
46

A Distributed Real-time Scheduling System for Industrial

Wireless Networks

VENKATA P. MODEKURTHY, University of Nevada Las Vegas

ABUSAYEED SAIFULLAH, Wayne State University

SANJAY MADRIA, Missouri University of Science and Technology

The concept of Industry 4.0 introduces the unification of industrial Internet-of-Things (IoT), cyber physical
systems, and data-driven business modeling to improve production efficiency of the factories. To ensure high
production efficiency, Industry 4.0 requires industrial IoT to be adaptable, scalable, real-time, and reliable.
Recent successful industrial wireless standards such as WirelessHART appeared as a feasible approach for
such industrial IoT. For reliable and real-time communication in highly unreliable environments, they adopt
a high degree of redundancy. While a high degree of redundancy is crucial to real-time control, it causes a
huge waste of energy, bandwidth, and time under a centralized approach and are therefore less suitable for
scalability and handling network dynamics. To address these challenges, we propose DistributedHART—a dis-
tributed real-time scheduling system for WirelessHART networks. The essence of our approach is to adopt
local (node-level) scheduling through a time window allocation among the nodes that allows each node to
schedule its transmissions using a real-time scheduling policy locally and online. DistributedHART obviates
the need of creating and disseminating a central global schedule in our approach, thereby significantly re-
ducing resource usage and enhancing the scalability. To our knowledge, it is the first distributed real-time
multi-channel scheduler for WirelessHART. We have implemented DistributedHART and experimented on a
130-node testbed. Our testbed experiments as well as simulations show at least 85% less energy consumption
in DistributedHART compared to existing centralized approach while ensuring similar schedulability.

CCS Concepts: • Computer systems organization → Sensors and actuators; Sensor networks; Real-

time system architecture; • Networks→ Sensor networks;

Additional Key Words and Phrases: WirelessHART, real-time networking, distributed scheduling

ACM Reference format:

Venkata P. Modekurthy, Abusayeed Saifullah, and Sanjay Madria. 2021. A Distributed Real-time Scheduling
System for Industrial Wireless Networks. ACM Trans. Embedd. Comput. Syst. 20, 5, Article 46 (July 2021),
28 pages.
https://doi.org/10.1145/3464429

Modekurthy and Saifullah are co-first authors. This note is missing.
This work was supported by NSF through grants CAREER-1846126, CNS-2006467, and CNS-1461914.
Authors’ addresses: V. P. Modekurthy (corresponding author), University of Nevada Las Vegas, 4247 SEB, 4505 S Maryland
Pkwy, Las Vegas, NV, 89154; email: prashant.modekurthy@unlv.edu; A. Saifullah (corresponding author), Wayne State Uni-
versity, 5057 Woodward Ave, Suite# 14110.2, Detroit, MI 48202; email: saifullah@wayne.edu; S. Madria, Missouri University
of Science and Technology, 325A Computer Science Building, 500 W. 15th Street Rolla, Mo. 65409; email: madrias@mst.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
1539-9087/2021/07-ART46 $15.00
https://doi.org/10.1145/3464429

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.

https://doi.org/10.1145/3464429
mailto:permissions@acm.org
https://doi.org/10.1145/3464429
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3464429&domain=pdf&date_stamp=2021-07-29


46:2 V. P. Modekurthy et al.

1 INTRODUCTION

The concept of Industry 4.0 introduces the unification of industrial Internet-of-Things, cyber
physical systems, and data-driven business modeling to improve production efficiency of the
factories [37]. To ensure high production efficiency, Industry 4.0 requires industrial Internet-of-
Things to be adaptable, scalable, real-time, and reliable. Recent successful industrial wireless stan-
dards such as WirelessHART have shown their feasibility as a cost-efficient, real-time, and robust
approach for industrial Internet-of-Things [23].

To make reliable and real-time communication in highly unreliable wireless environments, Wire-
lessHART adopts a high degree of redundancy using a Time Division Multiple Access (TDMA)-
based Media Access Control (MAC) protocol. A time slot can be either dedicated (where at most
one transmission is scheduled to a receiver) or shared (where multiple nodes may contend to send
to a common receiver). To handle transmission failures, each node on a path from a sensor to an
actuator is assigned two dedicated time slots and a third shared slot on a separate path for retrans-
mission [2]. A network manager creates the transmission schedule centrally and in advance for all
nodes and then disseminates them. A centralized WirelessHART scheduler with high redundancy
raises several practical challenges in achieving scalability as described below.

High level of redundancy in centralized algorithms [27, 29] causes a huge waste of time and
bandwidth, and hence is not scalable. For example, if the transmission of a packet along a particu-
lar link succeeds, then all time slots (on the current link and redundant links) that were assigned
to handle its failure remain unused. Similarly, if it fails along that particular link, then all time slots
that were assigned for its subsequent links to handle a successful transmission remain unused. Our
experiments observed up to 70% unused time slots in WirelessHART networks (see Section 4). In
industrial IoT, safety-critical events or emergencies can occur unpredictably or aperiodically. For
example, a WirelessHART network in an oil refinery may suddenly detect a safety valve displace-
ment requiring immediate attention to avoid accidents. Existing solution handles emergencies by
allocating time slots in the centrally created schedule and by stealing slots in the absence of emer-
gencies [17]. However, this approach leaves most of the slots of the periodic server unstolen, and
hence unused. Thus, the network remains largely underutilized, which affects the scalability of
the system.

Schedule dissemination in centralized algorithm consumes bandwidth, energy, and time, even
for a smaller network or workload. Typically, hyper-period and length of the schedule increase ex-
ponentially with the increase in the number of flows or their periods, hindering network scalability.
Note that in general, periods can be non-harmonic to ensure stability or control performance [28].
Furthermore, the mobility of nodes introduces discernible issues for a central scheduler due to the
frequent changes to the network topology. In an industrial environment, moving objects such as
robotic arms or carts can affect link quality of nodes and change the topology of the network. Such
frequent changes to the topology require frequent computation and re-dissemination of sched-
ules. Nonetheless, the data-driven business model in Industry 4.0 introduces frequent changes to
sampling rates, which also requires re-configuration and re-dissemination of schedules. Frequent
re-dissemination of the schedule consumes high energy, time, and bandwidth. Thus, fully central-
ized scheduling is less suitable for industrial Internet-of-Things. Besides, it is typically suitable for
deterministic traffic patterns (like periodic traffic) arising from stationary nodes.

To address the above limitations, in this article, we propose a distributed real-time scheduling
system for WirelessHART networks. Designing a distributed TDMA protocol with scheduling per-
formance close to a centralized one is highly challenging, as the former has to achieve this with-
out global knowledge. For a WirelessHART network, a distributed TDMA protocol also has to

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:3

incorporate dedicated and shared slots in local scheduling. We address these challenges by propos-
ing DistributedHART. We make the following contributions in the article:

• We propose DistributedHART, the first distributed real-time multi-channel scheduling for
WirelessHART networks. DistributedHART adopts local (node-level) scheduling through a
time window allocation among the nodes that allows each node to schedule its transmissions
locally and online. Thus, DistributedHART can handle any communication pattern (periodic
or aperiodic) and any length of schedule. It obviates the need for creating and disseminating
a global schedule.
• We provide a schedulability test for DistributedHART that can be used to determine if all the

packets in the network meet their real-time deadlines (or not) with a high probability. We
evaluated the performance of the schedulability test against that observed in simulation. We
observed that the performance of the schedulability test was close to that of the simulation.
• We have implemented DistributedHART in TinyOS [1] for TelosB [3] platform and per-

formed experiments on a 130-node physical indoor testbed [4] to show the effectiveness of
DistributedHART under scalability. We also evaluated DistributedHART through simula-
tions under scalability, different workloads, and workload dynamics on TOSSIM [16] using
the topology of another testbed [34]. In both experiments and simulations, we observe at
least 85% less energy consumption in DistributedHART compared to existing centralized
approach.

The rest of the article is organized as follows: Section 2 reviews related work. Section 3 describes
the model. Sections 4 and 5 present the design and delay analysis of DistributedHART, respectively,
for a uniform time window length. Section 6 presents non-uniform time window allocation for Dis-
tributedHART and its delay analysis. Section 7 presents latency performance of DistributedHART.
Sections 8, 9, and 10 present experiments, simulations, and conclusion, respectively.

2 RELATED WORK

CSMA/CA-based real-time scheduling has been studied in References [14, 39]. In contrast, Wire-
lessHART adopts a TDMA-based MAC to achieve predictable latency bounds. TDMA-based real-
time scheduling without multi-channel communication or multi-path graph routing was studied
in References [12, 21, 24, 38, 47]. Real-time routing was studied in References [5, 22, 41, 42]. For
WirelessHART networks, priority assignment [31], channel assignment [13, 32], and security vul-
nerabilities [7] were studied recently. Schedulability analysis for industrial wireless networks was
studied in References [20, 27, 30, 33]. These works do not focus on the real-time scheduling. Ex-
isting work in Reference [29] showed that the real-time scheduling for flows in WirelessHART
networks is NP-hard and proposed real-time scheduling policies for WirelessHART. A flexible re-
transmission policy for WirelessHART networks was proposed in Reference [6]. Scheduling under
multiple co-existing wirelessHART networks was studied in Reference [15]. Mobility-aware real-
time scheduling of packets was studied in Reference [8]. These papers adopt a fully centralized
scheduler that creates a schedule in advance, and they employ high degree of redundancy as spec-
ified in the WirelessHART standard. Such an approach causes a huge waste of time, bandwidth,
energy, and memory, making it less suitable for dynamics and scalability. In this article, we aim to
address these limitations and propose an online and distributed real-time scheduling system for
WirelessHART.

Orchestra [10], D2-PaS [43–45], and DiGS [35, 36] are the recent distributed scheduling ap-
proaches for a multi-hop wireless network. However, they have the following limitations: First,
they only consider a single channel protocol while WirelessHART uses multiple channels. Sec-
ond, they do not consider shared slots while WirelessHART adopts graph routing with both

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:4 V. P. Modekurthy et al.

dedicated and shared slot transmissions. In Orchestra and DiGS, the end-to-end communication
latency of a flow is in the order of the number of nodes in the network. Such a high latency is less
suitable for real-time communications. Due to these limitations, Orchestra, D2-PaS, and DiGS are
less suitable for WirelessHART. In contrast, DistributedHART is a practical scheduling system for
WirelessHART that considers multichannel and graph routing, which are highly critical for wire-
less control applications in unreliable environments and is not limited to sparse traffic.

