University of

"1l Kent Academic Repository

Greenwood-Thessman, Erin, Gariano, Isaac Oscar, Roberts, Richard, Marr,
Stefan, Homer, Michael and Noble, James (2021) Naive Transient Cast Insertion
Isn’t (That) Bad. In: Proceedings of the 16th ACM International Workshop

on Implementation, Compilation, Optimization of OO Languages, Programs
and Systems. . pp. 1-9. ACM ISBN 978-1-4503-8544-2.

Downloaded from
https://kar.kent.ac.uk/89178/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3464972.3472395

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/89178/
https://doi.org/10.1145/3464972.3472395
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Naive Transient Cast Insertion Isn’t (That) Bad

Erin Greenwood-Thessman
School of Engineering and Computer
Science
Victoria University of Wellington
New Zealand
erin.greenwood-
thessman@ecs.vuw.ac.nz

Isaac Oscar Gariano
School of Engineering and Computer
Science
Victoria University of Wellington
New Zealand
Isaac@ecs.vuw.ac.nz

Richard Roberts
Computational Media Innovation
Centre
Victoria University of Wellington
New Zealand
rykardo.r@gmail.com

Stefan Marr Michael Homer James Noble
School of Computing School of Engineering and Computer ~ School of Engineering and Computer
University of Kent Science Science
United Kingdom Victoria University of Wellington Victoria University of Wellington

s.marr@kent.ac.uk

ABSTRACT

Transient gradual type systems often depend on type-based cast
insertion to achieve good performance: casts are inserted whenever
the static checker detects that a dynamically-typed value may flow
into a statically-typed context. Transient gradually typed programs
are then often executed using just-in-time compilation, and contem-
porary just-in-time compilers are very good at removing redundant
computations.

In this paper we present work-in-progress to measure the ability
of just-in-time compilers to remove redundant type checks. We
investigate worst-case performance and so take a naive approach,
annotating every subexpression to insert every plausible dynamic
cast. Our results indicate that the Moth VM still manages to elimi-
nate much of the overhead, by relying on the state-of-the-art SOMns
substrate and Graal just-in-time compiler.

We hope these results will help language implementers evaluate
the tradeoffs between dynamic optimisations (which can improve
the performance of both statically and dynamically typed programs)
and static optimisations (which improve only statically typed code).

CCS CONCEPTS

« Software and its engineering — Just-in-time compilers; Data
types and structures.

KEYWORDS

static, dynamic, gradual, Grace, Moth

ACM Reference Format:
Erin Greenwood-Thessman, Isaac Oscar Gariano, Richard Roberts, Stefan
Marr, Michael Homer, and James Noble. 2021. Naive Transient Cast Insertion

ICOOOLPS 21, July 13, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 16th ACM International Workshop on Implementation, Compilation, Optimization of
OO Languages, Programs and Systems (ICOOOLPS °21), July 13, 2021, Virtual, Denmark,
https://doi.org/10.1145/3464972.3472395.

New Zealand
mwh@ecs.vuw.ac.nz

New Zealand
kjx@ecs.vuw.ac.nz

Isn’t (That) Bad. In Proceedings of the 16th ACM International Workshop on
Implementation, Compilation, Optimization of OO Languages, Programs and
Systems (ICOOOLPS °21), July 13, 2021, Virtual, Denmark. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3464972.3472395

1 INTRODUCTION

Gradual typing aims to support dynamic typing within static lan-
guages, increasing flexibility whilst maintaining some safety [1], or
alternatively to add static type annotations to dynamic languages,
increasing their safety while maintaining flexibility [10, 37, 39].
These two lineages [12, 15, 16] of gradual typing lead to different
implementation strategies: either extending the low-level back-end
implementation of a static language to permit some dynamicity
[5, 26, 30], or extending the high-level front-end of a dynamic lan-
guage to check type annotations before running programs on an
(often unmodified) dynamic back-end implementation [32].

This paper takes a naive approach to evaluating the effective-
ness of a back-end just-in-time compiler in removing dynamic type
checks. We will measure the performance of “transient” or “type-
tag” checks (as in Reticulated Python), which inspect objects when
they pass through local type declarations (for example, at assign-
ments and method calls) to check that the objects’ type constructors
or names of supported methods match those expected at that point.
Transient checks impose no ongoing obligation to continue to sat-
isfy the type, nor require full information about an object or type.
Instead, whenever a method is called on an object within the lexical
scope of a given type annotation, the parameter and return types
must be checked in accordance with that annotation. Because a
dynamically-typed method may return any value those checks are
necessarily first-order. Transient checks thus pertain to the variable
within its scope, and not to the object or the reference, ensuring
local soundness and that type errors can be blamed on outside code
[8, 17, 34, 38, 41].

