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Esparza and Reiter have recently conducted a systematic comparative
study of models of distributed computing consisting of a network of identical
finite-state automata that cooperate to decide if the underlying graph of the
network satisfies a given property. The study classifies models according
to four criteria, and shows that twenty-four initially possible combinations
collapse into seven equivalence classes with respect to their decision power,
i.e. the properties that the automata of each class can decide. However,
Esparza and Reiter only show (proper) inclusions between the classes, and so
do not characterise their decision power. In this paper we do so for labelling
properties, i.e. properties that depend only on the labels of the nodes, but
not on the structure of the graph. In particular, majority (whether more
nodes carry label a than b) is a labelling property. Our results show that
only one of the seven equivalence classes identified by Esparza and Reiter
can decide majority for arbitrary networks. We then study the expressive
power of the classes on bounded-degree networks, and show that three classes
can. In particular, we present an algorithm for majority that works for
all bounded-degree networks under adversarial schedulers, i.e. even if the
scheduler must only satisfy that every node makes a move infinitely often,
and prove that no such algorithm can work for arbitrary networks.
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1. Introduction
A common feature of networks of natural or artificial devices, like molecules, cells,
microorganisms, or nano-robots, is that agents have very limited computational power
and no identities. Traditional distributed computing models are often inadequate to
study the power and efficiency of these networks, which has led to a large variety of new
models, including population protocols [4, 3], chemical reaction networks [29], networked
finite state machines [15], the weak models of distributed computing of [20], and the
beeping model [14, 1] (see e.g. [17, 27] for surveys and other models).

These new models share several characteristics [15]: the network can have an arbitrary
topology; all nodes run the same protocol; each node has a finite number of states,
independent of the size of the network or its topology; state changes only depend on
the states of a bounded number of neighbours; nodes do not know their neighbours, in
the sense of [2]. Unfortunately, despite such substantial common ground, the models
still exhibit much variability. In [16] Esparza and Reiter have recently identified four
fundamental criteria according to which they diverge:

• Detection. In some models, nodes can only detect the existence of neighbours in
a certain state, e.g., [1, 20], while in others they can count their number up to a
fixed threshold, e.g., [15, 20].

• Acceptance. Some models compute by stable consensus, requiring all nodes to
eventually agree on the outcome of the computation, e.g. [4, 3, 29]; others require
the nodes to produce an output and halt, e.g. [20, 22].

• Selection. Some models allow for liberal selection: at each moment, an arbitrary
subset of nodes is selected to take a step [15, 28]. Exclusive models (also called
interleaving models) select exactly one node (or one pair of neighbouring nodes)
[4, 3, 29]. Synchronous models select all nodes at each step e.g.,[20] or classical
synchronous networks [24].

• Fairness. Some models assume that selections are adversarial, only satisfying the
minimal requirement that each node is selected infinitely often [18, 23]. Others
assume stochastic or pseudo-stochastic selection (meaning that selections satisfy a
fairness assumption capturing the main features of a stochastic selection) [4, 3, 29].
In this case, the selection scheduler is a source of randomness that can be tapped
by the nodes to ensure e.g. that eventually all neighbours of a node will be in
different states.

In [16], Esparza and Reiter initiated a comparative study of the computational power
of these models. They introduced distributed automata, a generic formalism able to
capture all combinations of the features above. A distributed automaton consists of a set
of rules that tell the nodes of a labelled graph how to change their state depending on
the states of their neighbours. Intuitively, the automaton describes an algorithm that
allows the nodes to decide whether the graph satisfies a given property. The decision
power of a class of automata is the set of graph properties they can decide, for example
whether the graph contains more red nodes than blue nodes (the majority property), or
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Figure 1: The seven distributed automata models of [16]; their decision power w.r.t.
labelling predicates for arbitrary networks, and for bounded-degree networks.
ISM stands for invariant under scalar multiplication. The other complexity
classes are defined in Section 5.

whether the graph is a cycle. The main result of [16] was that the twenty-four classes
obtained by combining the features above collapse into only seven equivalence classes
w.r.t. their decision power. The collapse is a consequence of a fundamental result: the
selection criterion does not affect the decision power. That is, the liberal, exclusive, or
synchronous versions of a class with the same choices in the detection, acceptance, and
fairness categories, have the same decision power. The seven equivalence classes are
shown on the left of Figure 1, where D and d denote detection with and without the
ability to count; A and a denote acceptance by stable consensus and by halting; and F
and f denote pseudo-stochastic and adversarial fairness constraints. So, for example, DAf
corresponds to the class of distributed automata in which agents can count, acceptance
is by stable consensus, and selections are adversarial. (As mentioned above, the selection
component is irrelevant, and one can assume for example that all classes have exclusive
selection.) Intuitively, the capital letter corresponds to the option leading to higher
decision power.
The results of [16] only prove inclusions between classes and separations, but give no

information on which properties can be decided by each class, an information available
e.g. for multiple variants of population protocols [6, 3, 7, 11, 19, 25]. In this paper,
we characterise the decision power of all classes of [16] w.r.t. labelling properties, i.e.
properties that depend only on the labels of the nodes. Formally, given a labelled graph
G over a finite set Λ of labels, let LG : Λ→ N be the label count of G that assigns to each
label the number of nodes carrying it. A labelling property is a set L of label counts.
A graph G satisfies L if LG ∈ L, and a distributed automaton decides L if it recognises
exactly the graphs that satisfy L. For example, the majority property is a labelling
property, while the property of being a cycle is not.
Our first collection of results is shown in the middle of Figure 1. We prove that all

classes with halting acceptance can only decide the trivial labelling properties ∅ and NΛ.
More surprisingly, we further prove that the computational power of DAf, dAf, and dAF
is very limited. Given a labelled graph G and a number K, let dLGeK be the result of
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substituting K for every component of LG larger than K. The classes DAf, dAf can decide
a property L iff membership of LG in L depends only on dLGe1, and dAF iff membership
depends only on dLGeK for some K ≥ 1. In particular, none of these classes can decide
majority. Finally, moving to the top class DAF causes a large increase in expressive
power: DAF can decide exactly the labelling properties in the complexity class NL, i.e. the
properties L such that a nondeterministic Turing machine can decide membership of LG
in L using logarithmic space in the number of nodes of G. In particular, DAF-automata
can decide majority, or whether the graph has a prime number of nodes.
In the last part of the paper, we obtain our second and most interesting collection of