3 BACKGROUND AND SYSTEM MODEL

WirelessHART operates in the 2.4 GHz band and is built based on the physical layer of IEEE
802.15.4. WirelessHART network is a multi-hop mesh topology of nodes—field devices, multiple
access points, and a Gateway. The field devices are wirelessly networked sensors and actuators.
Each node contains a half-duplex omnidirectional radio transceiver that cannot transmit and re-
ceive a packet simultaneously and receive from at most one sender at a time. Access points provide
redundant paths between the wireless network and the Gateway. The network manager and the
controller remain at the Gateway. The network employs feedback control loops between sensors
and actuators. Sensors measure process variables and deliver them to a controller via the multi-
hop mesh network. The controller disseminates control commands to the actuators. Each actua-
tor applies its control commands to adjust the physical processes accordingly. We use the term
flow to denote an end-to-end wireless control loop between a sensor and an actuator through the
controller.

WirelessHART adopts a multi-channel TDMA protocol, where multiple transmissions are sched-
uled on different channels within the same time slot. In wide-area deployment, two distant nodes
that do not interfere with each other can use the same channel and time slot for a transmission,
i.e., we allow spatial re-use of channels. Time in the network is globally synchronized. A receiver
acknowledges each transmission from a sender. Both a transmission and its acknowledgment hap-
pen in a 10 ms time slot. A time slot can be dedicated for a receiver and a sender or shared between
multiple senders and a receiver. In a dedicated slot, only one sender is allowed to transmit to a re-
ceiver along a link. In a shared slot, multiple senders can attempt to send to a common receiver. To
mitigate collisions in a shared slot, a WirelessHART network adopts the random back-off policy.

For enhanced reliability, the network adopts graph routing [2]. A routing graph is a directed list
of loop-free paths between a source and a destination. Each node in a routing graph has at least
two neighbors that enable redundant paths to a destination. Graph routing allows to schedule a
packet using multiple channels on multiple time slots to deliver a packet through multiple paths,
thereby ensuring high reliability in highly unreliable environments. A routing graph consists of an
uplink graph and multiple downlink graphs. An uplink graph connects all sensors to controllers,
while a downlink graph connects a controller to an actuator. We generate routes using distributed
graph routing [22]. However, DistributedHART works with any graph routing algorithm.

We consider the system has n real-time flows denoted by F = {F1, F2, . . . , Fn }. The period and
deadline of a flow Fi are denoted by Ti and Di (Di ≤ Ti ), respectively. Our system is applica-
ble to fixed or dynamic priority assignment, and priority can be based on deadlines, periods, or
criticalities.

Here, we present an outline of the current centralized flow-based scheduling approach adopted
in WirelessHART networks. In the centralized flow-based scheduling, the network manager pre-
allocates dedicated (or shared) time slots for each link on the graph route of each flow. Specifically,
for scheduling a packet of one flow in the uplink graph, the network manager allocates two dedi-
cated slots along each link on the graph route’s primary path starting from the source. The second
dedicated slot is used for retransmissions when transmission fails on the first dedicated slot. To
handle transmission failures on both time slots, the network manager allocates a third shared slot

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:5

Fig. 1. Example of scheduling in WirelessHART.

on a separate path. The links in the downlink graph are scheduled similarly. The network manager
creates a global schedule in advance, which is split into superframes. A superframe is a repeating
schedule representing the communication pattern of a set of nodes. Typically, the length of a su-
perframe is equal to the hyperperiod or least common multiple of the periods of all flows. Upon
generating a schedule, the network manager disseminates the superframe to all nodes.

An example of centralized scheduling for two flows Flow1 and Flow2 originating from node v1

and v2, respectively, and terminating at access point v4 is shown in Figure 1. The period and dead-
line for the two flows is 16 time slots. In Figure 1, solid gray line and dashed red line represent the
primary path and a back-up path for flow, respectively. Labels on the lines denote the time slot
allocation. According to the WirelessHART standard, each link on the primary path is allocated
two dedicated time slots. For Flow1, primary path links v1 → v3 and v3 → v4 are allocated ded-
icated time slots 1,2 and 5,6, respectively, and shared path links v1 → v6, v3 → v6, and v6 → v4

are allocated shared time slots 3, 7, and 16, respectively. Similarly, for Flow2, primary path links
v2 → v3 and v3 → v4 are allocated time slots 9,10 and 12,13, respectively, and shared path links
v2 → v5, v5 → v4, v3 → v6, and v6 → v4 are allocated time slots 11, 14, 15, and 16, respec-
tively. Here, the superframe length is 16 time slots, i.e., the schedule repeats after every 16 time
slots.

In this work, our objective is to develop a real-time distributed scheduling system where each
node can locally schedule its transmissions. Generating routes is not the focus of this article.

4 THE DESIGN OF DISTRIBUTEDHART

In the existing centralized scheduling approaches, the network is largely underutilized. For exam-
ple, in Figure 1, if the packets from both flows Flow1 and Flow2 are successful in the first attempt,
then 4 time slots (namely, 1, 5, 9, and 10) are used out of 16 pre-allocated slots, leaving 75% of
the slots unusable under good network conditions. In an experiment conducted on 30 flows on
a testbed of 69 nodes, work in Reference [27] observed that 70% of the slots were unused for a
flow in a run. Although redundancy is crucial for handling worst-case scenarios in real-time con-
trol, such scheduling with high redundancy causes a huge waste of energy, bandwidth, time, and
memory (to store schedule) and is less suitable for network/workload dynamics and scalability.
Furthermore, disseminating large schedules (with lengths equal to the hyperperiod of all flows)
can cause long delays and consume high energy. To address these issues, we propose Distributed-
HART, which offers a distributed scheduling system for WirelessHART networks. We describe the
design of DistributedHART below.

4.1 Overview of Distributed Scheduling in DistributedHART

The essence of our approach is to enable local and online scheduling at the nodes. To do so, in
DistributedHART, we propose to assign time windows (which consists of multiple time slots) to
nodes instead of every link on each flow. In this section, for the sake of simplicity in explana-
tion, we use a uniform time window selection where each node selects w time slots. Extension of
the proposed approach for non-uniform time windows is discussed in Section 6. During a node’s

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:6 V. P. Modekurthy et al.

Fig. 2. DistributedHART’s time window allocation example.

transmission time window, it locally selects and transmits an available packet, from its queue,
based on a real-time scheduling policy. The local scheduling of packets (within a window) obvi-
ates the need for creating and distributing a schedule in advance. Thus, DistributedHART con-
sumes less energy, memory, and bandwidth (even under frequent dynamics). Furthermore, within
its transmission time window, a node locally and dynamically chooses the number of retransmis-
sion attempts required by a packet. If a packet transmission is successful on the first attempt, then
it does not need any retransmission attempts. The node can use the rest of the time slots in its
window to transmit other packets in its queue. If a packet transmission is not successful in the
first attempt, then a node can attempt to successfully transmit a packet in at least two other time
slots. If a node’s queue is empty, then it can use more than two time slots to retransmit the packet.
Thus, DistributedHART can provide better utilization of time slots and reliability than the Wire-
lessHART standard.

In DistributedHART, transmission time windows repeat after a fixed interval. We define epoch
as the time duration after which the transmission window schedule repeats. Note that superframe
represents the repeating schedule in a centralized flow-based scheduler and is not related to epoch.
Considering nodes pick γ unique transmission time windows with w slots each, the length of one
epoch in a network is given by γw . An example of time window allocation along the primary path
in DistributedHART is shown in Figure 2, where time windows 1, 1, 2, and 3 are assigned to nodes
v1, v2, v6, and v3, respectively. For this time window selection, w = 2 and γ = 3, and hence, the
epoch length is 6. During time slot 1, v1 and v2 can transmit a packet to node v3 and v6. During
time slot 3, node v6 can transmit a packet to node v3. Time slots 2 and 4 can be used for packet
retransmission in case of failures. During time slot 5, node v3 has 2 packets in its queue, and v3

can use any real-time scheduling policy to determine the next packet to transmit.
To minimize collisions in the network, DistributedHART generates a conflict-free channel and

transmission time window allocation. We consider that a set of transmissions on the same channel
is conflict-free if the Signal-to-Noise plus Interference Ratio (SNIR) of all receivers exceeds
a threshold. In such a model, we say that two nodes a and b are conflict-free if both receivers
can successfully receive a packet. Similarly, we say that two nodes a and b are in conflict if
and only if simultaneous transmissions from a and b cause radio interference at a receiver. To
minimize such conflicts, each node first collects an interference model of the network using SNIR
such as the RID protocol [46]. Using the interference model, each node performs a receiver-based
channel allocation based on vertex coloring proposed in Reference [26]. After channel allocation,
each node performs time window allocation using distributed vertex coloring. Note that the time
window allocation removes all conflict within the network.

In DistributedHART, nodes execute distributed channel and time window allocation during net-
work initialization and under some network dynamics (e.g., when routes are affected) and some
workload dynamics (e.g., when a change in time window length is required to ensure schedulabil-
ity). Other network or workload dynamics (e.g., that does not affect routes) will not trigger these
algorithms, keeping the overhead of DistributedHART low.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:7

After the time window allocation, each node is aware of its transmission time windows and all its
neighbors’ transmission time windows. Nodes listen to their neighbors’ time windows to receive
a packet. Since a node does not precisely know when a packet will arrive, the energy overhead
for listening to a packet is higher than that of a centralized scheduler. However, compared to the
energy required to broadcast an entire schedule by a centralized schedule, this energy overhead is
small. In our approach, nodes can still often sleep during the neighboring nodes’ transmit windows.
There are many cases where a node u certainly knows that there will be no more packets from a
particular neighbor v and does not need to keep listening for v’s transmission. For example, node
u knows the periods of the packets that it receives from v (as period values are embedded inside a
packet) and thus after receiving a packet from v it knows the earliest time when the next packet
of the same flow may arrive. Therefore, exploiting such earliest times of packet generation, a node
may often determine a time window within which it is guaranteed that v will not transmit to it,
and can sleep if appropriate.

Note that DistributedHART is a novel scheduling system for WirelessHART. DistributedHART
proposes local and online scheduling of packets, where a node locally decides which packet to
transmit within its transmission time window rather than a central manager. To generate nodes’
transmission time window, DistributedHART uses existing algorithms such as RID (to generate
a conflict graph) and DRAND (to perform vertex coloring on the conflict graph). Although these
algorithms are important to the working for DistributedHART, they individually do not provide
a real-time and reliable scheduling policy for industrial wireless networks provided by Distribut-
edHART. Furthermore, DistributedHART is compatible with any distributed conflict graph gener-
ation methods and distributed vertex coloring algorithms for the generation of transmission time
windows. We describe channel and time window allocation, local scheduling policy, and online
scheduling as a dedicated and shared slot in the following sections.