We build on the work of Roberts et. al by building upon the open-
source Moth VM (based upon SOMns and the GraalVM) [13, 35, 36],
but we extend their work in one critical way. While Moth performs
first-order type checks at assignments and when emitting a return
value from a method, confirming that the value satisfies the type

https://orcid.org/0000-0002-3462-8539
https://orcid.org/0000-0001-9059-5180
https://orcid.org/0000-0003-0280-6748
https://orcid.org/0000-0001-9036-5692
https://doi.org/10.1145/3464972.3472395
https://doi.org/10.1145/3464972.3472395

ICOOOLPS ’21, July 13, 2021, Virtual, Denmark

annotation on that location, it does not inspect anonymous inter-
mediate values that are never stored in an annotated variable, field,
or parameter, such as those returned from a method and discarded,
or in “chained” method calls. While these return values must satisfy
the type declared in the method definition, if any, they are not
checked for compatibility with the type declared locally for the
receiver. These semantics meet the “dynamic gradual guarantee”
[9, 15], in that type annotations on declarations can be removed
without changing a program’s behaviour, but not the “refined grad-
ual guarantee” [40], because a violation of the locally-expected
return type of a method may be unnoticed. This means that the ex-
isting results for Moth [36] may require fewer runtime type checks
than a “sound” gradual system such as Reticulated Python [42].
To get a worst-case estimate of the overhead of sound checking,
we insert explicit type checks on every subexpression, in so doing
as many type checks as possible. In spite of this worst case sce-
nario, our results show that the performance is the same on average
as when types are only checked when a value passes through an
explicit type annotation, which [36] found to be negligible.

The next section discusses dynamic type checks and gradual
typing in Moth. Section 3 then describes our benchmarking pro-
tocol and Section 4 presents our results. Section 6 presents some
additional related work, and finally section 7 concludes.

2 BACKGROUND

Our work is based on the Moth virtual machine [35, 36], an im-
plementation of the Grace programming language [6, 11]. Moth is
based on the Graal and Truffle toolchain [44, 45], and developed
from a Newspeak implementation based on the Simple Object Ma-
chine [28].

2.1 Grace and Transient Type Checking

Grace is an object-oriented, imperative, educational programming
language, with a focus on introductory programming courses, but
also intended for more advanced study and research [6, 11]. While
Grace’s syntax draws from the so-called “curly bracket” traditions
of C, Java, and JavaScript, the structure of the language is in many
ways closer to Smalltalk: all computation is done via dynamically
dispatched “method requests” where the object receiving the re-
quest decides what code to run, and control structures are built
out of lambda expressions supporting “non-local” returns from the
lexically enclosing method. [14]. In other ways, Grace is closer to
JavaScript than Smalltalk: Grace objects are created from object
literals, rather than by instantiating classes [7, 25], or Newspeak:
Grace’s objects and classes can be deeply nested within each other
[27].

Grace’s Typing. In Grace, all declarations can be annotated with
types. As Grace is designed to support a variety of teaching methods,
implementations of Grace are free to check such type annotations
statically, dynamically, or not at all. The type system of Grace is in-
trinsically gradual: type annotations should not affect the semantics
of a correct program [9]. The type system includes a distinguished
“Unknown” type which matches any other type; this unknown type
is the default when type annotations are omitted.

E. Greenwood-Thessman, Isaac O. G., R. Roberts, S. Marr, M. Homer, and J. Noble

Static typing for the core of Grace’s type system has been de-
scribed elsewhere [23]; here we explain how these types can be un-
derstood dynamically, from the Grace programmer’s point of view.
Grace’s core types are structural [6]; that is, an object conforms to
a type whenever it conforms to the "structural” requirements of a
type, rather than requiring classes or objects to explicitly declare
their intended type.

In Grace, types specify a set of method signatures that an object
must provide. A type expresses the requests an object can respond
to, for example whether a particular accessor is available, rather
than a location in a class hierarchy.

2.2 Moth’s Transient Type Checking

Moth’s implementation of transient type checks are only first-order.
Thus, when testing whether an object value satisfies a type annota-
tion, Moth only checks dynamically that the object has methods of
the same name and arity as are required by the type: any argument
and return types of such methods are not compared.

In particular, Moth performs the following type checks at run
time:

e when a method is requested, arguments that are passed are
checked against the corresponding parameter type annota-
tions of the called method, which is done before the body of
the method is executed;

e when the body of a method has finished executing, but before
it returns to its caller, the method’s return value is checked
against the return type annotation of the called method;

e whenever a variable is read or written to, its value is checked
against the type specified by the variable’s declaration.

Under the Grace object model, object fields are included in the
above without requiring further specification, because they are
accessed only through getter and setter accessor methods on their
containing object, as are parameters to lambda blocks and class
constructors, which are ordinary method parameters.

To see how this works in practice, consider this piece of Grace
code:

def o = object {
method three — Number {3}

}

type ThreeString = interface {
three — String

}

1
2
3
4
5
6
7 deft: ThreeString = o
8 printNumber (t.three)

Moth will perform dynamic type checks:

e on line 7, when the o object initialises the variable t, Moth
checks that o has a 0-argument method called “three”;

e on line 8, when the value of t is read, Moth checks that its
value (o) still has a three method;

e on line 2, when the method requested by “t.three” returns,
Moth checks that returned value conforms to the Number
type; and (presumably, not shown) within the definition of
printNumber(n : Number) , Moth will again check that the
value is a Number.

Naive Transient Cast Insertion Isn’t (That) Bad

Note that we never check either whether the result of request-
ing “t.three” is actually a String (as one may expect from line 5),
nor whether the object o’s “three” methods is expected to return
a String, because Moth only performs first-order type checks (it
checks whether objects have conforming methods) not higher-order
checks (whether the argument and result types of methods’ con-
form). In addition, Moth only checks when values flow through
explicit type annotations. This is why the type declared in lines
4-6 is checked only on line 7 (where it is mentioned explicitly);
and the check only requires the presence of a method called three,
regardless of the method’s declared return type.

