ∧ (≺⊆ ar→).

2021-10-25 16:12. Page 3 of 1–16. 3
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Rollback-freedom. Once a node has read a value, it does
not roll it back: If 𝑟 (𝑥) ≺𝑝 𝑟

′(𝑥) then 𝑙𝑟 (𝑥) prefixes 𝑙𝑟 ′ (𝑥) .

Strong Convergence. Any two nodes that observe the same
set of updates read the same value. Formally, ∀𝑟 (𝑥), 𝑟 ′(𝑥) :
(∀𝑢 (𝑥);𝑢 (𝑥) vis→ 𝑟 (𝑥) ⇔ 𝑢 (𝑥) vis→ 𝑟 ′(𝑥)) =⇒ res(𝑟 (𝑥)) =
res(𝑟 (𝑥)).

The above invariants constrain the behaviour of individual
operations. Below, we formalise the fact that a transaction is
atomic (i.e., all-or-nothing). We define the following equiva-
lence relation, written≡: if operations 𝑎 and𝑏 are in the same
transaction𝑇 , then 𝑎 ≡ 𝑏. For some relation 𝑅 over the set of
operations, we say that 𝑅 is left-compatible with ≡ when for
any three operations 𝑎, 𝑏 and 𝑐 , if 𝑎 ≡ 𝑏 and (𝑎, 𝑐) ∈ 𝑅 then
(𝑏, 𝑐) ∈ 𝑅. Right-compatibility is defined symmetrically, that
is 𝑏 ≡ 𝑐∧ (𝑎, 𝑏) ∈ 𝑅 =⇒ (𝑎, 𝑐) ∈ 𝑅. Relation 𝑅 is compatible
with ≡ when it is both left- and right-compatible with it.

Atomicity. If two updates occur in the same transaction,
then they are visible atomically, and arbitrated in the same
way. Formally, visibility and arbitration are compatible with
transactional ≡.

Snapshot. A transaction takes all its reads (independently
of their order) from a same snapshot, which is sound both
causally and for the atomicity relation.

Additionally, the following liveness property should hold:

Eventual Visibility. If two correct nodes 𝑝 and 𝑝 ′ are not
permanently disconnected from one another, and 𝑢 (𝑥) is
visible in 𝑝 , then eventually 𝑢 (𝑥) is visible in 𝑝 ′.

TCC+ extends Transactional Causal Consistency, as defined
by Zawirski et al. [64], with the Strong Convergence and
Rollback-Freedom properties. This ensures that progress is
monotonic at each node.

To illustrate the concepts in this section, consider the his-
tory in Figure 2, which depicts the evolution of a CRDT
counter (𝑥 ) when nodes execute increment operations (𝑖𝑛𝑐),
and propagate such updates (depicted by arrows).3

The history in the figure is causally consistent. Indeed, every
new increment updates the counter to a state also containing
the preceding operations (e.g., after event 6○, the counter
value is 2). Similarly, there is no roll-back at any node. Nodes
that received the same increments (e.g., events 7○ and 8○)
are in the same state; therefore this history satisfies strong
convergence. Moreover, since every transaction contains a
single operation, the history trivially ensures the atomicity
and snapshot requirements.

3For now, ignore the version, commit and snapshot information, which will be
detailed later.

3.2 Strengthening to SI
Colony strengthens the above TCC+ guarantees to strong
consistency in an SI zone.
In a SI zone, Colony ensures Snapshot Isolation (SI). This
means that

ar→ is gapless [45], i.e., for any operation 𝑏 visible
to 𝑎, every operation 𝑐

ar→ 𝑏 is also visible to 𝑎.

3.3 Bounding metadata
This and the following sections detail the logic to achieve
the above consistency guarantees.
Supporting CC requires metadata, which can represent a sub-
stantial overhead; this section explains how Colony bounds
metadata to a small size.
The CC invariant dictates that an update may become visible
only if its dependencies (i.e., the updates that happened-before
it) are themselves visible. To check this, when transmitting
an update, Colony piggy-backs some associated visibility
metadata, a vector timestamp (or version vector) that sum-
marises its dependencies [14, 34]. Vector timestamps support
efficiently computing the set of missing dependencies [38].
A precise representation of the happened-before order among
𝑁 concurrent writers requires a vector of size ≥ 𝑁 [11]. As
𝑁 grows, the overhead on every message quickly becomes
unacceptable.4 The following sections describe some tech-
niques that we use to keep the size small, at the cost of
spuriously ordering some concurrent events.

3.4 Topology and metadata design
We first turn to the topology design (illustrated in Figure 1)
and the metadata design.
Each DC forms an SI zone; therefore, the updates of a given
DC are totally ordered; externally, it behaves as a single
sequential node. On the other hand, DCs are connected in a
full peer-to-peer mesh; their updates are partially ordered,
which requires a vector. Since each DC appears sequential, a
timestamp vector 𝑉 of size 𝑁 suffices to a point in the CC
partial order between DCs. Component 𝑉 [𝑖] numbers the
(sequentially ordered) transactions committed at DC 𝑖 .
The least upper bound (LUB) of two vectors is defined as their
component-wise maximum. Each node maintains its state
vector, which is the LUB of the commit timestamps (defined
next) that it has observed.
A transaction has a unique identifier called its dot [2].
Communication between DCs is a full mesh. Edge nodes
(border or far-edge) are partitioned into distinct trees, form-
ing a forest, as illustrated in Figure 1. Each tree is rooted at a
specific DC, which we call its connected DC.5 A subtree may
detach itself from its parent and migrate to a different tree,
e.g., to accommodate mobility or a failure.
4In Colony each component of the vector is 8 bytes, in order to store a monotonic
clock that does not wrap around.
5A peer group counts for a single node in the tree.

