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Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s
theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite
products, subalgebras and quotients. In this paper, Reiterman’s theorem is generalized to finite Eilenberg-
Moore algebras for a monad T on a category D : we prove that a class of finite T-algebras is a pseudovariety
iff it is presentable by profinite equations. As a key technical tool, we introduce the concept of a profinite

monad T̂ associated to themonadT, which gives a categorical view of the construction of the space of profinite
terms.
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1 INTRODUCTION

One of the main principles of both mathematics and computer science is the specification of struc-
tures in terms of equational properties. The first systematic study of equations as mathematical
objects was pursued by Birkhoff [7] who proved that a class of algebraic structures over a finitary
signature Σ can be specified by equations between Σ-terms if and only if it is closed under quo-
tient algebras (a.k.a. homomorphic images), subalgebras, and products. This fundamental result,
known as the HSP theorem, lays the ground for universal algebra and has been extended and gen-
eralized in many directions over the past 80 years, including categorical approaches via Lawvere
theories [4, 15] and monads [18].
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2 J. Adámek, L.-T. Chen, S. Milius, and H. Urbat

While Birkhoff’s seminal work and its categorifications are concerned with general algebraic
structures, in many computer science applications the focus is on finite algebras. For instance, in
automata theory, regular languages (i.e. the behaviors of classical finite automata) can be character-
ized as precisely the languages recognizable by finite monoids. This algebraic point of view leads
to important insights, including decidability results. As a prime example, Schützenberger’s the-
orem [25] asserts that star-free regular languages correspond to aperiodic finite monoids, i.e. mon-
oids where the unique idempotent power Gl of any element G satisfies Gl = G ·Gl . As an immediate
application, one obtains the decidability of star-freeness. However, the identity Gl = G · Gl is not
an equation in Birkhoff’s sense since the operation (−)l is not a part of the signature of monoids.
Instead, it is an instance of a profinite equation, a topological generalization of Birkhoff’s concept
introduced by Reiterman [22]. (Originally, Reiterman worked with the equivalent concept of an
implicit equation, cf. Section 5.) Given a set - of variables and G ∈ - , the expression Gl can be in-
terpreted as an element of the Stone space -̂ ∗ of profinite words, constructed as the cofiltered limit
of all finite quotient monoids of the free monoid - ∗. Analogously, over general signatures Σ one
can form the Stone space of profinite Σ-terms. Reiterman proved that a class of finite Σ-algebras
can be specified by profinite equations (i.e. pairs of profinite terms) if and only if it is closed un-
der quotient algebras, subalgebras, and finite products. This result establishes a finite analogue of
Birkhoff’s HSP theorem.
In this paper, we develop a categorical approach to Reiterman’s theorem and the theory of profin-

ite equations. The idea is to replace monoids (or general algebras over a signature) by Eilenberg-
Moore algebras for a monad T on an arbitrary base category D . As an important technical device,
we introduce a categorical abstraction of the space of profinite words. To this end, we consider a
full subcategory Df of D of “finite” objects and form the category ProDf , the free completion of
Df under cofiltered limits. We then show that the monad T naturally induces a monad T̂ on ProDf ,
called the profinite monad of T, whose free algebras T̂- serve as domains for profinite equations.
For example, for D = Set and the full subcategory Setf of finite sets, we get Pro Setf = Stone,
the category of Stone spaces. Moreover, if T- = - ∗ is the finite-word monad (whose algebras are

precisely monoids), then T̂ is the monad of profinite words on Stone; that is, T̂ associates to each
finite Stone space (i.e. a finite set with the discrete topology) - the space -̂ ∗ of profinite words
on - . Our overall approach can thus be summarized by the following diagram, where the skewed
functors are inclusions and the horizontal ones are forgetful functors.

Stone //

@GAFED��
�(−)∗

Set

GFBECD��

(−)∗

Setf

bb

bb❊❊❊❊❊❊❊❊
@@

@@✂✂✂✂✂✂✂

 

ProDf
//

@GAFED ��T̂

D
GFBECD��

T

Df

aa

aa❉❉❉❉❉❉❉❉ CC

CC✟✟✟✟✟✟✟

It turns out that many familiar properties of the space of profinite words can be developed at the
abstract level of profinite monads and their algebras. Our main result is the

Generalized Reiterman Theorem. A class of finite T-algebras is presentable by profinite equa-
tions if and only if it is closed under quotient algebras, subalgebras, and finite products.

Here, profinite equations are modelled categorically as finite quotients 4 : )̂- ։ � of the object
)̂- of generalized profinite terms. If the category D is Set or, more generally, a category of first-
order structures, we will see that this abstract concept of an equation is equivalent to the familiar
one: )̂- is a topological space and quotients 4 as above can be identified with sets of pairs (B, C)
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Reiterman’s Theorem on Finite Algebras for a Monad 3

of profinite terms B, C ∈ )̂- . Thus, our categorical results instantiate to the original Reiterman
theorem [22] (D = Set), but also to its versions for ordered algebras (D = Pos) and for first-order
structures due to Pin and Weil [20].
Our proof of the Generalized Reiterman Theorem is purely categorical and relies on general

properties of (codensity) monads, free completions and locally finitely copresentable categories. It
does not employ any topological methods, as opposed to all known proofs of Reiterman’s theorem
and its variants. The insight that topological reasoning can be completely avoided in the profinite
world is quite surprising, and we consider it as one of the main contributions of our paper.

Related work. This paper is the full version of an extended abstract [10] presented at FoSSaCS
2016. Besides providing complete proofs of all results, the presentation is significantly more general
than in op. cit.: there we restricted ourselves to base categories D which are varieties of (possibly
ordered) algebras, and the development of the profinite monad and its properties used results from
topology. In contrast, the present paper works with general categoriesD and develops all required
profinite concepts in full categorical abstraction, with topological arguments only appearing in the
verification that our concrete instances satisfy the required categorical properties.

An important application of the Generalized Reiterman Theorem and the profinite monad can
be found in algebraic language theory: we showed that given a category C dually equivalent to
ProDf , the concept of a profinite equational class of finite T-algebras dualizes to the concept of a
variety of T-recognizable languages inC . For instance, forD = Set and ProDf = Stone, the classical
Stone duality yields the category C = BA of boolean algebras, and for the monad T- = - ∗ on Set

the dual correspondence gives Eilenberg’s fundamental variety theorem for regular languages [11].
Using our duality-theoretic approach we established a categorical generalization of Eilenberg’s
theorem and showed that it instantiates to more than a dozen Eilenberg-type results known in the
literature, along with a number of new correspondence results [28]. Let us also mention some of
the very few known instances of Eilenberg-type results not obtained using an application of the
Generalized Reiterman Theorem. The first one is a recent Eilenberg-type correspondence for reg-
ular languages [8], which is based on lattice bimodules, a new algebraic structure for recognition
originally proposed by Polák and Klima [14] under the name lattice algebras. The second result
is our first Eilenberg-type corresponding for nominal languages [29]. Finally, there are Eilenberg-
type correspondences for varieties of non-regular languages; they appear in work of Behle et al. [6]
and as instances of Salamanca’s general framework [24].
Recently, an abstract approach to HSP-type theorems [19] has been developed that not only

provides a common roof over Birkhoff’s and Reiterman’s theorem, but also applies to classes of
algebras with additional underlying structure, such as ordered, quantitative, or nominal algebras.
The characterization of pseudovarieties in terms of pseudoeuqations given in Proposition 3.8 is a
special case of the HSP theorem in op. cit.

2 PROFINITE COMPLETION

In this preliminary section, we review the profinite completion (commonlyknown as pro-completion)
of a category and describe it for the category Σ-Str of structures over a first-order signature Σ.

Remark 2.1. Recall that a category is cofiltered if every finite subcategory has a cone in it. For ex-
ample, every cochain (i.e. a poset dual to an ordinal number) is cofiltered. A cofiltered limit is a limit
of a diagramwith a small cofiltered diagram scheme. A functor is cofinitary if it preserves cofiltered
limits. An object� of a categoryC is calledfinitely copresentable if the functorC (−, �) : C → Setop

is cofinitary. The latter means that for every limit cone 28 : � → �8 (8 ∈ I) of a cofiltered diagram,

(1) each morphism 5 : � → � factorizes through some 28 : � → �8 as 5 = 6 · 28 , and
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4 J. Adámek, L.-T. Chen, S. Milius, and H. Urbat

(2) the morphism 6 : �8 → � is essentially unique, i.e. given another factorization 5 = ℎ · 28 , there
is a connecting morphism 2 98 : � 9 → �8 with 6 · 2 98 = ℎ · 2 98 :

�
5

//

28

��

2 9

~~⑦⑦⑦⑦⑦⑦⑦⑦
�

� 9 2 98
//❴❴❴ �8

6

??⑧⑧⑧⑧⑧⑧⑧⑧ ℎ

??⑧⑧⑧⑧⑧⑧⑧⑧

The dual concept is that of a filtered colimit.

Notation 2.2. (1) The free completion of a categoryC under cofiltered limits, i.e. the pro-completion,
is denoted by

ProC .

This is a category with cofiltered limits together with a full embedding � : C ֌ ProC satisfying
the following universal property:

(1a) Every functor � : C → K into a category K with cofiltered limits admits a cofinitary exten-
sion � : ProC → K , i.e. the triangle below commutes:

C
� //

� ""❊❊❊❊❊❊❊❊ ProC

�
��
✤
✤
✤

K

(1b) The functor � is essentially unique, i.e. for every cofinitary extension � of � there exists a

unique natural isomorphism 8 : �
�

−→ � with 8� = id� .

More precisely, the full embedding � is the pro-completion, but we will often simply refer to ProC
as the pro-completion instead.

(2) Dually, the free completion of C under filtered colimits, i.e. the ind-completion, is denoted by

IndC .

Some standard results on ind- and pro-completions can be found in the Appendix.

Example 2.3. (1) Let Setf be the category of finite sets and functions. Its pro-completion is the
category

Pro Setf = Stone

of Stone spaces, i.e. compact topological spaces in which distinct elements can be separated by
clopen subsets. Morphisms are the continuous functions. The embedding Setf ֌ Stone identifies
finite sets with finite discrete spaces. This is a consequence of the Stone duality [12] between
Stone and the category BA of boolean algebras, and its restriction to finite sets and finite Boolean
algebras. In fact, since BA is a finitary variety, it is the ind-completion of its full subcategory BAf

of finitely presentable objects, which are precisely the finite Boolean algebras. Therefore

Pro Setf = (Ind Setopf )op � (IndBAf)
op
� BAop

� Stone.

(2) For the category of finite posets and monotone functions, denoted by Posf , we obtain the cat-
egory

Pro Posf = Priest

of Priestley spaces, i.e. ordered Stone spaces such that any two distinct elements can be separated by
clopen upper sets. Morphisms in Priest are continuous monotone functions. This follows from the
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Priestley duality [21] between Priest and bounded distributive lattices. The argument is analogous
to item (1): finite, equivalently finitely presentable, distributive lattices dualize to finite posets with
discrete topology.

Notation 2.4 (First-order structures). We will often work with the category

Σ-Str

of Σ-structures and Σ-homomorphisms for a first-order many-sorted signature Σ. Given a set S of
sorts, an S-sorted signature Σ consists of (1) operation symbols f : B1, . . . , B= → B where = ∈ N, the
sorts B8 form the domain of f and B is its codomain, and (2) relation symbols A : B1, . . . , B< where
< ∈ N+

= N \ {0}. A Σ-structure is an S-sorted set

� = (�B)B∈S in SetS

with (1) an operation f� : �B1 × · · · × �B= → �B for every operation symbol f : B1, . . . , B= → B ,
and (2) a relation A� ⊆ �B1 × . . . �B= for every relation symbol A : B1, . . . , B=. A Σ-homomorphism is
an S-sorted function 5 : � → � which preserves operations and relations in the usual sense. We
denote by Σ-Strf the full subcategory of Σ-Str given by all Σ-structures � where each �B is finite.
When S is a singleton, the notion of Σ-structures boils down to a more common situation.

Namely, the arity of an operation symbol is given solely by = ∈ N and that of a relation symbol
by < ∈ N+. A Σ-structure is a set � equipped with an operation f� : �= → � for every =-ary
operation symbol f and with a relation A� ⊆ �< for every<-ary relation symbol A .

Assumption 2.5. Throughout the paper, we assume that every signature has a finite set of sorts
and finitely many relation symbols. There is no restriction on the number of operation symbols.

Remark 2.6. (1) The category Σ-Str is complete with limits created at the level of SetS . More
precisely, consider a diagram � in Σ-Str indexed by I. Let * B : SetS → Set be the projection
sending � to �B , and let

1B8 : �
B → �B8 (8 ∈ I)

form limit cones of the diagrams * B� in Set for every B ∈ S. Then the limit of � is the S-sorted
set � ≔ (�B ), with operations f� : �B1 × · · · × �B= → �B uniquely determined by the requirement
that each 18 : � → �8 preserves f , and with relations A� ⊆ �B1 × · · · ×�B= consisting of all =-tuples
(G1, . . . , G=) that each function 1B18 × · · · ×1

B=
8 maps into A�8 for all 8 ∈ I. The limit cone is given by

(1B8 )B∈S : � → �8 for 8 ∈ I.

(2) The category Σ-Str is also cocomplete. Indeed, let Σop be the subsignature of all operation
symbols in Σ. Then Σop-Str is a monadic category over SetS . Since epimorphisms split in SetS ,
all monadic categories are cocomplete, see e.g. [1]. The category Σ-Str has colimits obtained from
the corresponding colimits in Σop-Str by taking the smallest relations making each of the colimit
injections a Σ-homomorphism.

Notation 2.7. The category of Stone topological Σ-structures and continuous Σ-homomorphisms
is denoted by

Stone(Σ-Str).

A topological Σ-structure is an S-sorted topological space � = (�B ) endowed with a Σ-structure
such that every operation fB : �B1 × · · · × �B= → � is continuous and for every relation symbol A
the relation A� ⊆ �B1 × · · · × �B= is a closed subset.

Remark 2.8. The category Stone(Σ-Str) is complete with limits formed on the level of SetS . This
follows from the construction of limits in StoneS and in Σ-Str. Thus, the forgetful functor from
Stone(Σ-Str) to Σ-Str preserves limits.
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6 J. Adámek, L.-T. Chen, S. Milius, and H. Urbat

The following proposition describes the pro-completion of Σ-Strf . It is a categorical reformula-
tion of results by Pin and Weil [20] on topological Σ-structures, and also appears in Johnstone’s
book [12, Prop. & Rem. VI.2.4] for the special case of single-sorted algebras.We provide a full proof
for the convenience of the reader.

Definition 2.9. A Stone topological Σ-structure is called profinite if it is a cofiltered limit in
Stone(Σ-Str) of finite Σ-structures.

Proposition 2.10. The category Pro(Σ-Strf) is the full subcategory of Stone(Σ-Str) on all profinite

Σ-structures.

Proof. (1) We first observe that cofiltered limits of finite sets in Stone have the following prop-
erty: If 18 : � → �8 (8 ∈ I) is a cofiltered limit cone such that all �8 are finite, then for every 8 ∈ I

there exists a connecting morphism of our diagram ℎ : � 9 → �8 with the same image as 18 :

18 [�] = ℎ[� 9 ] . (2.1)

Since under Stone duality finite Stone spaces dualizes to finite boolean algebras, it suffices to verify
the dual statement about filtered colimits of finite Boolean algebras: if 28 : �8 → � (8 ∈ I) is a
filtered colimit cocone of finite Boolean algebras, then for every 8 there exists a connecting morph-
ism 5 : �8 → � 9 with the same kernel as 28 . But this is clear: given any pair G,~ ∈ �8 merged by 28 ,
there exists a connecting morphism 5 merging G and ~, since filtered colimits are formed on the
level of Set. Due to �8 ×�8 being finite, we can choose one 5 for all such pairs.

(2) The argument is similar for cofiltered limits of finite Σ-structures in Stone(Σ-Str): Consider a
limit cone

18 : � → �8 (8 ∈ I)

of a cofiltered diagram � in Stone(Σ-Str). For every 8 ∈ I, we verify that there is a connecting
morphism ℎ : � 9 → �8 with sorts ℎB for B ∈ S such that

1B8 [�
B] = ℎB [�B9 ] for all B ∈ S, (2.2)

and

1
B1
8 × · · · × 1

B=
8 [A�] = ℎ

B1 × · · · × ℎB= [A�] for all A : B1, . . . , B= in Σ. (2.3)

Indeed, if we only consider (2.2) then the existence of such anℎ follows from (1) by the assumption
that S is finite and that I is cofiltered. For every sort B , we have a cofiltered limit 1B9 : �

B → �B9 in
Stone, thus we can apply (1) and obtain a connecting morphism ℎ : � 9 → �8 . Again, S is finite, so
the choice of ℎ can be made independent of B ∈ S.
Next consider (2.3) for a fixed relation symbol A : B1, . . . , B=. Form the diagram �A in Stone with

the above diagram scheme I and with objects

�A 8 = A�8 (a finite discrete space).