results. Molecules, cells, or microorganisms typically have short-range communication
mechanisms, which puts an upper bound on their number of communication partners.
So we re-evaluate the decision power of the classes for bounded-degree networks, as also
done in [3] for population protocols on graphs. Intuitively, nodes know that they have
at most k neighbours for some fixed number k, and can exploit this fact to decide more
properties. Our results are shown on the right of Figure 1. Both DAF and dAF boost
their expressive power to NSPACE(n), where n is the number of nodes of the graph.
This is the theoretical upper limit since each node has a constant number of bits of
memory. Further, the class DAf becomes very interesting. While we are not yet able to
completely characterise its expressive power, we show that it can only decide properties
invariant under scalar multiplication (ISM), i.e. labelling properties L such that LG ∈ L
iff λ ·LG ∈ L for every λ ∈ N, and that it can decide all properties satisfied by a graph G
iff LG is a solution to a system of homogeneous linear inequalities. In particular, DAf can
decide majority, and we have the following surprising fact. If nodes have no information
about the network, then they require stochastic-like selection to decide majority; however,
if they know an upper bound on the number of their neighbours, they can decide majority
even with adversarial selection. In particular, there is a synchronous majority algorithm
for bounded-degree networks.

Related work. Decision power questions have also been studied in [20] for a model
similar to Daf, and in [13] for a graph version of the mediated population protocol model
[25]. The distinguishing feature of our work is the systematic study of the influence of a
number of features on the decision power.
Further, there exist numerous results about the decision power of different classes of

population protocols. Recall that agents of population protocols are indistinguishable
and communicate by rendez-vous; this is equivalent to placing the agents in a clique and
selecting an edge at every step. Angluin et al. show that standard population protocols
compute exactly the semilinear predicates [6]. Extensions with absence detectors or
cover-time services [26], consensus-detectors [7], or broadcasts [11] increase the power
to NL (more precisely, in the case of [26] the power lies between L and NL). Our result
DAF = NL shows that these features can be replaced by a counting capability. Further,
giving an upper bound on the number of neighbours increases the decision power to
NSPACE(n), a class only reachable by standard population protocols (not on graphs) if
agents have identities, or channels have memory [25, 19].
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Structure of the paper. Section 2 recalls the automata models and the results of [16].
Section 3 presents fundamental limitations of their decision power. Section 4 introduces
a notion of simulating an automaton by another, and uses it to show that distributed
automata with more powerful communication mechanisms can be simulated by standard
automata. Section 5 combines the results of Sections 3 and 4 to characterise the decision
power of the models of [16] on labelling properties (middle of Figure 1). Section 6 does
the same for bounded-degree networks (right of Figure 1).
Due to the nature of this research, we need to state and prove many results. For the

sake of brevity, each section concentrates on the most relevant result; all others are only
stated, and their proofs are given in the appendix.

2. Preliminaries
Given sets X,Y , we denote by 2X the power set of X, and by Y X the set of func-
tions X → Y . We define a closed interval [m :n] := {i ∈ Z : m ≤ i ≤ n} and [n] := [0 :n],
for any m,n ∈ Z such that m ≤ n.

A multiset over a set X is an element of NX . Given a multiset M ∈ NX and β ∈ N, we
let dMeβ denote the multiset given by dMeβ(x) := M(x) if M(x) < β and dMeβ(x) := β
otherwise. We say that dMeβ is the result of cutting off M at β, and call the function
that assigns dMeβ to M the cutoff function for β.
Let Λ be a finite set. A (Λ-labelled, undirected) graph is a triple G = (V,E, λ),

where V is a finite nonempty set of nodes, E is a set of undirected edges of the form
e = {u, v} ⊆ V such that u 6= v, and λ : V → Λ is a labelling.

Convention Throughout the paper, all graphs are labelled, have at least three nodes,
and are connected.

2.1. Distributed automata
Distributed automata [16] take a graph as input, and either accept or reject it. We first
define distributed machines.

Distributed machines. Let Λ be a finite set of labels and let β ∈ N+. A (distributed)
machine with input alphabet Λ and counting bound β is a tuple M = (Q, δ0, δ, Y,N),
where Q is a finite set of states, δ0 : Λ→ Q is an initialisation function, δ : Q× [β]Q → Q
is a transition function, and Y,N ⊆ Q are two disjoint sets of accepting and rejecting
states, respectively. Intuitively, when M runs on a graph, each node v (or agent) with
label γ is initially in state δ0(γ) and uses δ to update its state, depending on the number
of neighbours it has in each state; however v can only detect if it has 0, 1, ..., (β − 1), or
at least β neighbours in a given state. We call β the counting bound of M .
Transitions given by δ are called neighbourhood transitions. We write q,N 7→ q′ for

δ(q,N ) = q′. If q = q′ the transition is silent and may not be explicitly specified in our
constructions. Sometimes δ0, Y,N are also irrelevant and not specified, and we just write
M = (Q, δ).
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Selections, schedules, configurations, runs, and acceptance. A selection of a graph
G = (V,E, λ) is a set S ⊆ V . A schedule is an infinite sequence of selections σ =
(S0, S1, S2, ...) ∈ (2V )ω such that for every v ∈ V , there exist infinitely many t ≥ 0 such
that v ∈ St. Intuitively, St is the set of nodes activated by the scheduler at time t, and
schedules must activate every node infinitely often.
A configuration of M = (Q, δ0, δ, Y,N) on G is a mapping C : V → Q. We let

NC
v : Q→ [β] denote the neighbourhood function that assigns to each q ∈ Q the number

of neighbours of v in state q at configuration C, up to threshold β; in terms of the
cutoff function, NC

v = dMC
v eβ, where MC

v (q) =
∣∣{u : {u, v} ∈ E ∧ C(u) = q}

∣∣. The
successor configuration of C via a selection S is the configuration succδ(C, S) obtained
from C by letting all nodes in S evaluate δ simultaneously, and keeping the remaining
nodes idle. Formally, succδ(C, S)(v) = δ