4 2021-10-25 16:12. Page 4 of 1–16.
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3.5 Transaction metadata
We now describe the metadata associated with a transaction
𝑇 : its snapshot and commit timestamp vectors, and its dot.
Transaction 𝑇 ’s snapshot vector 𝑇 .𝑆 describes the (previous)
transactions it depends upon. 𝑇 .𝑆 forms a snapshot closed
under CC and atomicity. The meaning of 𝑇 .𝑆 [ 𝑗] = 𝑛 is the
following: 𝑇 reads from all the transactions 𝑇 ′ committed at
DC 𝑗 up to time 𝑛, and no later, i.e., such that 𝑇 ′.𝐶 [ 𝑗] ≤ 𝑛.
A read-only or aborted transaction terminates without side
effects. The commit vector 𝑇 .𝐶 of an update transaction rep-
resents the point where it commits.6 It is greater than its
snapshot vector; if the transaction commits at DC𝑖 , they dif-
fer only at index 𝑖 , i.e., 𝑇 .𝑆 [𝑖] < 𝑇 .𝐶 [𝑖] ∧ ∀𝑗 ≠ 𝑖 : 𝑇 .𝑆 [ 𝑗] =
𝑇 .𝐶 [ 𝑗], where 𝑇 .𝐶 [𝑖] is a timestamp assigned by DC𝑖 .
Transaction𝑇 is before𝑇 ′ if𝑇 .𝐶 ≤ 𝑇 ′.𝑆 . If neither of𝑇 or𝑇 ′

is before the other, they are said concurrent.
Finally, a transaction has a unique timestamp called a dot
𝑇 .𝐷 , which both serve as a unique identifier and provides
the (total) arbitration order between concurrent transactions
(as defined in Section 3.1).

3.6 In-DC transaction protocol
Let us describe how the system computes metadata in the
simple case of a transaction that executes within some DC𝑖 .
By default, 𝑇 .𝑆 is assigned the current state vector of DC𝑖 .
The system checks that𝑇 .𝑆 represents a consistent cut [1, 41]
such that 𝑇 .𝑆 [𝑖] ≤ current_time. Its unique dot is 𝑇 .𝐷 :=
(current_time, 𝑖). The commit protocol is a standard two-
phase commit among the servers of DC𝑖 (we use ClockSI
[12]). The commit vector is equal to the snapshot vector,
except that 𝑇 .𝐶 [𝑖] := current_time. Object versions created
by the transaction are marked with version timestamp 𝑇 .𝐶 .
As Colony objects are operation-based CRDTs, materialising
a version may require to apply multiple updates [9, 44]. Con-
versely, concurrent transactions that update the same CRDT
object can be merged and by default do not abort, although it
can abort for semantic reasons, e.g., if it would violate some
invariant; we assume a higher level of concurrency control
to detect such violations [3, 20, 21], which is out of the scope
of this paper.
We illustrate the in-DC transaction lifecycle in Figure 2,
events 0○ through 4○. Focus on the three DCs, numbered
0, 1 and 2, and on the CRDT counter 𝑥 .7 0○ All DCs have a
copy of 𝑥 with value 0 and version timestamp [0, 0, 0]. The
three DCs are in state [0, 0, 0]. 1○ DC0 executes transaction
T0. Its snapshot vector is set from its current state, at [0, 0, 0].
T0 increments 𝑥 . Its commit vector is [1, 0, 0], i.e., its snap-
shot vector incremented by 1 at the component for DC0. It
commits version [1, 0, 0] of 𝑥 , with value 1. 2○ Concurrently,
6In fact, to tolerate faults, it may have multiple equivalent commit vectors, as
described later, in Section 3.8.
7Ignore for now the two edge nodes, and references to 𝑘 and to stability.

DC1 executes T1, with the same snapshot. T1 also incre-
ments 𝑥 . As 𝑥 is a CRDT, T1 can also commit; its commit
vector is [0, 1, 0] and it updates 𝑥 to version [0, 1, 0] with
value 1. At this point, T0 is visible only to DC0, and T1 only
to DC1. 3○ DC0 replicates T0 to DC2, where 𝑥 has version
[1, 0, 0]. 4○ DC1 replicates T1 to DC2. All three versions of
𝑥 are visible at DC2, as well as a merged version with least-
upper-bound timestamp [1, 1, 0]. As this version includes the
increments from both T0 and T1, its value is 2.

3.7 Basic edge transaction protocol
A transaction may execute and commit in an edge node. In
this case, commit is asynchronous, i.e., for availability, the
edge node continues to execute further transactions without
waiting for the DC to assign its commit vector.
Starting a transaction𝑇 is similar to the in-DC case: the edge
node assigns its snapshot, and a dot using the edge node’s
unique identifier. The transaction commits locally at the
edge node, which can immediately start another dependent
transaction. Until it receives the DC’s acknowledgement,
the commit timestamp remains symbolic, i.e., indeterminate,
subject only to the invariant 𝑇 .𝑆 < 𝑇 .𝐶 .
Eventually, the edge node sends the transaction to its con-
nected DC𝑖 , which acknowledges with a concrete commit
vector. Similarly to the in-DC case, the commit vector differs
from the snapshot only in the component corresponding
to the connected DC: 𝑇 .𝐶 [𝑖] := current_time. However, be-
cause of migration, index 𝑖 cannot be predicted, as described
in the next section.
Let us return to Figure 2 to illustrate the lifecycle of edge
transactions. 5○ Edge node A pulls 𝑥 into its interest set, then
starts transaction TA1 with snapshot vector𝑇𝐴1.𝑆 = [0, 0, 0].
TA1 reads version [0, 0, 0] of 𝑥 . TA1 increments 𝑥 . TA1 com-
mits; its commit vector is still uncertain, noted with the sym-
bolic 𝑇𝐴1.𝐶 = [𝛼, 𝛽,𝛾] > [0, 0, 0]. 6○ EdgeA starts a second
transaction TA2. To be able to read the writes of TA1 from
the local cache, it assigns snapshot vector 𝑇𝐴2.𝑆 = [𝛼, 𝛽,𝛾].
TA2 increments 𝑥 and commits with symbolic 𝑇𝐴2.𝐶 =