This depth of checking does not implement the full semantics
of Grace’s structural types, but on a practical level catches a wide
range of real-world errors, and so has been regarded as a “good
enough” intermediate step in existing Grace implementations. Our
work here is the first step in extending Moth to the full higher-order
checks of the language semantics, by inspecting all concrete values
for first-order conformance to their locally-expected types.

2.3 Moth’s Optimisation

Like other virtual machines based on the Truffle and Graal toolchain,
Moth is a self-optimising Abstract Syntax Tree (AST) interpreter
[36, 46]. The key idea is that an AST rewrites itself based on a
program’s run time values to reflect the minimal set of operations
needed to execute the program correctly. The rewritten AST is then
compiled into efficient machine code. This rewriting often depends
on the dynamic types of the objects involved. In the simplest case, a
“self” call (when one method on an object requests a second method
on the exact same object) will always result in executing the exact
same method. Thus the called method can be inlined into the callee,
avoiding overhead of an object-oriented dynamic dispatch and
exposing optimization opportunities to the just-in-time compiler.

Moth relies on a number of standard techniques for optimising
object-oriented programs. “Shapes” [43] capture information about
objects’ structures and (run time) field types, allowing a just-in-
time compiler to represent objects in memory similarly to C structs
and, consequently, can generate highly efficient code. “Polymor-
phic inline caches” [22] use object shapes to cache the results of
method lookups, avoiding expensive class hierarchy searches or
indirect jumps through virtual method tables. Since Moth is built
on the Truffle framework, Graal comes with additional support for
partial evaluation, which enables efficient native code generation
for Truffle interpreters [44].

For the case of run-time type checking in particular, Moth will be
able to eliminate redundant checks and utilise information already
held by the virtual machine, but not necessarily apparent in the code,
to optimise their execution. An explicit type check may also make
certain information available earlier or for longer, and so enable
further general optimisations in the generated machine code. For
example, although the language may not guarantee that a field
value has not changed, inlining may have ensured that the type
does not change and so all repeated checks can be removed.

Roberts et al. [36] found that Moth’s baseline performance was
within 31% of the Node.js (V8 JavaScript) runtime without type
checking, and that type-checking of non-intermediate values had

ICOOOLPS ’21, July 13, 2021, Virtual, Denmark

an average 5% overhead. That work details the core optimisations
of Moth itself in more detail.

3 EXPERIMENTAL METHODOLOGY

Our experimental methodology is relatively simple: first we trans-
form a benchmark suite by inserting all possible casts manually,
and then we compare the performance of the transformed programs
when run with and without type checking. We also compare perfor-
mance with the untranslated benchmarks, again with and without
type checks.

A fully-annotated program can be seen as analogous to trans-
forming the existing program into static-single-assignment form,
reifying all intermediate values into explicit local variables, and
propagating all necessary type annotations manually. The program
from Section 2.2 could be rendered as follows:

def o = object {
method three — Number {3}

}

type ThreeString = interface {
three — String

}

def t : ThreeString = o

def tmp : String = t.three

O 0 N NG W N

printNumber (tmp)

In this case, the assignment to “tmp” would detect that a num-
ber did not have all the methods of String and report a type er-
ror, finding a flaw not detected with the original program. Cre-
ating these additional local variables would itself be a confound,
however, so our benchmark suite inserts explicit dynamic checks
instead (for example, the final line above would instead become
printNumber(String.cast(t.three))).

These fully-annotated programs can have many more run-time
type checks to perform, sometimes by orders of magnitude. They
are gradually sound up to parameter and return types of unused
methods: it is not possible to receive a no-such-method exception
on a call chain starting from a typed value, unless the declared type
includes an explicit Unknown.

3.1 The Benchmarks

For this work, we rely on the benchmark suite compiled for previous
work [36]. It is a collection of 21 benchmarks in total, derived from
the Are We Fast Yet benchmark suite [29] and other benchmarks
from the gradual-typing literature.

For each benchmark, we manually added explicit cast operations
at every possible location. We named these versions as CastX, where
X is the name of benchmark. The casts are inserted to wrap method
calls both on objects with explicit receivers (like o.three) and when
the call is an operation (like + or &).

Consider the following example where we get the last point
value in some list:

ICOOOLPS ’21, July 13, 2021, Virtual, Denmark

def lastPos: Number = listOfPoints.size — 1

(list.size > 0).if True {
lastPoint := listOfPoints.get(lastPos)

}

Assuming listOfPoints is known to be of type Array(Point), .size
is a method that returns a number. It should be wrapped by a cast,
along with the subtraction of one (since we know the receiver is
a number). The operator > for a number returns a boolean and
should also be cast. Though Moth does not track type parameters,
casts are inserted as if they were (so the results are still applicable
for when Moth does support them). This means that the access of
listOfPoints is also wrapped in a cast. This example would become:

def lastPos: Number =
Number.cast(Number.cast(listOfPoints.size) — 1)

Boolean.cast(Number.cast(list.size) > 0).if True {
lastPoint := Point.cast(listOfPoints.get(lastPos))

}

These cast operations perform the type check and raise an excep-
tion if it is unsatisfied. As dynamic operations, they do not expand
the stack size of the method the way that additional local variables
would, and so do not have unnecessary side effects with the Moth
or Truffle optimisers. They do not perform any transformation of
the values (e.g. a cast from a number to a boolean is an error), but
only inspect the concrete objects independent of their existing type
annotations (so an object that happens to satisfy both types, even
if they are unrelated, will not trigger an error).