(
C(v), NC

v

)
if v ∈ S and succδ(C, S)(v) = C(v)

if v ∈ V \ S. We write C → C ′ if C ′ = succ(C, S) for some selection S, and →∗ for the
reflexive and transitive closure of →. Given a schedule σ = (S0, S1, S2, ...), the run of M
on G scheduled by σ is the infinite sequence (C0, C1, C2, ...) of configurations defined
inductively as follows: C0(v) = δ0(λ(v)) for every node v, and Ct+1 = succδ(Ct, St). We
call C0 the initial configuration. A configuration C is accepting if C(v) ∈ Y for every
v ∈ V , and rejecting if C(v) ∈ N for every v ∈ V . A run ρ = (C0, C1, C2, ...) of M on G
is accepting resp. rejecting if there is t ∈ N such that Ct′ is accepting resp. rejecting for
every t′ ≥ t. This is called acceptance by stable consensus in [4].

Distributed automata. A scheduler is a pair Σ = (s, f), where s is a selection constraint
that assigns to every graph G = (V,E, λ) a set s(G) ⊆ 2V of permitted selections such
that every node v ∈ V occurs in at least one selection S ∈ s(G), and f is a fairness
constraint that assigns to every graph G a set f(G) ⊆ s(G)ω of fair schedules of G. We
call the runs of a machine with schedules in f(G) fair runs (with respect to Σ).
A distributed automaton is a pair A = (M,Σ), where M is a machine and Σ is a

scheduler satisfying the consistency condition: for every graph G, either all fair runs of
M on G are accepting, or all fair runs of M on G are rejecting. Intuitively, whether M
accepts or rejects G is independent of the scheduler’s choices. A accepts G if some fair
run of A on G is accepting, and rejects G otherwise. The language L(A) of A is the set
of graphs it recognises. The property decided by A is the predicate ϕA on graphs such
that ϕA(G) holds iff G ∈ L(A). Two automata are equivalent if they decide the same
property.

2.2. Classifying distributed automata.
Esparza and Reiter classify automata according to four criteria: detection capabilities,
acceptance condition, selection, and fairness. The first two concern the distributed
machine, and the last two the scheduler.

Detection. Machines with counting bound β = 1 or β ≥ 1 are called non-counting or
counting, respectively (abusing language, non-counting is considered a special case of
counting).
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Acceptance. A machine is halting if its transition function does not allow nodes to leave
accepting or rejecting states, i.e. δ(q, P ) = q for every q ∈ Y ∪N and every P ∈ [β]Q.
Intuitively, a node that enters an accepting/rejecting state cannot change its mind later.
Halting acceptance is a special case of acceptance by stable consensus.

Selection. A scheduler Σ = (s, f) is synchronous if s(G) = {V } for every G = (V,E, λ)
(at each step all nodes make a move); exclusive if s(G) = {{v} | v ∈ V } (at each step
exactly one node makes a move); and liberal if s(G) = 2V (at every step some set of
nodes makes a move).

Fairness. A schedule σ = (S0, S1, ...) ∈ s(G)ω of a graph G is pseudo-stochastic if for
every finite sequence (T0, ..., Tn) ∈ s(G)∗ there exist infinitely many t ≥ 0 such that
(St, ..., St+n) = (T0, ..., Tn). Loosely speaking, every possible finite sequence of selections
is scheduled infinitely often. A scheduler Σ = (s, f) is adversarial if for every graph G, the
set f(G) contains all schedules of s(G)ω (i.e. we only require every node to be selected
infinitely often), and pseudo-stochastic if it contains precisely the pseudo-stochastic
schedules.
Whether or not a schedule σ of a graph G = (V,E, λ) is pseudo-stochastic depends

on s(G). For example, if s(G) = {V }, i.e. if the only permitted selection is to select all
nodes, then the synchronous schedule V ω is pseudo-stochastic, but if s(G) = 2V , i.e. if
all selections are permitted, then it is not.

This classification yields 24 classes of automata (four classes of machines and six classes
of schedulers). It was shown in [16] that the decision power of a class is independent
of the selection type of the scheduler (liberal, exclusive, or synchronous). This leaves 8
classes, which we denote using the following scheme:

Detection Acceptance Fairness

d: non-counting a: halting f: adversarial scheduling
D: counting A: stable consensus F: pseudo-stochastic scheduling

Intuitively, the uppercase letter corresponds to the more powerful variant. Each class of
automata is denoted by a string xyz ∈ {d, D} × {a, A} × {f, F}. Finally, it was shown in
[16] that daf and daF have the same decision power, yielding the seven classes on the
left of Figure 1.
In the rest of the paper, we generally assume that selection is exclusive (exactly one

node is selected at each step). Since for synchronous automata there is only one permitted
selection, adversarial and pseudo-stochastic scheduling coincide, and we therefore denote
synchronous classes by strings xy$; for example, we write DA$.

3. Limitations
Our lower bounds on the decision power of the seven classes follow from several lemmata
proving limitations of their discriminating power, i.e. of their ability to distinguish two
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graphs by accepting the one and rejecting the other. We present four limitations. We
state the first three, and prove the last one, a non-trivial limitation of dAF-automata.
Recall that ϕA denotes the property decided by the automaton A.

Automata with halting acceptance cannot discriminate cyclic graphs. Automata
with halting acceptance necessarily accept all graphs containing a cycle, or reject all
graphs containing a cycle. Intuitively, given two graphs G and H with cycles, if one is
accepted and the other rejected, one can construct a larger graph in which some nodes
behave as if they were in G, others as if they were in H. This makes some nodes accept
and others reject, contradicting that for every graph the automaton accepts or rejects.

Lemma 3.1. Let A be a DaF-automaton. For all graphs G and H containing a cycle,
ϕA(G) = ϕA(H).

Automata with adversarial selection cannot discriminate a graph and its covering.
Given two graphs G = (VG, EG, λG) and H = (VH , EH , λH), we say that H covers
G if there is a covering map f : VH → VG, i.e. a surjection that preserves labels and
neighbourhoods by mapping the neighbourhood of each v in H bijectively onto the
neighbourhood of f(v) in G. Automata with adversarial selection cannot discriminate a
graph from another one covering it. Intuitively, if H covers G then a node u of H and
the node f(u) of G visit the same sequence of states in the synchronous runs of A on G
and H. Since these runs are fair for adversarial selection, both nodes accept, or both
reject.