[𝛼 ′, 𝛽 ′, 𝛾 ′] > 𝑇𝐴2.𝑆 = [𝛼, 𝛽,𝛾]. 7○ Concurrently, EdgeA
sends TA1 to DC0. Similarly to an in-DC transaction, DC1
assigns the commit vector 𝑇𝐴1.𝐶 = [𝛼, 𝛽,𝛾] := [1, 0, 0].
8○ EdgeA receives the updated descriptor for TA1 and fills
in the concrete values 𝑇𝐴1.𝐶 = 𝑇𝐴2.𝑆 = [1, 0, 0].

3.8 Node migration and K-stability
A fixed forest is inflexible, and a single fault may have a dis-
proportionate impact. Therefore, Colony supports migrating
a node and the subtree attached to it. Ideally, node migra-
tion should be seamless and transparent to applications, but
unfortunately this is not completely possible.
Migration creates some extra complications to the edge trans-
action protocol, which we consider next. For simplicity, we
consider a single edge node case, focus on the migration

2021-10-25 16:12. Page 5 of 1–16. 5
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This system has three data centres DC0, 1, and 2, and edge nodes A and B. Vector components refer to DC0, 1 and 2 respectively. Dots are omitted from the
figure. The k-stability objective is 2.
0○ Initially, the DCs observe 𝑥 = 0 with version vector [0, 0, 0].
1○, 2○ Transaction T0 (resp. T1) increments 𝑥 at DC0 (resp. DC1), committing 𝑥 = 1 with version [1, 0, 0] (resp. [0, 1, 0]). Both have 𝑘 = 1.
3○ DC0 transmits T0 to DC2. Being replicated at two DCs, it is 2-stable (𝑘 = 2).
4○ DC1 transmits T1 to DC2. T1 is now 2-stable. DC2 observes two increments, T0 and T1: now 𝑥 = 2 with version [1, 1, 0], the least-upper-bound of the

commit vectors of T0 and T1.
5○ EdgeA caches 𝑥 . Transaction TA1 increments 𝑥 and commits locally. Its commit vector remains the symbolic [𝛼, 𝛽,𝛾 ]. As TA1 has not been transmitted to

a DC, it has 𝑘 = 0.
6○ Transaction TA2 at EdgeA again increments 𝑥 . Its snapshot vector is symbolic [𝛼, 𝛽,𝛾 ]; its commit vector is symbolic [𝛼′, 𝛽′, 𝛾 ′ ]. The value of 𝑥 at EdgeA

is now 2.
7○ Concurrently, EdgeA transmits TA1 to DC0. DC0 assigns commit vector [𝛼, 𝛽,𝛾 ] := [2, 0, 0]. TA1 being known in one DC, it has 𝑘 = 1. DC0 observes two

increments, T0 and TA1: now 𝑥 = 2, with version [2, 0, 0].
8○ DC0 transmits back the concrete descriptor of TA1, informing EdgeA that [𝛼, 𝛽,𝛾 ] = [2, 0, 0]. EdgeA observes local increments TA1 and TA2, hence 𝑥 = 2.

T0 is not visible to EdgeA because𝑇 0.𝑘 = 1.
9○ DC0 transmits T0 and TA1 to DC1, making them both 2-stable.
10○ T0, T1 and TA1 being 2-stable at DC1, are made visible to EdgeB, where 𝑥 = 3.
Eventually (not depicted): TA2 is delivered to a DC, filling in the values for [𝛼′, 𝛽′, 𝛾 ′ ]; TA2 becomes 2-stable; all four transactions reach all replicas; all replicas
observe 𝑥 = 4.

Figure 2. DC and edge transaction protocols

mechanism, and ignore the policy decision of why or when
to migrate, e.g., in response to a network failure.

Avoiding Duplicates. Migration can change the connected
DC of the node. Consider the edge transaction protocol de-
scribed above. Suppose that some edge node sends its trans-
action 𝑇 to its connected DC𝑖 , loses the connection to DC𝑖 ,
then migrates to DC 𝑗 ≠ 𝑖 . As the edge node does not know
whether DC𝑖 received𝑇 , it sends𝑇 again to DC 𝑗 . Although𝑇
might now be received twice, via both DCs, a replica should
replay it only once; the transaction’s dot 𝑇 .𝐷 serves to filter
out such duplicates. To this effect, every node keeps track
of the highest dot assigned by another node, and ignores a
transaction whose dot is less or equal this value.

K-stability to avoid causal incompatibility. Consider an
edge node that migrates from DC𝑖 to a new connected DC 𝑗 .
If the state of DC 𝑗 includes that of DC𝑖 , the edge node’s
dependencies remain satisfied, and migration is seamless.