Connecting morphisms are the domain-codomain restrictions of all connecting morphisms � 9
ℎ
−→

�: : since ℎ preserves the relation A , we have

ℎB1 × · · · × ℎB= [A� 9 ] ⊆ A�: ,

and we form the corresponding connecting morphism ℎ : A� 9 → A�: of �A . From the description of
limits in Σ-Str in Remark 2.6 and the fact that limits in Stone(Σ-Str) are preserved by the forgetful
functor into Σ-Str by Remark 2.8 we deduce that the limit of�A in Stone is the space A� ⊆ �B1×· · ·×

�B= and the limit cone A� → A� 9 , 9 ∈ I, is formed by domain-codomain restrictions of 1B19 ×· · ·×1
B=
9

for 9 ∈ I. Apply (1) to this cofiltered limit to find a connecting morphism ℎ : � 9 → �8 of �
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Reiterman’s Theorem on Finite Algebras for a Monad 7

satisfying (2.3) for any chosen relation symbol A of Σ. Since we only have finitely many relation
symbols by Assumption 2.5, we conclude that ℎ can be chosen to satisfy (2.3).

(3) Denote the full subcategory formed by profinite Σ-structures by

L ⊆ Stone(Σ-Str).

In order to prove that L forms the pro-completion of Σ-Strf , we verify the conditions given in
Corollary A.5. By construction, conditions (1) and (2) hold. It remains to prove condition (3): every
finite Σ-structure � is finitely copresentable in L . Hence, consider a limit cone

18 : � → �8 (8 ∈ I)

of a cofiltered diagram � in L . Due to the definition of L , each �8 is a cofiltered limit of finite
structures. Therefore, without loss of generality, we may assume that all �8 are finite. We need to
show that for every homomorphism 5 = (5 B)B∈S : � → � into a finite Σ-structure � = (�B)B∈S ,
there is an essentially unique factorization through some 18 . For every sort B , we have a projec-
tion + B : L → Stone, and the cofiltered diagram + B� has the limit cone 5 B8 : �

B → �B8 (8 ∈ I).
Since each�B is finite, the fact that Stone is the pro-completion of Setf implies that for every sort B
there is 8 ∈ I and an essentially unique factorization of 5 B as follows

�B
5 B

//

1B8
��

�B

�B8

6B

>>⑦⑦⑦⑦⑦⑦⑦⑦

By Assumption 2.5 the set S is finite, so we can choose 8 independent of B and thus obtain a
continuous S-sorted function

6 = (6B) : �8 → � in StoneS

which factorizes 5 , i.e. 5 = 6 · 18 .
Allwe still need to prove is thatwe can choose our 8 and6 so that, moreover,6 is a Σ-homomorphism.

The essential uniqueness of 6 then follows from the corresponding property of 6 in Stone.
Let ℎ : � 9 → �8 be a connecting map satisfying (2.2) and (2.3). Choose 9 in lieu of 8 and 6 = 6 · ℎ

in lieu of 6. We conclude that 6 is a morphism of StoneS factorizing 5 through the limit map 1 9 :

�

1 9

��

5
//

18

  ❆
❆

❆ �

�8

6
??⑧⑧⑧⑧⑧⑧

� 9

ℎ
??⑧⑧⑧⑧⑧⑧AB

CD

6

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

__

Moreover, we prove that 6 is a Σ-homomorphism:

(3a) For every operation symbol f : B1 . . . B= → B in Σ and every =-tuple (G1, . . . , G=) ∈ �
B1
9 ×· · ·×�

B=
9

we have

6B · f� 9 (G1, . . . , G=) = f� (6B1 (G1), . . . , 6
B= (G=)) .
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8 J. Adámek, L.-T. Chen, S. Milius, and H. Urbat

Indeed, choose ~: ∈ �B: with 1B:8 (~: ) = ℎ
B: (G:), : = 1, . . . , =, using (2.2). Then

6B · f� 9 (G1, . . . , G=) = 6
B · ℎB · f� 9 (G1, . . . , G=) 6 = 6 · ℎ

= 6B · f�8 (ℎ
B1 (G1), . . . , ℎ

B= (G=)) ℎ a Σ-homomorphism

= 6B · f�8 (1
B1
8 (~1), . . . , 1

B=
8 (~=)) 1

B:
8 (~: ) = ℎ

B: (G: )

= 6B · 1B8 · f� (~1, . . . ,~=) 18 a Σ-homomorphism

= f� (6
B1 · 1

B1
8 (~1), . . . , 6

B= · 1
B=
8 (~=)) 6 · 18 = 5 a Σ-homomorphism

= f� (6
B1 · ℎB1 (G1), . . . , 6

B= · ℎB= (G=)) 1
B:
8 (~: ) = ℎ

B: (G: )

= f� (6
B1 (G1), . . . , 6

B= (G=)) 6 = 6 · ℎ.

(3b) For every relation symbol A : B1, . . . , B= in Σ, we have that

(G1, . . . , G=) ∈ A� 9 implies (6B1 (G1), . . . , 6
B= (G=)) ∈ A�.

Indeed, using (2.3), we can choose (~1, . . . , ~=) ∈ A� with

(1
B1
8 (~1), . . . , 1

B=
8 (~=)) = (ℎB1 (G1), . . . , ℎ

B= (G=)).

Then the =-tuple

(6B1 (G1), . . . , 6
B= (G=)) = (6B1 · 1B18 (~1), . . . , 6

B= · 1B=8 (~=))

lies in A� because 6 · 18 = 5 is a Σ-homomorphism. �

Notation 2.11. Let D be a full subcategory of Σ-Str. We denote by

StoneD

the full subcategory of Stone(Σ-Str) on all Stone topological Σ-structures whose Σ-structure lies
in D . Moreover, let Df denote the full subcategory of D on all finite objects, i.e. � ∈ Df if each �B

is finite.

Corollary 2.12. Let D be a full subcategory of Σ-Str closed under cofiltered limits. Then ProDf

is the full subcategory of StoneD given by all profinite D-structures, i.e. cofiltered limits of finite

Σ-structures in D .

The proof is completely analogous to that of Proposition 2.10: the only fact we used in that proof
was the description of cofiltered limits in Σ-Str.

Example 2.13. For D = Pos, we get an alternative description of the category Priest of Ex-
ample 2.3(2). For the signature Σ with a single binary relation, Pos is a full subcategory of Σ-Str.
The category Stone(Σ-Str) is that of graphs on Stone spaces. By Corollary 2.12, Pro(Posf) is the
category of all profinite posets, i.e. Stone graphs that are cofiltered limits of finite posets. Note that
every such limit � = (+ , �) is a poset: given G ∈ + we have (G, G) ∈ � because every object of
the given cofiltered diagram has its relation reflexive. Analogously, � is transitive and (since limit
cones are collectively monic) antisymmetric.
Moreover, � is a Priestley space: given G,~ ∈ + with G � ~, then there exists a member 18 : � →

�8 of the limit cone with 18 (G) � 18 (~). Since �8 is finite, and thus carries the discrete topology,
the upper set 1−18 (↑G) is clopen, and it contains G but not ~. Conversely, every Priestley space is a
profinite poset, as shown by Speed [26].

Example 2.14. Johnstone [12, Thm. VI.2.9] proves that for a number of “everyday” varieties of
algebras D , we simply have

ProDf = StoneD .
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This holds for semigroups, monoids, groups, vector spaces, semilattices, distributive lattices, etc.
In contrast, for some important varieties ProDf is a proper subcategory of StoneD , e.g. for the
variety of lattices or the variety of Σ-algebras where Σ consists of a single unary operation.

Remark 2.15. (1) The category Σ-Str has a factorization system (E,M) where E consists of all
surjective Σ-homomorphisms (more precisely, every sort is a surjective function) and M consists
of all injective Σ-homomorphisms reflecting all relations. That is, a Σ-homomorphism 5 : - → .

lies in M iff for every sort B the function 5 B : - B → . B is injective, and for every relation symbol
A : B1, . . . , B= in Σ and every =-tuple (G1, . . . , G=) ∈ - B1 × . . . × - B= one has

(G1, . . . , G=) ∈ A- iff (5 B1 (G1), . . . , 5
B= (G=)) ∈ A. .

The (E,M)-factorization of a Σ-homomorphism 6 : - → / is constructed as follows. Define a
Σ-structure . by . B = 6B [- B] for all sorts B ∈ S, let the operations of . be the domain-codomain
restriction of those of / , and for every relation symbol A : B1, . . . , B= define A. to be the restric-
tion of A/ to . , i.e. A. = A/ ∩ . B1 × . . . × . B= . Then the codomain restriction of 6 is a surjective
Σ-homomorphism 4 : - ։ . , and the embedding < : . ֌ / is a injective Σ-homomorphism
reflecting all relations.

(2) Similarly, the category Stone(Σ-Str) has the factorization system (E,M) where E consists of
all surjective morphisms and M of all relation-reflecting monomorphisms. Indeed, if 5 : - → /

is a continuous Σ-homomorphism, and if its factorization in Σ-Str is given by a Σ-structure . and
Σ-homomorphisms 4 : - ։ . (surjective) and< : . ֌ / (injective and relation-reflecting), then
the Stone topology on . inherited from / yields, due to . = 4 [- ] being closed in / , the desired
factorization in Stone(Σ-Str).

Remark 2.16. Recall that the arrow category A → of a category A has as objects all morphisms
5 : - → . in A . A morphism from 5 : - → . to 6 : * → + in A → is given by a pair of morph-
isms < : - → * and = : . → + in A with = · 5 = 6 ·<. Identities and composition are defined
componentwise. If A has limits of some type, then also A → has these limits, and the two projec-
tion functors from A → to A mapping an arrow to its domain or codomain, respectively, preserve
them.

Lemma 2.17. (1) For every cofiltered diagram � in Setf with epic connecting maps, the limit cone

of � in Stone is formed by epimorphisms.

(2) For every cofiltered diagram � in Stone→ whose objects are epimorphisms in Stone, also lim� is

epic.

Proof. These properties follow easily from standard results about cofiltered limits in the cat-
egory of compact Hausdorff spaces, see e.g. Ribes and Zalesskii [23, Sec. 1]. Here, we give an al-
ternative proof using Stone duality, i.e. we verify that the category BA of boolean algebras satisfies
the statements dual to (1) and (2).
The dual of (1) states that a filtered diagram of finite boolean algebras with monic connecting

maps has a colimit in BA whose colimit maps are monic. This follows from the fact that filtered
colimits in BA are created by the forgetful functor to Set, and that filtered colimits of monics in
Set clearly have the desired property.
Similarly, the dual of (2) states that a filtered colimit of monomorphisms in BA→ is a mono-

morphism, which follows from the corresponding property in Set→. �

3 PSEUDOVARIETIES

In universal algebra, a pseudovariety of Σ-algebras is defined to be a class of finite algebras closed
under finite products, subalgebras, and quotient algebras. In the present section, we introduce an
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10 J. Adámek, L.-T. Chen, S. Milius, and H. Urbat

abstract concept of pseudovariety in a given category D with a specified full subcategory Df . The
objects of Df are called “finite”, but this is just terminology. Our approach follows the footsteps of
Banaschewski and Herrlich [5] who introduced varieties of objects in a category D , and proved
that they are precisely the full subcategories of D presentable by an abstract notion of equation
(see Definition 3.2). Here, we establish a similar result for pseudovarieties: they are precisely the
full subcategories of Df that can be presented by pseudoequations (Proposition 3.8), which are
shown to be equivalent to profinite equations in many examples (Theorem 3.23).

Assumption 3.1. For the rest of our paper, we fix a complete category D with a proper factor-
ization system (E,M), that is, all morphisms in E are epic and all morphisms in M are monic.
Quotients and subobjects in D are represented by morphisms in E and M, respectively, and de-
noted by ։ and֌. Moreover, we fix a small full subcategory Df whose objects are called the
finite objects of D , and denote by Ef and Mf the morphisms of Df in E or M, respectively. We
assume that

(1) the category Df is closed under finite limits and subobjects, and

(2) every object of Df is a quotient of some projective object of D .

Here, recall that an object - is called projective (more precisely, E-projective) if for every quotient
4 : % ։ % ′ and every morphism 5 : - → % ′ there exists a morphism 6 : - → % with 4 · 6 = 5 .

Definition 3.2 (Banaschewski and Herrlich [5]). (1) A variety is a full subcategory of D closed
under products, subobjects, and quotients.

(2) An equation is a quotient 4 : - ։ � of a projective object - . An object � is said to satisfy the
equation 4 provided that � is injective w.r.t. 4 , that is, if for every morphism 6 : - → � there exists
a morphism ℎ : � → � making the triangle below commute:

-

4

����☞☞☞☞☞☞
6

��
✷✷✷✷✷✷

�
ℎ

//❴❴❴❴ �

We note that Banaschewski and Herrlich worked with the factorization system of regular epi-
morphisms and monomorphisms. However, all their results and proofs apply to general proper
factorization systems, as already pointed out in their paper [5].

Example 3.3. Let Σ be a one-sorted signature of operation symbols. If D = Σ-Alg is the category
of Σ-algebras with its usual factorization system (E = surjective homomorphisms andM = inject-
ive homomorphisms), then the above definition of a variety gives the usual concept in universal
algebra: a class of Σ-algebras closed under product algebras, subalgebras, and homomorphic im-
ages. Moreover, equations in the above categorical sense are expressively equivalent to equations
C = C ′ between Σ-terms in the usual sense:

(1) Given a term equation C = C ′, where C, C ′ ∈ )Σ-0 are taken from the free algebra of all Σ-terms in
the set -0 of variables, let ∼ denote the least congruence on )Σ-0 with C ∼ C ′. The corresponding
quotient morphism 4 : )Σ-0 ։ )Σ-0/∼ is a categorical equation satisfied by precisely those Σ-
algebras that satisfy C = C ′ in the usual sense.

(2) Conversely, given a projective Σ-algebra- and a surjective homomorphism 4 : - ։ �, then for
any set -0 of generators of - we have a split epimorphism @ : )Σ-0 ։ - using the projectivity of
- . Consider the set of term equations C = C ′ where (C, C ′) ranges over the kernel of 4 ·@ : )Σ-0 ։ �.
Then a Σ-algebra � satisfies all these equations iff it satisfies 4 in the categorical sense.
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Recall that the category D is E-co-well-powered if for every object - of D the quotients with
domain - form a small set.

Theorem 3.4 (Banaschewski and Herrlich [5]). Let D be a category with a proper factorization

system (E,M). Suppose that D is complete, E-co-well-powered, and has enough projectives, i.e. every

object is a quotient of a projective one. Then, a full subcategory of D is a variety iff it can be presented

by a class of equations. That is, it consists of precisely those objects satifying each of these equations.

Note that the category of Σ-algebras satisfies all conditions of the theorem. Thus, in view of
Example 3.3, Banaschewski and Herrlich’s result subsumes Birkhoff’s HSP theorem [7]. In the
following, we are going to move from varieties in D to pseudovarieties in Df .

Definition 3.5. A pseudovariety is a full subcategory of Df closed under finite products, subob-
jects, and quotients.

Remark 3.6. Quotients of an object - are ordered by factorization: given E-quotients 41, 42, we
put 41 ≤ 42 if 41 factorizes through 42

-

41

����☛☛☛☛☛☛
42

�� ��
✸✸✸✸✸✸

�1 �2oo❴ ❴ ❴ ❴

Every pair of quotients 48 : - ։ �8 has a least upper bound, or join, 41 ∨ 42 obtained by (E,M)-
factorizing the mediating morphism 〈41, 42〉 : - → �1 × �2 as follows:

-

48
����

41∨42 // //

〈41,42 〉
❑❑❑❑❑

%%❑❑❑❑

�
��

��

�8 �1 × �2.c8
oo

(3.1)

A nonempty collection of quotients closed under joins is called a semilattice of quotients.

Definition 3.7. A pseudoequation is a semilattice d- of quotients of a projective object - (of
“variables”). A finite object � of D satisfies d- if � is cone-injective w.r.t. d- , that is, for every
morphism ℎ : - → �, there exists a member 4 : - ։ � of d- through which ℎ factorizes:

-

∃4

����☞☞☞☞☞☞
∀ℎ

��
✷✷✷✷✷✷

�
∃ //❴❴❴❴ �

Proposition 3.8. A collection of finite objects of D forms a pseudovariety iff it can be presented by

pseudoequations, i.e. it consists of precisely those finite objects that satisfy each of the given pseudo-

equations.