3.2 Benchmarking

To account for the complex warmup behaviour of modern systems
[2] as well as the non-determinism caused by e.g. garbage collection
and cache effects, we ran each benchmark for 300 iterations in the
same invocation of Moth, and discard the first 10 iterations to ignore
the worst of warmup JIT compilation.

Our experiment used a single machine with one Intel i7-8700
CPU running at 3.20GHz, with 6 cores for a total of 12 hyperthreads.
The machine was running Arch Linux 5.1.12, and we used Java
1.8.0_212 Graal 19.0. Benchmarks were executed one by one to
avoid interference between them. The analysis of the results and
plots were generated using PGFPLOTS.

In previous work [36] compared the performance of untyped
code on Moth against state-of-the-art VMs: Java, Node.js using the
V8 JavaScript VM, and the Higgs JavaScript VM. Java was the fastest
of these, and on average V8 was about 1.8x slower than Java, Moth
was 2.3x slower, and Higgs was 10.4x slower. We believe this makes
Moth suitable for assessing the impact of type checking, because
Moth’s performance is close enough to state-of-the-art VMs, which
should make it harder to hide type checking overheads in a slow
baseline.

4 RESULTS

The results of running the benchmarks are shown in Figure 2. In
all of the untyped executions, we could not detect a difference

E. Greenwood-Thessman, Isaac O. G., R. Roberts, S. Marr, M. Homer, and J. Noble

Benchmark Original Casts Overhead
Towers 77.00 76.78 -0.29%
Storage 64.43 64.38 -0.07%
SpectralNorm 107.08 106.63 -0.43%
Snake 56.16 59.88 +6.62%
Sieve 70.55 70.34 -0.30%
Richards 277.54 200.30 -27.83%
Queens 53.44 51.89 -2.90%
PyStone 18.81 19.75 +4.99%
Permute 6.79 7.11 +4.66%
NBody 53.33 53.15 -0.32%
Mandelbrot 42.45 4251 +0.14%
List 114.59 118.82 +3.69%
Json 49.84 49.69 -0.29%
Havlak 230.10 227.29 -1.22%
GraphSearch 53.23 51.18 -3.85%
Go 309.90 307.70 -0.71%
Float 162.03 161.54 -0.30%
Fannkuch 263.03 264.96 +0.73%
DeltaBlue 572.22 604.87 +5.71%
CD 121.87 133.96 +9.92%
Bounce 25.75 25.43 -1.24%
Overall 2730.14 2698.16 -1.17%
Average - - -0.15%

Figure 1: Mean execution time (ms) of each benchmark, ig-
noring 10 warmup runs, with overhead compared to type-
checked execution of benchmark without cast insertions.
Overall represents total average runtime of benchmark
suite, while Average is the mean of benchmark overheads.

between the original and cast versions. This was expected as the
casts should disappear entirely and produce the same machine code
as the original version. Figure 1 shows the average performance
of all benchmarks and the measured overhead of the version with
inserted casts.

For the typed runs with casts, 13 of the 21 benchmarks had the
same performance as the original version. Six benchmarks (CD,
DeltaBlue, List, PyStone, Permute, Snake) performed worse with
casts, and three sped up (GraphSearch, Richards, Queens).

Of the six benchmarks with a slowdown, the average slowdown
was 5.93%. Those benchmarks (with percentage slowdown) are
CD (9.92%), DeltaBlue (5.71%), List (3.69%), PyStone (4.99%), Snake
(6.62%), and Permute (4.66%)). For the three benchmarks with a
speed up, GraphSearch was 3.85% faster, Richards was 27.83% faster,
and Queens was 2.90% faster. In total, 13 benchmarks were measured
as at least slightly faster, and eight as at least slightly slower, but
most of the differences are extremely small and some are likely
noise.

Across the benchmark suite, adding casts did not change the
overall performance significantly (total speed up of 1.17%, averaging
0.15% per benchmark). If this result applies more generally, then it
appears the existing Graal dynamic optimizer can be relied on to
remove the overheads of the additional type checks, without any
prior type-based static optimisation.

Naive Transient Cast Insertion Isn’t (That) Bad

Bounce

ICOOOLPS °21, July 13, 2021, Virtual, Denmark

CD

150
100
50
0 | | | | | 0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
DeltaBlue Float
800 T T T
200
600
400 -
100 - B
200 A}\)_n -
0 M\ I [| I 0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
Go GraphSearch
400 (- ‘ 100 ‘ B
300 | A 80yl
60
200 |-
40
100 - 20 |- —
0 | | | | | 0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
Json
300 |
WA boparad oo\t haranch]
200
100 -
0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
List Mandelbrot
150 | | |
k. n
40 -
100
50 |- B 20 |- -
0 | | | | | 0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
—— Original (Typed) —— Cast (Typed) —— Original (Untyped) —— Cast (Untyped)

Figure 2: Benchmark performance. Original is the benchmark version without inserted casts, and Cast is with casts. Untyped
is with type checking disabled in the VM, without modifying source code. Y axis is execution time (ms) and X is iterations.