We say that the states are causally compatible. However, it
might happen (for instance, because of a communication
failure) that an edge transaction𝑇 ′ depends on a transaction
𝑇 that was visible at DC𝑖 but not yet at DC 𝑗 . The snapshot
of𝑇 ′ does not satisfy the CC invariant at DC 𝑗 , which cannot
apply it and cannot assign its commit vector. The edge node
remains effectively disconnected, and its transactions are
non-visible to the rest of the system. We say the edge node
state is incompatible with DC 𝑗 .
If 𝑇 was not visible to 𝑇 ′, the above dependency could not
exist, and the nodes would remain compatible. Thus, one
possible approach would be to let transaction 𝑇 become visi-
ble at the edge only once it is known at all DCs. However, a
single slow DC would delay edge visibility of all transactions.
Our solution, taken from SwiftCloud [64], is twofold. First,
to ensure the Read-My-Writes session guarantee [52], an
edge node’s transactions are always visible to itself. Second,
to decrease the incompatibility probability, transaction 𝑇
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becomes visible to edge nodes only after it is visible by ≥ 𝐾

DCs, where 1 ≤ 𝐾 ≤ 𝑁 [64]. The higher 𝐾 , the higher
the probability that the new DC is compatible with the old
one, i.e., that its state includes the dependencies of 𝑇 ′. The
value of 𝐾 is a trade-off between two extremes. If 𝐾 = 1, the
probability of incompatibility is high. If 𝐾 = 𝑁 , one slow DC
could prevent all edge transactions from becoming visible.
To illustrate K-stability, refer again to Figure 2. 𝑇 .𝑘 counts
the number of DCs where 𝑇 is stable. The visibility limit
is set to 𝑘 ≥ 𝐾 = 2. At 8○, transaction T0 is not visible to
EdgeA, because 𝑇𝑂.𝑘 = 1. At 4○, DC1 sends T1 to DC2; now
𝑇1.𝑘 = 2. At 9○, DC0 transmits T0 and TA1 to DC1; now
all three transactions T0, T1 and TA1 have 𝑘 = 2. As DC1
has observed three increments, 𝑥 = 3 with version [2, 1, 0],
the least-upper-bound 𝑇𝐶0.𝐶,𝑇𝐶1.𝐶 and 𝑇𝐴1.𝐶 . Therefore,
in 10○, DC1 can make them visible to EdgeB, where later
transactions may depend on 𝑥 = 3 with version [2, 1, 0].

Transaction ordering. Finally, both DC𝑖 and DC 𝑗 may as-
sign different commit vectors, 𝑇 .𝐶𝑖 ≠ 𝑇 .𝐶 𝑗 . This could cause
an ordering anomaly: if some transaction𝑇 ′ could depend on
𝑇 with 𝑇 .𝐶𝑖 ≤ 𝑇 ′.𝑆 , where 𝑇 .𝐶 𝑗 ≰ 𝑇 ′.𝑆 ; a node that knows
only of 𝑇 .𝐶 𝑗 is not aware that 𝑇 happens before𝑇 ′. Observe,
however, that 𝑇 .𝐶𝑖 and 𝑇 .𝐶 𝑗 conceptually denote the same
point in the TCC+ partial order. To ensure this concretely,
Colony considers the two timestamps as equivalent; they al-
ready have the same causal past, and the equivalence ensures
they have the same causal descendance.
Thus, a same transaction may carry up to 𝑁 equivalent com-
mit timestamps. We optimise their memory size as follows.
Recall that a commit vector differs from the snapshot vector
in a single component, that of the DC that accepted it; the
others are not significant. Therefore, Colony stores multiple
commit vectors into a single vector of size 𝑁 , containing a
significant value only for a DC that accepted the transaction.
For simplicity, Figure 2 does not depict this optimisation.

3.9 Transaction migration
Resource-hungry transactions should run in the core cloud
rather than the edge. Examples include analytics, or large
queries. Colony supports migrating them to a trusted node
in the core cloud for execution.
The migrated transaction must have the same effect as if it
ran on the edge node; only performance should differ. Thanks
to TCC+, it suffices to assign the same snapshot vector.
Thus, the client primes the snapshot with its own state vector
and sends the transaction code. Before the transaction starts,
the DC must have received the client’s local transactions,
which that the new one depends upon (Section 5.1.3 explains
how we accelerate this). This ensures that every read can be
satisfied. The migrated transaction executes in the DC just
like a standard local client, and its results are sent back to
the requesting edge node.

4 Data management
Colony ensures convergence by using operation-based CRDTs,
which merge concurrent conflicting operations deterministi-
cally [44]. Similarly to recent CC designs [1, 8], Colony sep-
arates (internal) state management from (external) visibility:
the backend layer transmits and stores the state efficiently,
without regard for correctness, whereas the visibility layer
manages metadata and ensures that an application observes
only those states that satisfy the TCC+ guarantees.

4.1 Versioning
Colony stores an object persistently as a base version and a
journal of updates since the base version. To materialise an
arbitrary object version, the cache first reads the base version
from the store, and applies the missing updates from the
journal. Occasionally, the system advances the base version.
A transaction reads from its snapshot, logs its updates to the
journal, and materialises new versions in a private buffer.
When the transaction commits, it updates the cache from
the buffer. Both the updates recorded in the journal, and
object versions that result from committed transaction𝑇 , are
labelled with vector 𝑇 .𝐶 and dot 𝑇 .𝐷 .

4.2 Edge caching
An edge node cannot replicate the whole database, but can
only cache some small fraction of it. An edge client may
declare interest in some object to add it to its node’s cache.
The connected DC regularly informs the client of updates to
its interest set.
At any point in time, the state vector of an edge node is the
LUB of the state received from its connected DC (itself ≤ the
DC’s current state vector) and the commit vectors of local
transactions. Choosing a snapshot vector ≤ the node’s state
vector ensures that every read could be satisfied either from
the local cache or from the connected DC. It may happen
that the client requires an object version that cannot be
retrieved (in the cache, from the DC or from another node),
in which case the transaction cannot proceed. This limitation
of availability is inherent to the edge environment.