Proof. (1) We first prove the if direction. Since the intersection of a family of pseudovarieties
is a pseudovariety, it suffices to prove that for every pseudoequation d- over a projective object
- , the class V of all finite objects satisfying d- forms a pseudovariety, i.e. is closed under finite
products, subobjects, and quotients.

(1a) Finite products. Let�, � ∈ V . Since� and � satisfy d- , for every morphism 〈ℎ, :〉 : - → �×�

there exists 4 : - ։ � in d- such that both ℎ : - → � and : : - → � factorize through 4 – this
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follows from the closedness of pseudoequations under binary joins. Given ℎ = 4 ·ℎ′ and : = 4 · : ′,
then 〈ℎ′, : ′〉 : - → �8 is the desired factorization:

〈ℎ, :〉 = 4 · 〈ℎ′, : ′〉.

Thus � × � ∈ V . Since the terminal object 1 clearly satisfies every pseudoequation, we also have
1 ∈ V .

(1b) Subobjects. Let < : � ֌ � be a morphism in Mf with � ∈ V . Then for every morphism
ℎ : - → � we know that< ·ℎ factorizes as 4 ·: for some 4 : - ։ � in d- and some : : � → �. The
diagonal fill-in property then shows that ℎ factorizes through 4:

-

ℎ

��

4 // // �

:

����⑧
⑧

⑧
⑧

� //
<

// �

Thus, � ∈ V .

(1c) Quotients. Let @ : � ։ � be a morphism in Ef with � ∈ V . Every morphism ℎ : - → �

factorizes, since - is projective, as

ℎ = @ · : for some : : - → �

Since : factorizes through some 4 ∈ d- , so does ℎ. Thus, � ∈ V .

(2) For the “only if” direction, suppose that V is a pseudovariety. For every projective object -
we form the pseudoequation d- consisting of all quotients 4 : - ։ � with � ∈ V . This is indeed a
semilattice: given 4, 5 ∈ d- we have 4∨ 5 ∈ d- by (3.1), using that V is closed under finite products
and subobjects. We claim that V is presented by the collection of all the above pseudoequations
d- .

(2a) Every object � ∈ V satisfies all d- . Indeed, given a morphism ℎ : - → �, factorize it as
4 : - ։ � in E followed by< : � ֌ � in M. Then � ∈ V because V is closed under subobjects,
so 4 is a member of d- . Thereforeℎ =< ·4 is the desired factorization of ℎ, proving that� satisfies
d- .

(2b) Every finite object � satisfying all the pseudoequations d- lies in V . Indeed, by Assump-
tion 3.1 there exists a quotient @ : - ։ � for some projective object - . Since � satisfies d- , there
exists a factorization @ = ℎ · 4 for some 4 : - ։ � in d- and some ℎ : � → �. We know that � ∈ V ,
and from @ ∈ E we deduce ℎ ∈ E. Thus �, being a quotient of an object of V , lies in V . �

Remark 3.9. (1) Proposition 3.8 would remain valid if we defined pseudoequations as semilat-
tices of finite quotients of a projective object. This follows immediately from the above proof.

(2) Let us assume that a collection Var of projective objects of D is given such that every finite
object is a quotient of an object of Var (cf. Assumption 3.1(2)). Then we could define pseudoequa-
tions as semilattices of quotients of members of Var with finite codomains. Again, from the above
proof we see that Proposition 3.8 would remain true.

We would like to reduce pseudoequations to equations in the sense of Banaschewski and Herr-
lich. For that we need to move from the category D to the pro-completion of Df .

Notation 3.10. Since D has (cofiltered) limits and ProDf is the free completion of Df under
cofiltered limits, the embedding Df ֌ D extends to an essentially unique cofinitary functor

+ : ProDf → D .
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Example 3.11. IfD is a full subcategory of Σ-Str closed under cofiltered limits, we have seen that
ProDf can be described as a full subcategory of StoneD by Corollary 2.12. The above functor

+ : ProDf → D

is the functor forgetting the topology. Indeed, the corresponding forgetful functor from Stone(Σ-Str)
to Σ-Str is cofinitary, hence, so is + .

Remark 3.12. Recall, e.g. fromMac Lane [17], that the right Kan extension of a functor � : A → C
along  : A → B is a functor ' = Ran � : B → C with a universal natural transformation
Y : ' → � , that is, for every functor � : B → C and every natural transformation W : � → �

there exists a unique natural transformation W† : � → ' with W = Y · W† . If A is small and C is
complete, then the right Kan extension exists [17, TheoremX.3.1, X.4.1], and the object'� (� ∈ B)
can be constructed as the limit

'� = lim(�/ 
&�
−−→ A

�
−→ C ),

where �/ denotes the slice category of all morphisms 5 : � →  � (� ∈ A ) and &� is the
projection functor 5 ↦→ �. Equivalently, '� is given by the end

'� =

∫

�∈A

B(�, �) ⋔ ��,

with ( ⋔ � denoting (-fold power of � ∈ C .

Lemma 3.13. The functor + has a left adjoint

(̂−) = Ran� � : D → ProDf

given by the right Kan extension of the embedding � : Df ֌ ProDf along the embedding � : Df ֌ D
and making the following triangle commute up to isomorphism:

Df
//

�
//

""

�
""❋❋❋❋❋❋❋❋ D

(̂−)||②②②②②②②②②

ProDf

Proof. Recall that, up to equivalence, ProDf is the full subcategory of [Df, Set]
op on cofiltered

limits of representables with �� = Df (�,−) for every � ∈ Df (see Remark A.6), and the functor
+ is given by

+ = Ran� � : ProDf → D .
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Consider the following chain of isomorphisms natural in � ∈ D and � ∈ ProDf :

D (�,+� ) � D (�, (Ran� � )� )

� D

(
�,

∫

-

ProDf (�, �- ) ⋔ �-

)
by the end formula for Ran,

= D

(
�,

∫

-

[Df , Set] (�-,� ) ⋔ �-

)
ProDf full subcategory of [Df, Set]

op,

� D

(
�,

∫

-

�- ⋔ �-

)
by the Yoneda lemma,

�

∫

-

D (�,�- ⋔ �- ) D (�,−) preserves ends,

�

∫

-

Set(�-,D (�, �- )) by the universal property of power,

� [Df , Set] (�,D (�, �−)) the set of natural transf. as an end,

= ProDf (D (�, �−), � ) ProDf full subcategory of [Df, Set]
op.

Hence, the functor (̂−) : � ↦→ D (�, �−) is a left adjoint to + . Moreover, (̂−) extends �: for each
� ∈ Df , we have

�̂ = D (��, �−) = Df (�,−) = ��,

and similarly on morphisms, since � is a full inclusion. It remains to verify that the functor (̂−)
coincides with Ran� �. This follows from the fact that every presheaf is a canonical colimit of
representables expressed as a coend in [Df , Set]:

D (�, �−) �

∫ -

D (�, �- ) • �-,

with • denoting copowers. This corresponds to an end in [Df , Set]
op:

∫

-

D (�, �- ) ⋔ �- = (Ran� �)�.

Thus (̂−) = Ran� �, as claimed. �

Construction 3.14. By expressing the right Kan extension

(̂−) = Ran� � : D → ProDf

as a limit, the action � → �̂ on objects, 5 ↦→ 5̂ on morphisms, the unit, and the counit of the

adjunction (̂−) ⊣ + are given as follows.

(1) For every object � of D , the object �̂ ∈ ProDf is a limit of the diagram

%� : �/Df → ProDf, %� (�
0
−→ �) = �.

We use the following notation for the limit cone of %� :

�
0
−→ �

�̂
0̂
−→ �

where (�,0) ranges over �/Df . For finite � we choose the trivial limit: �̂ = � and 0̂ = 0.
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(2) Given 5 : � → � ′ in D , the morphisms 0̂ · 5 with 0 ranging over � ′/Df form a cone over %�′ .

Define 5̂ : �̂ → �̂ ′ to be the unique morphism such that the following triangles commute for all
0 : � ′ → � with � ∈ Df :

�̂
5̂

//

0̂ ·5
��

✶✶✶✶✶✶ �̂ ′

0̂
��☛☛☛☛☛☛☛

�

Note that overloading the notation (̂−) causes no problem because if �̂ ′ = � ′ ∈ Df then 5̂ is a
projection of the limit cone for %� (see item (1)), since for 0 = id�′ we have 0̂ = id�′ .

(3) The unit [ at � ∈ D is given by the unique morphism

[� : � → +�̂

in D such that the following triangles commute for all ℎ : � → � with � ∈ Df :

�
[�

//

ℎ
  

❆❆❆❆❆❆❆❆ +�̂

+ℎ̂
��

�

Here one uses that + is cofinitary, and thus the morphisms+ℎ̂ form a limit cone in D .

(4) The counit Y at � ∈ ProDf is the unique morphism

Y� : +̂� → �

in D̂ such that the following triangles commute, where 0 : � → � ranges over the slice category
�/Df :

+̂�
Y� //

+̂ 0
��

✹✹✹✹✹✹✹ �

0
��✌✌✌✌✌✌

�

Notation 3.15. Recall that Ef and Mf are the morphisms of Df in E and M, respectively. We
denote by

Ê and M̂

the collection of all morphisms of ProDf that are cofiltered limits of members of Ef or Mf in the
arrow category (ProDf)

→, respectively.

Remark 3.16. (1) Let us recall that a functor % : J → J ′ is final if

(a) for every object � ′ of J ′ a morphism from � ′ into % � exists for some � ∈ J ;

(b) given two morphisms 58 : � ′ → % �8 (8 = 1, 2) there exist morphisms 68 : �8 → � in J with
%61 · 51 = %62 · 52.

Finality of % implies that for every diagram� : J ′ → K one has colim� = colim� ·% whenever
one of the colimits exists. The dual concept is that of an initial functor % : J → J ′.

(2) For every finite E-quotient 4 : - ։ � inD , the corresponding limit projection 4̂ : -̂ ։ � lies in

Ê. Indeed, since � is finitely copresentable in ProDf , the morphism 4̂ factorizes through ℎ̂ for some
ℎ in -/Df , which can be assumed to be a quotient in D . Otherwise, take the (E,M)-factorization
ℎ =< · @ of ℎ and replace ℎ by @.
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Thus, we obtain an initial subdiagram % ′- : I → ProDf of %- : -/Df → ProDf by restricting
%- to the full subcategory of finite quotients ℎ : - ։ � in -/Df through which 4 factorizes,
i.e. where 4 = 4ℎ · ℎ for some 4ℎ : � → �. Note that 4ℎ ∈ E because 4,ℎ ∈ E. The quotients 4ℎ
(ℎ ∈ I ) form a cofiltered diagram in (ProDf)

→ with limit cone (ℎ̂, id�):

-̂

ℎ̂
��

4̂ // �

id4
��

�
4ℎ

// // �

Thus, 4̂ ∈ Ê.

(3) For every cofiltered diagram � : � → Df with connecting morphisms in E, the limit projections
in ProDf lie in Ê. Indeed, let 18 : - → �8 (8 ∈ � ) denote the limit cone. Given 9 ∈ � , we are to show
1 9 ∈ Ê. Form the diagram in D→

f whose objects are all connecting morphisms of � with codomain
� 9 and whose morphisms from ℎ : �8 ։ � 9 to ℎ′ : �8′ ։ � 9 are all connecting maps : : �8 ։ �8′ of
�. This is a cofiltered diagram in ProDf with limit 1 9 and the following limit cone:

-

18

��

1 9
// � 9

id

��

�8
ℎ

// // � 9

Since each ℎ lies in Ef , this proves 1 9 ∈ Ê.

(4) For every cone ?8 : % → �8 of the diagram � in (3) with ?8 ∈ Ê for all 8 ∈ � , the unique
factorization ? : % → - through the limit of � lies in Ê. Indeed, ? is the limit of ?8 , 8 ∈ � , with the
following limit cone:

%

id
��

?
// -

18

��

%
?8

// �8

Proposition 3.17. The pair (Ê, M̂) is a proper factorization system of ProDf .

Proof. (1) All morphisms of Ê are epic. This follows from the dual of [3, Prop. 1.62]; however,

we give a direct proof. Given 4 : - → . in Ê, we have a limit cone of a cofiltered diagram � in
(ProDf)

→ as follows:

-
4 //

08

��

.

18

��

�8 48
// // �8

(8 ∈ � )

where 48 ∈ Ef for each 8 ∈ � . Let ?,@ : . → / be two morphisms with ? · 4 = @ · 4; we need to
show ? = @. Without loss of generality we can assume that the object / is finite because Df is
limit-dense in ProDf . Since (18) is a cofiltered limit cone in ProDf , there exists 8 ∈ � such that ?
and @ factorize through 18 , i.e. there exists morphisms ? ′, @′ with ? ′ ·18 = ? and @′ ·18 = @. The limit
projection 08 of the cofiltered limit - = lim�8 in ProDf merges ? ′ · 48 and @′ · 48 (since 4 merges
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? and @). Since / is finite, there exists a connecting morphism (0 98 , 1 98) of � such that ? ′ · 48 and
@′ · 48 are merged by 0 98 .

-

0 9

��

4 //

08

��

.

18

��

?
//

@
// /

�8 48
// //

48
// // �8

?′

LL

@′

LL

� 9

0 98

BB✆✆✆✆✆✆✆✆✆

4 9
// // � 9

1 98

\\✾✾✾✾✾✾✾✾✾

Therefore

? ′ · 1 98 · 4 9 = ?
′ · 48 · 0 98 = @

′ · 48 · 0 98 = @
′ · 1 98 · 4 9 .

Since 4 9 is an epimorphism in Df , this implies ? ′ · 1 98 = @′ · 1 98 . Thus

? = ? ′ · 18 = ?
′ · 1 98 · 1 9 = @

′ · 1 98 · 1 9 = @
′ · 18 = @.

(2) All morphisms of M̂ are monic. Indeed, given < : - → . in M̂, we have a limit cone of a
cofiltered diagram � in (ProDf)

→ as follows:

-
< //

08

��

.

18

��

�8 //
<8

// �8

(8 ∈ � )

where<8 ∈ Mf for each 8 ∈ � . Suppose that 5 , 6 : / → - with< · 5 = < · 6 are given. Express /
as a cofiltered limit I 9 : / ։ / 9 ( 9 ∈ � ) of finite objects with epimorphic limit projections I 9 . For
each 8 ∈ � , since �8 is finitely copresentable, we obtain a factorization of 08 · 5 and 08 · 6 through
some I 98 , say 58 · I 98 = 5 and 68 · I 98 = 6.

/
5

//

6
//

I 98
����

-
< //

08

��

.

18

��

/ 98

58
//

68
// �8 //

<8

// �8

From< · 5 = < · 6 it follows that<8 · 58 · I 98 = <8 · 68 · I 98 for each 8 . This implies<8 · 58 =<8 · 68
because I 98 is epic, and thus 58 = 68 because<8 is monic in Df . Therefore, 08 · 5 = 08 · 6 for each 8 ,
thus 5 = 6 because the limit projections 08 are collectively monic.

(3) Every morphism 6 : - → . of ProDf has an (Ê, M̂)-factorization. Indeed, (ProDf)
→ is the

pro-completion of D→
f ; see [3, Cor. 1.54] for the dual statement. Thus, there exists a cofiltered

diagram ' : � → D→
f with limit 6. Let the following morphisms

-

08

��

6
// .

18

��

�8 68
// �8

(8 ∈ � )
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18 J. Adámek, L.-T. Chen, S. Milius, and H. Urbat

form the limit cone. Factorize68 into an E-morphism 48 : �8 ։ �8 and followed by anM-morphism
<8 : �8 ֌ �8 . Since Df is closed under subobjects, we have 48 ∈ Ef and<8 ∈ Mf . Diagonal fill-in
yields a diagram ' : � → Df with objects �8 , 8 ∈ � , and connecting morphisms derived from those
of '. Let / ∈ ProDf be a limit of ' with the limit cone

28 : / → �8 (8 ∈ � ).

Then there are unique morphisms 4 = lim 48 ∈ Ê, and< = lim<8 ∈ M̂ such that the following
diagrams commute for all 8 ∈ � :

-

08

��

6
//

4 $$■■■■■■■ .

18

��

/
<

::✉✉✉✉✉✉✉

28
��

�8 48
// // �8 //

<8

// �8

(4) We verify the diagonal fill-in property. Let a commutative square

-
4 //

D

��

.