Lemma 3.2. Let A be a DAf-automaton. For all graphs G and H, if H is a covering of
G, then ϕA(G) = ϕA(H).

Let LG : Λ → N assign to each label ` ∈ Λ the number of nodes v ∈ V such that
λ(v) = `. We call LG the label count of G. Recall that a labelling property depends only
on the label count of a graph, not on its structure. Based on the existence of a λ-fold
covering graph for every G and λ ∈ N, we immediately get the following.

Corollary 3.3. Let A be a DAf-automaton deciding a labelling property. For all graphs
G and H, if LH = λLG for some λ ∈ N>0, then ϕA(G) = ϕA(H). This also holds when
restricting to k-degree-bounded graphs.

Automata with adversarial selection and non-counting automata cannot discriminate
beyond a cutoff. Our final results show that for every DAf- or dAF-automaton deciding
a labelling property there is a number K such that whether the automaton accepts a
graph G or not depends only on dLGeK , and not on the “complete” label count LG. In
such a case we say that the property admits a cutoff. For DAf-automata, the cutoff K is
simply β + 1, where β is the counting bound.

Lemma 3.4. Let A be a DAf-automaton with counting bound β that decides a labelling
property. For all graphs G and H, if dLGeβ+1 = dLHeβ+1 then ϕA(G) = ϕA(H), i.e. ϕA
admits a cutoff.
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The proof that dAF-automata also cannot discriminate beyond a cut-off is more involved,
and the cutoff value K is a complex function of the automaton. The proof technique is
similar to that of Theorem 39 of [6].

Lemma 3.5. Let A be a dAF-automaton that decides a labelling property. There exists
K ≥ 0 such that for every graph G and H, if dLGeK = dLHeK then ϕA(G) = ϕA(H),
i.e. ϕA admits a cutoff.

Proof (sketch). Let A be a dAF-automaton, and let Q be its set of states. In this proof
we consider the class of star graphs. A star is a graph in which a node called the centre
is connected to an arbitrary number of nodes called the leaves, and no other edges exist.
Importantly, for every graph G, there is a star G′ with the same label count. We consider
labelling properties (which do not depend on the graph), so if the property has a cutoff
for star graphs, then the property has a cutoff in general. A configuration of a star
graph G is completely determined by the state of the centre and the number of leaves
in each state. So in the rest of the proof we assume that such a configuration is a pair
C = (Cctr, Csc), where Cctr denotes the state of the centre of G, and Csc is the state count
of C, i.e. the mapping that assigns to each q ∈ Q the number Csc(q) of leaves of G that
are in state q at C. We denote the cutoff of C at a number m as dCem := (Cctr, dCscem).
Given a configuration C of A, recall that C is rejecting if all nodes have rejecting

states. We say that C is stably rejecting if C can only reach configurations which are
rejecting. Given an initial configuration C0, it is clear that A must reject if it can reach
a stably rejecting configuration C from A. Conversely, if it cannot reach such a C, then
A will not reject C0, as there is a fair run starting at C0 which contains infinitely many
configurations that are not rejecting.

In the appendix we now use Dickson’s Lemma to show that there is a constant m s.t.
a configuration C of A on a star is stably rejecting iff dCem is. For this it is crucial that
for stars stable rejection is downwards closed in the following sense: if such a C is stably
rejecting and has at least two leaves in a state q, then the configuration C ′ that results
from removing one of these leaves is still stably rejecting.
Now, let C = (Cctr, Csc) denote a configuration of A on a star G = (V,E), and let q

denote a state with Csc(q) ≥ |Q|(m− 1) + 1. We will show: if A rejects C then it must
also reject the configuration C ′ = (C ′ctr, C

′
sc) which results from adding a leaf vnew in

state q to G, i.e. C ′ctr := Cctr, C ′sc(q) := Csc(q) + 1, and C ′sc(r) := Csc(r) for states r 6= q.
We know that A rejects C, so there is some stably rejecting configuration D reachable

from C. Our goal is to construct a configuration D′ reachable from C ′ which fulfils
dDem = dD′em, implying that D′ would also be stably rejecting. For this, let S ⊆ V
denote the leaves of G which are in state q in C. There are |Q| states and (m− 1)|Q|+ 1
nodes in S, so by the pigeonhole principle there is a state r ∈ Q s.t. in configuration D
at least m nodes in S are in state r. Let vold denote one of these nodes.
To get D′, we construct a run starting from C ′, where vnew behaves exactly as vold ,

until D′ is reached. Afterwards, the nodes may diverge because of the pseudo-stochastic
scheduler. However, this does not matter as D′ is stably rejecting.

Let ρ = (v1, ..., v`) ∈ V ∗ denote a sequence of selections for A to go from C to D. We
construct the sequence σ ∈ V ∗ by inserting a selection of vnew after every selection of
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vold , and define D′ as the configuration which A reaches after executing σ from C ′. We
claim that D′ is the same as D, apart from having an additional leaf in the same state
as vold .
This follows from a simple induction: vold and vnew start in the same state and see

only the root node. As they are always selected subsequently, they will remain in the
same state as each other. For the centre we use the property that A cannot count: it
cannot differentiate between seeing just vold , or seeing an additional node in the same
state. We remark that G being a star is crucial for this argument, which does not extend
to e.g. cliques.

To summarise, we have shown that for every rejected star G and state q with LG(q) ≥
(m− 1)|Q|+ 2 (note the centre), the input H obtained by adding a node with label q to
G is still rejected. An analogous argument shows that the same holds for acceptance,
and by induction we find that K := m(|Q| − 1) + 2 is a valid cutoff.

Since the majority property does not admit a cutoff, in particular we obtain:

Corollary 3.6. No DAf- or dAF-automaton can decide majority.