5 Groups
Colony supports two distinct group mechanisms: the peer
group, an SI zone at the edge, and the collaboration group,
nodes that update the same data. Peer groups are disjoint,
whereas collaboration groups may overlap. All nodes in a
peer group are in the same collaboration group.

5.1 Peer groups
A peer group is a set of nodes with high-availability, low-
latency connection to one another. It makes sense to provide
SI within the group. This enhances the user experience, and
simplifies metadata management. A peer group creates op-
portunities to improve performance, by pooling resources
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into a collaborative cache, and to decrease network load to
the cloud by collecting the updates from many clients. Con-
ceptually, a peer group consists of four related components,
with distinct roles: managing group membership, sharing
content within the group, communicating with the outside,
and enforcing the SI order. Described below.

5.1.1 Membership. Membership of a peer group is seeded
and managed by a single node, called the group’s parent. The
parent maintains a connection to each of the group mem-
bers, stores their list, and informs them of any membership
change. The parent is fixed but arbitrary, possibly located
in the DC or on a point-of-presence (PoP) server. A node
may serve as a member and a parent at the same time. To
join or leave a group, a node contacts the group’s parent.
The parent responds with the membership list, as well as
the session security key (described shortly). When a node
migrates between groups, it uses the migration protocol
previously described (Section 3.8); the new group must be
causally compatible with the node’s state.

5.1.2 Content sharing. Using the membership list, the
group members and their parent maintain point-to-point
connections. Above these connections, they construct a col-
laborative cache using a simple peer-to-peer protocol. Each
member publishes its current interest set to all its neighbours
(other members and parent). This subscribes the member
to receive all updates to its interest set. When a member
updates an object in a neighbour’s interest set, it pushes
that update in a best-effort manner. Conversely, if a member
observes that it is missing an update to its interest set (by
examining the visibility log described below), it pulls the
transaction from some neighbour. Objects evicted from a
cache are unsubscribed to save resources. The parent main-
tains an interest set that is the union of those of the group
members. It subscribes for updates outside the peer group
on behalf of its members, as detailed next.

5.1.3 Communicating outside the group. As illustrated
in Figure 1, a subtree communicates with another one via
some common ancestor. For simplicity, the following descrip-
tion assumes this ancestor is its connected DC.Let us call
synchronisation point (sync point) a node within a group that
communicates with the DC. In the common case, this is the
parent, but any member may also unilaterally become a sync
point (for instance before migrating a transaction to the DC,
Section 3.9), thus avoiding any single point of failure. A sync
point sends all missing updates to the DC, and symmetrically
subscribes to updates to its interest set. Importantly, the sync
point makes updates visible to the DC in the visibility order
described in the next section. This ensures that different sync
points send identical information.

5.1.4 Transaction protocol for peer groups. A peer
group as a whole should behave like a single, sequential
edge node, from the perspective of the rest of the system. To

ensure sequential ordering, causality and progress within the
group, Colony relies on EPaxos [35] within the peer group.
Compared to other consensus protocols, EPaxos improves
availability and performance, by allowing any groupmember
to become the leader for any transaction, and by minimising
synchronisation between non-conflicting transactions.
In addition to improving the user experience, consensus is
essential to correct metadata management.
Recall from Section 5.1.3 that possibly multiple sync points
send transactions to the DC. Without consensus, conflict-
ing transactions would be sent in different orders, breaking
causality and causing unsafe commit vectors.
When a peer node commits a transaction, it submits it to
EPaxos. EPaxos ensures consensus on the order in which
versions become visible sequentially according to SI, which
we call visibility order. Every peer maintains the list of visible
transactions in a visibility log.
The transaction then executes in isolation against the local
cache. Its dependencies are the union of the state vector,
the node’s previous transactions, and the transactions in the
node’s visibility log.
Within a peer group, two different variants of commit ex-
ist. In the first, the node submits the transaction to EPaxos
in the critical path of commit. This has the effect of order-
ing the commitment of conflicting transactions within the
peer group, possibly leading to aborts; non-conflicting trans-
actions commit in parallel. This variant maintains Parallel
Snapshot Isolation (PSI) within a group [47], ensuring that
the group behaves as an SI zone.
The second variant follows a similar approach to Section 3.7.
It assumes that transactions never conflict. The transaction
commits locally as soon as it reaches the commit statement,
and a new transaction can follow immediately. The transac-
tion is then submitted to EPaxos in the background.
Committed transactions become visible in the order assigned
by EPaxos. A sync point sends visible transactions to the
connected DC according to the visibility order, where they
get assigned a commit timestamp.

5.2 Migration between peer groups
Just as a node can migrate between DCs (Section 3.8), it may
migrate between peer groups. Similar consistency issues
occur here. In this case, the base version of cached objects
on the migrating node must be compatible with that of the
new group. If the client is not missing any dependencies, or
can retrieve them, then migration is seamless.
However, if the client is missing dependencies and the new
peer group is offline, migration cannot succeed. If the client
waits, its pending commits remain logged until the commu-
nication problem is fixed and they can be merged into the
DC. In the meantime, the client might start a session with
the new group, but its pending updates in the old session
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become invisible. Alternatively, the client might attempt to
migrate again.

5.3 Collaboration groups
The mechanisms related to collaboration groups are trust
management and versioning.
Messages are protected using symmetric cryptography. The
authentication service provides a client with a session key
per shared object, to decrypt data and sign updates. This
ensures that only legitimate clients can read an object. The
key remains valid through disconnection and reconnection.
To keep out untrusted or unwanted updates, we leverage the
separation between state and visibility, previously discussed
in Section 3. Recall that an update is visible only if it satisfies
the TCC+ invariants. In addition, it is visible only if it satisfies
collaboration constraints.
To manage trust, the security administrator sets ACL. Fur-
thermore, a collaboration group can, for instance, restrict
visibility to include only versions produced within the group.
An update that does not satisfy the corresponding ACL or
group constraints remains invisible, and transitively the up-
dates that depend upon it. Thus, security policies and groups
can evolve dynamically. Technically, this violates the mono-
tonicity invariant, but in a very restricted manner. The store
remains TCC+, but security and group constraints expose
only a variable-size window thereof.