E

��

%
<

// &

with 4 ∈ Ê and< ∈ M̂ be given.

(4a) Assume first that< ∈ Mf . Express 4 as a cofiltered limit of objects 48 ∈ Ef with the following
limit cone:

-
4 //

08

��

.

18

��

�8 48
// �8

Since % is finite and - = lim�8 is a cofiltered limit, D factorizes through some 08 . Analogously for
E and some 18 ; the index 8 can be chosen to be the same since the diagram is cofiltered. Thus we
have morphismsD ′, E ′ such that in the following diagram the left-hand triangle and the right-hand
one commute:

-
4 //GF

@A

D

//

08

��

. ED

BC

E

//

18

��

�8

D′

��

48 // // �8

E′

��

%
<

// &

Without loss of generality, we can assume that the lower part also commutes. Indeed, & is finite
and the limit map 08 merges the lower part:

(< · D ′) · 08 =< · D = E · 4 = E ′ · 18 · 4 = (E ′ · 48 ) · 08 .

Since our diagram is cofiltered, some connecting morphism from � 9 to �8 also merges the lower
part. Hence, by choosing 9 instead of 8 we could get the lower part commutative.
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Since 48 ∈ E and< ∈ M, we use diagonal fill-in to get a morphism 3 : �8 → % with 3 · 48 = D
′

and< · 3 = E ′. Then 3 · 18 : . → % is the desired diagonal in the original square.

(4b) Now suppose that< ∈ M̂ is arbitrary, i.e. a cofiltered limit a diagram � whose objects are
morphisms<C of Mf with a limit cone as follows:

%
< //

?C

��

&

@C

��

%C //
<C

// &C

(C ∈ ) )

For each C we have, due to item (4a) above, a diagonal fill-in

-
4 //

D

��

.

E

��

3C

✍✍✍✍✍✍

��✍✍✍✍✍✍
%

?C

��

&

@C

��

%C //
<C

// &C

Given a connecting morphism (?, @) : <C →<B (C, B ∈ ) ) of the diagram � , the following triangle

.

3C

��✞✞✞✞✞✞✞
3B

��
✼✼✼✼✼✼✼

%C ?
// %B

commutes, that is, all 3C form a cone of the diagram �0 · � , where �0 : D→
f → Df is the domain

functor, with limit ?C : % → %C (C ∈ ) ). Indeed, 4 is epic by item (1), and from the fact that ?B = ? ·?C
we obtain

(? · 3C ) · 4 = ? · ?C · D = ?B · D = 3B · 4.

Thus, there exists a unique 3 : . → % with 3C = ?C · 3 for all C ∈ ) . This is the desired diagonal:
D = 3 · 4 follows from (?C )C ∈) being collectively monic, since

?C · D = 3C · 4 = ?C · 3 · 4. �

This implies E = 3 ·< because E · 4 =< · D =< · 3 · 4 and 4 is epic.

Proposition 3.18. Let D be a full subcategory of Σ-Str closed under products and subobjects. Then

in ProDf ⊆ StoneD we have

Ê = surjective morphisms, and

M̂ = relation-reflecting injective morphisms,

cf. Remark 2.15(2).

Proof. (1) Let 4 : - → . be a surjective morphism of ProDf . We shall prove that 4 ∈ Ê by
expressing it as a cofiltered limit of a diagram of quotients in D→

f . In StoneD we have the fac-
torization system (E0,M0) where E0 = surjective homomorphisms, and M0 = injective relation-
reflecting homomorphisms. This follows from Remark 2.15 and the fact thatD , being closed under
subobjects in Σ-Str, inherits the factorization system Σ-Str.
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The category D is closed under products and subobjects, so it is closed under all limits. Since
ProDf is the closure ofDf under cofiltered limits in Stone(D) by Corollary 2.12, also (ProDf)

→
=

Pro(D→
f ) is the closure of D→

f under cofiltered limits in (StoneD)→. Thus for 4 there exists a
cofiltered diagram� inD→

f ofmorphismsℎ8 : �8 → �8 (8 ∈ � ) ofDf with a limit cone in (StoneD)→

as follows:

-
4 //

08

��

.

18

��

�8
ℎ8

// �8

Using the factorization system (E0,M0) we factorize

08 =<8 · 08 and 18 = =8 · 18 for 8 ∈ � ,

and use the diagonal fill-in to define morphisms ℎ8 as follows:

-
4 // //

08
����

.

18����

�8
ℎ8 //❴❴❴

��

<8

��

�8
��

=8

��

�8
ℎ8

// �8

We obtain a diagram � with objects ℎ8 : �8 → �8 (8 ∈ � ) in (StoneD)→. Connecting morphisms
are derived from those of � : given (?,@) : ℎ8 → ℎ 9 in �

�8
ℎ8 //

?

��

�8

@

��

� 9
ℎ 9

// � 9

the diagonal fill-in property yields morphisms ? and @ as follows:

-

0 9

��

08 // // �8
<8
��

?

��✠
✠

✠
✠

✠
✠

�8

?
��

� 9 //
< 9

// � 9

.

0 9

��

18 // // �8

=8
��

@

��✡
✡

✡
✡

✡
✡

�8

@
��

� 9 //
= 9

// � 9

It is easy to see that (?,@) is a morphism from ℎ8 to ℎ 9 in (StoneD)→. This yields a cofiltered

diagram � . Since ℎ8 · 08 = 18 · 4 is surjective, it follows that ℎ8 is also surjective. We claim that the
morphisms

(08 , 18) : 4 → ℎ8 (8 ∈ � )

form a limit cone of � . To see this, note first that since the morphisms (08 , 18) : 4 → ℎ8 , 8 ∈ � , form
a cone of � and all<8 and =8 are monic, the morphisms (08 , 18 ), 8 ∈ � , form a cone of � . Now let
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another cone be given with domain A : * → + as follows:

*
A //

D8 ��

+

E8��

�8
��

<8
��

ℎ8 // �8
��
=8
��

�8
ℎ8

// �8

Then we get a cone of � for all 8 ∈ � by the morphisms (<8D8 , =8E8 ) : A → ℎ8 . The unique factoriza-
tion (D, E) through the limit cone of � :

*
A //

D
��

?>

89
<8D8

✥
✥
✥
✥
✥
✥
✥

00

+

E
��

ED

BC
=8E8

oo

-
4 //

08
��

.

18
��

�8
ℎ8

// �8

is a factorization of (D8 , E8 ) through the cone (08, 18 ). Indeed, in the following diagram

*
A //

D
��

?>

89
D8

✥✥
✥✥
✥✥
✥✥

00

+

E
��

-
4 //

08 ��

.

18��

�8
<8

��

ℎ8 // �8
=8
��

BC
oo

ED
E8

�8
ℎ8

// �8

the desired equality E8 = 18E follows since =8 is monic; analogously for D8 = 08D. The uniqueness
of the factorization (D, E) also follows from the last diagram: if the upper left-hand and right-hand
parts commute, then (D, E) is a factorization of the cone (<8D8 , =8E8) through the limit cone of � .
Thus, it is unique.

(2) Conversely, every cofiltered limit of quotients in D→
f is surjective in ProDf . Indeed, cofiltered

limits in ProDf are formed in Stone(Σ-Str) by Corollary 2.12, and the forgetful functor into Stone
thus preserves them. Hence the same is true about the forgetful functor from (ProDf)

→ to Stone→.
Thus, the claim follows from Lemma 2.17.

(3) We show that every morphism of ProDf which is monic and reflects relations is an element of

M̂.

(3a) We first prove a property of filtered colimits in BA→. Let � be a filtered diagram with objects
ℎ8 : �8 → �8 (8 ∈ � ) in BA→. Let ℎ8 = <8 · 48 be the factorization of ℎ8 into an epimorphism
48 : �8 ։ �8 followed by a monomorphism <8 : �8 ֌ �8 in BA. Using diagonal fill-in we get a
filtered diagram � with objects 48 (8 ∈ � ) and with connecting morphisms (D, E) : 48 → 4 9 derived
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from the connecting morphisms (D, E) : ℎ8 → ℎ 9 of � using diagonal fill-in:

�8
ℎ8 //

D

��

48

�� ��
❅❅❅❅❅❅❅❅ �8

E

��

�8

E
��

??

<8

??⑧⑧⑧⑧⑧⑧⑧⑧

� 9
��

< 9

��
❃❃❃❃❃❃❃❃

� 9

4 9
?? ??��������

ℎ 9

// � 9

Our claim is that if the colimit ℎ = colimℎ8 in BA→ is an epimorphism of BA, then one has
ℎ = colim 48 . To see this, suppose that a colimit cocone of � is given as follows:

�8
48

�� ��
❄❄❄❄❄❄❄❄
ℎ8 //

08

��

�8

18

��

�8
??

<8

??�������

�
ℎ

// �

Then we prove that � has the colimit cocone (08 , 18 ·<8 ), 8 ∈ � . Indeed, since � = colim�8 with
colimit cocone (08 ), all we need to verify is that � = colim�8 with cocone (18 ·<8). This cocone is
collectively epic because every element G of � has the form G = ℎ(~) for some ~ ∈ �, using that ℎ
is epic by hypothesis, and that the cocone (08 ) is collectively epic. The diagram � is filtered, thus,
to prove that � = colim�8 , we only need to verify that whenever a pair G1, G2 ∈ �8 (for some 8 ∈ � )
is merged by 18 ·<8 , there exists a connecting morphism E : �8 → � 9 merging G1, G2. Since<8 is
monic and � = colim�8 , some connecting morphism E : �8 → � 9 merges<8 (G1) and<8 (G2). Then

< 9 · E (G1) = E ·<8 (G1) = E ·<8 (G2) =< 9 · E (G2),

whence E (G1) = E (G2) because< 9 is monic.

(3b) Denote by, : Stone(Σ-Str) → SetS the forgetful functor mapping a Stone-topological Σ-
structure to its underlying sorted set. Moreover, letting Σrel ⊆ Σ denote the set of all relation
symbols in Σ, we have the forgetful functors

,A : Stone(Σ-Str) → Set (A ∈ Σrel)

assigning to every object� the corresponding subset A� ⊆ �B1 × · · · ×�B= . From the description of
limits in Σ-Str in Remark 2.6, it follows that the functors, and,A (A ∈ Σrel) collectively preserve
and reflect limits. That is, given a diagram � in Stone(Σ-Str), a cocone of � is a limit cone if and
only if its image under, is a limit cone of, · � and its image under,A is a limit cone of,A · �

for all A ∈ Σrel.
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(3c) We are ready to prove that if ℎ : � → � in ProDf is a relation-reflecting monomorphism,

then ℎ ∈ M̂. We have a cofiltered diagram � in D→
f with objects ℎ8 : �8 → �8 and a limit cone

(08 , 18) : ℎ8 → ℎ (8 ∈ � ). Let ℎ8 =<8 · 48 be the image factorization in Σ-Str.

�
ℎ //

08

��

�

18

��

�8 [AA ] 48
// //

ℎ8

;;
�8 // <8

// �8

It is our goal to prove that ℎ = lim8 ∈� <8 . More precisely: we have<8 in D→
f and diagonal fill-in

yields a cofiltered diagram � of these objects in D→
f . We will prove that (48 ·08 , 18) : ℎ →<8 (8 ∈ � )

is a limit cone. By part (3b) above it suffices to show that the images of that cone under,→ and
,→
A (A ∈ Σrel) are limit cones.
For ,→ just dualize (3a): from the fact that ,ℎ = lim,ℎ8 we derive ,ℎ = lim,<8 . We

need to show that ,A preserves the limit of the diagram of all <8 ’s. Given A : B1, . . . , B= in Σrel,
we know that A� consists of the =-tuples (G1, . . . , G=) with (08 (G1), . . . , 08 (G=)) ∈ A�8 for every
8 ∈ � (see Remark 2.6). In particular, for (G1, . . . , G=) ∈ A� we have (48 · 08 (G1), . . . , 48 · 08 (G=)) ∈ A�8

.
Conversely, given (G1, . . . , G=) with the latter property, then (<8 ·48 ·08 (G1), . . . ,<8 ·48 ·08 (G=)) ∈ A�8 ,
i.e. (18 ·ℎ(G1), . . . , 18 ·ℎ(G=)) ∈ A�8 for all 8 ∈ � . Since � = lim�8 , this implies (ℎ(G1), . . . , ℎ(G=)) ∈ A� ,
whence (G1, . . . , G=) ∈ A� because ℎ is relation-reflecting.

(4) It remains to prove that every morphism< ∈ M̂ is a relation-reflecting monomorphism. Let a
cofiltered limit cone be given as follows:

�
< //

08

��

�

18

��

�8 //
<8

// �8

(8 ∈ � )

where each<8 lies inMf , i.e. is a relation-reflecting monomorphism inDf . Then< is monic: given
G ≠ ~ in �, there exists 8 ∈ � with 08 (G) ≠ 08 (~) because the limit projections 08 are collectively
monic. Since<8 is monic, this implies 18 ·<(G) ≠ 18 ·<(~), whence<(G) ≠<(~).
Moreover, for every relation symbol A : B1, . . . , B= in Σ and (G1, . . . , G=) ∈ �

B1 × · · · ×�B= , we have
that

(G1, . . . , G=) ∈ A� iff (<(G1), . . . ,<(G=)) ∈ A� .

Indeed, the only if direction follows from the fact that the maps<8 · 08 preserve relations and the
maps 18 collectively reflect them. For the if direction, suppose that (<(G1), . . . <(G=)) ∈ A� . Since
for every 8 ∈ � themorphism18 preserves relations and<8 reflects them,we get (08 (G1), . . . , 08 (G=)) ∈
A�8 for every 8 . Since the maps 08 collectively reflect relations, this implies (G1, . . . , G=) ∈ A�. �

We now introduce the crucial property of factorization systems needed for our main result.
Actually it only concerns the class E of quotients and asserts it to be well-behaved with respect to
cofiltered limits.

Definition 3.19. The factorization system (E,M) of D is called profinite if E is closed in D→

under cofiltered limits of finite quotients; that is, for every cofiltered diagram � in D→ whose
objects are elements of Ef , the limit of � in D→ lies in E.
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Example 3.20. For every full subcategory D ⊆ Σ-Str closed under limits and subobjects, the fac-
torization system of surjective morphisms and relation-reflecting injective morphisms is profinite.
This follows from Lemma 2.17 and the fact that limits in D are formed at the level of underlying
sets (see Remark 2.6).

Proposition 3.21. If the factorization system (E,M) of D is profinite, the following holds:

(1) The forgetful functor + : ProDf → D is faithful and satisfies + (Ê) ⊆ E.

(2) For every E-projective object - ∈ D , the object -̂ ∈ D̂ is Ê-projective.

(3) Every object of Df is an Ê-quotient of some Ê-projective object in ProDf .

Proof. (1) + (Ê) ⊆ E is clear: given 4 ∈ Ê expressed as a cofiltered limit of finite quotients 48 ,
8 ∈ � , in (ProDf)

→, then since+ is cofinitary, we see that+4 is a cofiltered limit of+48 = 48 in D→,
thus +4 ∈ E by the definition of a profinite factorization system.
To prove that+ is faithful, recall that a right adjoint is faithful if and only if each component of

its counit is epic. Thus, it suffices to prove that Y� ∈ Ê (and use that by Proposition 3.17 every Ê-
morphism is epic). The triangles defining Y� in Construction 3.14(4) can be restricted to those with
0 ∈ Ê. Indeed, in the slice category �/Df all objects 0 : � → � in Ê form an initial subcategory.

Now given such a triangle with 0 ∈ Ê we know that +0 ∈ E. Thus all those objects � form a
cofiltered diagram with connecting morphisms in E. Moreover, +̂0 ∈ Ê by Remark 3.16(2). This

implies Y� ∈ Ê by Remark 3.16(4) .

(2) Let- be an E-projective object. To show that -̂ is Ê-projective, suppose that a quotient 4 : �։

� in Ê and a morphism 5 : -̂ → � are given. Since (̂−) is left adjoint to + and + (Ê) ⊆ E, the
morphism 5 has an adjoint transpose 5 ∗ : - → +� that factorizes through +� via 6∗ for some
6 : -̂ → �. Then 4 · 6 = 5 , which proves that -̂ is projective.

-
6∗

~~⑤⑤⑤⑤⑤⑤⑤⑤
5 ∗

  ❇❇❇❇❇❇❇❇

+�
+4

// // +�

iff -̂

6

����������
5

��
❃❃❃❃❃❃❃❃

�
4

// // �

(3) Given � ∈ Df , by Assumption 3.1 there exists an E-projective object - ∈ D and a quotient
4 : - ։ �. The limit projection 4̂ : -̂ ։ � lies in Ê by Remark 3.16(2), and item (2) above shows
that -̂ is Ê-projective. �

We are ready to prove the following general form of the Reiterman Theorem: given the factor-

ization system (Ê, M̂) on the pro-completion of Df , we have the concept of an equation in ProDf .
We call it a profinite equation for D , and prove that pseudovarieties in D are precisely the classes
in Df that can be presented by profinite equations.