4. Extensions
We introduce automata with more powerful communication mechanisms, and show that
they can be simulated by standard automata with only neighbourhood transitions. We
first present our notion of simulation (Definitions 4.1-4.3), and then in Sections 4.1-4.3
extend automata with weak versions of broadcast (a node sends a message to all other
nodes) and absence detection (a node checks globally if there exists a node occupying a
given state), and with communication by rendezvous transitions (two neighbours change
state simultaneously).

Definition 4.1. Let G = (V,E, λ) be a labelled graph and let Q,Q′ denote sets of
states, with Q ⊆ Q′. For configurations C1, C2 : V → Q′ we define the relation ∼Q as
C1 ∼Q C2 iff C1(v) = C2(v) for all v with C1(v) ∈ Q and C2(v) ∈ Q. Let π, π′ denote
runs over states Q and Q′, respectively. We say that π′ is an extension of π if there
exists a monotonically increasing g : N → N with π(i) = π′(g(i)) for all i ∈ N, and
π′(j) ∼Q π′(g(i)) or π′(j) ∼Q π′(g(i+ 1)) for all g(i) ≤ j ≤ g(i+ 1).

To implement complicated transitions in an automaton without extensions, we de-
compose them into multiple standard neighbourhood transitions. Instead of performing,
say, a broadcast atomically in one step, agents perform a sequence of neighbourhood
transitions, moving into intermediate states in the process. As mentioned in Section 2,
the results of [16] allow us to use liberal or exclusive selection without changing the
decision power. We assume that selection is exclusive, unless stated otherwise.

Definition 4.2. Let G = (V,E, λ) be a labelled graph. Let π, π′ denote runs of an
automaton induced by schedules s, s′ ∈ V ω, respectively. Let I, I ′ denote the set of
indices where π or π′, respectively, execute non-silent transitions, i.e. I := {i : πi 6= πi+1}.
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We say that π′ is a reordering of π if there exists a bijection f : I → I ′ s.t. s(i) = s′(f(i))
for all i ∈ N, and f(i) < f(j) for all i < j where the nodes s(i) and s(j) are adjacent or
identical. If that is the case, we also write πf := π′ for the reordering induced by f .

While an extension of a run can execute a single complicated transition in many
steps instead of atomically, steps of different transitions, or of different phases of a
transition, should not “interfere”. Ideally all the neighbourhood transitions simulating,
say, a broadcast, should be executed before any of the transitions simulating the next one.
However, in distributed automata this cannot be guaranteed. This is where we make use
of reorderings: We will guarantee that every run can be reordered into an equivalent run
in which transitions do not “interfere”. We will only allow reordering of nodes that are
not adjacent, thus ensuring that the reordered run yields the same answer as the original
one.

Lastly, we now introduce a generic model encompassing all of our extended automata,
which allows us to define our notion of simulation for all extensions simultaneously.

Definition 4.3. We say that P = (Q,Run, δ0, Y,N) is a generalised graph protocol, where
Q are states, δ0, Y,N are initialisation function, accepting states and rejecting states,
respectively, and Run is a function mapping every labelled graph G = (V,E, λ) over a
given alphabet Λ to a subset Run(G) ⊆ (QV )ω of fair runs. We define accepting/rejecting
runs and the statement “P decides a predicate ϕ” analogously to distributed automata.
Further, let P ′ be an automaton with states Q′ ⊇ Q. We say that P ′ simulates P , if for
every fair run π′ of P ′ there is a reordering π′f of π′ and a fair run π ∈ Run of P , s.t. π′f
is an extension of π. If P ′ simulates P , we refer to the states in Q′ \Q as intermediate
states.

We will apply this general definition to simulate broadcast, absence-detection, and
rendezvous transitions by automata with only neighbourhood transitions. In the appendix
we show that if π′ is a reordering of π and v is the node satisfying s(i) = v = s′(f(i)),
then the neighbourhood of v in π at time i and the neighbourhood of v in π′ at time f(i)
coincide. Furthermore, we show that an automaton P ′ that simulates P can be easily
transformed into an automaton P ′′ that also simulates P and is equivalent to P , i.e.,
decides the same property as P .

Lemma 4.4. Let P = (Q,Run, δ0, Y,N) denote a generalised graph protocol deciding
a predicate ϕ, and P ′ an automaton simulating P . Then there is an automaton P ′′

simulating P which also decides ϕ.

The automaton P ′′ constructed in the proof of this lemma is basically P ′, except
that nodes remember the last state q ∈ Q they visited, in addition to their current
state q′ ∈ Q′. This allows us to define the accepting/rejecting states of Q′′ as the pairs
(q′, q) ∈ Q′ ×Q such that q is an accepting/rejecting state of P .

Notation. Because of Lemma 4.4, in simulation proofs we often leave out the accepting
and rejecting states of generalised graph protocols and automata.
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4.1. Weak Broadcasts
Intuitively, a broadcast transition q 7→ r, f models that an agent in state q, called the
initiating agent or initiator, sends a signal to the other agents, and moves to state r; the
other agents react to the signal by moving to new states, determined by their current
state and by f , a mapping from states to states. Broadcasts are weak, meaning that
multiple broadcasts can occur at the same time. When this happens, all initiators send
their signals and move to their new states, and for every other agent the scheduler decides
which signal it receives and reacts to. It is only guaranteed that every non-initiator
receives exactly one signal, and that this signal has been sent.