4.2 Channel and Time Window Allocation in DistributedHART

To generate a conflict-free transmission time window and channel allocation, nodes first develop
an interference model with their neighbors. Nodes use the local interference model to generate
two types of conflict graphs: a receiver conflict graph and a transmission conflict graph. We define
a receiver conflict graph as a graph (over all nodes) in which two nodes are connected by an edge
if and only if a packet transmission to one node interferes with the other. In a transmitter conflict

graph, two transmitters have an edge if simultaneous transmissions by both transmitters can lead
to a collision at one of the intended recipients. On the receiver conflict graph, nodes perform a
receiver-based channel allocation. Since a channel allocation does not necessarily solve all conflicts,
to remove all conflicts, nodes then perform time window allocation on a transmitter conflict graph.
This section describes these steps in detail.

Conflict Graph Generation. To generate a local interference model, nodes use RID protocol [46].
RID protocol generates a SNIR model between a node and all other nodes in its interfering region.
Note that, unlike the communication region, an interfering region can be up to 2-hop from the node.
Each node uses the SNIR information to generate a list of interfering nodes. It then broadcasts this
list of interfering nodes within the local neighborhood of 5-hop such that all nodes can identify
its edges in receiver and transmitter conflict graphs. To broadcast the information within a local
neighborhood, nodes can use CSMA/CA-based broadcasts with a time-to-live (TTL) field set as 5,
similar to controlled flooding. Typically, two nodes with an edge in a transmission conflict graph
can be 3-hop away from each other, since the maximum distance between the transmitting node
and its receiver is 1-hop, and the interfering node and the receiver is 2-hop (coming from the RID
protocol). Similarly, two nodes with an edge in a channel conflict graph can be 2-hop away from
each other, since the maximum distance between the common interferer and the pair of nodes is 2.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:8 V. P. Modekurthy et al.

Thus, nodes can use broadcasts in a 3-hop neighborhood to enable the generation of transmission
and receiver conflict graphs. To ensure the reliability of the broadcasts, nodes can use a time-to-live
of 5-hop. Broadcasting the information to a 5-hop neighborhood increases the chances of nodes
receiving the same information at least once from one of their neighbors.

Overhead of Conflict Graph Generation on DistributedHART. Both WirelessHART and Dis-
tributedHART network assume each node maintains a physical interference of the network to
identify neighbors and generate routes. The overhead of DistributedHART is the local broadcast
of the physical interference model such that nodes can generate a local transmitter and receiver
conflict graphs. In contrast, in WirelessHART, the physical interference model is collected by the
central manager. Typically, for large networks, the local broadcast of interference model can be
less energy-consuming than the collection of interference model by a central manager.

Receiver-based Channel Allocation. In a receiver-based channel allocation, all nodes that re-
ceive a packet are assigned a channel. Neighboring nodes transmit a packet to a node on its al-
located channel. An optimal channel allocation that maximizes the number of conflict-free simul-
taneous transmissions is known to be NP-Hard [11]. To generate a channel assignment, we use
DRAND [26], a distributed vertex coloring approach, on a receiver conflict graph. Since the number
of channels is fixed, DRAND might not resolve all conflicts, i.e., two conflicting nodes can select
the same channel for reception. These conflicts are removed through time window allocation.

Time Window Allocation. To remove all transmission conflicts, each node on the primary path
of a graph route (a transmitting node) performs a time window allocation. During the time window
allocation, nodes select non-conflicting transmission time windows. During its time window, a
node transmits packets on the receiver’s channel without interfering with (or being interfered by)
other packet transmissions. To allocate time windows, we first represent all remaining conflicts
using a transmitter conflict graph. We use distributed vertex coloring using DRAND [26] on the
transmitter conflict graph to compute non-conflicting transmission windows at each transmitter
node. During DRAND execution, each node selects the smallest time window number (color) from
a list of available time windows. Note that there is no upper bound on the number of available
transmission time windows, unlike channel assignment. During DRAND, nodes try to minimize
the number of transmission time windows to decrease latency and facilitate scalability.

Handling Dynamics: An industrial wireless network can be highly unpredictable, with frequent
changes to the networks. This section presents a high-level idea for handling network dynamics.
During sustained network dynamics, a node observing a change in link qualities uses management
and maintenance cycles to initiate, update, and exchange the physical interference model. Nodes
use RID protocol to initiate and update the physical interference model. This model is exchanged
within a 5-hop neighborhood using CSMA/CA MAC protocol during the management and main-
tenance cycles. In case of collisions, nodes randomly back off and re-transmit in the subsequent
management cycles. Note that the update and exchange of the physical interference model can
take several management cycles, depending on the number of link quality changes.

Upon exchanging the physical interference model, nodes verify if routes in their local neighbor-
hood are valid, i.e., all links in the routes have a high PRR. If the existing routes are still valid,
then nodes generate a new transmission conflict graph and verify if the current transmission
time window assignment causes a conflict. Nodes identifying conflict locally initiate and execute
DRAND during the management cycles to select a new transmission time window in the network.
The new transmission time window is disseminated in the local 5-hop neighbors. Note that, in
some scenarios, a node may select a transmission time window that changes the length of the
epoch. In such cases, the node initiates a global dissemination of the new epoch length to all

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:9

Fig. 3. Example of local scheduling in DistributedHART.

nodes. If the existing routes are not valid (i.e., links are broken), then nodes request the sensors,
actuators, controller, and network manager to pause the communication between sensors-
controller and controller-actuators. Once the network operation is halted, the nodes generate new
routes. The new routes are used to generate channel conflict graphs and new channel allocations.
Upon generating new channel allocations, nodes generate new transmission conflict graphs and
time window allocation. Once the time window allocations are complete, the network operation
can resume. Note that the controller can request a switch to a non-uniform time window assign-
ment to improve the network’s schedulability, which would require the same steps as mentioned
above.

For a large network, the local exchange of channel, time window, and physical interference
model is typically less energy-consuming than the centralized approach, where the central man-
ager collects the physical interference model and disseminates the transmission schedule to all
nodes in the network. Note that even for a small change in the link qualities, the central man-
ager typically has to re-disseminate the schedule, which would require the controller to pause the
communications between sensor-controller and controller-actuator. Thus, the overhead of gener-
ating a schedule in DistributedHART under network dynamics is smaller than that of existing
centralized Wire- lessHART algorithms. Thus, handling network dynamics is a key advantage of
DistributedHART.

4.3 Scheduling Policy

DistributedHART can work with any type of priorities—fixed or dynamic. To explain local sched-
uling policy for dynamic priority, we consider EDF (Earliest Deadline First) as an example here.
EDF assigns priorities dynamically to packets according to their absolute deadlines. Since, in our
method, we adopt node-level scheduling, each node has to adopt EDF policy locally. Namely,
among the packets that it has to transmit or forward, the one with the shortest absolute deadline
will have the highest priority. An example of local scheduling at each node is shown in Figure 3,
where P21 represents the first packet of F2. At time slot 1, v1 and v2 transmit packet P11 and P21

to v3 and v6, respectively. At time slot 3, v6 transmits P21 to node v3. At time slot 5, node v3 has
packets P11 and P21. Based on the EDF policy, node v3 selects packet P21 for transmission on time
slot 5 and packet P11 remains in the queue for possible transmission at time slot 6.

To explain local scheduling policy for fixed priority scheduling, we consider Deadline Mono-

tonic (DM) policy as an example here. DM assigns priorities to flows according to their deadlines.
The flow with the shortest deadline acquires the highest priority. If the deadline is equal to the
period, then the schedule generated by rate monotonic policy and DM are the same.

Since source nodes can update their sampling period/deadline and aperiodic events can occur
(having their own deadlines), we do not rely on the network manager to assign priorities. Instead,
the source node will append the period (or deadline) information in the packet. Thus, every in-
termediate node knows the priorities of the packets in its buffer. Thus, the network can handle
changes due to plant/workload dynamics locally, and the manager need not update the entire
schedule. Management and diagnostic superframes can run in parallel with the highest priority.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:10 V. P. Modekurthy et al.

Fig. 4. Example of scheduling as dedicated and shared slot.

4.4 Online Scheduling as Dedicated and Shared Slots

A key challenge for DistributedHART is to incorporate both dedicated and shared slots. Wire-
lessHART standard defines shared slot as a time slot, where many nodes transmit simultaneously
to the same node. We adopt the following technique to handle shared and dedicated slots:

A node can use any slot within its time window as a dedicated or a shared slot, and any time
slots outside its time window as a shared slot. When using a slot as a dedicated time slot, a node
transmits a packet at the beginning of a time slot. When intending to use a slot as a shared slot, a
node first senses the channel for a short duration θ . If the channel is busy, then it concludes that
some node in its neighborhood is using the time slot as a dedicated time slot, and hence, does not
make any transmission. If the channel is free, then it uses the slot as a shared slot. If the node
intends to use a slot within its transmission time window as a shared slot, then waiting for θ time
allows other nodes to use it as a shared slot. If the current slot is outside its transmission window,
then waiting for θ informs nodes of transmission happening on a dedicated slot and minimizes
collisions.

An example of dedicated and shared slot scheduling at node v1 (for network shown in Figure 2
with periods T1 = 12) is shown in Figure 4. If the transmission of packet P11 fails on time slots
1 and 2, then v1 can use time slot 3 as shared slots even though it lies outside the transmission
window of v1.

Note that packet transmissions on a dedicated slot should not be interfered by any other trans-
missions. However, sensing for a short duration does not resolve all collisions caused by transmis-
sions on a shared slot. Specifically, a node can interfere with a hidden node’s transmission on a
dedicated time slot. To mitigate the impact of collision and facilitate the successful decoding of
a packet transmitted on a dedicated time slot, we enable capture effect [18] of the radio at the
receiver.

Enabling Capture Effect. WirelessHART networks use IEEE 802.15.4-compliant radios [2]. In
such radios, during the header decoding (or synchronization), a node’s radio searches for a pream-
ble and a start frame delimiter with the strongest Received Signal Strength (RSS) [2, 9]. After
this, the radio generates an interrupt and locks to payload reception mode and does not search
for preambles. Therefore, capture effect [9] can recover the stronger packet if it comes before the
radio locks to a weaker packet’s payload reception mode, requiring no physical layer modification.
Hence, our objective is to ensure that a receiver (node v3) receives a packet transmission on a ded-
icated slot (packet P2) before the packet transmission on a shared slot (packet P1). Moreover, the
strongest packet can be recovered if its RSS is higher (by 1–3 dB based on modulation) than that of
the other colliding signal/s. Hence, for successful reception of P2, we adopt the following technique:
When a node uses a slot as a dedicated slot, it will transmit immediately after the slot starts and
will use the highest transmission (Tx) power. However, when a node uses a slot as a shared slot, it
will transmit at a moderate Tx power to make the required RSS difference at the receiver. Also, a
node transmits packets after θ time in a shared slot (while in a dedicated slot, it transmits packets
in the very beginning of a slot). The transmission power difference and θ time difference ensures
that the receiver’s radio locks to the payload reception mode of P2 and successfully receives P2

even under collision.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:11

Fig. 5. Capture effect experiment setup.