Definition 3.22. A profinite equation is an equation in ProDf , i.e. a morphism 4 : - ։ � in Ê

whose domain - is Ê-projective. It is satisfied by a finite object� provided that � is injective w.r.t.
4 .

Theorem 3.23 (Generalized Reiterman Theorem). Given a profinite factorization system on D , a

class of finite objects is a pseudovariety iff it can be presented by profinite equations.

Proof. Every class V ⊆ Df presented by profinite equations is a pseudovariety: this is proved
precisely as (1) in Proposition 3.8.
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Conversely, every pseudovariety can be presented by profinite equations. Indeed, following the
same proposition, it suffices to construct, for every pseudoequation 48 : - ։ �8 (8 ∈ � ), a profinite
equation satisfied by the same finite objects.
For every 8 ∈ � , we have the corresponding limit projection

4̂8 : -̂ ։ �8 with 48 = +4̂8 · [- .

Let ' be the diagram in Df of objects �8 . The connecting morphism : : �8 → � 9 are given by the
factorization

-

4 9

�� ��
✼✼✼✼✼✼✼

48

����✟✟✟✟✟✟✟

�8
:

// // � 9

iff 4 9 ≤ 48 . Since the pseudoequation is closed under finite joins, ' is cofiltered. Form the limit of
' in ProDf with the limit cone

?8 : � ։ �8 (8 ∈ � ).

Themorphisms 4̂8 above form a cone of ': given 4 9 = : ·48 , then+4̂ 9 ·[- = + (�: · 48 ) ·[- = : ·+4̂8 ·[-
implies 4̂ 9 = : · 4̂8 . Here we apply the universal property of [- : the morphism 4̂ 9 is uniquely

determined by+4̂ 9 ·[- . Thuswe have a uniquemorphism 4 : -̂ ։ �making the following triangles
commutative:

-̂
4 // //

4̂8 �� ��
❃❃❃❃❃❃❃❃ �

?8
����

�8

(8 ∈ � )

The connecting morphisms of ' lie in E (since : · 48 ∈ E implies : ∈ E). Thus each 4̂8 lies in Ê

since 48 ∈ E, see Remark 3.16(3). Therefore, 4 ∈ Ê by Remark 3.16(4). Since -̂ is Ê-projective by
Proposition 3.21, we have thus obtained a profinite equation 4 : -̂ ։ �.
We are going to prove that a finite object� satisfies the pseudoequation (48 )8 ∈� iff it satisfies the

profinite equation 4 .

(1) Let � satisfy the pseudoequation (48 ). For every morphism 5 : -̂ → � we present a factoriza-
tion through 4 . The morphism + 5 · [- factorizes through some 4 9 , 9 ∈ � :

-
[-

//

4 9

����

+-̂

+ 5

��

� 9 6
// �

Since 4 9 = +4̂ 9 · [- , we get + (6 · 4̂ 9 ) · [- = + 5 · [- . By the universal property of [- this implies

6 · 4̂ 9 = 5 .

The desired factorization is 6 · ? 9 :

-̂

5

��

4 // //

4̂ 9

❃❃

�� ��
❃❃

�

? 9

����

� � 96
oo
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(2) Let � satisfy the profinite equation 4 . For every morphism ℎ : - → � we find a factorization

through some 4 9 . The morphism ℎ̂ : -̂ → � factorizes through 4:

ℎ̂ = D · 4 with D : � → �.

The codomain of D is finite, thus, D factorizes through one of the limit projection of �, i.e.

D = E · ? 9 with 9 ∈ � and E : � 9 → �.

This gives the following commutative diagram:

-̂

ℎ̂

��

4 // �

? 9

��

D

���
�

�
�

� � 9E
oo

(3.2)

That E is the desired factorization of ℎ is now shown using the following diagram:

-

@A
ℎ

//

[-
// +-̂

+ℎ̂

((PPPPPPPPPPPPPPPP
+4 // +�

+? 9
// � 9

E

��

ED ����GF
4 9

�

Indeed, the upper part commutes since since

4 9 = +4̂ 9 · [- = +? 9 ·+4 · [- ,

the lower left-hand part commutes since ℎ = +ℎ̂ · [- , and for the remaining lower right-hand part
apply + to (3.2) and use that +E = E since E lies in Df . �

4 PROFINITE MONAD

In the present section we establish the main result of our paper: a generalization of Reiterman’s
theorem from algebras over a signature to algebras for a given monad T in a category D (The-
orem 4.20). To this end, we introduce and investigate the profinite monad T̂ associated to the
monad T. It provides an abstract perspective on the formation of spaces of profinite words or
profinite terms and serves as key technical tool for our categorical approach to profinite algebras.

Assumption 4.1. Throughout this section, D is a category satisfying Assumption 3.1, and T =

() , `, [) is a monad on D preserving quotients, i.e. ) (E) ⊆ E.

We denote by DT the category of T-algebras and T-homomorphisms, and by DT
f the full subcat-

egory of all finite algebras, i.e. T-algebras whose underlying object lies in Df .

Remark 4.2. The category DT satisfies Assumption 3.1. More precisely:

(1) Since T preserves quotients, the factorization system of D lifts to DT: every homomorphism
in DT factorizes as a homomorphism in E followed by one in M. When speaking about quotient
algebras and subalgebras of T-algebras, we refer to this lifted factorization system (ET,MT).

(2) Since D is complete, so is DT with limits created by the forgetful functor into D .

(3) The categoryDT
f is closed under finite products and subalgebras, sinceDf is closed under finite

products and subobjects.
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(4) For every E-projective object - , the free algebra ()-, `- ) is ET-projective. Indeed, given T-
homomorphisms 4 : (�,U) ։ (�, V) and ℎ : ()-, `- ) → (�, V) with 4 ∈ E, then ℎ · [- : - → �

factorizes through 4 inD , i.e. ℎ ·[- = 4 ·:0 for some :0. Then the T-homomorphism : : ()-, `- ) →
(�, U) extending :0 fulfils 4 · : · [- = ℎ · [- , hence, 4 · : = ℎ by the universal property of [- .

-
[-

//

:0

��
✤
✤
✤ ()-, `- )

:

yyt
t

t
t

t

ℎ

��

(�, U)
4

// // (�, V)

It follows that every finite algebra is a quotient of an ET-projective T-algebra.

Notation 4.3. The forgetful functor of DT
f into ProDf is denoted by

 : DT
f → ProDf

For example, if D = Σ-Str, then  assigns to every finite T-algebra its underlying Σ-structure,
equipped with the discrete topology.

Remark 4.4. For any functor  : A → C , the right Kan extension

' = Ran  : C → C

can be naturally equipped with the structure of a monad. Its unit and multiplication are given by

[̂ = (id )
† : Id → ' and ̂̀= (Y · 'Y)† : '' → ',

where Y : ' →  denotes the universal natural transformation and (−)† is defined as in Re-
mark 3.12. The monad (', [̂, ̂̀) is called the codensity monad of  , see e.g. Linton [16].

Definition 4.5. The profinite monad

T̂ = ()̂ , ̂̀, [̂)
of the monad T is the codensity monad of the forgetful functor  : DT

f → ProDf .

Construction 4.6. Since ProDf is complete and DT
f is small, the limit formula for right Kan

extensions (see Remark 3.12) yields the following concrete description of the profinite monad:

(1) To define the action of )̂ on an object - , form the coslice category -/ of all morphisms
0 : - →  (�, U) with (�, U) ∈ DT

f . The projection functor &- : -/ → ProDf , mapping 0 to �,
has a limit

)̂- = lim&- .

The limit cone is denoted as follows:

-
0
−→  (�, U)

)̂-
U+
0

−−→ �

For every finite T-algebra (�, U), we write

U+ : )̂� → �

instead of U+id� .
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(2) The action of )̂ on morphisms 5 : . → - is given by the following commutative triangles

)̂.
)̂ 5

//

U+
05 ��

✽✽✽✽✽✽✽ )̂-

U+
0��✝✝✝✝✝✝✝

�

for all 0 : - →  (�, U).

(3) The unit [̂ : Id → )̂ is given by the following commutative triangles

-
[̂-

//

0
��

✻✻✻✻✻✻✻ )̂-

U+
0��✝✝✝✝✝✝✝

�

for all 0 : - →  (�, U).

and the multiplication by the following commutative squares

)̂)̂-
̂̀-

//

)̂U+
0
��

)̂-

U+
0

��

)̂�
U+

// �

for all 0 : - →  (�, U).

Remark 4.7. A concept related to the profinite monad was studied by Bojańczyk [9] who associ-
ates to every monad T on Set a monad T on Set (rather than on Pro Setf = Stone as in our setting).

Specifically, T is the monad induced by the composite right adjoint StoneT̂ → Stone
+
−→ Set. Its

construction also appears in thework of Kennison and Gildenhuys [13] who investigated codensity
monads for Set-valued functors and their connection with profinite algebras.

Remark 4.8. (1) Every finite T-algebra (�, U) yields a finite T̂-algebra (�,U+). Indeed, the unit
law and the associative law for U+ follow from Construction 4.6(3) with - = � and 0 = id�.

(2) The monad )̂ is cofinitary. To see this, let G8 : - → -8 (8 ∈ � ) be a cofiltered limit cone in ProDf .
For each object of -/ given by an algebra (�, U) and morphism 0 : - → �, due to � ∈ Df there
exists 8 ∈ � and a morphism 1 : -8 → � with 0 = 1 · G8 . From the definition of )̂ on morphisms we
get

U+0 = ( )̂-
)̂G8
−−−−→ )̂-8

U+
1

−−−→ � ).

To prove that )̂ G8 : )̂- → )̂-8 (8 ∈ � ) forms a limit cone, suppose that any cone 28 : � → )̂-8
(8 ∈ � ) is given. It is easy to verify that then the cone of &- (see Construction 4.6(1)) assigning
to the above 0 the morphism U+

1
· 28 is well-defined, i.e. independent of the choice of 8 and 1 and

compatible with &- . The unique morphism 2 : � → )̂- factorizing that cone fulfils 28 = )̂ G8 · 2
because this equation holds when postcomposed with the members of the limit cone of &-8 . This
proves the claim.

(3) The free T̂-algebra ()̂-, ̂̀- ) on an object- of ProDf is a cofiltered limit of finite T̂-algebras. In
fact, for the squares in Construction 4.6(3) defining ̂̀- we have the limit cone (U+0 ) in ProDf , and

since all U+0 are homomorphisms of T̂-algebras and the forgetful functor from (ProDf)
T̂ to ProDf

reflects limits, it follows that ()̂-, ̂̀- ) is a limit of the algebras (�, U+).

(4) For “free” objects of ProDf , i.e. those of the form -̂ for- ∈ D (cf. Lemma 3.13), the definition of
)̂ -̂ can be stated in a more convenient form: )̂ -̂ is the cofiltered limit of all finite quotient algebras
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of the free T-algebra ()-, `- ). More precisely, let ()-, `- ) ևD
T
f denote the full subcategory of the

slice category ()-, `- )/DT
f on all finite quotient algebras of ()-, `- ), and consider the diagram

�- : ()-, `- ) ևD
T
f → ProDf

that maps 4 : ()-, `- ) ։ (�,U) to �. Then we have the following

Lemma 4.9. For every object - of D , one has )̂ -̂ = lim�- .

Proof. The diagram �- is the composite

()-, `- ) ևD
T
f ֌ ()-, `- )/D

T
f � -̂/ 

&-̂
−−→ ProDf,

where the isomorphism ()-, `- )/DT
f � -̂/ maps 4 : ()-, `- ) → (�,U) to �4 · [- : -̂ → �. Since

every T-homomorphism has an (ET,MT)-factorization, ()-, `- ) ևD
T
f is an initial subcategory of

()-, `- )/D
T
f . Thus, )̂- = lim&-̂ = lim� . �

Notation 4.10. The above proof gives, for every object - ∈ D , the limit cone U+�4 ·[- : )̂ -̂ ։ �

with 4 : ()-, `- ) ։ (�, U) ranging over ()-, `- ) ևD
T
f . In the following, we abuse notation and

simply write U+4 for U+�4 ·[- .

Example 4.11. Given the monad )- = - ∗ of monoids on D = Set, the profinite monad is the
monad of monoids in Stone

)̂- = free monoid in Stone on the space - .

For a finite set - , the elements of )̂- are called the profinite words over - . A profinite word is a
compatible choice of a congruence class of - ∗/∼ for every congruence ∼ of finite rank. Compat-
ibility means that given another congruence ≈ containing ∼, the class chosen for ≈ contains the
above class as a subset.

Lemma 4.12. The monad )̂ preserves quotients, i.e. )̂ (Ê) ⊆ Ê.

Proof. Suppose that 4 : - → . is a morphism im Ê. This means that it can be expressed as a

cofiltered limit in D̂→ of morphisms 48 ∈ Ef (8 ∈ � ):

-
4 // //

?8

��

.

@8

��

-8 48
// // .8

Since )̂ is cofinitary by Remark 4.8(2), it follows that )̂ 4 is the limit of )̂ 48 = )48 (8 ∈ � ) in D̂→.
Since ) preserves E, we have )48 ∈ E for all 8 ∈ � , which proves that )̂ 4 ∈ Ê. �

It follows that the factorization system (Ê, M̂) ofProDf lifts to the category (ProDf)
T̂. Moreover,

this category with the choice

(ProDf)
T̂
f = all T̂-algebras (�, U) with � ∈ Df

satisfies all the requirements of Assumption 3.1; this is analogous to the corresponding observa-
tions for DT in Remark 4.2. Note that we are ultimately interested in finite T-algebras, not finite

T̂-algebras. However, there is no clash: we shall prove in Proposition 4.16 that they coincide.
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Notation 4.13. Recall fromConstruction 4.6 the definition of )̂- as a cofiltered limit U+0 : )̂- → �

of &- : -/ → ProDf . Since the functor + : ProDf → D (see Notation 3.10) preserves that limit,
and since all morphisms

)+-
)+0
−−−→ )�

U
−→ �

form a cone of + ·&- , there is a unique morphism i- such the squares below commute for every
finite T-algebra (�,U):

)+-
i-

//❴❴❴❴

)+0

��

+)̂-

+U+
0

��

)�
U

// �

(4.1)

Example 4.14. For the monoid monad)- = - ∗ on Set, the map

i- : (+- )∗ → +)̂-

is the embedding of finite words into profinite words. More precisely, by representing elements
of )̂- as compatible choices of congruences classes (see Example 4.11), i- maps F ∈ - ∗ to the
compatible family of all congruence classes [F]∼ of F , where ∼ ranges over all congruences on
- ∗ of finite rank.

We now prove that the morphisms i- are the components of a monad morphism from T to T̂

in the sense of Street [27].

Lemma 4.15. The morphisms i- form a natural transformation

i : )+ → +)̂

such that the following diagrams commute:

+

[+

��✡✡✡✡✡✡✡
+ [̂

��
✹✹✹✹✹✹

)+
i

// +)̂

))+
)i

//

`+

��

)+)̂
i)̂

// +)̂)̂

+ ̂̀
��

)+
i

// +)̂

Proof. (1) We first prove that i is natural. Given a morphism 5 : - → . in ProDf , consider an
arbitrary object 0 : . →  (�, U) of &. (see Construction 4.6(1)) and recall that by the definition
of )̂ on the morphism 5 we have

U+0 · )̂ 5 = U+0 ·5 .

Consider the following diagram:

)+-
i-

//

)+ 5

��

)+ (0 ·5 )

""❊❊❊❊❊❊❊❊ +)̂-

+U+
0·5

}}④④④④④④④④④

+)̂ 5

��

)�
U // �

)+.

)+0

<<②②②②②②②②

i.
// +)̂.

+U+
0

aa❈❈❈❈❈❈❈

Since all inner parts commute by definition, and the morphisms +U+0 form a collectively monic
cone using that + is cofinitary, we see that the outside commutes, i.e. i is natural.
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(2) To prove +[̂- = i- · [+- , use the collectively monic cone +U+0 : +)̂- → +�, where 0 : - →

 (�, U) ranges over &- . Using the triangle in Construction 4.6(3), we see that the following dia-
gram

+-
[+-

//

+0

��

)+-

)+0

��

i-
// +)̂-

+U+
0

��

ED ��GF
+ [̂-

�
[�

// )�
U

// �BC OO@A
id�

has the desired upper part commutative, since it commutes when post-composed by every +U+0 ,
which follows from the fact that the two lower squares and the outside clearly commute.