Definition 4.5. A distributed machine with weak broadcasts is defined as a tuple M =
(Q, δ0, δ, QB, B, Y,N), where (Q, δ0, δ, Y,N) is a distributed machine, QB ⊆ Q is a set
of broadcast-initiating states, and B : QB → Q×QQ describes a set of weak broadcast
transitions, one for each state of QB. In particular, B maps a state q to a pair (q′, f),
where q′ is a state and f : Q→ Q is a response function. We write broadcast transitions
as q 7→ r, f , where f is usually given as a set {r 7→ f(r) : r ∈ Q}. (Mappings r 7→ r, and
silent transitions q 7→ q, id, id being the identity function, may be omitted.) Given a
configuration C and a selection S ⊆ V of initiators such that C(v) ∈ QB for every v ∈ S,
the machine can move to any configuration C ′ satisfying the following conditions:

• If v ∈ S, then C ′(v) = q′, where q′ is the state such that B(C(v)) = (q′, f).
• If v /∈ S, then C ′(v) = f(C(v)), where B(C(u)) = (q′, f) for some u ∈ S, i.e., f is

the response function of an initiator u.
A valid selection is a nonempty independent set of nodes of V . The set of valid selections
is denoted I. A schedule of M is a sequence σ ∈ ({n, b} × I)ω; intuitively, σ(i) = (n, S)
means that at time i the scheduler asks the agents of S to perform a neighbourhood
transition, and σ(i) = (b, S) that it asks the agents of S to initiate weak broadcasts.
Given a schedule σ, we generate a run π = (C0, C1, ...) as follows. For each step
i ≥ 1 either σ(i) = (n, S) for S ⊆ V and we execute a neighbourhood transition for
S′ := S \C−1

i (QB), or σ(i) = (b, S) for S ⊆ V and we execute a weak broadcast transition
on S′ := S ∩ C−1

i (QB). (In either case, if S′ is empty we set Ci+1 := Ci instead.)
A schedule σ is adversarial if there are infinitely many i with σ(i) = (b, S) for some

S, or for all v ∈ V there are infinitely many i with σ(i) = (n, S) and v ∈ S. It is
pseudo-stochastic, if every finite sequence of selections w ∈ ({n, b}×I)∗ appears infinitely
often in σ. Given xyz ∈ {d, D}×{a, A}×{f, F}, an xyz-automaton with weak broadcasts is
a tuple (M,Σ) defined as for an xyz-automaton, except that M is a distributed machine
with weak broadcasts. In particular, we extend the definitions of fair runs, consensuses,
and acceptance to automata with weak broadcasts.

A strong broadcast protocol is a tuple P = (Q, δ0, B, Y,N) that is defined analogously
to a dAF-automaton with weak broadcasts (Q, δ0, ∅, Q,B, Y,N), except that the set of
valid selections is I := {{v} : v ∈ V }. In other words, only one agent can broadcast at a
given time. This model corresponds to the broadcast consensus protocols of [11].1

1The protocols of [11] also contain rendez-vous transitions, but they can be removed without affecting
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Figure 2: (a) Prefix of a run of the automaton of Example 4.6. on a line with exactly five
nodes. (b) An extension of the same run, where � denotes intermediate states;
only the first 12 steps are shown. (c) A reordering of the run of (b); only four
steps are shown.

Additionally, to simplify our proofs we assume that all selections (n, S) satisfy |S| = 1,
i.e. at each step the scheduler selects one single agent to execute a neighbourhood
transition. Observe that we can assume |S| = 1 without loss of generality. Indeed, since
S is an independent set by definition, it only contains non-adjacent nodes, and so after
the agents of S execute a neighbourhood transition, be it simultaneously or sequentially,
they reach the same states.

Example 4.6. Consider a dAF-automaton P with states {a, b, x}, a neighbourhood
transition x,N 7→ a for every neighbourhood N : Q→ [1] with N(a) > 0 (i.e. an agent
moves from x to a if it has at least one neighbour in a), and weak-broadcast transitions

a 7→ a, {x 7→ a} and b 7→ b, {b 7→ a, a 7→ x} .

Figure 2 shows sample runs of P on the graph consisting of a line with five nodes. Note
that the simultaneous broadcasts at both ends of the line are executed simultaneously,
and are received by three and two nodes, respectively. However, the next (and last)
broadcast, which is initiated by the bottom node, reaches all nodes. The reordering
depicted in (c) shows the interleaving of two different transitions: while the two ends
have already initiated broadcasts, the information has not reached the middle node, and
it can execute a neighbourhood transition.

Of course, our model of weak broadcasts would be of limited use if we were not
able to simulate it. For this we use a construction similar to the three-phase protocol
of Awerbuch’s alpha-synchroniser [8]. Instead of simply using it to synchronise, we
will propagate additional information, allowing the agents to perform the local update
necessary to execute the broadcast.

Lemma 4.7. Every automaton with weak broadcasts is simulated by some automaton of
the same class without weak broadcasts.

Proof (sketch). Let P = (Q, δ0, δ, QB, B) denote an automaton with weak broadcasts. We
define an automaton P ′ = (Q′, δ′0, δ′) simulating P . The automaton P ′ has three phases,
called 0,1, and 2. A node moves to the next phase (modulo 3) only if every neighbour

expressive power.
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is in the same phase or in the next. The states of P ′ are Q′ := Q ∪ Q × {1, 2} × QQ.
Intuitively, an agent of P ′ in state q ∈ Q is in phase 0, and simulates an agent of P in
state q; an agent of P ′ in state (q, i, f) ∈ Q× {1, 2} ×QQ is in phase i, and simulates an
agent executing P in state q, and initiating or responding to a broadcast with response
function f .

Let β denote the counting bound of P . To specify the transitions, for a neighbourhood
N : Q′ → [β] we write N [i] :=

∑
q,f N((q, i, f)) for i ∈ {1, 2} and N [0] :=

∑
q∈QN(q)

to denote the number of adjacent agents in a particular phase, and choose a function
g(N) ∈ QQ ∪ {�} s.t. g(N) = f 6= � implies N((q, 1, f)) > 0, and g(N) = � implies
N [1] = 0. The function g is used to select which broadcast to execute, if there are
multiple possibilities. We define the following transitions for δ′, for all states q ∈ Q and
neighbourhoods N : Q→ [β].

q,N 7→ δ(q,N) if q /∈ QB and N [0] = |N | (1)
q,N 7→ (q′, 1, f) if q ∈ QB and N [0] = |N |, with (q′, f) := B(q) (2)
q,N 7→ (f(q), 1, f) if g(N) = f 6= � (3)

(q, 1, f), N 7→ (q, 2, f) if N [0] = 0 (4)
(q, 2, f), N 7→ q if N [1] = 0 (5)

If all neighbours are in phase 0, the agent either executes a neighbourhood transition via
(1) or it initiates the broadcast in (2), depending on the state of the agent. For the latter,
the agent immediately performs the local update. Once there is a phase 1 neighbour, the
agent instead executes the broadcast of one of its neighbours via (3) (if there are multiple,
g is used to select one). Note that (2) and (3) are indeed well-defined, as N [0] = |N |
holds iff g(N) = �. Finally, transitions (4) and (5) move agents to the next phase, once
all of their neighbours are in the same or the next phase.