ICOOOLPS °21, July 13, 2021, Virtual, Denmark

E. Greenwood-Thessman, Isaac O. G., R. Roberts, S.

Marr, M. Homer, and J. Noble

NBody Permute
T T
100 . 40 |- .
50| 1 -~ e - 20| .
Aoty gl Amoa o iAn A
0 | | | | | 0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
PyStone Queens
60 [T = g0 T T
a0 | GOMAJJ Mo woadd g
L1 = *
20 = | A)
ST 1l [20 | —
0 | | | | | 0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
Richards Sieve
T T 80 [T T T T T =
300 My mvenmnncd B N WAV L7 A hah kA AA
60 - .
200 M
40 |- N
100 [1 50l i
0 | | | | | 0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
SpectralNorm
L - —
| | |
50 100 150 200 250 300 50 100 150 200 250 300
Storage Towers
T T
100 | 150 N
Lo 100 {f -
T W N W O W WSO YWY
50 [- VL. NAA AR AT R N .
50 |- =
0 | | | | | 0 | | | | |
50 100 150 200 250 300 50 100 150 200 250 300
—— Original (Typed) —— Cast (Typed) —— Original (Untyped) —— Cast (Untyped)

Figure 2 continued.

Naive Transient Cast Insertion Isn’t (That) Bad

The Richards benchmark is one Roberts et al. [36] reported as
having significantly worse performance with type annotations on.
Our results continue to show overhead compared to untyped, but
the improvement from additional type checks is substantial. Roberts
et al. identified a particular sort of linked-list traversal within the
benchmark as a pathological case for this type of optimiser, because
it results in a check that does not correspond to information the
virtual machine already holds. The additional checks for interme-
diate phases appear to bridge much of this gap: more information
is available locally to be reused, and the resulting machine code
includes fewer redundant checks. Gariano et al. [13] found that
certain type annotations within the baseline Richards benchmark
were significant: one specific type annotation caused significant fur-
ther performance degradation when it was present, unless a certain
other was also present. As our benchmark includes both (and more),
we do not believe this specific complication should be affecting the
results. However, given the sizable performance improvement it is
likely that there are further such pairs where the “good” type test
does not correspond to one explicit in the surface syntax of the base
program, and our cast insertion has counterbalanced some other
expensive tests from the original benchmark. Further investigation
of this interesting case is ongoing.

The Queens benchmark appears to stabilise much more quickly
in the casts condition than any other, with the original and untyped
versions taking nearly ten times as long to reach steady-state perfor-
mance, which is then similar across all conditions. In the graphs of
Roberts et al. [36] this benchmark also shows a lengthy stabilisation
period. This is an interesting result not seen in other benchmarks
and suggests that intermediate types help to identify run-time opti-
misations quickly in this case, despite eventual performance being
similar.

The performance changes for the other benchmarks are much
smaller than Richards, but not insignificant. CD, Snake, List, and
DeltaBlue were reported by Roberts et al. [36] as also slower with
types enabled, while GraphSearch similarly showed improved per-
formance. PyStone and Permute originally had somewhat improved
performance, contrary to our results, though these are the two
briefest benchmarks. These cases also merit further investigation
to determine what factors influence these tendencies. The smaller
changes may simply be noise particular to the specifics of the bench-
mark, such as shifting the boundaries of compilation units in the
optimiser, or may represent real difference.

5 DISCUSSION
5.1 Future Work

Two main pieces of future work arise from this study. First is to
extend Moth to propagate these local type annotations mechani-
cally; this would not bring Moth to the full higher-order checking
of parameter and return types of unused methods, but would be
a step along the path to full gradual typing. We now know from
this work that the performance implications of naive cast insertion
are acceptable, which permits a straightforward approach. At this
point further benchmarking would be possible, and exploration
of additional steps for VM optimisation to find any that still have
benefit on top of this baseline naive approach.

ICOOOLPS ’21, July 13, 2021, Virtual, Denmark

The second piece of work is to investigate further in which kinds
of scenario these intermediate checks create performance changes,
positive or negative, with an eye to improved virtual machine opti-
misation to take advantage of, or mitigate, these situations. These
investigations may follow the model of Gariano et al. [13], but incor-
porating intermediate typechecks as individually-toggleable facets
as well. In particular, intermediate values that are never saved at all
may have distinct characteristics for performance measurements.

Because Grace is structurally-typed, all (non-trivial) types in
Moth are higher-order, so the required degree of checking is much
increased compared to a nominally-typed language where type
names and implementations are closely connected. Nominal checks
without such coupling, as in the brands design previously proposed
for Grace [24], present a different set of challenges, as they also do
not correspond to information the virtual machine inherently has
on hand. Consequently, it is not immediately clear whether these
type checks would also be “free”. Further studies should incorporate
brand types in some benchmarks to determine the implications.

The Grace language also admits further type extensions through
user code, both dynamically through pattern-matching [19, 21]
and statically through “dialects” [20]. Arbitrary dynamic types
in particular may be amenable to exactly the same optimisations
we see in this work, though they do not correspond as cleanly to
information the VM already knows. The implications of our result
to such type-system extensions is uncertain, and additional studies
could determine the bounds of the “almost free” checking seen
so far. Other Grace extensions to inheritance [25, 31] or method
resolution [18], which each directly affect the (purported) shapes
of objects, may also have either no, or significant, performance
implications, and until further study is completed it is not obvious
which.