(3) To prove+ ̂̀- ·i
)̂-

·)i- = i- · `+- , we again use the collectively monic cone+U+0 . The square
in Construction 4.6(3) makes it clear that in the following diagram

))+-

))+0

&&▼▼▼▼▼▼▼▼▼▼

)i-

��

`+-
// )+-

)+0

yyssssssssss

i-

��

))�
`�

//

)U

��

)�

U

��

)+)̂-
)+U+

0 //

i
)̂-

��

)�
U

//

i�
��

�

+)̂�
+U+

// �

+)̂)̂-

+)̂U+
0

99ssssssssss

+ ̂̀-
// +)̂-

+U+
0

dd■■■■■■■■■■

the outside commutes, since it does when post-composed by all +U+0 . �

Proposition 4.16. The categories of finite T-algebras and finite T̂-algebras are isomorphic: the func-

tor taking (�, U) to (�, U+) and being the identity map on morphisms is an isomorphism.

Proof. (1) We first prove that, given finite T-algebras (�,U) and (�, V), a morphism ℎ : � → �

is a homomorphism for T iff ℎ : (�,U+) → (�, V+) is a homomorphism for T̂. If the latter holds,
then the naturality of i yields a commutative diagram as follows

)�

)ℎ

��

i�
// +)̂�

+)̂ℎ
��

+U+
// +�

+ℎ

��

�

ℎ

��

)�
i�

// +)̂�
+V+

// +� �

Thus ℎ is a homomorphism for T, since the horizontal morphisms are U and V , respectively.
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Conversely, if ℎ is a homomorphism for T, then the diagram &� of Construction 4.6(1) has the
following connecting morphism

�

id�

��⑦⑦⑦⑦⑦⑦⑦⑦
ℎ

  ❅❅❅❅❅❅❅❅

 (�, U)
 ℎ

//  (�, V).

This implies ℎ · U+ = V+
ℎ
. The definition of )̂ℎ yields V+ · )̂ℎ = V+

ℎ
(see Construction 4.6(1) again).

Thus, ℎ is a homomorphism for T̂:

)̂�

V+
ℎ

❄❄❄

��
❄❄

U+
//

)̂ℎ
��

�

ℎ

��

)̂ �
V+

// �

Note that the only if part implies that the object assignment (�, U) ↦→ (�, U+) is indeed functorial.

(2) For every finite T̂-algebra (�,X) we prove that the composite

U = )�
i�
−−→ +)̂�

+X
−−→ +� = � (4.2)

defines a T-algebra with U+ = X .
The unit law follows from that of X , X · [̂� = id and from i� · [� = +[̂� (see Lemma 4.15):

�

[�

��

+ [̂�

""❉❉❉❉❉❉❉❉ ED
id�

��

)�
i�

// +)̂�
+X

// �BCOO@A
U

The associative law follows from that of X , X · ̂̀� = X · )̂ X and from i� · `� = + ̂̀� · i
)̂�

·)i� (see
Lemma 4.15):

))�

)i�
��

GF

@A

)U

//

`�
// )�

i�
��

ED

BC

U

oo

)+)̂�

)+X

��

i
)̂ � // +)̂)̂�

+ ̂̀�
//

+)̂X
��

+)̂�

+X

��

)�
i�

// +)̂�
+X

// �BCOO@A
U

To prove that

U+ = X,

recall fromLemma4.9 andNotation 4.10 that)̂� is a cofiltered limit of all finite quotients1 : ()�, `�) ։
(�, V) in DT with the limit cone V+

1
: )̂� ։ �. Since � is finite, both U+ and X factorize through
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one of the limit projections V+
1
, i.e. we have commutative triangles as follows:

� )̂�

V+
1

��

X //U+
oo �

�

X0

AA✂✂✂✂✂✂✂✂✂
U0

]]❁❁❁❁❁❁❁❁❁

(4.3)

Recall from Notation 4.10 that V+
1
denotes V+�1 ·[�

, and by Lemma 3.13 we have �1 · [� = 1 ·[� : � → �

since this morphism lies in Df . Combining this with the definition (4.1) of i� we have a commut-
ative square

)+�
i�

//

)+ (1 ·[�)

��

+)̂�

V+
1

��

)�
V

// �

(4.4)

Now we compute

X0 · V ·) (1 · [�) = X0 · V ·)+ (1 · [�) since 1 · [� lies in Df

= X0 ·+ V
+
1 · i� by (4.4)

= +X0 ·+ V
+
1 · i� since X0 lies in Df

= +X · i� by (4.3).

Analogously, we obtain
+U+ · i� = U0 · V ·) (1 · [�). (4.5)

From the definition (4.1) of i�, we also get

+U+ · i� = +U+83 · i� = U ·)+ id� = U = +X · i�, (4.6)

where we use (4.2) in the last step. Therefore, we can compute

X0 · 1 = X0 · 1 · `� ·)[� since `� ·)[� = id

= X0 · V ·)1 ·)[� since 1 is a T-homomorphism

= +X · i� shown previously

= +U+ · i� by (4.6)

= U0 · V ·)1 ·)[� by (4.5)

= U0 · 1 · `� ·)[� since 1 is a T-homomorphism

= U0 · 1. since `� ·)[� = id.

Since 1 is epic, this implies U0 = X0, whence U+ = X .

(3) Uniqueness of U . Let (�, U) be a finite T-algebra with U+ = X . By the definition of i� this
implies

U = +U+ · i� = +X · i�,

so U is unique. �

From now on, we identify finite algebras for T and for T̂.

Proposition 4.17. The pro-completion of the categoryDT
f of finite T-algebras is the full subcategory

of the category of T̂-algebras given by all cofiltered limits of finite T-algebras.
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Proof. Let L denote the full subcategory of (ProDf)
T̂ given by all cofiltered limits of finite

T-algebras. To show that L forms the pro-completion of DT
f , we verify the three conditions of

Corollary A.5. By definition L satisfies condition (2), and condition (1) follows from the fact that

since ProDf has cofiltered limits, so does (ProDf)
T̂. Thus, it only remains to prove condition (3):

every algebra (�, U+) with (�,U) ∈ DT
f is finitely copresentable in L . Let 18 : (�, V) → (�8 , V8),

(8 ∈ � ), be a limit cone of a cofiltered diagram � in L . Our task is to prove for every morphism
5 : (�, V) → (�,U+) that

(a) a factorization through a limit projection exists, i.e. 5 = 5 ′ ·18 for some 8 ∈ � and 5 ′ : (�8 , V8) →
(�, U+), and

(b) given another factorization 5 = 5 ′′ · 18 in L , then 5 ′ and 5 ′′ are merged by a connecting
morphism 1 98 : (� 9 , V 9 ) → (�8 , V8) of � (for some 9 ∈ � ).

Ad (a), since 18 : � → �8 is a limit of a cofiltered diagram in ProDf and � is as an object of Df

finitely copresentable in ProDf , we have 8 ∈ � and a factorization 5 = 5 ′ · 18 , for some 5 ′ : �8 → �

in ProDf . If 5 ′ is a T-homomorphism, i.e. if the following diagram

)̂ �
V

//

)̂18
��

GF

@A

)̂ 5

oo

�

18

��

ED

BC

5

//

)̂ �8
V8

//

)̂ 5 ′

��

�8

5 ′

��

)̂�
U+

// �

(4.7)

commutes, we are done. In general, we have to change the choice of 8 : from Construction 4.6(2)
recall that )̂ is cofinitary, thus ()̂18)8 ∈� is a limit cone. The parallel pair

5 ′ · V8 , U
+ · )̂ 5 ′ : )̂ �8 → �

has a finitely copresentable codomain (in ProDf ) and is merged by )̂18 . Indeed, the outside of the
above diagram (4.7) commutes since 5 = 5 ′ · 18 is a homomorphism. Consequently, that parallel
pair is also merged by )̂1 98 for some connecting morphism 1 98 : (� 9 , V 9 ) → (�8 , V8) of the diagram
� :

(U+ · )̂ 5 ′) · )̂1 98 = (5 ′ · V8) · )̂1 98 .

From 18 = 1 98 · 1 9 we get another factorization of 5 :

5 = (5 ′ · 1 98) · 1 9
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and this tells us that the factorization morphism 5 = 5 ′ · 1 98 is a homomorphism as desired:

)̂ �
V

//

)̂1 9

��

�

1 9

��

)̂ � 9
V 9

//GF

@A

)̂ 5

//

)̂1 98

��

� 9

1 98

��

ED

BC

5

oo

)̂ �8
V8

//

)̂ 5 ′

��

�8

5 ′

��

)̂�
U+

// �

Ad (b), suppose that 5 ′, 5 ′′ : (�8 , V8) → (�, U) are homomorphisms satisfying 5 = 5 ′ ·18 = 5 ′′ ·18 .
Since � = lim�8 is a cofiltered limit in ProDf and the limit projection 18 merges 5 ′, 5 ′′ : �8 → �, it
follows that some connecting morphism 1 98 : (� 9 , V 9 ) → (�8 , V8) also merges 5 ′, 5 ′′, as desired. �

Remark 4.18. If (E,M) is a profinite factorization system on D , then (ET,MT) is a profinite
factorization system on DT. Indeed, since E is closed in D→ under cofiltered limits of finite quo-
tients, and since the forgetful functor from (DT)→ to D→ creates limits, it follows that ET is also
closed under cofiltered limits of finite quotients.

Definition4.19. A T̂-equation is an equation in the category of T̂-algebras, i.e. a T̂-homomorphism

4 in ÊT̂ with ÊT̂-projective domain. A finite T-algebra satisfies 4 if it is injective with respect to 4

in (ProDf)
T̂.

Theorem 4.20 (Generalized Reiterman Theorem for Monads). Let D be a category with a profinite

factorization system (E,M), and suppose that T is a monad preserving quotients. Then a class of

finite T-algebras is a pseudovariety in DT
f iff it can be presented by T̂-equations.

Remark 4.21. Wewill see in the proof that the T̂-equations presenting a given pseudovariety can
be chosen to be of the form 4 : ()̂ -̂ , ̂̀

-̂
) ։ (�, U) where 4 ∈ Ê, the object - is E-projective in D ,

and � is finite. Moreover, we can assume - ∈ Var for any class Var of objects as in Remark 3.9.

Proof of Theorem 4.20. Every class of finite T-algebras presented by T̂-equations is a pseudo-
variety – this is analogous to Proposition 3.8.

Conversely, let V be a pseudovariety in DT
f . For every finite T-algebra (�, U) we have an E-

projective object - in D and a quotient 4 : - ։ � (see Assumption 3.1). Since 4̂ ∈ Ê by Re-
mark 3.16(2), we have )̂ 4̂ ∈ Ê by Lemma 4.12. Therefore the homomorphism 4 : ()̂ -̂ , ̂̀- ) →

(�, U+) extending 4̂ lies in Ê: we have 4 = U+ · )̂ 4̂ , and U+ is a split epimorphism by the unit law

U+ · [̂� = id�. Since (Ê, M̂) is a proper factorization system and ProDf has finite coproducts,
every split epimorphism lies in Ê [2, Thm. 14.11], whence U+ ∈ Ê. Thus, we see that every finite
T-algebra is a quotient, in the category of T̂-algebras, of ()̂ -̂ , ̂̀

-̂
) for an E-projective object - of

D . Each such quotient lies in ProDT
f . Indeed, the codomain, being a finite T-algebra, does. To see

that the domain also does, combine Remark 4.8(3) and Proposition 4.16.
In Remark 3.9 we can thus denote by Var the collection of all free algebras ()̂ -̂ , ̂̀

-̂
) where -

ranges over E-projective objects of D . Then Theorem 3.23 and Remark 3.9 yield our claim that
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every pseudovariety in DT
f can be presented by T̂-equations which are finite quotients of free

algebras ()̂ -̂ , ̂̀
-̂
) where - is E-projective in D . �

5 PROFINITE TERMS AND IMPLICIT OPERATIONS

In our presentation so far, we have worked with an abstract categorical notion of equations given
by quotients of projective objects. In Reiterman’s original paper [22] on pseudovarieties of Σ-
algebras, a different concept is used: equations between implicit operations, or equivalently, equa-
tions between profinite terms. This raises a natural question: which categories D allow the simpli-
fication of equations in the sense of Definition 4.19 to equations between profinite terms? It turns
out to be sufficient that D is cocomplete and has a finite dense set S of objects that are projective
w.r.t. strong epimorphisms. Recall that density of S means that every object � of D is a canonical
colimit of all morphisms from objects of S to � . More precisely, if we view S as a full subcategory
of D , then � is the colimit of the diagram

S/� → D given by

(
B
5
−→ �

)
↦→ B

with colimit cocone given by the morphisms 5 .

Assumption 5.1. Throughout this section D is a cocomplete category with a finite dense set S
of objects projective w.r.t. strong epimorphisms. It follows (see Proposition 5.4 below) that D has
(StrongEpi,Mono)-factorizations, and we work with this factorization system. We denote by Df

the collection of all objects � such that

D (B, �) is finite for every object B ∈ S. (5.1)

We will show in Proposition 5.4 below that every category D satisfying the above assumptions
can be presented as a category of algebras over an S-sorted signature. Throughout this section,
let Σ be an S-sorted algebraic signature, i.e. a signature without relation symbols. We denote by

Alg Σ

the category of Σ-algebras and homomorphisms.

Example 5.2. (1) The category SetS satisfies Assumption 5.1. A finite dense set in SetS is given
by the objects

1B (B ∈ S)

where 1B is the S-sorted set that is empty in all sorts except B , and has a single element ∗ in sort B .
Indeed, let � and � be S-sorted sets and let a cocone of the canonical diagram for � be given:

1B
5
−→ �

1B
5 ∗

−−→ �

By this we mean that we have morphisms 5 ∗ : 1B → � for every 5 : 1B → � (and observe that the
cocone condition is void in this case because there are no connecting morphisms 1 → 1C for B ≠ C ).
Then we are to prove that there exists a unique S-sorted function ℎ : � → � with 5 ∗ = ℎ · 5 for
all 5 . Uniqueness is clear: given G ∈ � of sort B , let 5G : 1B → � be the map with 5G (∗) = G . Then
ℎ · 5G = 5 ∗G implies

ℎ(G) = 5 ∗G (∗).

Conversely, if ℎ is defined by the above equation, then for every B ∈ S and 5 : 1B → � we have
5 ∗ = ℎ · 5 because 5 = 5G for G = 5 (∗).
More generally, every set of objects KB (B ∈ S), where KB is nonempty in sort B and empty in all

other sorts, is dense in SetS .
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(2) The category Alg Σ satisfies Assumption 5.1. Recall that strong epimorphisms are precisely
the homomorphisms with surjective components, and monomorphisms are the homomorphisms
with injective components. It follows easily that for the free-algebra functor �Σ : SetS → Alg Σ

all algebras �Σ- are projective w.r.t. strong epimorphisms. We present a finite dense set of free
algebras.
Assume first that Σ is a unary signature, i.e. all operation symbols in Σ are of the form f : B → C .

Then the free algebras
�Σ1B (B ∈ S)

form a dense set in Alg Σ. Indeed, let*Σ : Alg Σ → SetS denote the forgetful functor and [ : Id →

*Σ�Σ the unit of the adjunction �Σ ⊣ *Σ. Given Σ-algebras � and � and a cocone of the canonical
diagram as follows:

�Σ1B
5
−→ �

�Σ1B
5 ∗

−−→ �

We are to prove that there exists a unique homomorphism ℎ : � → � with 5 ∗ = ℎ · 5 for every 5 .
We obtain a corresponding cocone in SetS as follows:

1B
[
−→ *Σ�Σ1B

*Σ 5
−−−→ *Σ�

1B
[
−→ *Σ�Σ1B

*Σ 5 ∗

−−−−→ *Σ�

Due to (1) there exists a unique function : : *Σ� → *Σ� with

*Σ 5
∗ · [ = (: ·*Σ 5 ) · [ for all 5 . (5.2)

Here and in the following we drop the subscripts indicating components of [. It remains to prove
that : is a homomorphism from � to �; then the universal property of [ implies 5 ∗ = : · 5 . Thus,
given f : B → C in Σ and 0 ∈ �B we need to prove : (f� (0)) = f� (: (0)). Consider the unique
homomorphisms

5 : �Σ1C → �, 5 (∗) = f� (0),

6 : �Σ1B → �, 6(∗) = 0,

9 : �Σ1C → �Σ1B , 9 (∗) = f (∗).