6 System API and implementation
The Colony middleware is designed to provide a simple API
for developing and deploying collaborative applications. This
section presents its implementation and programming inter-
face. The code is open-source and available on Gitlab [55].

6.1 API and programming model
An application node connects to a session manager (cur-
rently implemented in the core cloud), which authenticates
the node. With the session opened, the node may join a
collaboration or peer group, and run transactions accessing
database objects. The node is notified of group change events
(e.g., a new peer joins).
The database stores CRDT objects, such as counters, regis-
ters, sets, maps, or sequence datatypes. An object is stored
in a namespace called a bucket. Opening a bucket caches it
in the node; optional parameters can specify cache policies
(e.g., LRU, writeback, etc.). The application can subscribe to
an object’s update events, in order to implement reactive pro-
gramming patterns. A transaction is atomic (all-or-nothing)
against multiple updates, and reads a TCC+-consistent snap-
shot of its opened buckets. Colony supports both interactive
and batch transactions.
The example in Figure 3 illustrates the API. This application
opens a session (Line 1). Then, it creates and increments
a CRDT counter object (Lines 2–3). Then it connects to a

1 let dc_con = dc.connect(CONF.dbURI, CONF.credentials);

2 let cnt = dc_con.counter("myCounter");

3 dc_con.update(cnt.increment(3))

4 let peer = pop.connect(CONF.popServers, CONF.credentials)

5 let tx = await peer.startTransaction()

6 let map = tx.gmap("myMap");

7 tx.update([ map.register("a").assign(42),

8 map.set("e").addAll([1, 2, 3, 4]) ])

9 tx.commit().then(

10 console.log(

11 await peer.gmap("myMap").set("e").read() ) )

Figure 3. Example Colony program.

peer group (line 4), and updates the grow-only map (gmap)
“myMap” in a transaction (lines 5–8). This map contains refer-
ences to a register object (key “a”) and a set object (key “e”).
The counter update and the commit are both asynchronous
(Lines 7 and 9), returning a promise. At line 11, the client
waits for the promise, and displays the content of the set.

6.2 Communication protocol
Edge nodes communicate overWebRTC. Opening a client ses-
sion occurs in the signalling phase of WebRTC and currently
relies on a server in the core cloud, to simplify authentication
and trust management. The session provides the networking
information required to communicate with the system, i.e.,
the IP addresses and ports of nearby peers, and the keys
required to establish secure point-to-point connections with
them. 8 To migrate to a different peer group, the node relies
again on the session server.

6.3 Storage
Cloud nodes (DCs and PoPs) have secondary storage and
persist their data to it. They also cache data in memory for
performance. Data in a DC is sharded by consistent hashing
across multiple server machines, leveraging riak_core [25].
We do not assume that a far-edge node has disk, and store
data in browser memory. When a disconnected client re-
connects again, it repopulates its cache, either from its peer
group’s content sharing network, or from its connected DC.

6.4 Security
The authentication keys received from the session server
serve to encrypt communication between nodes, using sym-
metric encryption. Thus, only authenticated clients are able
to observe and update objects. End-to-end encryption and
decentralised authentification [26] is left for future work.
A system administrator can set a security policy with the
help of access-control lists (ACLs). An ACL is a tuple from the
set objects×users×permissions. It defines that a given user
8The first connection is established via STUN. If this fails (due to a firewall or
NAT), Colony falls back to using TURN [61].
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is granted access to some object and the operation she is al-
lowed to execute on that object. Right inheritance (RI) is mod-
elled using two forests, atop objects and users. If user𝑢 inher-
its from user 𝑣 , then𝑢 holds the sameACL as 𝑣 . Similarly, if an
object 𝑥 inherits from some object 𝑦, then any ACL granted
on𝑦 also holds for 𝑥 . Checking an ACL evaluates a first-order
logic predicate over the RI and ACL relations following the
above logic. For instance, (C1) (book,Alice, own) ∈ 𝐴𝐶𝐿, or
the more complex
(C2) (book, shelf) ∈ 𝑅𝐼 ∧ (shelf,Bob, read) ∈ 𝐴𝐶𝐿 specify
respectively that Alice owns a book and that this book is on
a shelf readable by Bob.

ACL check must respect the order in which clients modify
both data and the security policy, to avoid unexpected be-
haviour. More precisely, the system must ensure [36] that:
(i) ACLs are applied in the order they were issued, and
(ii) ACL checks are evaluated on a fresh copy of data and
metadata. If data and security metadata are mutually con-
sistent according to TCC+, the first constraint is trivially
satisfied.

Let us use an example to illustrate the problem with the
second constraint. Consider predicate C2, and assume that
Alice, Bob and Carl share the bookshelf. Suppose Alice re-
moves a book from the shelf on her node, while Bob makes
the shelf readable by everyone. The two are concurrent from
the causality perspective, and thus Carl may observe them
in any order. However, by the second constraint, if Bob’s
update occurs later in real time, then Carl must never see
Alice’s book on the shelf. If Bob’s node is disconnected or
slow to transmit, this requirement is violated.