4.2. Weak Absence Detection
Absence detection, introduced in [26], enables agents to determine the support of the
current configuration, defined as the set of states currently populated by at least one
agent. More precisely, an agent that executes an absence-detection transition moves to a
new state that depends on the current support. We consider a weaker mechanism where,
as for weak broadcasts, multiple absence-detection transitions may occur at the same
time. In this case, each agent executing an absence-detection transition moves according
to the support of a subset of the agents. However, it is ensured that every agent belongs
to at least one of these subsets.
While it is possible to define and implement a more general model involving absence-

detection, we limit ourselves to a special case to simplify our proofs. In particular, we
define a model in which scheduling is synchronous. Further, we implement a simulation
only for graphs of bounded degree.

Definition 4.8. A distributed machine with weak absence-detection is defined as a tuple
(Q, δ0, δ, QA, A, Y,N), where (Q, δ0, δ, Y,N) is a distributed machine, QA is a set of
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initiating states or initiators, and A : QA × 2Q → Q a set of (weak) absence-detection
transitions. Given a configuration C, a selection S ⊆ V of initiators such that C(v) ∈ QA
for every v ∈ S, and a set Sv ⊆ V for every v ∈ S satisfying v ∈ Sv and

⋃
v∈S Sv = V ,

the machine can move to any configuration C ′ with C ′(v) := A(v, C(Sv)) for v ∈ S and
C ′(v) := C(v) for v /∈ S. (Notice that the Sv need not be pairwise disjoint.) We write
q, S 7→ q′ to denote that A(q, S) = q′ for q ∈ QA, q′ ∈ Q and S ⊆ Q.
We use the synchronous scheduler, so the only valid selection is V . A step at a

configuration C is performed by having each agent execute a neighbourhood transition
simultaneously, moving to C ′, followed by an absence-detection with S := C−1(SA) as set
of initiators, to go from C ′ to C ′′. If S is empty, the computation hangs, and we instead
set C ′′ := C. A DA$-automaton with (weak) absence-detection is defined analogously to a
DA$-automaton.

As for broadcasts, absence detection is implemented using a three phase protocol. To
allow the information to propagate back, we use a distance labelling that effectively
embeds a rooted tree for each initiating agent.

Lemma 4.9. Every DA$-automaton with weak absence detection is simulated by some
DAf-automaton, when restricted to bounded-degree graphs.

4.3. Rendez-vous transitions
In rendez-vous transitions two neighbours interact and move to new states according
to a joint transition function. They are the communication mechanism of population
protocols [4]. In fact, population protocols on graphs have also been studied previously
[3], and we use exactly the same model.

A rendez-vous transition p, q 7→ p′, q′ allows two neighbouring nodes u and v in states
p and q to interact and change their states to p′ and q′, respectively. Like neighbourhood
transitions, rendez-vous transitions are local, i.e., they only involve adjacent nodes. They
are useful to model transactions such as transferring a token from one node to another.
A population protocol on graphs, or graph population protocol, is a pair (Q, δ) where
q is a set of states and δ : Q2 → Q2 is a set of rendez-vous transitions, and p, q 7→ p′, q′

denotes δ(p, q) = (p′, q′). The formal definition can be found in the appendix.

Lemma 4.10. Every graph population protocol is simulated by some DAF-automaton.

5. Unrestricted Communication Graphs
We prove the characterisation of the decision power of the different classes as presented
in the introduction. The classes are defined as follows. For a labelling property ϕ : NΛ →
{0, 1} we have

• ϕ ∈ Trivial iff ϕ is either always true or always false,
• ϕ ∈ Cutoff(1) iff ϕ(L) = ϕ(dLe1) for all multisets L ∈ NΛ,
• ϕ ∈ Cutoff iff there exists a K ∈ N s.t. ϕ(L) = ϕ(dLeK) for all L ∈ NΛ, and
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• ϕ ∈ NL iff ϕ is decidable by a non-deterministic log-space Turing machine.
The proof proceeds in the following steps:

1. DaF and therefore all automata-classes with weak acceptance have an upper bound
of Trivial and thus decide exactly Trivial. This proof also works when restricted to
degree-bounded graphs.

2. DAf and therefore also dAf can decide at most Cutoff(1).
3. dAf and therefore also DAf can decide at least Cutoff(1).
4. dAF can decide exactly Cutoff.
5. DAF can decide exactly the labelling propertis in NL.

In this section we sketch the hardest proof, the characterisation for DAF. All other
proofs can be found in the appendix. We start with some conventions and notations.

Conventions and notations. When describing automata of a given class (possibly with
weak broadcasts or weak absence detection) we specify only the machine; the scheduler
is given implicitly by the fairness condition and selection criteria of the class. Further,
when the initialisation function and the accepting/rejecting states are straightforward,
which is usually the case, we only describe the sets of states and transitions. So, for
example, we speak of the automaton (Q, δ), or the automaton with weak broadcasts
(Q, δ,QB, B). We even write (Q, δ) +B; in this case QB is implicitly given as the states
of B initiating non-silent broadcasts, i.e. QB := {q : B(q) 6= (q, id)}.
Given an automaton P (possibly with weak broadcasts or absence detection) with

set of states Q and a set Q′, we let P × Q′ denote the automaton with set of states
Q×Q′ whose transitions leave the Q′ component of the state untouched. In other words,
if a transition makes a node move from state (q, q′) to state (p, p′), then q′ = p′. The
definition of the transitions is straightforward, and we omit it.
We often combine the two notations above. Given an automaton P ′, we write for

example P = P ′ ×Q′ +B to denote the automaton with weak broadcasts obtained by
first constructing P ′ ×Q′, and then adding the set B of weak broadcast transitions.

Lemma 5.1. DAF-automata decide exactly the labelling properties in NL.