Fig. 6. Probability of successful reception through capture effect with varying distance, time, and power

differences between two transmitters.

Existing work in Reference [40] demonstrates the effectiveness of capture effect for IEEE
802.15.4-based networks. Here, we experimentally determine values of θ (time difference) and Tx
power difference to enable the capture effect. We use a setup consisting of three TelosB motes (that
use radios based on 802.15.4), one receiver, and two time-synchronized transmitters, as shown in
Figure 5. We performed one experiment to determine θ and another to determine the power dif-
ference for enabling capture effect. For the first experiment, we used a transmission power of 0
dBm for both the transmitters and varied θ and measured PRR (packet reception rate). We then
found 3ms as a good value of θ , and using this value, in the second experiment, we decreased the
power level of one transmitter while keeping the other transmitter’s power at 0 dBm. We then
found 3dBm as a good value of Tx power difference and using this value (and θ = 3ms), we per-
formed another experiment to observe the performance of capture effect under varying distance.
We varied the differences between the distances (from the receiver node) of the two transmitters
by increasing the distance (from the receiver node) of the transmitter that used 0dBm. Each node
transmitted 1,500 packets with a payload of 14 bytes with a period of 10 ms on channel 15. Due to
the small variance in the obtained result, we present an aggregate result from 10 iterations.

Figure 6(a) shows the average PRR under varying time difference. We observed a very small-
time synchronization error between the two nodes, which resulted in a PRR of 0.38 when both
nodes transmit a packet at the same time. However, when θ is increased, we observed that
PRR of dedicated transmission significantly improved. This phenomenon was due to two factors:
(1) receiver’s radio locked to the packet sent in a dedicated slot and (2) there was small/no over-
lap between the transmission times (due to short packet lengths). Figure 6(b) shows the average
PRR under varying power difference. As expected, with the increase in power difference, we ob-
served an increase in PRR for a packet transmitted at higher power. Based on the results shown
in Figure 6, we set the value of θ to 3ms and Tx power difference to 3dBm. Note that we do not
change the time slot structure by delaying the transmission for 3 ms. Rather, we capitalize on the
remaining 7 ms within the current time slot to successfully transmit a packet. Figure 6(c) shows
the average PRR under varying distance. We observed that the PRR through capture effect de-
creases with an increase in distance. However, the decrease in PRR (by 0.1) is very minimal given
the distance. Note that, for this experiment, we used a pessimistic scenario where the high power

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:12 V. P. Modekurthy et al.

Fig. 7. Latency of one flow with 4 hops under different PRR.

transmitter is at a greater distance when compared to a low power transmitter and this may not be
the case always. In DistributedHART, transmission power difference and θ can be adjusted based
on the node placements, which is quite feasible as long as topology changes and/or mobility are
not overwhelming.

5 END-TO-END DELAY ANALYSIS FOR DISTRIBUTEDHART

Industrial applications, such as process control, are usually time-critical and require guarantees
that all packets reach their destinations within a certain deadline prior to network deployment.
To meet this requirement, we propose a probabilistic end-to-end delay analysis (a sufficient test of
schedulability for DistributedHART), where we compute the worst-case delay with a probability.
In a probabilistic end-to-end delay analysis, the end-to-end delay experienced by a packet is a
function of the required probability guarantees Pi and is given by Ri (Pi ). Here, Pi represents the
probability of a packet of flow Fi experiencing a maximum delay ofRi (Pi ). A summary of notations
used in this paper is shown in Table 1. A network designer can determine a good value of Pi

based on the application requirements. For the sake of simplicity in estimating probabilistic end-
to-end delay, we assume PRR of each link is independent of all other links in the network. The
proposed probabilistic end-to-end delay analysis can be used as an acceptance test during network
deployment and network/workload dynamics.

To motivate the use of a probabilistic end-to-end delay analysis technique on the primary path
for DistributedHART, we perform a simulation in TOSSIM with a 4-hop network. Figure 7 shows
the cumulative distribution function of latency observed from 10, 000 packets on the primary path
with a hop count of 4. In Figure 7, ρa represents the Packet Reception Rate (PRR) at node a.
When the PRR of each link is 0.98, the worst-case delay observed was eight time slots, and the
probability of a packet experiencing the worst-case delay was 0.001. However, the probability of a
packet experiencing a delay less than or equal to 5 was 0.99, i.e., in most cases, the maximum delay
is five time slots. A similar result can be observed for different PRR values. From these results,
we can conclude that the worst-case delay experienced by a packet of a flow can be large, but
the probability of a packet experiencing such a large delay is infinitesimal. Thus, we propose a
probabilistic end-to-end delay analysis that gives the worst-case delay experienced by a packet
with a probability, which is less pessimistic and tighter than the worst-case analysis.

In this section, we develop a delay bound analysis for DistributedHART considering DM sched-
uler. A similar approach can be used to develop a delay bound analysis for DistributedHART where
the nodes use EDF scheduling policy. Note that, in this section, we compute the end-to-end delay
experienced by a packet along the primary path of both uplink and downlink graphs. Neverthe-
less, the analysis can be extended to a graph route by considering a packet experiences delay on
all paths of the graph route.

To calculate the end-to-end delay analysis of a flow, the central network manager must first
estimate the value of γ prior to deployment. To estimate an upper bound on γ (or the chromatic

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:13

Table 1. Notations Used in the Article

Symbol Description

Di Deadline of flow Fi

Ti Period of Flow Fi

γ Number of unique time windows in an epoch
w Number of time slots in a time window

ρυ,i Probability of successful transmission of flow Fi from node υ

Pi Probability requirement by the application
Ri (Pi ) End-to-end delay of Flow Fi with probability Pi

δυ (Fi , Pυ,i ) Delay experienced by a packet of Fi at node υ with probability Pυ,i

δ
pr e
υ,i (Pυ,i ) Delay experienced by a packet of Fi between its arrival at node υ and the first time window

cυ,i (Pυ,i ) Number of time slots required by node υ to transmit a packet of Fi with probability Pυ,i

δ
hp
υ,i (Pυ,i ) Delay caused by high priority flows on a packet of Fi at node υ

number), the network manager can use Brook’s theorem [25], where a safe upper bound on γ is
the sum of 1 and maximum degree of a node in the transmission conflict graph.

The next step in estimating end-to-end delay analysis of a flow is to estimate the delay experi-
enced by a packet at a node υ on the primary path of flow Fi . Considering time windows consist
of consecutive time slots, a packet experiences three sources of delay at υ: (1) delay experienced
between the arrival of a packet and the start of the first transmission time window (δpr e

υ,i (Pυ,i )),
(2) number of time slots required to successfully transmit a packet (cυ,i (Pυ,i )), and (3) delay caused

by interrupting high priority flows (δhp
υ,i (Pυ,i )). The total delay experienced by a packet of Fi at

node υ is given by Equation (1).

δυ,i (Pυ,i ) = δ
pr e
υ,i (Pυ,i ) + cυ,i (Pυ,i ) + δ

hp
υ,i (Pυ,i ) (1)

Considering time windows consist of non-consecutive time slots, a packet experiences an addi-
tional delay in the last epoch due to the unavailability of consecutive time slots for transmission.
This additional delay can be upper bounded by the length of the transmission time window γw .
Thus, the delay experienced by a packet of Fi at nodeυ considering non-consecutive time windows
can be computed as shown in Equation (2).

δυ,i (Pυ,i ) = δ
pr e
υ,i (Pυ,i ) + cυ,i (Pυ,i ) + γw + δ

hp
υ,i (Pυ,i ) (2)

Computing δ
pr e
υ,i (Pυ,i ). A packet experiences the maximum delay between its arrival at a node and

the first transmission time window when it arrives on the time slot immediately after the node’s
transmission time window. This delay can be computed as shown in Equation (3).

δ
pr e
υ,i (Pυ,i ) = (γ − 1)w (3)

For example, consider γ = 5, w = 2, and transmission time slot of v is 9,10; a packet experiences a
maximum delay if it arrives on time slot 1 and has to wait for eight time slots.

Computing cυ,i (Pυ,i ). To compute the number of time slots required to successfully transmit a
packet, let ρυ,i be the probability of successful transmission of a packet of flow Fi from node υ,
and δυ (Fi ,Pυ,i ) is the delay experienced by a packet of Fi at node υ with probability Pυ,i . The
probability Pυ,i can also be interpreted as the probability requirement by the application on the
link from node υ for a packet of flow Fi . The probability of successful reception of a packet after
c transmissions on dedicated slots by node υ is expressed as 1 − (1 − ρυ,i )c . The number of slots
needed to successfully transmit a packet with a probability Pυ,i , can be computed by equating the

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:14 V. P. Modekurthy et al.

probability of successful transmission after cυ,i (Pυ,i ) transmissions to Pυ,i , i.e.,

Pυ,i = 1 − (1 − ρυ,i )cυ,i (Pυ,i )

⇒ loд(1 − Pυ,i ) = cυ,i (Pυ,i ) × loд(1 − ρυ,i ).

Thus, the number of time slots required by node υ to transmit a packet of flow Fi with a proba-
bility Pυ,i is given by Equation (4).

cυ,i (Pυ,i ) =

⌈
loд(1 − Pυ,i )

loд(1 − ρυ,i )

⌉
(4)

For example, if the requirement on the probability of successful transmission on a link is 0.99
(Pυ,i = 0.99) and PRR (ρυ,i ) is 0.9, then cυ,i (Pυ,i ) is computed as shown below.

cυ,i (Pυ,i ) =
loд(1 − 0.99)

loд(1 − 0.9)
=
loд(0.01)

loд(0.1)
=
−2

−1
= 2

Computing δ
hp
υ,i (Pυ,i ). Computing the delay experienced by a packet due to high priority packets

at a node in DistributedHART is similar to the delay experienced by a task due to high-priority
tasks on a uniprocessor platform. A detailed description of the similarity between a packet trans-
mission and task scheduling can be found in Reference [20]. Thus, we use the delay computation

of a task under a uniprocessor DM scheduling as the foundation for the δhp
υ,i (Pυ,i ) computation in

DistributedHART.
In a uniprocessor scheduling, a processor can execute tasks consecutively without halting. How-

ever, in DistributedHART, for an epoch of length γw , a node can only transmit a packet within
the w time slots of its transmission time window. That is, if a high priority packet takes the entire
transmission time window, then a packet has to wait until the next epoch to attempt a transmis-
sion. For example, consider υ has a transmission time window of two time slots 2, 3, and the epoch
length is 10 time slots. Assume at time slot 2, υ has a higher priority packet P1 and a lower pri-
ority packet P2 in its queue. If P1 requires slots 2,3 for transmission, then packet P2 has to wait
until time slot 12, since time slot 12 is in υ’s next transmission time window. Note that, during the
epoch within which packet P2 is successfully transmitted, packet P2 is not delayed for γw time
slots.