Colony alleviates this problem as follows. First, object ver-
sions are visible according to the local copy of the 𝐴𝐶𝐿 and
𝑅𝐼 relations. Second, it defers ACL checks to after commit. A
committed transaction that fails an ACL check is not visible.
In the above example, Alice’s book may appear briefly on
Carl’s node; but as soon as Bob’s update is delivered, it will
disappear.

7 Experimental evaluation
This section presents an empirical evaluation of Colony. We
first demonstrate the implementation of a realistic collab-
orative application atop the middleware. With this as our
main benchmark, we then evaluate the platform experimen-
tally, comparing it to a classical client-server approach in the
cloud, and to a simple caching approach. We consider both
the online and the offline case. In the former, we evaluate
transaction throughput vs. response time, and behaviour un-
der load. In the offline case, we measure reconnection time,
i.e., the time it takes for disconnected clients to be synchro-
nised again. We also evaluate the performance benefit of
peer groups. Finally, we study migration in mobile setups,
measuring the time to return to normal performance.

7.1 ColonyChat benchmark application
Overview. ColonyChat emulates a team collaboration appli-
cation modelled after the Slack and Mattermost communi-
cation platforms [33, 46]. It consists of ∼1500 lines of Type-
script. ColonyChat represents its three main entities, users,
workspaces and bots with the help of CRDT objects. In detail,
a user has a profile, a list of events, a set of friends, and a set
of workspaces she is a member of. A workspace contains the
users that collaborate through the application and a set of
channels. It also maintains the status of the users within the
workspace (e.g., owner, ordinary, invited, or deleted). A chan-
nel holds a description, and the list of messages posted to it.
A bot is a special kind of user. It automatically triggers an
action when it observes some event, or a specific message on
a channel. For instance, a bot might monitor activities within
a file-system tree, or display weather information. Bots play
an important role in the benchmark, as they generate a large
number of update transactions.
The TCC+ guarantees of Colony ensure that there are no or-
dering anomalies in the application. For instance, an answer
is guaranteed to be visible in a chat after the corresponding
question. Moreover, transactions are atomic, allowing main-
taining invariants such as “a user is in a workspace if and
only if the workspace is in the user’s profile.” Furthermore,
within an SI zone such as a peer group, users observe updates
in the same order, greatly simplifying collaboration.

Workload. The workload consists of a modified trace from
a popular Mattermost server. The trace contains the ac-
tions of around 2,000 users spreads over 3 workspaces; each
workspace holds 20 channels on average. A user can be in
more than one workspace, and one of the workspaces con-
tains 1,000 users. Around 10% of the users are bots that act
randomly upon receiving a message on the channel, they
have subscribed to. An action of a user follows a 90/10 read-
/write ratio. A user refreshes its local copy of a channel every
5 transactions. The trace follows a Pareto distribution for the
action, where 20% of the users execute 80% of operations. It
contains 40 days of activity in total on the Mattermost server
and exhibits a diurnal cycle. In the experiments, the trace is
accelerated to execute in a few minutes only.
For each experiment, we indicate when users are scattered
in peer groups, or directly connected to a remote DC. The
experiments use the second variant of the peer group commit
protocol, i.e., EPaxos is off the critical path of commitment
(Section 5.1.4). The current version of our benchmark does
not exercise transaction migration (Section 3.9); this will be
added in future work. Each experiment is executed 10 times,
and we report the average.

7.2 Experimental setup
We deploy each Colony component (edge client, cloud server,
peer group, etc.) as a Docker container, on a set of dedicated
servers in a cluster. Each server has two Intel Xeon Gold
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Figure 4. Performance of Colony.

CPUs, each with 16 cores per CPU, 128GB of memory, and
2 TB of (spinning) hard disk. Nodes are all connected through
10Gb/s network switches. A monitoring server, deployed on
a separate container, captures the performance metrics.
Wemeasure an average 0.15ms network response timewithin
the cluster. We use the Linux traffic shapping tool (tc) to
simulate larger network response time, with a mean of 50ms
for mobile cellular data and 10ms for carrier Ethernet. DCs
are connected in a mesh using RabbitMQ sockets above TCP;
peer groups are connected using WebRTC.

7.3 Response time and throughput
In this first experiment, we evaluate system performance
when scaling up, increasing the number of clients until per-
formance saturates. We compare three approaches. One em-
ulates AntidoteDB [54], a classical geo-replicated approach,
where a client does not have a local cache, and must contact
the DC for each operation. Another emulates SwiftCloud
[64], where clients have a local caches but do not form peer
groups. Finally, the Colony label indicates a systemwith peer
groups enabled. In each case, we evaluate a deployment with
a single DC and one with three DCs.
Figure 4 reports throughput vs. response time. It uses a log-
log scale; down and to the right is better. Load doubles from
one point to the next, from 4 to 1024 clients. As expected,
at the beginning of the curve, throughput improves and
response time remains stable. At some point, throughput
levels out and response time degrades, indicating saturation.
Observe that the Colony’s response time is approximately 5
times better than Swiftcloud’s, which itself performs one or-
der of magnitude better than AntidoteDB (both for through-
put and response time). This difference is explained by the
caching policy. AntidoteDB does not have a client-side cache.
In the SwiftCloud configuration, 90% of transactions hit the
local cache. The hit rate reaches 95% in the shared cache of
the Colony peer group configuration.
Adding more DCs spreads the load in the AntidoteDB config-
uration, improving the maximum throughput of the system,
by 40% from a single to three DCs. However, adding more
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Figure 5. Impact of a DC disconnection
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Figure 6. Impact of a peer group disconnection

DCs does not improve response time, since clients need still
to contact them for each operation. This is 8x slower than the
SwiftCloud configuration. In contrast, the number of DCs has
a minor impact in the SwiftCloud and Colony configurations.