Then 5 = 6 · 9 and thus 5 ∗ = 6∗ · 9 because the morphisms (−)∗ form a cocone of the canonical
diagram of �. It follows that

: (f� (0)) = : (5 (∗)) = 5 ∗ (∗) = 6∗ ( 9 (∗)) = 6∗(f (∗)) = f� (6
∗ (∗)) = f� (: (6(∗))) = f� (: (0)),

where the last but one equation holds by (5.2). Thus, : is a homomorphism as desired.
For a general signature Σ, let : ∈ N∪{l} be an upper bound of the arities of operation symbols

in Σ and let for every set) ⊆ S the following S-sorted set -) be given: -) is empty for every sort
outside of) , and for sorts B ∈ ) the elements are (-) )B = { 8 | 8 < : }. Then the set

�Σ-) () ⊆ S)

is dense in Alg Σ. The proof is analogous to the unary case.

(3) The category of graphs, i.e. sets with a binary relation, and graph homomorphisms satisfies As-
sumption 5.1. Strong epimorphisms are precisely the surjective homomorphisms which are also
surjective on all edges. Thus the two graphs shown below are clearly projective w.r.t. strong epi-
morphisms. Moreover, they form a dense set: every graph is a canonical colimit of all of its vertices
and all of its edges.
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(4) Every variety, and even every quasivariety of Σ-algebras (presented by implications) satisfies
Assumption 5.1. This will follow from Proposition 5.4 below.

Definition 5.3. A full subcategory D of Alg Σ is said to be closed under (StrongEpi,Mono)-

factorizations if for every morphism 5 : � → � of D with factorization 5 = �
4 // //� // < //� ,

the object� lies in D .

Proposition 5.4. For every category D the following two statements are equivalent:

(1) D is cocomplete and has a finite dense set of objects which are projective w.r.t. strong epimorphisms.

(2) There exists a signature Σ such that D is equivalent to a full reflective subcategory of Alg Σ closed

under (StrongEpi,Mono)-factorizations.

Moreover, Σ can always be chosen to be a unary signature.

Proof. (2) ⇒ (1) Suppose that D ⊆ Alg Σ is a full reflective subcategory and that D is closed
under (StrongEpi,Mono)-factorizations. Cocompleteness of D is clear because Alg Σ is cocom-
plete. Denote by (−)@ : Alg Σ → D the reflector (i.e. the left adjoint to the inclusion functor
D ↩→ Alg Σ) and by [- : - → -@ the universal maps. From Example 5.2 we know Alg Σ has a
finite dense set of projective objects�8 , 8 ∈ � . We prove that the objects�@

8 , 8 ∈ � , form a dense set
in D .
To verify the density, letA be the full subcategory ofAlg Σ on {�8 }8 ∈� . For every algebra� ∈ D

the canonical diagram A /� → Alg Σ assigning �8 to each 5 : �8 → � has the canonical colimit
� . Since the left adjoint (−)@ preserves that colimit, we have that � = �@ is a canonical colimit
of all 5 @ : �@

8 → � for 5 ranging over A /� , as required. (Indeed, observe that every morphism

5 : �@
8 → � in D has the form 5 = 5 @ because the subcategory D is full and contains the domain

and codomain of 5 .)
Next, we observe that every strong epimorphism 4 of D is strongly epic in Alg Σ. Indeed, take

the (StrongEpi,Mono)-factorization 4 =< ·4 ′ of 4 in Alg Σ. Since D is closed under factorizations,
we have that 4 ′,< ∈ D . Moreover, the morphism < is monic in D because it is monic in Alg Σ.
Since 4 is a strong (and thus extremal) epimorphism in D , it follows that < is an isomorphism.
Thus 4 � 4 ′ is a strong epimorphism in Alg Σ. Since Alg Σ is complete, this is equivalent to being
an extremal epimorphism.
Since each�8 is projective w.r.t. strong epimorphisms inAlg Σ, it thus follows that�@

8 is project-

ive w.r.t. strong epimorphisms 4 : � ։ � in D . Indeed, given a morphism ℎ : �@
8 → � , compose it

with the universal arrow [ : �8 → �@
8 . Thus, ℎ · [ factorizes in Alg Σ through 4:

�8
[

//

:

��
✤
✤
✤ �

@
8

ℎ

��

:
⑥⑥

~~⑥⑥⑥

�
4

// // �

The unique morphism : : �@
8 → � of D with : = : · [ then fulfils the desired equality ℎ = 4 · :

since ℎ · [ = 4 · : · [.

(1)⇒(2) Let S be a finite dense set of objects projective w.r.t. strong epimorphisms, and consider
S as a full subcategory of D . Define an S-sorted signature of unary symbols

Σ = Mor(Sop) \ { idB | B ∈ S }.
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Every morphism f : B → C of Sop has arity as indicated: the corresponding unary operation has
inputs of sort B and yields values of sort C . Define a functor

� : D → Alg Σ

by assigning to every object � the S-sorted set with sorts

(��)B = D (B, �) for B ∈ S

endowed with the operations
f�� : D (B, �) → D (B ′, �)

given by precomposing with f : B ′ → B in S ⊆ D . To every morphism 5 : �1 → �2 of D assign
the Σ-homomorphism �5 with sorts

(�5 )B : D (B, �1) → D (B, �2)

given by postcomposing with 5 . To say that S is a dense set is equivalent to saying that � is full
and faithful [3, Prop. 1.26]. Moreover, since D is cocomplete, � is a right adjoint [3, Prop. 1.27].
Thus, D is equivalent to a full reflective subcategory of Alg Σ.

Next we show thatD has the factorization system (StrongEpi,Mono). Indeed, being reflective in
Alg Σ, it is a complete category.Moreover,D is well-powered because the right adjointD ↩→ Alg Σ

preserves monomorphisms and Alg Σ is well-powered. Consequently, the factorization system ex-
ists [2, Cor. 14.21].
To prove closure under factorizations, observe first that a morphism 4 : �1 → �2 is strongly

epic in D iff �4 is strongly epic in Alg Σ. Indeed, if 4 is strongly epic, then �4 has surjective sorts
(�4)B because B is projective w.r.t. 4 . Thus, �4 is a strong epimorphism in Alg Σ. Conversely, if �4
is strongly epic in Alg Σ, then for every commutative square 6 · 4 =< · 5 in D with< monic, the
morphism �< is monic in Alg Σ because � is a right adjoint, and thus a diagonal exists.

Now let5 : � → � be a morphism in D and let 5 = �
4 // //� // < //� be its (StrongEpi,Mono)-

factorization in D . Thus� ∈ D and since by the above argument �4 and �< are strong epimorph-
isms and monomorphisms in Alg Σ, respectively, � is the image of 5 w.r.t. to the factorization
system of Alg Σ. �

Example 5.5. (1) If D = Set, we can take ( = {1} where 1 is a singleton set. The one-sorted
signature Σ in the above proof is empty, thus, Alg Σ = Set.

(2) In the categoryGra of graphs we can take ( = {�1,�2}, see Example 5.2(3). Here Σ is a 2-sorted
signature with two operations B, C : �2 → �1. A graph � = (+ , �) is represented as an algebra �
with sorts��1 = + and��2 = � and B, C given by the source and target of edges, respectively. More
precisely, Gra is equivalent to the full subcategory of all Σ-algebras (+ , �) where for all 4, 4 ′ ∈ �
with B (4) = B (4 ′) and C (4) = C (4 ′), one has 4 = 4 ′.

Assumption 5.6. From now on we assume that

(1) The category D is a full reflective subcategory of Σ-algebras closed under (StrongEpi,Mono)-
factorizations; the reflecting of a Σ-algebra � into D is denoted by �@.

(2) The category Df consists of all Σ-algebras in D of finite cardinality in all sorts.

In the case where the arities of operations in Σ are bounded, our present choice of Df corres-
ponds well with the previous one in Assumption 5.1: choosing the set S as in Example 5.2(2), a
Σ-algebra � has finite cardinality iff the set of all morphisms from B to � (for B ∈ () is finite.

Notation 5.7. For the profinite monad T̂ of Definition 4.5 we denote by

* : (ProDf)
T̂ → SetS
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the forgetful functor that assigns to a T̂-algebra (�, U) the underlying S-sorted set of �.

Recall from Corollary 2.12 that ProDf is a full subcategory of Stone(Alg Σ), the category of
Stone Σ-algebras and continuous homomorphisms, closed under limits. From Example 3.20 and
Proposition 3.18, we get the following

Lemma 5.8. The factorization system (StrongEpi,Mono) on D is profinite and yields the factoriz-

ation system on ProDf given by

Ê = continuous homomorphisms surjective in every sort, and

M̂ = continuous homomorphisms injective in every sort.

Notation 5.9. Let - be a finite S-sorted set of variables.

(1) Denote by

�Σ-

the free Σ-algebra of terms. It is carried by the smallest S-sorted set containing - and such that
for every operation symbol f : B1, . . . , B= → B and every =-tuple of terms C8 of sorts B8 we have a
term

f (C1, . . . , C=) of sort B.

(2) For the reflection (�Σ- )
@, the free object of D on - , we put

- ⊕
= �(�Σ- )@ .

This is a free object of ProDf on - , see Lemma 3.13.

(3) Let (�, U) be a finite T-algebra. An interpretation of the given variables in (�,U) is an (-sorted
function 5 from - to the underlying sorted set* (�, U). We denote by

5 @ : (�Σ- )
@ → �

the corresponding morphism of D . It extends to a unique homomorphism of T̂-algebras (since

(�, U+) is a T̂-algebra by Proposition 4.16) that we denote by

5 ⊕ :
(
)̂- ⊕, `- ⊕

)
→ (�, U+).

Definition 5.10. A profinite term over a finite (-sorted set - (of variables) is an element of )̂- ⊕ .

Example 5.11. Let D = Set and )- = - ∗ be the monoid monad. For every finite set - = -@ we
have that )̂- ⊕ is the set of profinite words over - (see Example 4.11).

Definition 5.12. Let C1, C2 be profinite terms of the same sort in )̂- ⊕ . A finite T-algebra is said to
satisfy the equation C1 = C2 provided that for every interpretation 5 of - we have 5 ⊕ (C1) = 5 ⊕ (C2).

Remark 5.13. In order to distinguish equations being pairs of profinite terms according to Defin-
ition 5.12 from equations being quotients according to Definition 4.19, we shall sometimes call the
latter equation morphisms.

Theorem 5.14 (Generalized Reiterman Theorem for Monads on Σ-algebras). Let D be a full re-

flective subcategory of Alg Σ closed under (StrongEpi,Mono)-factorizations, and let T be a monad

on D preserving strong epimorphisms. Then a collection of finite T-algebras is a pseudovariety iff it

can be presented by equations between profinite terms.
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Proof. (1) We first verify that all assumptions needed for applying Theorem4.20 and Remark 4.21
are satisfied. Put

Var ≔ { (�Σ- )
@ | - a finite S-sorted set },

the set of all free objects of D on finitely many generators. We know from Lemma 5.8 that the
factorization system (StrongEpi,Mono) is profinite.

(1a) Every object (�Σ- )@ of Var is projective w.r.t. strong epimorphisms. Indeed, given a strong
epimorphism 4 : �։ � in D , it is a strong epimorphism in Alg Σ, i.e. 4 has a splitting 8 : �֌ � in
SetS with 4 · 8 = id. For every morphism 5 : (�Σ- )@ → � of D we are to prove that 5 factorizes
through 4 . The S-sorted function - → � which is the domain-restriction of 8 · 5 : (�Σ- )@ → �

has a unique extension to a morphism 6 : (�Σ- )@ → � of D . It is easy to see that 4 · 8 = id implies
4 · 6 = 5 , as required.

(1b) Every object � ∈ Df is a strong quotient 4 : (�Σ- )@ ։ � of some (�Σ- )@ in Var. Indeed, let
- be the underlying set of � . Then the underlying function of id : - → � is a split epimorphism
in SetS , hence, id@ : (�Σ- )@ ։ � is a strong epimorphism by [2, Prop. 14.11].

(2) By applying Theorem 4.20 and Remark 4.21, all we need to prove is that the presentation of
finite T-algebras by equation morphisms

4 : ()̂- ⊕, ̂̀- ⊕ ) ։ (�, U), - finite and 4 strongly epic,

is equivalent to their presentation by equations between profinite terms.

(2a) LetV be a collection in DT
f presented by equations C8 = C ′8 in )̂-

⊕
8 , 8 ∈ � . Using Theorem 4.20,

we just need proving that V is a pseudovariety:

(i) Closure under finite products
∏
:∈ (�: , U: ): Let 5 be an interpretation of -8 in the product.

Then we have 5 = 〈5:〉:∈ for interpretations 5: of -8 in (�: , U: ). By assumption 5 ⊕
:
(C8 ) = 5

⊕
:
(C ′8 )

for every : ∈  . Since the forgetful functor from T̂-algebras to SetS preserves products, we have
5 ⊕ = 〈5 ⊕

:
〉:∈ , hence 5 ⊕ (C8 ) = 5 ⊕ (C ′8 ).

(ii) Closure under subobjects< : (�,U) ֌ (�, V): Let 5 be an interpretation of -8 in (�, U). Then
6 = (*<) · 5 is an interpretation in (�, V), thus 6⊕ (C8 ) = 6⊕ (C ′8 ). Since< is a homomorphism of

T̂-algebras, we have 6⊕ =< · 5 ⊕ . Moreover,< is monic in every sort, whence 5 ⊕ (C8 ) = 5 ⊕ (C ′8 ).

(iii) Closure under quotients 4 : (�, V) ։ (�,U): Let 5 be an interpretation of -8 in �. Since *4 is
a split epimorphism in SetS , we can choose< : *� → *� with (*4) ·< = id. Then 6 = < · 5 is
an interpretation of -8 in (�, V), thus, 6⊕ (C8 ) = 6⊕ (C ′8 ). Since 4 is a homomorphism of T̂-algebras,
we have

4 · 6⊕ = (*4 · 6)⊕ = (*4 ·< · 5 )⊕ = 5 ⊕ .

Using this, we obtain 5 ⊕ (C8 ) = 5 ⊕ (C ′8 ).

(2b) For every equation morphism

4 : ()̂- ⊕, ̂̀- ⊕ ) ։ (�,U)

we consider the set of all profinite equations C = C ′ where C, C ′ ∈ )̂- ⊕ have the same sort and
fulfil 4 (C) = 4 (C ′). We prove that given a finite algebra (�, V), it satisfies 4 iff it satisfies all of those
equations.
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(i) Let (�, V) satisfy 4 and let 5 be an interpretation of - in it. Then the homomorphism 5 ⊕ factor-
izes through 4:

()̂- ⊕, ̂̀- ⊕ )
5 ⊕

//

4
%% %%❑❑❑❑❑❑❑❑❑❑
(�, V)

(�,U)

ℎ

OO

Thus, 5 ⊕ (C) = 5 ⊕ (C ′) whenever 4 (C) = 4 (C ′), as required.

(ii) Let (�, V) satisfy the given equations C = C ′.We prove that every homomorphismℎ : ()̂- ⊕, ̂̀- ⊕ ) →

(�, V) factorizes through the given 4 , which lies in (ProDf)
T̂. We clearly have

ℎ = 5 ⊕

for the interpretation 5 : - → * (�, V) obtained by the domain-restriction of *ℎ. Consequently,
for all C, C ′ ∈ )̂- ⊕ of the same sort, we know that

4 (C) = 4 (C ′) implies ℎ(C) = ℎ(C ′).