Accounting for the unavailability of time slots for packet transmissions, δhp
υ,i (Pυ,i ) is given by

Equation (5), where HPυ (Fi ) denotes the high priority flows of Fi passing through υ.

δ
hp
υ,i (Pυ,i ) =

∑

Fj ∈H Pυ (Fi )

⎧⎪⎨⎪⎩
⎢⎢⎢⎢⎢⎣
⌈
δυ (Fi ) − D j

Tj

⌉
Cυ, j (Pυ, j )

w

⎥⎥⎥⎥⎥⎦ (γw − 1) +

⌈
δυ (Fi ) − D j

Tj

⌉
Cυ, j (Pυ, j )

w

⎫⎪⎬⎪⎭ (5)

Note that � � δυ (Fi )−Dj
Tj

� Cυ, j (Pυ, j )

w 	γ w denotes the delay of a packet in all of the epochs except the last

one, and � δυ (Fi )−D j

Tj
� Cυ, j (Pυ, j )

w
− �� δυ (Fi )−D j

Tj
� Cυ, j (Pυ, j )

w
	 represents the delay of a packet in the last

epoch. Here, Cυ (Pυ, j ) denotes the number of time slots required by node υ to transmit a packet
of Fj with probability Pυ, j . For a fixed priority local scheduler, the value of Cυ (Pυ, j ) can be com-
puted during the response time calculation for flow Fj . For a dynamic priority local scheduler, an
estimate of Cυ (Pj ) can be used. The total delay experienced by a packet at a node υ is shown in

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:15

Equation (6).

δυ (Fi ,Pυ,i ) = (γ − 1)w +Cυ,i (Pυ,i ) +
∑

Fj ∈H Pυ (Fi )

⎧⎪⎨⎪⎩
⎢⎢⎢⎢⎢⎣
⌈
δυ (Fi ) − D j

Tj

⌉
Cυ, j (Pυ, j )

w

⎥⎥⎥⎥⎥⎦ × (γw − 1)+

⌈
δυ (Fi ) − D j

Tj

⌉
Cυ, j (Pυ, j )

w

⎫⎪⎬⎪⎭
(6)

Since nodes use a real-time scheduling policy to schedule packets locally, the worst-case delay
experienced by a packet at different nodes is independent of each other. Thus, we express the
total delay (experienced by a flow) as the sum of delays experienced at each node on the primary
path. For implicit deadline flows, the end-to-end delay Ri experienced by a control loop Fi under
DistributedHART with DM scheduling is given by Equation (7) with a probability P′i =

∏
υ ∈Vi
Pυ,i .

Ri (P′i ) =
∑

υ ∈Vi

δυ (Fi ,Pυ,i ) (7)

The delay bound computation, described above, generates the end-to-end delay with a probability
of P′i . To compute the end-to-end delay for a selected value of Pi , we first compute the end-to-end
delay for all combinations of Pυ,i that result in a end-to-end probability guarantee of Pi . From
the list of all possible combinations, we select the maximum delay for a probability Pi as the end-
to-end delay for flow Fi . Note that the number of combinations of Pυ,i is 2, since a node can use
at most 2 time slots to make a transmission along a link on the primary path. Since the possible
combinations of Pυ,i for each link are bounded by a fixed constant 2, the number of delay bound
calculations required for one flow is O (n2), where n is the number of nodes in the network.

Note that the computation of the transmission delay gives an upper bound on the maximum
delay experienced at a node considering both consecutive and non-consecutive availability of time
slots at a node. For example, consider a non-consecutive availability of time slots at node v with
time slots 2,8 and cυ,i (Pυ,i ) = 2,γ = 5,w = 2; there are two possible cases that result in a maximum
transmission delay: (1) when packet arrives at time slot 3 and (2) when packet arrives at time slot
9. When a packet arrives at time slot 3, the maximum waiting time is five, and waiting between the
transmission slots is five; thus, the total transmission delay is 10 time slots. When a packet arrives
at time slot 9, the maximum waiting time is three, and waiting between the transmission slots is
five; thus, the total transmission delay is 10 time slots.

6 NON-UNIFORM TIME WINDOW ASSIGNMENT IN DISTRIBUTEDHART

The previous sections present the design and analysis of DistributedHART with uniform time
window allocation. Intuitively, assigning a fixed number of time slots to each node can cause large
delays at nodes with high traffic, like the access point. Assigning time window lengths based on the
flow of traffic passing through a node can potentially reduce the delays experienced by the flows. In
this section, we present the design of DistributedHART with non-uniform time window allocation
and extend the end-to-end delay analysis for non-uniform time window allocation. Furthermore,
we show a comparison between uniform and non-uniform time window allocation.

6.1 Algorithm to Select Non-uniform Time Window Length

Here, we present a simple heuristic to select the number of time slots per window at a node. The
intuition behind the heuristic is to assign time slots based on the rate of flows passing through a
node. The heuristic initializes each node with a primary path of a route passing through it with α
time slots, where α represents the minimum number of time slots allocated to a node. For every
ϕ units of rate passing through a node, the heuristic adds β time slots. Considering a node has συ

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:16 V. P. Modekurthy et al.

units of rate passing through a node υ, the length of transmission time window for a node υ is
given by Equation (8).

wυ = α +

⌈
συ

ϕ

⌉
× β (8)

Note that α , β , and ϕ are design parameters, and συ is calculated as shown in Equation (9), where
Vi is the set of nodes in the route of Fi .

συ =
∑

Fi if υ ∈Vi

1

Ti
(9)

6.2 Non-uniform Time Window Allocation

Non-uniform time window allocation can cause higher contention for smaller time windows and
underutilization of larger time windows. To mitigate this challenge, we represent each time slot by
a unique color. Each node then uses vertex multi-coloring to select multiple transmission time slots
and locally define their transmission time window. For example, one node can select time slots 1, 4,
and 7 as its transmission time window, and another can select time slots 3 and 7 as its transmission
time window. For distributed vertex multi-coloring, we choose a variant of DRAND [26] where
each node selects multiple colors instead of one. Although there exist many distributed vertex
multi-coloring algorithms, we pick DRAND for its simplicity in implementation.

One key issue with using DRAND is that it requires the maximum number of available colors (or
γ̂ ) a priori. The central manager can estimate γ̂ from the product of the maximum degree of a node
and maximum window length of all nodes, similar to uniform time window assignment. However,
this estimation is very loose, as the central manager assumes each node selects a fixed/maximum
window length. Such a loose estimation can result in idle time slots within an epoch, significantly
increasing the latency. To overcome this issue, we propose to use a leader election algorithm after
DRAND to determine the leader or the node with the last used time window within the epoch.
The leader can reduce the epoch’s length (γ̂ ) and re-broadcast the new epoch value to all nodes.
Typically, the leader election is a polynomial-time algorithm for a mesh network and needs to be
executed only during network initialization and network/workload dynamics.

6.3 End-to-end Delay Analysis for Non-uniform Time Window Assignment

To compute the end-to-end delay analysis for non-uniform time window assignment, we use a
similar approach as described in Section 5. The network manager can estimate an upper bound on
γ̂ , which facilitates the schedulability test. Similar to Equation (2), delay experienced by a packet
of Fi at node υ with a probability Pυ,i consists of four sources: (1) delay experienced between the
arrival of a packet and the start of the first transmission time window (γ̂ −wυ ), (2) number of time
slots required to successfully transmit a packet (cυ,i (Pυ,i )), (3) delay caused by the unavailability

of consecutive time slots γ̂ and (4) delay caused by interrupting high priority flows (δhp
υ,i (Pυ,i )).

Considering γ̂ represents the epoch length and wυ represents the υ’s time window length, the
total delay experienced by a packet of Fi at node can be given by Equation (10).

δυ,i (Pυ,i ) = γ̂ −wυ + cυ,i (Pυ,i ) + γ̂ + δ
hp
υ,i (Pυ,i ) (10)

The number of time slots required to successfully transmit a packet is computed similar to that
in uniform time window assignment and is given by Equation (4). The delay caused by interrupting
high priority flows is given by Equation (11).

δ
hp
υ,i (Pυ,i ) =

∑

Fj ∈H Pυ (Fi )

⎧⎪⎨⎪⎩
⎢⎢⎢⎢⎢⎣
⌈
δυ (Fi ) − D j

Tj

⌉
Cυ, j (Pυ, j )

wυ

⎥⎥⎥⎥⎥⎦ (γ̂ − 1) +

⌈
δυ (Fi ) − D j

Tj

⌉
Cυ, j (Pυ, j )

wυ

⎫⎪⎬⎪⎭ (11)

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:17

Fig. 8. Performance of non-uniform time window assignment in DistributedHART.

For implicit deadline flows, the response time Ri experienced by a control loop Fi under Dis-
tributedHART with DM scheduling is given by Equation (12) with a probability P′i =

∏
υ ∈Vi
Pυ,i .

Ri (P′i ) =
∑

υ ∈Vi

δυ (Fi ) (12)

6.4 Performance Evaluation of Non-uniform Time Window Assignment

We performed simulation in TOSSIM [16] to evaluate the performance of DistributedHART with
EDF local scheduling on non-uniform time windows. We used a 148-node network topology and
varied the number of control loops from 5 to 35. For further details about the simulation setup,
please refer to Section 9. We present the aggregate result from 50 random test cases. For each
test case, we randomly selected sensor and actuators and assigned random harmonic periods in
the range of 211∼13 time slots. To decrease the workload on the network, we doubled the range
after adding every 10 flows. For this simulation, we used α = 1 and β = 1. We selected ϕ =
(min 1

Ti
+max 1

Ti
)× 7

8 . For the test cases with five control loops, the maximum rate was 8 times the

minimum rate, and hence, we chose 7
8 as the smallest increase to the non-uniform time window

assignment. Schedulability ratio comparison between non-uniform (DistributedHART-EDF-NU)
and uniform time window assignment (DistributedHART-EDF) is shown in Figure 8.