While it is clear from this study, and those of Roberts et al. [36]
and Gariano et al. [13], that a naive approach to checking dynamic
types in a modern optimising virtual machine is adequate as a
baseline, and so the previous assumption' that adding dynamically-
checked types to a program would necessarily cause a performance
loss is unnecessary, there remain many further optimisation steps
that could be taken. It is possible that existing optimisations taken
by other systems may produce further advantage layered on top,
but also possible that those systems could better adopt this simple
approach using commodity components, rather than maintaining
bespoke optimisers, without losing soundness or performance.

5.2 Threats to Validity

This work is subject to many of the common threats to validity
of experimental works. Although our benchmarks appear to have
stabilised, it is possible that further executions would reach another
breakpoint (as are seen earlier in some benchmarks) that sepa-
rated the conditions further, or brought steady-state performance
to equality with a longer warmup period. Contrariwise, our results
also show variation in how long stabilisation takes in different

!For example, Chung et al. [12] found that “The transient approach checks types at
uses, so the act of adding types to a program introduces more casts and may slow the
program down (even in fully typed code)” and say “transient semantics...is a worst
case scenario..., there is a cast at almost every call”, while Greenman and Migeed [17]
found a “clear trend that adding type annotations adds performance overhead. The
increase is typically linear”

ICOOOLPS ’21, July 13, 2021, Virtual, Denmark

conditions, and it is arguable that excluding warmup is obscur-
ing material information; we may be examining (partly) the wrong
thing. Our augmented benchmarks may have introduced inaccurate
type checks, threatening construct validity. Moth itself may have
bugs that affect both construct and internal validity, and we do not
have sufficient information to say that our findings generalise to
virtual machines following a different model to Moth, threatening
external validity. Other languages have additional constructs not
included in Grace (and vice-versa, though the benchmarks we are
using strove to counter that), and such constructs may introduce
additional threats to generalisability of our results by making type
tests more expensive or frequent. Finally, we may have errors in
our analysis of our results, either human or machine.

6 RELATED WORK

Other than the earlier Moth studies [13, 36], the most recent and
most closely related work conducts very similar experiments, using
Reticulated Python rather than Grace, and the PyPy VM rather than
Moth [42]. This study finds similar results, that a JIT compiler can
remove almost all the overhead of transient typing, even with a very
naive cast insertion strategy. This work then deploys an optimiser
based on the static portion of Reticulated Python’s gradual type
system, so that type casts are only inserted if the type checker
determines that they are required, further increasing performance.

A earlier study [4] used Pycket [3] (a tracing JIT for Racket)
rather than the standard Racket VM, but maintained Racket’s full
gradually-typed semantics while using object shapes to encode
information about gradual types. This approach demonstrated most
benchmarks ran well, although with a slowdown of 2x on average
over all configurations — significantly worse than the Reticulated
Python results, or our results. Note that since typed modules do
not need to do any checks at run time, Typed Racket only needs to
perform checks at boundaries between typed and untyped modules
— effectively a static type-based optimisation, again like Reticulated
Python but unlike our naive approach.

The Nom language [30] was specifically designed to make grad-
ual types easier to optimize, demonstrating speedups as more type
information is added to programs. Their approach enables such
type-driven optimizations, but relies on a static analysis which can
utilize the type information, and the underlying types are nominal,
rather than structural. Similarly, the Grift language [26] is designed
to take advantage of a traditional, ahead of time, static compiler, and
demonstrates good performance for code where more than half of
the program is annotated with types, and reasonable performance
for code without type annotations.

The SafeTypeScript language has also been implemented by ex-
tending the Higgs VM [33], although implementing “monotonic”
gradual typing with blame, rather than the simpler transient checks
used in Moth and Reticulated Python. This study again demon-
strates that JIT-ing VMs can eliminate most of the overhead of
dynamic type checks, although the overall performance is signifi-
cantly slower than the other approaches.

7 CONCLUSION

In this paper we have measured the performance impact of naively
inserting every possible (sensible) dynamic cast into a gradually

E. Greenwood-Thessman, Isaac O. G., R. Roberts, S. Marr, M. Homer, and J. Noble

typed program, and then running that program on Moth, a VM for
the Grace language based on Truffle and Graal.

We found that on average the performance of the cast-inserted
benchmarks was the same as only type checking at explicit type
annotations. Some benchmarks were somewhat slower, and one
benchmark (Richards) was almost twice as fast. Our next research
goal is to try to understand the cause of these changes.

Finally, we hope these results will help language implementers
evaluate the tradeoffs between dynamic optimisations (which can
improve the performance of both statically and dynamically typed
programs) and static optimisations (which improve only statically
typed code).

ACKNOWLEDGMENTS

This work is supported in part by the Royal Society of New Zealand
(Te Aparangi) Marsden Fund (Te Patea Rangahau a Marsden) under
grant VUW1815.

REFERENCES

[1] Martin Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon D. Plotkin. 1991.
Dynamic Typing in a Statically Typed Language. ACM Trans. Program. Lang.
Syst. 13, 2 (1991), 237-268. https://doi.org/10.1145/103135.103138

[2] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and
Laurence Tratt. 2017. Virtual Machine Warmup Blows Hot and Cold. Proc. ACM
Program. Lang. 1, OOPSLA, Article 52 (Oct. 2017), 27 pages. https://doi.org/10.
1145/3133876

[3] Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias
Pape, Jeremy G. Siek, and Sam Tobin-Hochstadt. 2015. Pycket: a tracing JIT for a
functional language. In Proceedings of the 20th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September
1-3, 2015. 22-34. https://doi.org/10.1145/2784731.2784740

[4] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-
Hochstadt. 2017. Sound Gradual Typing: Only Mostly Dead. Proc. ACM Program.
Lang. 1, OOPSLA, Article 54 (Oct. 2017), 24 pages. https://doi.org/10.1145/
3133878

[5] Gavin M. Bierman, Erik Meijer, and Mads Torgersen. 2010. Adding Dynamic
Types to C#. In ECOOP.