This tells us precisely that*ℎ factorizes in SetS through*4:

* ()̂- ⊕, ̂̀- ⊕ )

*4

~~~~⑦⑦⑦⑦⑦⑦⑦⑦
*ℎ

  
❅❅❅❅❅❅❅❅

* (�, U)
:

// * (�, V)

It remains to prove that : is a homomorphism of T̂-algebras. Firstly, : preserves the operations
of Σ and is thus a morphism : : � → � in D . This follows from *4 being epic in SetS: given
f : B1, . . . , B= → B in Σ and elements G8 of sort B8 in �, choose ~8 of sort B8 in * ()̂- ⊕, ̂̀- ⊕ ) with
*4 (~8 ) = G8 . Using that 4 and ℎ are Σ-homomorphism we obtain the desired equation

: (f� (G8 )) = : (f� (*4 (~8 )) = : ·*4 (f (~8 )) = *ℎ(f (~8 )) = f� (ℎ(~8 )) = f� (: (G8 )).

Moreover, )̂ 4 is epic by Lemma 5.8. In the following diagram

)̂)̂- ⊕
̂̀-⊕

//

)̂ 4
��

GF

@A

)̂ℎ

//

)̂- ⊕

4

��

ED

BC

ℎ

oo

)̂�
U //

)̂:
��

�

:

��

)̂ �
V

// �

the outside and upper square commute because ℎ and 4 are a homomorphism of T̂-algebras, re-
spectively, and the left hand and right hand parts commute because : · 4 = ℎ. Since )̂ 4 is epic, it
follows that the lower square also commutes. �

Remark 5.15. We now show that profinite terms are just another view of the implicit opera-
tions that Reiterman used in his paper [22]. We start with a one-sorted signature Σ (for notational
simplicity) and then return to the general case. We denote by

, : DT
f → Set
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the forgetful functor assigning to every finite algebra (�, U) the underlying set �.

Definition 5.16. An =-ary implicit operation is a natural transformation r : , = →, for = ∈ N.
Thus if

* : Df → Set

denotes the forgetful functor, then r assigns to every finite T-algebra (�, U) an =-ary operation on
*� such that every homomorphism in DT

f preserves that operation.

For the case of finitary Σ-algebras, i.e. finitary monads T on Set, the above concept is due to
Reiterman [22, Sec. 2].

Example 5.17. Let D = Set and )- = - ∗ be the monoid monad. Every element G of a finite
monoid (�,U) has a unique idempotent power G: for some : > 0, denoted by Gl . Since monoid
morphisms preserve idempotent powers, this yields a unary implicit operation r with components
r (�,0) : G ↦→ Gl .

Notation 5.18. Consider = as the set {0, . . . , = − 1}. Every profinite term C ∈ )̂=⊕ defines an =-ary
implicit operation rC as follows: Given a finite T-algebra (�, U) and an =-tuple 5 : = → *�, we get
the homomorphism 5 ⊕ : ()̂=⊕, ̂̀=⊕ ) → (�, U), and rC assigns to 5 the value

rC (5 ) = 5
⊕ (C).

The naturality of rC is easy to verify.

Lemma 5.19. Implicit =-ary operations correspond bijectively to profinite terms in )̂=⊕ via C ↦→ rC .

Proof. Recall fromCorollary 2.12 that ProDf is a full subcategory of Stone(Alg Σ) closed under
limits. The forgetful functor of the latter preserves limits, hence, so does the forgetful functor
* : ProDf → Set. Recall further from Construction 4.6 that

)̂=⊕ = lim&=⊕

where &=⊕ : =
⊕/ → ProDf is the diagram of all morphisms

0 : =⊕ →  (�, U) = � of ProDf .

Thus, profinite terms C ∈ )̂=⊕ are elements of the limit of

* ·&=⊕ : =
⊕/ → Set

By the well-known description of limits in Set, to give C means to give a compatible collection of

elements of *�, i.e. for every =⊕
0
−→  (�, U) one gives C0 ∈ *� such that for every morphism of

=⊕/ :

=⊕

1

��
✽✽✽✽✽✽✽

0

��✆✆✆✆✆✆✆

 (�, U)
 ℎ

//  (�, V)

we have *ℎ(C0) = C1 .
Now observe that an object of=⊕/ is precisely a finite T-algebra (�,U) togetherwith an=-tuple

00 of elements of*�. Thus, the given collection 0 ↦→ C0 is precisely an =-ary operation on*� for
every finite algebra (�, U). Moreover, the compatibility means precisely that every homomorphism
ℎ : (�,U) → (�, V) of finite T-algebras preserves that operation. Thus, )̂=⊕ consists of precisely the
=-ary implicit operations. Finally, it is easy to see that the resulting operation is rC of Notation 5.18
for every C ∈ )̂=⊕. �
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Remark 5.20. (1) For S-sorted signatures this is completely analogous. Let, B : DT
f → Set as-

sign to every finite T-algebra (�,U) the component of sort B of the underlying S-sorted set *�.
An implicit operation of arity

r : B1, . . . , B= → B

is a natural transformation
r :, B1 × · · · ×, B= →, B

Thus r assigns to every finite T-algebra (�, U) an operation

r (�,0) : *�
B1 × . . . *�B= → *�B

that all homomorphisms in DT
f preserve.

(2) Recall that we identify every natural number = with the set {0, . . . , = − 1}. For every arity
B1, . . . , B= → B we choose a finite S-sorted set - such that for every sort C we have

- C = { 8 ∈ {1, . . . , =} | C = B8 }.

Then for every finite T-algebra (�,U), to give an =-tuple 08 ∈ �B8 is the same as to give S-sorted
function 5 : - → *�.

(3) Notation 5.18 has the following generalization: given a profinite term C ∈ )̂- ⊕ over - of sort B ,
we define an implicit operation rC : B1, . . . , B= → B by its components at all finite T-algebras (�, U)
as follows:

rC (5 ) = 5
⊕ (C) for all 5 : - → *�.

This yields a bijection between )̂- ⊕ and implicit operations of arity B1, . . . , B= → B for - in (2).
The proof is completely analogous to that of Lemma 5.19.

Definition 5.21. Let r and r ′ be implicit operations of the same arity. A finite algebra (�, U)

satisfies the equation r = r ′ if their components r (�,U ) and r
′
(�,U )

coincide.

The above formula rC (5 ) = 5 ⊕ (C) shows that given profinite terms C, C ′ ∈ )̂- ⊕ of the same sort,
a finite algebra satisfies the profinite equation C = C ′ if and only if it satisfies the implicit equation
rC = rC′ . Consequently:

Corollary 5.22. Under the hypotheses of Theorem 5.14, a collection of finite T-algebras is a pseudo-

variety iff it can be presented by equations between implicit operations.

6 PROFINITE INEQUATIONS

Whereas for varieties D of algebras the equation morphisms in the Reiterman Theorem 4.20 can
be substituted by equations C = C ′ between profinite terms, this does not hold for varieties D of
ordered algebras (i.e. classes of ordered Σ-algebras specified by inequations C ≤ C ′ between terms).
The problem is that Pos does not have a dense set of objects projective w.r.t. strong epimorphisms.
Indeed, only discrete posets are projective w.r.t. the following regular epimorphism:
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We are going to show that for D = Pos (and more generally varieties D of ordered algebras) a
change of the factorization system from (StrongEpi,Mono) to (surjective, order-reflecting) enables
us to apply the results of Section 4 to the proof that pseudovarieties of finite ordered T-algebras are
presentable by inequations between profinite terms. This generalizes results of Pin and Weil [20]
who proved a version of Reiterman’s theorem (without monads) for ordered algebras, in fact, for
general first-order structures. We beginwith monads on Pos, and then show how this yields results
for monads on varieties D of ordered algebras.

Notation 6.1. Given an S-sorted signature Σ of operation symbols, let Σ≤ denote the S-sorted
first-order signature with operation symbols Σ and a binary relation symbol ≤B for every B ∈ S.
Moreover, let

Alg Σ≤

be the full subcategory of Σ≤-Str for which ≤B is interpreted as a partial order on the sort B for
every B ∈ S, and moreover every Σ-operation is monotone w.r.t. these orders. Thus, objects are
ordered Σ-algebras, morphisms are monotone Σ-homomorphisms. Recall from Remark 2.15 our
factorization system with

E = morphisms surjective in all sorts, and

M = morphisms order-reflecting in all sorts.

Thus a Σ-homomorphisms< lies inM iff for all G,~ in the same sort of its domain we have G ≤ ~

iff <(G) ≤ <(~). The notion of a subcategory D of Alg Σ≤ being closed under factorizations is
analogous to Definition 5.3.

Assumption 6.2. Throughout this section, D denotes a full reflective subcategory of Alg Σ≤

closed under factorizations. Moreover, Df is the full subcategory of D given by all algebras which
are finite in every sort.

Thus, every variety of ordered algebras (presented by inequations C ≤ C ′ betweens terms) can
serve as D , as well as every quasivariety (presented by implications between inequations).

Remark 6.3. (1) Recall from Corollary 2.12 that ProDf is a full subcategory of Stone(Alg Σ≤),
the category of ordered Stone Σ-algebras.

(2) The factorization system on D inherited from Alg Σ≤ is profinite, see Example 3.20. Moreover,

the induced factorization system Ê and M̂ of ProDf is given by the surjective and order-reflecting
morphisms of ProDf , respectively (see Proposition 3.18).

Notation 6.4. (1) We again denote by (−)@ : Alg Σ≤ → D the reflector.

(2) For every finite S-sorted set - we have the free algebra �Σ- (discretely ordered).

(3) The free object of ProDf on a sorted set - is again denoted by - ⊕ (in lieu of �(�Σ- )@). For
every finite T-algebra (�,U), given an interpretation 5 of - in (�, U), we obtain a homomorphism

5 ⊕ : ()̂- ⊕, ̂̀- ⊕ ) → (�, U)

Definition 6.5. By a profinite term on a finite S-sorted set - of variables is meant an element of
)̂- ⊕ .

Given profinite terms C1, C2 of the same sort B , a finite T-algebra (�, U) is said to satisfy the

inequation

C1 ≤ C2

provided that for every interpretation 5 of - we have 5 ⊕ (C1) ≤ 5 ⊕ (C2).
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Theorem 6.6. Let D be a full reflective subcategory of Alg Σ≤ closed under factorizations, and let T

be a monad on D preserving sortwise surjective morphisms. Then a collection of finite T-algebras is a

pseudovariety iff it can be presented by inequations between profinite terms.

Proof. In complete analogy to the proof of Theorem 5.14, we put

Var = { (�Σ- )
@ | - a finite S-sorted set }.

and observe that Theorem 4.20 and Remark 4.21 can be applied.

(1) IfV is a collection of finite T-algebras presented by inequations C8 ≤ C ′8 , we need to verify that
V is a pseudovariety. This is analogous to the proof of Theorem 5.14; in part (2) we use that <
reflects the relation symbols ≤B , hence from< · 5 ⊕ (C8 ) ≤B < · 5 ⊕ (C ′8 ) we derive 5

⊕ (C8 ) ≤B 5
⊕ (C ′8 ).

(2) Given an equation morphism 4 : ()̂- ⊕, ̂̀- ⊕ ) ։ (�,U), consider all inequations C ≤B C ′ where C

and C ′ are profinite terms of sort B with*4 (C) ≤ *4 (C ′) in�. We verify that a finite T̂-algebra (�, V)
satisfies those inequations iff it satisfies 4 . This is again completely analogous to the corresponding
argument in the proof of Theorem 5.14; just at the end we need to verify, additionally, that

G ≤B G
′ in � implies ℎ(G) ≤B ℎ(G

′) in �.

Denote by * : (ProDf)
T̂ → PosS the forgetful functor. Since *4 has surjective components, we

have terms C, C ′ in )̂- ⊕ of sort B with G = *4 (C) and G ′ = *4 (C ′), thus C ≤ C ′ is one of the above
inequations. The algebra (�, V) satisfies C ≤ C ′ and (like in Theorem 5.14) we get ℎ = 5 ⊕ , hence
*ℎ(C) ≤ *ℎ(C ′). From*ℎ = : ·*4 , this yields : (G) ≤B : (G ′). �

Remark 6.7. In particular, if D is a variety of ordered one-sorted Σ-algebras and T a monad
preserving surjective morphisms, pseudovarieties of T-algebras can be described by inequations
between profinite terms. This generalizes the result of Pin andWeil [20]. In fact, these authors con-
sider pseudovarieties of general first-order structures, which can be treated within our categorical
framework completely analogously to the case of ordered algebras.
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A IND- AND PRO-COMPLETIONS

The aim of this appendix is to characterize, for an arbitrary small category C , the free completion
ProC under cofiltered limits and its dual concept, the free completion IndC under filtered colimits
(see Notation 2.2). Let us first recall the construction of the latter:

Remark A.1. For any small category C , the ind-completion is given up to equivalence by the full
subcategory L of the presheaf category [C op, Set] on filtered colimits of representables, and the
Yoneda embedding

� : C ֌ L , � ↦→ C (−,�).

We usually leave the embedding � implicit and view C as a full subcategory of L .

Dually to Remark 2.1, an object � of a category C is called finitely presentable if the functor
A (�,−) : C → Set is finitary, i.e. preserves filtered colimits.

Definition A.2. Let ! be an object of a category L . Its canonical diagramw.r.t. a full subcategory
C of L is the diagram �! of all morphisms from objects of C to !:

�! : C /! → L , (�
2
−→ !) ↦→ �.

Lemma A.3. Let C be a full subcategory of L such that each object� ∈ C is finitely presentable in

L . An object ! of L is a colimit of some filtered diagram in C if and only if its canonical diagram

is filtered and the canonical cocone (�
2
−→ !)2∈C /! is a colimit.

Proof sketch. The if part is trivial. Conversely, if ! is a colimit of some filtered diagram, then
we can view it as a final subdiagram of its canonical diagram. Therefore, their colimits coincide. �

Theorem A.4. Let C be a small category. A category L containing C as a full subcategory is an

ind-completion of C if and only if the following conditions hold:

(1) L has filtered colimits,

(2) every object of L is the colimit of a filtered diagram in C , and

(3) every object of C is finitely presentable in L .

Proof. (1) The only if part follows immediately from the construction of IndC in RemarkA.1: (1)
is obvious, (3) follows from the Yoneda Lemma, and (2) follows from Lemma A.3 and the fact that
C is dense in [C op, Set].

(2) We now prove the if part. Suppose that (1)–(3) hold. Let � : C → K be any functor to a
category K with filtered colimits.

(2a) First, define the extension � : L → K of � as follows. For any object ! ∈ L expressed as the

canonical colimit (�
2
−→ !)2∈C /! , the colimit of ��! exists since the canonical diagram is filtered by

condition (2) and K has filtered colimits. Thus � on objects can be given by a choice of a colimit:

�! ≔ colim

(
C /!

�!

−−→ C
�
−→ K

)

We choose the colimits such that �! = ! if ! is in C . For any morphism 5 : ! → !′, each colimit

injection g2 : �� → �!, for �
2
−→ !, associates with another colimit injection g ′

5 ·2
: �� → �!′.

Hence, there is a unique morphism � 5 : �! → �!′ such that g ′
5 ·2

= � 5 · g2 . By the uniqueness of

mediating morphisms, � preserves identities and composition. Therefore, � extends � .
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(2b) Second, we show that � is finitary. Observe that � is in fact a pointwise left Kan extension of
� along the embedding � : C ֌ L . By [17, Cor. X.5.4] we have, equivalently, that for every ! ∈ C

and ∈ K the followingmap fromK (�!, ) to the set of natural transformations fromL (�−, !)

toK (�−,  ) is a bijection: it assigns to a morphism 5 : �! →  the natural transformation whose
components are (

��
2
−→ !

)
↦→

(
�� = ���

�2
−−→ �!

5
−→  

)
.

Hence, given any colimit cocone (�8 → !)8 ∈I of a filtered diagram, we have the following chain
of isomorphisms, natural in  :

K (�!, ) � [C op, Set] (L (�−, !),K (�−,  )) see above

� [C op, Set] (colim
8

L (�−, �8 ),K (�−,  )) by condition (3)

� lim
8
[C op, Set] (L (�−, �8 ),K (�−,  ))

� lim
8

K (��8,  ) see above

� K (colim ��8 ,  )

Thus, by Yoneda Lemma, colim ��8 = �!, i.e. � is finitary.

(2c) The essential uniqueness of � is clear, since this functor is given by a colimit construction. �

By dualizing Theorem A.4, we obtain an analogous characterization of pro-completions:

Corollary A.5. Let C be a small category. The pro-completion of C is characterized, up to equival-

ence of categories, as a category L containing C as a full subcategory such that

(1) L has cofiltered limits,

(2) every object of L is a cofiltered limit of a diagram in C , and

(3) every object of C is finitely copresentable in L .

Remark A.6. Let C be a small category.

(1) ProC is unique up to equivalence.

(2) ProC can be constructed as the full subcategory of [C , Set]op given by all cofiltered limits of
representable functors. The category C has a full embedding into ProC via the Yoneda embed-
ding � : � ↦→ C (�,−). This follows from the description of Ind-completions in Remark A.1 and
the fact that

ProC = (IndC op)op.

(3) If the category C is finitely complete, then ProC can also be described as the dual of the cat-
egory of all functors in [C , Set] preserving finite limits. Again, � is given by the Yoneda embedding.
This is dual to [3, Thm. 1.46]. Moreover, it follows that ProC is complete and cocomplete.

(4) Given a small categoryK with cofiltered limits, denote by [ProC ,K ]cfin the full subcategory
of [ProC ,K ] given by cofinitary functors. Then the pre-composition by � defines an equivalence
of categories

(−) · � : [ProC ,K ]cfin
≃
−−→ [C ,K ],

where the inverse is given by right Kan extension along �.
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