In this simulation, we have observed that non-uniform time window assignment performs better
for some and poorly for other test cases. We have observed that when the number of control loops
is 15, some test cases schedulable under uniform time window assignment were not schedulable
under non-uniform time window assignment, and vice versa. When the number of control loops
is greater than 20, we observed that the average schedulability ratio of non-uniform time window
assignment was poor when compared to uniform time window assignment. We observed that this
result is due to the increase in the epoch length γ̂n , which resulted in a significant increase in
the end-to-end delay. From this simulation result, we can conclude that for a smaller number of
control loops, non-uniform time window assignment performs better in some cases and uniform
time window assignment performs better under some other. For larger number of control loops
uniform time window assignment performs better in more cases.

7 LATENCY UNDER DISTRIBUTEDHART

We performed simulations in TOSSIM to evaluate the performance of DistributedHART under
latency of each flow. We used a 148-node network topology with 25 flows. For further details
about the topology, please refer to Section 9. We assigned a period of 4s for all the flows. The
same period assignment is for this simulation alone, and we used different periods for all other
simulations and experiments. We assign same periods, because it allows us to compare the latency
of flows.

Figure 9 shows the latency of each flow under DistributedHART with EDF local scheduling. We
observed an average latency of 3.825s for all flows. Figure 10 shows that the maximum latency

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:18 V. P. Modekurthy et al.

Fig. 9. Latency under Dis-

tributedHART.

Fig. 10. Latency comparison

between Centralized-DM

and DistributedHART-DM.

observed under DistributedHART-EDF to be 3.98s while that of centralized is 1.7s . These results
show that latency in DistributedHART is higher than centralized algorithms.

In DistributedHART, DRAND facilitates time window selection through a random selection of
colors. Intuitively, a random selection of colors induces long latencies, as shown in the following
example: Assume a flow Fi has a primary path vi− > vj− > vk , where the source is vi and
destination is vk . For this flow, if the time window assignment for vi ,vj , and vk is 1, 2, and 3,
respectively, then latency of the path is 3w (wherew is the length of each window). On the contrary,
if the time window assignment forvi ,vj , andvk is 3, 2, and1, respectively, then a packet has to wait
for an epoch (γw) at each node, and hence, latency is 3w × γ .

To improve the latency, we propose a heuristic called DistributedHART-IL. The intuition behind
the heuristic is to prioritize nodes during distributed time window selection such that the first
node of the highest priority flow selects the first time slot. In DistributedHART-IL, we prioritize
nodes by assigning a different probability to start the selection of transmission time window. The
probability of v depends on the highest priority flow passing through v and its position on the
highest priority route (ϖv ). To capture the maximum priority of flow passing through a node v ,
we use a normalized flow priority to each node, given by ϒv , and is computed as the ratio of the
highest priority flow period in the network and period of the highest priority flow passing through
v . We use a weighted summation of the two parameters,ϖv and ϒv , to compute a node’s probability
and is given by ϒv − ιϖv , where ι represents the weight, which is typically less than 0.1.

We ran simulations on TOSSIM to evaluate the performance of DistributedHART-IL. We used a
148-node network with 25 control loops and a 4s period. Latency of each flow under Distributed-
HART is shown in Figure 11. We observed that DistributedHART-IL results in similar performance
as DistributedHART. We observed the average latency is 3.99s. To further evaluate the impact on
schedulability, we ran more simulations by varying the number of flows in the network. Figure 12
shows the comparison between DistributedHART-IL and DistributedHART under the schedulabil-
ity ratio. We observed that Distributed-HART-IL performs better than DistributedHART. However,
we have observed that some cases that were schedulable under DistributedHART were not schedu-
lable under Distributed-HART-IL. Although DistributedHART-IL offers better schedulability, Dis-
tributedHART is easy to implement and converges faster. From this simulation, we can conclude
that both DistributedHART and DistributedHART-IL are good choices. Since both Distributed-
HART and DistributedHART-IL perform similarly, we only evaluate DistributedHART through
experiments and simulations.

When compared to centralized algorithm, both DistributedHART and DistributedHART-IL may
perform poorly under latency. However, it achieves a similar schedulability ratio (which is a more
important metric for real-time networks) as centralized algorithms in most of the cases. Fur-
thermore, the centralized approach relies on global information to achieve low latency. Acquir-
ing global information is challenging, and hence centralized algorithm is not scalable. However,

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:19

Fig. 11. Latency under

DistributedHART-IL.
Fig. 12. Comparison between

DistributedHART-IL and

DistributedHART.

DistributedHART uses local information to make scheduling decisions, thereby providing ad-
vantages such as supporting any type of traffic (periodic/aperiodic), handling network-dynamics
(which is frequent in industrial environments), and scalability (which is important for Industrial In-
ternet of Things). Under network-dynamics, a centralized approach re-calculates and re-distributes
schedules among nodes. Since network dynamics are frequent in industrial environments, fre-
quently calculating and re-distributing the schedules degrades the performance of centralized ap-
proach. Thus, over a long period of time (with frequent network-dynamics), the overall perfor-
mance of the centralized approach can be worse than DistributedHART (even with long latencies).

8 TESTBED EXPERIMENTS

We implemented DistributedHART on TinyOS 2.2 [1] and evaluated on a 130-node TelosB mote
testbed [4] for real experiments. TelsoB devices use Chipcon CC2420 radios, which are compli-
ant with the IEEE 802.15.4 standard. Note that the physical layer of WirelessHART is similar to
802.15.4 physical layer. We deployed the nodes in a 20 × 10 ft room of the Maccabees building.
To create a multi-hop network, each node used a transmission power of −28.7dBm. The topology
of the testbed is shown in Reference [4]. Our DistributedHART implementation consists of multi-
channel TDMA MAC protocol. Time is divided into 10 ms slots, and clocks are synchronized using
the Flooding Time Synchronization Protocol (FTSP) [19]. We ran FTSP algorithm frequently
to avoid issues with capture effect. For a fair comparison, we used centralized version of the graph
routing algorithm proposed in Reference [22]. For simplicity in implementation and experimen-
tation, network manager computed the channel and time window allocations and disseminated
them using TinyOS dissemination protocol library. We then evaluated the online scheduling of
DistributedHART.

8.1 Evaluation Metrics

We evaluated DistributedHART using four metrics (1) energy, (2) memory, (3) convergence time,
and (4) schedulability performance and then compared the performance with centralized EDF [29]
and DM [2] (with spatial re-use). Schedulable ratio is defined as the fraction of test cases that were
schedulable among all cases. Each test case corresponds to a set of flows and is said to be schedulable

if all packets from all flows met their deadlines (i.e., max latency ≤ deadline). The deadlines of the
flows were set equal to their periods. Note that for any flow that is observed to be schedulable,
its packets were delivered to the destination (actuator), and they were delivered within deadlines.
Memory consumption is the average memory consumed per node to store a schedule. Convergence

Time is the average time taken for all nodes to disseminate a schedule excluding the time taken
to generate routes. Energy consumption is the average energy consumed per node in Joules to
disseminate a schedule. In our testbed, we use USB cables to power the nodes and hence, we can not
obtain the actual energy consumed. We use a product of the number of transmissions and energy

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:20 V. P. Modekurthy et al.

Fig. 13. Experimental result under varying number of flows considering harmonic periods.

consumed for each communication (0.22mJ , calculated from TelosB datasheer [3] with 5.5ms Tx
time) to estimate energy consumption per node. We used a CSMA/CA protocol to disseminate
schedule for DistributedHART and centralized algorithms. Thus, duty-cycle of operation (equal to
convergence time) was very large, and hence, was not a good metric for comparison.

8.2 Results

The performance comparison between DistributedHART and centralized scheduler proposed in
WirelessHART standard is shown in Figure 13 and Figure 14. The fixed priority and dynamic
priority centralized schedulers are labeled “Centralized-DM” and “Centralized-EDF,” respectively.
Similarly, DistributedHART with fixed priority and dynamic priority local scheduling are labeled
“DistributedHART-DM” and “DistributedHART-EDF,” respectively. As the performance of Orches-
tra [10] and DiGS [35] is expected to be worse, we evaluated them only in simulation. Figure 13
and Figure 14 show the aggregate result from 25 test cases under varying number of flows in the
network. In this experiment, we varied the number of flows between 5 and 40. For each test case,
we generated flows by randomly selecting source and destination nodes. For test cases with 5 flows,
we assign harmonic periods in the range 213∼16 time slots. To decrease the workload on the net-
work, we double the range after adding every 10 flows. Since the confidence interval is very close
to the average, the confidence intervals are not visible in the average energy, time, and memory
consumption results shown in the article (including Figure 13).

8.2.1 Memory Consumption. Typically, memory consumption in centralized algorithms is pro-
portional to the hyper-period. In some special cases, a compact schedule may be feasible. However,
we considered a general scenario where memory consumption is proportional to the length of the
hyper-period. Figure 13(a) shows a step increase in memory consumption, since we double the
hyper-period for every 10 control loops. Since the transmission schedule repeats after every time
epoch, time window information during the first epoch and time epoch length is sufficient. This
information is subsequently smaller than centralized transmission schedule. We observed a small
increase in worst-case chromatic number with the increase number of control loops. We observed
that DistributedHART consumes at least 75% less memory than both centralized EDF and DM.

8.2.2 Energy Consumption and Convergence Time. The centralized algorithms use a dissemina-
tion protocol to broadcast schedules to all nodes in the network. Hence, average energy consump-
tion at a node is dependent on the length of the schedule. Thus, Figure 13(b) shows a step increase
in average energy consumption similar to memory consumption result. In this experiment, for the
sake of simplicity, the central managed computed channel and time window allocation and dissem-
inated the information even for DistributedHART. In DistributedHART, the length of the schedule
was only dependent on the worst-case chromatic number and hence, Figure 13(b) shows the energy
consumption is close to constant. We observed that DistributedHART consumes at least 95% less

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:21

Fig. 14. Experiment results showing schedulability ratio under varying number of flows.

energy than EDF. Similar to energy consumption, convergence time for centralized algorithms is
also dependent on hyper-period while convergence time for DistributedHART is almost constant.
Figure 13(c) shows that DistributedHART consumes at least 95% less convergence time than EDF.

8.2.3 Schedulability Ratio. Centralized algorithms rely on global knowledge of channel/link
quality information and harmonic periods that made it feasible for EDF to achieve high schedu-
lability ratio (this may not be feasible with arbitrary periods), as shown in Figure 14. In this ex-
periment, we used a very dense deployment. Thus, the worst-case chromatic number or γ for
DistributedHART was very high. We also observed that γ increases with an increase in the num-
ber of flows, since more nodes require time windows. This increase in γ increases the end-to-end
delay and decreases schedulability ratio. Since a distributed scheduler handles networks/workload
dynamics and saves energy, it is expected to perform poorly under schedulability ratio due to the
lack of global information. However, DistributedHART is highly competitive in terms of schedula-
bility ratio when compared to centralized algorithms. From this experiment, we can conclude that
DistributedHART is a practical choice for wirelessHART, as it offers a competitive schedulability
ratio and consumes less energy and convergence time.