[6] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble. 2012. Grace:
the absence of (inessential) difficulty. In Onward! °12: Proceedings 12th SIGPLAN
Symp. on New Ideas in Programming and Reflections on Software. ACM, New York,
NY, 85-98. https://doi.org/10.1145/2384592.2384601

[7] Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy. 2007. The
development of the Emerald programming language. In Proceedings of the Third
ACM SIGPLAN History of Programming Languages Conference (HOPL-III), San
Diego, California, USA, 9-10 June 2007. 1-51. https://doi.org/10.1145/1238844.
1238855

[8] Bard Bloom, John Field, Nathaniel Nystrom, Johan Ostlund, Gregor Richards,

Rok Strnisa, Jan Vitek, and Tobias Wrigstad. 2009. Thorn: Robust, Concurrent,

Extensible Scripting on the JVM. In Proceedings of the ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL). 117-136. https:

//doi.org/10.1145/1639949.1640098

John Tang Boyland. 2014. The Problem of Structural Type Tests in a Gradual-

Typed Language. In FOOL.

[10] Gilad Bracha. 2004. Pluggable Type Systems. OOPSLA Workshop on Revival of

Dynamic Languages. , 6 pages.

Kim Bruce, Andrew Black, Michael Homer, James Noble, Amy Ruskin, and Richard

Yannow. 2013. Seeking Grace: a new object-oriented language for novices. In

Proceedings 44th SIGCSE Technical Symposium on Computer Science Education.

ACM, 129-134. https://doi.org/10.1145/2445196.2445240

Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek. 2018. KafKa:

Gradual Typing for Objects. In 32nd European Conference on Object-Oriented

Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The Netherlands. 12:1-

12:24. https://doi.org/10.4230/LIPIcs. ECOOP.2018.12

Isaac Oscar Gariano, Richard Roberts, Stefan Marr, Michael Homer, and James

Noble. 2019. Which of my Transient Type Checks are not (Almost) Free?. In

VMIL.

Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and its

Implementation. Addison-Wesley.

Michael Greenberg. 2019. The Dynamic Practice and Static Theory of Gradual

Typing. In SNAPL (LIPIcs, Vol. 136).

—
L

[11

[12

(13

[14

[15

https://doi.org/10.1145/103135.103138
https://doi.org/10.1145/3133876
https://doi.org/10.1145/3133876
https://doi.org/10.1145/2784731.2784740
https://doi.org/10.1145/3133878
https://doi.org/10.1145/3133878
https://doi.org/10.1145/2384592.2384601
https://doi.org/10.1145/1238844.1238855
https://doi.org/10.1145/1238844.1238855
https://doi.org/10.1145/1639949.1640098
https://doi.org/10.1145/1639949.1640098
https://doi.org/10.1145/2445196.2445240
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12

Naive Transient Cast Insertion Isn’t (That) Bad

Ben Greenman and Matthias Felleisen. 2018. A spectrum of type soundness and
performance. PACMPL 2, ICFP (2018), 71:1-71:32. https://doi.org/10.1145/3236766
Ben Greenman and Zeina Migeed. 2018. On the Cost of Type-Tag Soundness. In
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (Los Angeles, CA, USA) (PEPM’18). ACM, 30-39. https://doi.org/
10.1145/3162066

Michael Homer, Timothy Jones, and James Noble. 2015. From APIs to Languages:
Generalising Method Names. In Dynamic Language Symposium. https://doi.org/
10.1145/2816707.2816708

ICOOOLPS ’21, July 13, 2021, Virtual, Denmark

org/10.1145/3133879

Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Concrete Types
for TypeScript. In 29th European Conference on Object-Oriented Programming,
ECOOP 2015, July 5-10, 2015, Prague, Czech Republic. 76-100. https://doi.org/10.
4230/LIPIcs.ECOOP.2015.76

Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2017. Toward
Virtual Machine Adaption Rather than Reimplementation. In MoreVMs’17: 1st
International Workshop on Workshop on Modern Language Runtimes, Ecosystems,
and VMs at <Programming> 2017 (Brussels, Belgium). Presentation.

[19] Michael Homer, Timothy Jones, and James Noble. 2019. First-Class Dynamic [36] Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019. Transient
Types. In Dynamic Language Symposium. https://doi.org/10.1145/3359619. Typechecks are (Almost) Free. In ECOOP.
3359740 [37] Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In
[20] Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and Andrew P. Black. Seventh Workshop on Scheme and Functional Programming, Vol. Technical Report

2014. Graceful Dialects. In European Conference on Object-Oriented Programming. TR-2006-06. University of Chicago, 81-92.

https://doi.org/10.1007/978-3-662-44202-9_6 [38] Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In ECOOP 2007
[21] Michael Homer, James Noble, Kim B. Bruce, Andrew P. Black, and David J. Pearce. - Object-Oriented Programming, 21st European Conference, Berlin, Germany, July 30

2012. Patterns as Objects in Grace. In Dynamic Language Symposium. - August 3, 2007, Proceedings. 2-27. https://doi.org/10.1007/978-3-540-73589-2_2

[22] Urs Holzle, Craig Chambers, and David Ungar. 1991. Optimizing Dynamically- [39] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015.