7.3.1 Response time of offline collaboration. We now
evaluate how the response time varies under offline collabo-
ration, or when the sync point of a group fails to connect to
a DC. To this end, we use a single ColonyChat workspace
that contains 36 users. We pack 12 of these users in a peer
group, whereas the others remain independent. All users
start with a warmed-up cache. Figure 5 shows the response
time perceived at each user during the experiment. Each dot
in this figure corresponds to a transaction.
In Figure 5, we observe that the response time for local cache
hits is near zero (in blue). Users that belong to the same peer
group benefit from an average 2.3 ms response time when
data is fetched from the collaborative cache (in green). This
raises to around 82 ms when the user needs to perform a
remote read from the DC (in red).
Approximately 25 s after the start of the experiment, the
peer group goes offline, and only collaborates on its shared
interest set of objects. After this event, we observe that both
the local and peer response time is unchanged: users in the
group will not observe remote transactions due to the dis-
connection, but they continue their collaboration seamlessly.
Around 45 s after the beginning of the experiment, the group
is then reconnected to the DC. In Figure 5, we can observe a
slight increase of the response time at the reconnection, yet
it has minimal impact on performance.
In Figure 6, we consider the same workload but this time
disconnect a user from its peer group. The disconnection
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Figure 7. Synchronising with a peer group.

occurs after 25 s and the user reconnects 20 s later. In this
figure, we may observe that the response time of the Colony-
Chat application is slightly impacted by the reconnection to
the peer group. Upon reconnecting to the peer group, the
user notices a slight increase (below the millisecond) in its
transactions. This variation comes from the fact that the
channels were updated with the new content published by
the users in the peer group.

7.4 Migration effect on response time
Mobile clients, especially in location-based collaborative ap-
plications, like games, frequently switch from one peer group
to another. Our last experiment studies the synchronisation
time for a client to connect to a group when its cache is
invalid. This experiment exercises both the cache refreshing
mechanism of Colony and the collaborative cache in a peer
group. The results are presented in Figure 7.
In this figure, 45s after the start of the experiment, a mo-
bile client migrates and joins the peer group. The client has
a completely invalid chat history. She thus needs to syn-
chronise her cache before interacting with the peer group.
Figure 7 plots the (average) response time observed by the
connecting user (in blue), and the rest of the group (in green).
As previously, each dot in the plot represents the response
time of a transaction. In this figure, we can observe that the
first transactions of the connecting user have a higher re-
sponse time (below 12 ms). This performance degradation is
way lower than the cost of reconnecting to a DC, and fetch-
ing data from it (as in Figure 5). Moreover, after only a few
seconds, it returns to the normal and matches the perceived
response time of the group users (in green).

8 Related work
Previous work on data in edge computing [22, 40, 53] focuses
on streaming and content delivery. Sharing mutable state
raises extra challenges, which are the focus of this paper.
To deliver fast response and offline support, applications
may cache data at the client side, e.g., in the browser, as
in News Feed [32], or Google Docs [48]. Mobile operation
requires on-device replicas of data under weak consistency
[42, 51], as in Bayou [53], Rover [22] or Coda [23]. Similarly,
Cimbiosys supports decentralised Internet Services [40]. The

COPS system introduces Causal Plus Consistency (CC+),
strengthening causal consistency with strong convergence
[30]. ChainReaction augments CC+ with transactional reads,
thanks to a sequencer per DC, and executes a write only after
the versions read by the client are stable in the DC. TCC+ [1]
extends the guarantees of CC+ to transactions. This model
is closely related to Parallel Snapshot Isolation (PSI) [47].
Whereas TCC+ supports concurrent updates and arbitrary
CRDT types, PSI restricts concurrency to a single data type
(the cset). Its SI zones, the DCs, are fixed. PSI supports global
transactions that are strongly consistent, but this impacts
availability and performance.

Hybrid consistency models combine different consistency
guarantees [5, 13, 29]. In Lazy Replication, operations are
CC by default, and optionally linearisable [27]. Unistore [7]
supports causal and linearisable transactions over a geo-
replicated store; for fault tolerance, the causal dependencies
of a linearisable transaction must be stable before it commits.
Fisheye Consistency [15] is a proximity-based hybrid model,
such that close-by nodes are mutually strongly consistent,
and consistency is weak between far-away nodes. Depot
[31] and PRACTI [6] pioneer highly available caching at the
edge, under CC with one vector clock entry per replica; this
limits scalability. Depot targets Byzantine fault tolerance,
but not transactions. Simba [37] enables the edge application
to select among eventual, causal or serialisable consistency.
PouchDB [39] is a client-side cache replica for a CouchDB
server; it supports offline operation and detects conflicts, but
does not merge them. SwiftCloud [64] introduces bounded-
size vectors and migration. Legion [56] extends web applica-
tions with P2P interaction using CRDTs under CC. Colony ex-
tends the above designs with collaboration and peer groups,
and seamless migration.

9 Conclusion
We presented the design, implementation and performance
of Colony, a system that brings the strongest consistency
guarantees (while bounding the cost of causality metadata)
to applications at the edge. According to an edge-first design,
edge applications enjoy data locality, fast response, and dis-
connected operation. Colony supports seamless migration
of a device or a whole peer group. Furthermore, Colony sup-
ports collaboration, ensuring total-order consistency within
an edge group, and relevant security guarantees.

Several aspects remain open for improvement. As an edge de-
vice has limited resources, applications with a large footprint
would benefit from better caching heuristics and automatic
transaction migration. Placing clients at different levels of
the hierarchy, in particular in Content Delivery Network
points of presence, might improve perceived response time
even more. Extending peer-to-peer communication beyond
edge groups would make the system less dependent on the
cloud.
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