9 SIMULATION

9.1 Simulation Setup

We evaluated DistributedHART on a 148-node network through simulations in TOSSIM [16]. We
used a 74-node testbed topology [34] deployed over a wider area to complement the experiments.
To scale with the number of nodes, we assumed all nodes are placed in a grid structure and repli-
cated this grid. We added edges between neighboring grids to generate a connected bigger topol-
ogy. We followed the fully distributed approach for allocating channel and time windows, i.e., en-
ergy consumption and convergence time metrics also include the overhead of exchanging physical
interference model and computing channel and time windows at each node. We evaluated the per-
formance of DistributedHART under varying number of flows with harmonic periods, number of
nodes, varying time window lengths, number of flows with non-harmonic periods, hyper-periods,
and workload dynamics. We also evaluated the performance of the proposed schedulability anal-
ysis. For the simulation results, we presented the aggregate result from 50 random test cases. For
each test case, we randomly selected sensor and actuators and assigned random harmonic periods
in the range of 211∼13 time slots. The range of the periods was doubled after 10 new flows.

9.2 Performance under Varying Window Lengths

Figure 15 shows the schedulability ratio under different w . Our results showed that w = 1 offered
ta better schedulability ratio when compared to w = 2 or w = 3. For w = 2 (or w = 3), a packet
waited for 2γ (or 3γ ) time units between its arrival and the availability of the first transmission
window, at each node. Such long delays increased the total latency of the packet and decreased
the schedulability ratio. We also observed that, most often, packets from all flows arrived at vi

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:22 V. P. Modekurthy et al.

Fig. 15. Schedulability ratio vs. w .

Fig. 16. Performance under varying number of flows considering harmonic periods.

during different time epochs. Therefore, the second slot in a transmission window (in most cases)
remained unused. We determine w = 1 as the good setting for this network and traffic pattern.
This result also implies that longer time windows may not necessarily increase the schedulability
ratio.

9.3 Performance under Varying Number of Flows

The performance comparison between DistributedHART and centralized algorithms under vary-
ing number of flows with harmonic period assignments is shown in Figure 16. We also compare
the performance of DistributedHART with Orchestra [10] and DiGS [35]. Orchestra and DiGS as-
sign time window based on the nodeId. We use the same routing protocol and local scheduling
algorithm (EDF) for Orchestra and DiGS as DistributedHART, for a fair comparison. Since Orches-
tra does not have a dedicated and shared slot assignment, we consider that both transmissions
happen within the time window. We used w = 1 for DistributedHART, Orchestra, and DiGS. We
varied the number of flows from 5 to 60. Simulation results for this setup are shown in Figure 16.

Memory Consumption. Similar to the experiment result, memory consumption of centralized
algorithms doubles for every 10 flows, as shown in Figure 16(a). For DistributedHART, memory
consumption depends only onγ , which has a small/negligible increase. This simulation shows that
DistributedHART consumes a minimum of 95% less memory than centralized algorithms.

Energy Consumption and Convergence Time. In centralized EDF and DM, nodes consume
energy during schedule dissemination. Since the number of messages transmitted by each node
in centralized algorithms is proportional to the hyper-period, Figure 16(b) shows an exponential
increase in average energy consumption. However, for DistributedHART, each node has to com-
municate only with its neighboring nodes in the conflict graph. We use controlled flooding to
communicate with them, since routes to all nodes are not available. Thus, the average energy con-
sumption of a node only increases linearly. From these simulations, we observed that Distribut-
edHART consumes 95% less energy when compared to centralized algorithms. Similar to energy,
convergence time for DistributedHART also increases linearly. DistributedHART consumes 90%

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:23

Fig. 17. Schedulability ratio under varying number of flows and harmonic periods.

Fig. 18. Performance under varying number of flows considering non-harmonic periods.

less time than centralized algorithms. Orchestra and DiGS use an autonomous approach where
each node computes its schedule locally and does not require any communication between nodes.

Schedulability Ratio. In this simulation, we consider harmonic periods that make it feasible for
centralized EDF and DM to achieve very high schedulability ratio, close to optimal, because they
assume all local information is available at the network manager. Thus, Figure 17 shows a high
schedulability ratio for centralized algorithms. For DistributedHART, smaller γ for initial condi-
tions results in similar schedulability as centralized algorithms. With the increase in the number
of flows, γ increases linearly, which increases end-to-end delay and decreases schedulability ratio.
We selected sensors, actuators, and periods randomly, which attributes to an increase in schedula-
bility ratio with an increase in the number of flows. Although a distributed scheduler is expected to
perform poorly under schedulability ratio due to the lack of global information, DistributedHART
is highly competitive in terms of schedulability ratio when compared to centralized algorithms. For
Orchestra and DiGS, γ is equal to the number of nodes in the network, which causes a large delay
at each node of the flow. Thus, the schedulability ratio is very low compared to DistributedHART.
Due to the poor schedulability ratio, we do not present results of Orchestra and DiGS in other
evaluations. From these results, we can conclude that DistributedHART outperforms centralized
algorithms under energy, memory, and convergence time while achieving similar schedulability
ratio, and Orchestra/DiGS under schedulability ratio.

9.4 Performance under Varying Number of Flows Considering Non-harmonic Periods

The performance comparison of DistributedHART and centralized scheduler under varying num-
ber of flows with non-harmonic period assignments is shown in Figure 18. We used w = 1 for
DistributedHART. We varied the number of flows from 5 to 60. We presented the aggregate result
from 50 random test cases. For each test case, we randomly selected sensor and actuators and as-
signed random harmonic periods in the range of 211∼13 time slots. To decrease the workload on
the network, we doubled the range after adding every 10 flows.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:24 V. P. Modekurthy et al.

Fig. 19. Performance under varying number of nodes.

Energy Consumption and Convergence Time. Since energy consumption and convergence
time for EDF and DM are proportional to the hyper-period, they increase exponentially, as shown
in Figures 18(a), 18(b). However, energy consumption and convergence time for DistributedHART
increase linearly. We observed that DistributedHART saves a minimum of 99% of energy and 99%
of convergence time for flows with non-harmonic periods. We observed that DistributedHART
saves a minimum of 99% of energy and 99% of convergence time for flows with non-harmonic
periods.

Schedulability Ratio. For centralized algorithms, we could compute schedulability ratio up to
20 flows, since the time to generate a table driven schedule (not including simulation time) was
too large. In this simulation, we observed a close to 1 schedulability for DistributedHART. From
this simulation, we can conclude that for non-harmonic periods, DistributedHART outperforms
centralized algorithms.

9.5 Performance under Varying Number of Nodes

Here, we show the performance of DistributedHART under varying number of nodes. Figure 19
shows the simulation results when number of flows is 20% of the number of nodes.

Energy Consumption and Convergence Time. Both energy and convergence time follow the
similar curves as memory consumption, as they are also dependent on hyper-period. Figure 19(a)
and Figure 19(b) show DistributedHART consumes at least 94% less energy and 85% less conver-
gence time.

Schedulability Ratio. As shown in Figure 19(c), centralized algorithms are not scalable with the
number of nodes due to the huge wastage of time slots. In contrast, DistributedHART offers better
schedulability ratio when compared to centralized algorithms. From this result, we can conclude
that DistributedHART scales with number of nodes.

9.6 Performance under Varying Hyper-periods

Here, we show the performance of DistributedHART under varying ranges of hyper-periods. We
used the same setup as performance under varying number of flows with non harmonic periods
(Section 9.4). However, we kept the number of flows constant at 30 and varied the range of periods
from 29∼13 to 213∼17.

Energy Consumption and Convergence Time. As expected, energy and convergence time
of centralized EDF and DM increases exponentially. However, energy (as shown in Figure 20(a))
and convergence time (as shown in Figure 20(b)) for DistributedHART is constant and remain
unaffected by varying hyper-period lengths.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:25

Fig. 20. Performance under varying hyper-periods.

Fig. 21. Performance under varying workload dynamic.

Schedulability Ratio. As shown in Figure 20(c), with an increase in the range of periods, schedu-
lability ratio remains constant at 1 for centralized algorithms and DistributedHART. For Distribut-
edHART, we observed that increasing the period improved the schedulability ratio due to the
increase in deadline, while total delay remained constant. From these results, we can conclude
that under DistributedHART outperforms centralized algorithms in terms of energy, convergence
time, and memory while achieving similar schedulability ratio.

9.7 Performance under Varying Workload Dynamics

Figure 21 shows the performance of DistributedHART under different network dynamics. In this
simulation, we kept the number of flows constant at 30 and varied (increased or decreased) the
period of random 5 flows per workload change, while ensuring hyper-period is in between 214∼18

time slots. We use the number of workload changes in one execution as a parameter for comparing
the performance of DistributedHART and centralized algorithms.

Energy Consumption and Convergence Time. For centralized algorithms, every change in
workload necessitates an update in the schedule. A centralized approach has to collect the entire
topology, re-create schedules, and distribute the new schedules to all nodes in the network for each
network/workload dynamic. This new schedule has to be re-disseminated to the nodes. As shown
in Figure 21(a), energy consumed by centralized algorithms (for changes in workload) increases
linearly with the increase in the number of workload changes. Thus, centralized approaches are
inefficient in large networks with frequent network dynamics. In DistributedHART, the local sched-
uler at each node handles workload dynamics. Thus, DistributedHART requires 0J of additional
energy and 0s of convergence time to generate a schedule (for every workload change). Therefore,
Figure 21(b) shows a linear increase for centralized algorithms and 0 for DistributedHART.

Schedulability Ratio. In the event of a workload change, we define a test case to be schedulable if
all flows in the test case meet the deadline before and after the workload change. In our simulation,

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



46:26 V. P. Modekurthy et al.

Fig. 22. Memory consumption comparison with centralized–compact scheduler.

Fig. 23. Schedulability ratio comparison with an upper bound.

we observed that centralized algorithms and DistributedHART have similar schedulability ratio,
where centralized algorithms perform 4% better than DistributedHART. A centralized approach
has to collect the topology, re-create, and distribute new schedules to all nodes upon dynamics.
Network dynamics are quite frequent in industrial environments, making a centralized approach
inefficient in large-scale networks. From this simulation, we can conclude that for varying work-
load requirements, DistributedHART outperforms centralized algorithms in terms of energy and
convergence time while offering similar schedulability ratio.