Typed Object-Oriented Languages With Polymorphic Inline Caches. In ECOOP
’91: European Conference on Object-Oriented Programming (LNCS, Vol. 512).
Springer, 21-38. https://doi.org/10.1007/BFb0057013

Timothy Jones. 2017. Classless Object Semantics. Ph.D. Dissertation. Victoria
University of Wellington.

Timothy Jones, Michael Homer, and James Noble. 2015. Brand Objects for
Nominal Typing. In European Conference on Object-Oriented Programming. https:
//doi.org/10.4230/LIPIcs.ECOOP.2015.198

Timothy Jones, Michael Homer, James Noble, and Kim Bruce. 2016. Object
Inheritance Without Classes. In 30th European Conference on Object-Oriented
Programming (ECOOP 2016), Vol. 56. 13:1-13:26. https://doi.org/10.4230/LIPIcs.
ECOOP.2016.13

Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019.
Toward efficient gradual typing for structural types via coercions. In PLDL

Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard. 1993.
Object-Oriented Programming in the BETA Programming Language. Addison-
Wesley.

Stefan Marr. 2018. SOMns: A Newspeak for Concurrency Research. https:
//doi.org/10.5281/zenodo.3270908

Stefan Marr, Benoit Daloze, and Hanspeter Mssenbock. 2016. Cross-Language
Compiler Benchmarking—Are We Fast Yet?. In Proceedings of the 12th Symposium
on Dynamic Languages (DLS’16). ACM, 120-131. https://doi.org/10.1145/3093334.
2989232

Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally
Alive and Well. Proc. ACM Program. Lang. 1, OOPSLA, Article 56 (Oct. 2017),
30 pages. https://doi.org/10.1145/3133880

James Noble, Andrew P. Black, Kim B. Bruce, Michael Homer, and Timothy Jones.
2017. Grace’s Inheritance. The Journal of Object Technology Volume 16, no. 2
(2017).

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin M. Bierman, and Panagiotis
Vekris. 2015. Safe & Efficient Gradual Typing for TypeScript. In Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 167-180. https:
//doi.org/10.1145/2676726.2676971

Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM Already Knew
That: Leveraging Compile-time Knowledge to Optimize Gradual Typing. Proc.
ACM Program. Lang. 1, OOPSLA, Article 55 (Oct. 2017), 27 pages. https://doi.

Refined Criteria for Gradual Typing. In 1st Summit on Advances in Programming
Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 32), Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner,
and Greg Morrisett (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

274-293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015.

Refined Criteria for Gradual Typing. In 1st Summit on Advances in Programming
Languages, SNAPL 2015, May 3-6, 2015, Asilomar, California, USA. 274-293. https:
//doi.org/10.4230/LIPIcs. SNAPL.2015.274

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014.
Design and evaluation of gradual typing for Python. In DLS’14, Proceedings of
the 10th ACM Symposium on Dynamic Languages, part of SPLASH 2014, Portland,
OR, USA, October 20-24, 2014. 45-56. https://doi.org/10.1145/2661088.2661101
Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Optimizing and
Evaluating Transient Gradual Typing. In DLS.

Andreas Wo6f3, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer,
and Hanspeter Mossenbdck. 2014. An Object Storage Model for the Truffle
Language Implementation Framework. In Proceedings of the 2014 International
Conference on Principles and Practices of Programming on the Java Platform:
Virtual Machines, Languages, and Tools (Cracow, Poland) (PPP7’14). ACM, 133—
144. https://doi.org/10.1145/2647508.2647517

Thomas Wiirthinger, Christian Wimmer, Christian Humer, Andreas W68, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.
Practical Partial Evaluation for High-performance Dynamic Language Runtimes.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Barcelona, Spain) (PLDI’17). ACM, 662-676. https:
//doi.org/10.1145/3062341.3062381

Thomas Wiirthinger, Christian Wimmer, Andreas Wé8, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Indianapolis, Indiana, USA) (Onward! 2013). ACM, 187-204. https:
//doi.org/10.1145/2509578.2509581

Thomas Wiirthinger, Andreas Wo6f3, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. 2012. Self-Optimizing AST Interpreters. In Proceedings of
the 8th Dynamic Languages Symposium (Tucson, Arizona, USA) (DLS’12). 73-82.
https://doi.org/10.1145/2384577.2384587

https://doi.org/10.1145/3236766
https://doi.org/10.1145/3162066
https://doi.org/10.1145/3162066
https://doi.org/10.1145/2816707.2816708
https://doi.org/10.1145/2816707.2816708
https://doi.org/10.1145/3359619.3359740
https://doi.org/10.1145/3359619.3359740
https://doi.org/10.1007/978-3-662-44202-9_6
https://doi.org/10.1007/BFb0057013
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.4230/LIPIcs.ECOOP.2015.198
https://doi.org/10.4230/LIPIcs.ECOOP.2016.13
https://doi.org/10.4230/LIPIcs.ECOOP.2016.13
https://doi.org/10.5281/zenodo.3270908
https://doi.org/10.5281/zenodo.3270908
https://doi.org/10.1145/3093334.2989232
https://doi.org/10.1145/3093334.2989232
https://doi.org/10.1145/3133880
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/3133879
https://doi.org/10.1145/3133879
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587