9.8 Performance Comparison between DistributedHART and Centralized Scheduler

with Compact Schedules

Here, we show the performance of DistributedHART when compared to the centralized sched-
uler with compact schedules. For special scenarios such as harmonic periods and a rate mono-
tonic scheduler, centralized schedulers can create a compact schedule, i.e., a node can use the first
packet’s schedule to generate the schedule for subsequent packets. Note that a central scheduler
should assign each node the time slot and period of the first packet for each flow passing through
it. For generic scenarios, centralized schedulers have to consider interference from all packets,
hence this approach will not work. Figure 22 shows the memory consumption comparison be-
tween DistributedHART-DM and centralized-DM with a compact schedule. Our simulation results
show that DistributedHART and centralized-EDF compact scheduler consume a similar amount
of memory with DistributedHART, consuming 0.08 KB of additional memory.

9.9 Performance of End-to-end Delay Analysis

Here, we show the performance of the proposed schedulability analysis. We compare the schedu-
lability ratio obtained by the schedulability analysis and the simulation result (which provides a
conservative upper bound). We use a similar setup as Section 9.4 with periods in range 212∼16 time
slots. We present the schedulability ratio when end-to-end delay is estimated with a probability
of 0.95. As shown in Figure 23, when the number of flows is ≤ 10, all test cases were deemed to
be schedulable under our schedulability analysis and simulations. When the number of flows was
greater than 10, fewer test cases were deemed schedulable by our schedulability analysis. This

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.



A Distributed Real-time Scheduling System for Industrial Wireless Networks 46:27

difference in schedulability ratio is because simulation results show a conservative upper bound
on schedulability ratio while our schedulability analysis considers a pessimistic scenario (where
each node requires two transmission time slots). Note that our analysis is only a sufficient test and
not an exact test. From this result, we can conclude that our schedulability analysis is close to the
upper bound and can be used to determine schedulability.

10 CONCLUSION AND FUTURE WORK

In this article, we have proposed DistributedHART—a distributed real-time scheduling system for
WirelessHART networks. In the existing centralized approach, schedules are created centrally and
in advance with high degree of redundancy, thus causing a huge waste of energy, bandwidth,
time, and memory. DistributedHART obviates the need of creating and disseminating a central
global schedule, thereby reducing resource waste and enhancing scalability. In addition, Distribut-
edHART would lead to higher network utilization in the network at the expense of a slight increase
in the end-to-end delay of all control loops. Through experiments on a 130-node testbed as well
as large-scale simulations, we observe at least 85% less energy consumption in DistributedHART
compared to existing centralized approach. In the future, we plan to address challenges arising
from the mobility of the nodes in DistributedHART.

REFERENCES

[1] TinyOS. 2005. TinyOS Community Forum. Retrieved from http://www.tinyos.net/.
[2] FieldComm Group. 2007. WirelessHART. Retrieved from https://fieldcommgroup.org/technologies/hart.
[3] Texas Instruments. 2016. CC2420 RF-Transceiver. Retrieved from http://www.ti.com/lit/ds/symlink/cc2420.pdf.
[4] Embedded Systems Lab. 2019. Testbed. Retrieved from http://neteye.cs.wayne.edu/.
[5] K. Agrawal and S. Baruah. 2019. Adaptive real-time routing in polynomial time. In RTSS.
[6] R. Brummet, D. Gunatilaka, D. Vyas, O. Chipara, and C. Lu. 2018. A flexible retransmission policy for industrial wireless

sensor actuator networks. In ICII.
[7] X. Cheng, J. Shi, and M. Sha. 2019. Cracking the channel hopping sequences in IEEE 802.15. 4e-based industrial TSCH

networks. In IoTDI.
[8] B. Dezfouli, M. Radi, and O. Chipara. 2016. Mobility-aware real-time scheduling for low-power wireless networks. In

INFOCOM.
[9] B. Dezfouli, M. Radi, K. Whitehouse, S. A. Razak, and H. Tan. 2014. CAMA: Efficient modeling of the capture effect

for low-power wireless networks. Trans. Sensor Netw. 11, 1 (2014).
[10] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne. 2015. Orchestra: Robust mesh networks through au-

tonomously scheduled tsch. In SenSys.
[11] A. Ghosh, O. D. Incel, V. S. A. Kumar, and B. Krishnamachari. 2009. Multi-channel scheduling algorithms for fast

aggregated convergecast in sensor networks. In MASS.
[12] Y. Gu, T. He, M. Lin, and J. Xu. 2009. Spatiotemporal delay control for low-duty-cycle sensor networks. In RTSS.
[13] D. Gunatilaka, M. Sha, and C. Lu. 2017. Impacts of channel selection on industrial wireless sensor-actuator networks.

In INFOCOM.
[14] T. He, B. M. Blum, Q. Cao, J. A. Stankovic, S. H. Son, and T. F. Abdelzaher. 2007. Robust and timely communication

over highly dynamic sensor networks. Real-Time Syst. 37, 3 (2007).
[15] X. Jin, F. Kong, L. Kong, W. Liu, and P. Zeng. 2017. Reliability and temporality optimization for multiple coexisting

WirelessHART networks in industrial environments. Trans. Industr. Electron. 64, 8 (2017).
[16] P. Levis, N. Lee, M. Welsh, and D. Culler. 2003. TOSSIM: Accurate and scalable simulation of entire TinyOS applications.

In SenSys.
[17] B. Li, L. Nie, C. Wu, H. Gonzalez, and C. Lu. 2015. Incorporating emergency alarms in reliable wireless process control.

In ICCPS.
[18] J. Lu and K. Whitehouse. 2008. Exploiting the capture effect for low-latency flooding in wireless sensor networks. In

SenSys.
[19] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi. 2018. The flooding time synchronization protocol. In SenSys.
[20] V. P. Modekurthy, D. Ismail, M. Rahman, and A. Saifullah. 2018. A Utilization-Based approach for schedulability anal-

ysis in wireless control systems. In ICII.
[21] V. P. Modekurthy and A. Saifullah. 2019. Online period selection for wireless control systems. In ICII. IEEE.

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.

http://www.tinyos.net/
https://fieldcommgroup.org/technologies/hart
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://neteye.cs.wayne.edu/


46:28 V. P. Modekurthy et al.

[22] V. P. Modekurthy, A. Saifullah, and S. Madria. 2018. Distributed graph routing for wirelessHART networks. In ICDCN.
[23] V. P. Modekurthy, A. Saifullah, and S. Madria. 2019. DistributedHART: A distributed real time scheduling system for

wirelessHART networks. In RTAS.
[24] M. R. Palattella, P. Thubert, X. Vilajosana, T. Watteyne, Q. Wang, and T. Engel. 2014. 6TiSCH wireless industrial

networks: Determinism meets IPv6. In Internet of Things. Springer.
[25] B. Reed. 1999. A strengthening of Brooks’ theorem. J. Combinat. Theor., Series B 76, 2 (1999).
[26] I. Rhee, A. Warrier, J. Min, and L. Xu. 2009. DRAND: Distributed randomized TDMA scheduling for wireless ad hoc

networks. Trans. Mob. Comput. 8, 10 (2009).
[27] A. Saifullah, D. Gunatilaka, P. Tiwari, M. Sha, C. Lu, B. Li, C. Wu, and Y. Chen. 2015. Schedulability analysis under

graph routing in WirelessHART networks. In RTSS.
[28] A. Saifullah, C. Wu, P. B. Tiwari, Y. Xu, Y. Fu, C. Lu, and Y. Chen. 2014. Near optimal rate selection for wireless control

systems. Trans. Embed. Comput. Syst. 13, 4s (2014).
[29] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. 2010. Real-time scheduling for WirelessHART networks. In RTSS.
[30] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. 2011. End-to-end delay analysis for fixed priority scheduling in WirelessHART

networks. In RTAS.
[31] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. 2011. Priority assignment for real-time flows in WirelessHART networks. In

ECRTS.
[32] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. 2014. Distributed channel allocation protocols for wireless sensor networks.

Trans. Parallel Distrib. Sys. 25, 9 (2014).
[33] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. 2015. End-to-end communication delay analysis in industrial wireless networks.

Trans. Comput. 64, 5 (2015).
[34] M. Sha, D. Gunatilaka, C. Wu, and C. Lu. 2015. Implementation and experimentation of industrial wireless sensor-

actuator network protocols. In EWSN.
[35] J. Shi, M. Sha, and Z. Yang. 2018. DiGS: Distributed graph routing and scheduling for industrial wireless sensor-

actuator networks. In ICDCS.
[36] J. Shi, M. Sha, and Z. Yang. 2019. Distributed graph routing and scheduling for industrial wireless sensor-actuator

networks. IEEE/ACM Trans. Netw. 27, 4 (2019).
[37] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund. 2018. Industrial internet of things: Challenges, opportu-

nities, and directions. Trans. Industr. Inform. 14, 11 (2018).
[38] F. Terraneo, P. Polidori, A. Leva, and W. Fornaciari. 2018. TDMH-MAC: Real-time and multi-hop in the same wireless

MAC. In RTSS.
[39] X. Wang, X. Wang, X. Fu, G. Xing, and N. Jha. 2009. Flow-based real-time communication in multi-channel wireless

sensor networks. In EWSN.
[40] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler. 2005. Exploiting the capture effect for collision detection

and recovery. In EmNetS.
[41] C. Wu, D. Gunatilaka, A. Saifullah, M. Sha, P. B. Tiwari, C. Lu, and Y. Chen. 2016. Maximizing network lifetime of

WirelessHART networks under graph routing. In IoTDI.
[42] C. Wu, D. Gunatilaka, M. Sha, and C. Lu. 2018. Real-time wireless routing for industrial internet of things. In IoTDI.
[43] T. Zhang, T. Gong, C. Gu, H. Ji, S. Han, Q. Deng, and X. S. Hu. 2017. Distributed dynamic packet scheduling for

handling disturbances in real-time wireless networks. In RTAS.
[44] T. Zhang, T. Gong, S. Han, Q. Deng, and X. S. Hu. 2018. Distributed dynamic packet scheduling framework for handling

disturbances in real-time wireless networks. Trans. Mob. Comput. 18, 11 (2018).
[45] T. Zhang, T. Gong, Z. Yun, S. Han, Q. Deng, and X. S. Hu. 2018. FD-PaS: A fully distributed packet scheduling frame-

work for handling disturbances in real-time wireless networks. In RTAS.
[46] G. Zhou, T. He, J. A. Stankovic, and T. Abdelzaher. 2005. RID: Radio interference detection in wireless sensor networks.

In INFOCOM.
[47] M. Zimmerling, L. Mottola, P. Kumar, F. Ferrari, and L. Thiele. 2017. Adaptive real-time communication for wireless

cyber-physical systems. Trans. Cyber-phys. Syst. 1, 2 (2017).

Received October 2020; revised February 2021; accepted May 2021

ACM Transactions on Embedded Computing Systems, Vol. 20, No. 5, Article 46. Publication date: July 2021.