Proof (sketch). First, we argue why DAF-automata can decide only labelling properties in
NL. Let P be a DAF-automaton deciding a labelling property ϕ. We exhibit a log-space
Turing machine that given a labelled graph G = (V,E, λ) decides whether P accepts
G. Since ϕ is a labelling property, ϕ(G) = ϕ(Ĝ) for the unique clique Ĝ with set of
nodes V and labelling λ. The Turing machine therefore ignores G and simulates M on
Ĝ. A configuration of Ĝ is completely characterized up to isomorphism by the number
of agents in each state; in particular, it can be stored using logarithmic space. In [11,
Proposition 4] it is shown that any class of automata whose configurations have this
property, and whose step relation is in NL (i.e., there is a log-space Turing machine
that on input (C,C ′) decides if the automaton can move from C to C ′), can only decide
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properties in NL. Since the step relation of DAF-automata on cliques is certainly in NL,
the result follows.
Now we show the other direction. It is known that strong broadcast protocols decide

exactly the predicates in NL [11, Theorem 15]. Therefore, it suffices to show that for
every strong broadcast protocol there is an equivalent DAF-automaton. By Lemma 4.7
DAF-automata can simulate weak broadcasts, and so, loosely speaking, the task is to
simulate strong broadcasts with weak ones.

Let P = (Q, δ, I, O) be a strong broadcast protocol. We start with a graph population
protocol Ptoken := (Qtoken, δtoken), with states Qtoken := {0, L, L′,⊥} and rendez-vous
transitions δtoken given by

(L,L) 7→ (0,⊥), (0, L) 7→ (L, 0), (L, 0) 7→ (L′, 0) 〈token〉

Now we construct a DAF-automaton P ′token = (Q′token, δ
′
token) simulating Ptoken using

Lemma 4.10, and combine it with P by setting Pstep := P ′token×Q+ 〈step〉 , where 〈step〉
is a weak broadcast defined as

(L′, q) 7→ (L, q′), {(t, r) 7→ (t, f(r)) : (t, r) ∈ Q′token ×Q} 〈step〉

for each broadcast q 7→ q′, f in δ. Finally, let P ′step = (Q′step, δ
′
step) be a DAF-automaton

simulating Pstep, which exists by Lemma 4.7.
Intuitively, agents in states L,L′ have a token. If we could ensure that initially there

is only one token in L,L′, then we would be done. Indeed, in this case at each moment
only the agent with the token can move; if in L, it initiates a (simulated) rendez-vous
transition, and if in L′, a weak broadcast. Since no other agent is executing a weak
broadcast at the same time, the weak broadcast is received by all agents, and has the
same effect as a strong broadcast.

We cannot ensure that initially there is only one token, but if the computation starts
with more than one, then two tokens eventually meet using transition 〈token〉 and an
agent moves into the error state ⊥. We design a mechanism to restart the computation
after this occurs, now with fewer agents in state (L, · ), guaranteeing that eventually
the computation is restarted with only one token. For this we again add an additional
component to each state and consider the protocol Preset := P ′step ×Q+ 〈reset〉, where
〈reset〉 are the following broadcast transitions, for each q, q0 ∈ Q.

((⊥, q), q0) 7→ ((L, q0), q0), {(r, r0) 7→ ((0, r0), r0) : r ∈ Q′step, r0 ∈ Q} 〈reset〉

For Preset we define the input mapping Ireset(x) := ((L, I(x)), I(x)) and the set of
accepting states Oreset := {((r, q), q0) : q ∈ O, q0 ∈ Q, r ∈ {0, L}}. Using Lemma 4.7 (and
Lemma 4.4) we get a DAF-Automaton equivalent to Preset, so it suffices to show that Preset
is equivalent to P .
In the appendix, we show that a run of Preset starting with more than one token will

eventually reset and restart the computation with strictly fewer tokens, until only one
token is left. After this moment, 〈reset〉 is never executed again, and so we are left with
a run of Pstep, which stabilises to a correct consensus.
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6. Bounded-degree Communication Graphs
We characterise the decision power of the models when the degree of the input graphs
is at most k for some constant k ∈ N. Many results for the unrestricted set of graphs
continue to hold, in particular Corollary 3.3, proving that DAf-automata can only compute
properties invariant under scalar multiplication (called ISM in Figure 1), as well as the
result that automata with halting acceptance can only decide trivial properties. The new
results are:

1. For every k ≥ 3 the expressive power of dAf is precisely Cutoff(1).
2. DAF- and dAF-automata decide exactly the labelling properties in NSPACE(n).
3. DAf can decide all homogeneous threshold predicates, in particular majority. This is

a proper subset of ISM (the latter contains e.g. the divisibility predicate ϕ(x, y)⇔
x|y), so there is a gap between our upper and lower bounds for DAf.

We describe the DAf-automata for homogeneous threshold predicates. All other proofs
can be found in the appendix.

6.1. DAf decides all homogeneous threshold predicates on bounded-degree
graphs

Let ϕ : Nl → {0, 1}, ϕ(x1, ..., xl)⇔ a1x1 + ...+alxl ≥ 0 denote an arbitrary homogeneous
threshold predicate, with a1, ..., al ∈ Z, and let k denote the maximum degree of the
communication graph.

Local Cancellation. We first define a protocol that performs local updates. Each agent
stores a (possibly negative) integer contribution. If the absolute value of the contribution
is large, then the agent will try to distribute the value among its neighbours. In particular,
if a node v has contribution x with x > k, then it will “send” one unit to each of its
neighbours with contribution y ≤ k. Those neighbours increment their contribution by 1,
while v decrements its contribution accordingly. (This happens analogously for x < −k,
where −1 units are sent.) Agents may receive multiple updates in a single step, or may
simultaneously send and receive updates.

We define a DA$-automaton with weak absence detection Pcancel := (Qcancel, δcancel, ∅, ∅),
but use only neighbourhood transitions for the moment. We use states Qcancel :=
{−E, ..., E}. Here E := max{|a1|, ..., |al|} ∪ {2k} is the maximum contribution an agent
must be able to store: any agent with contribution x s.t. |x| ≤ k may receive an increment
or decrement from up to k neighbours, so E ≥ k + k. The transitions δcancel are

x,N 7→ x−N [−E,−k−1] +N [k+1, E] for x = −k, ..., k
x,N 7→ x−N [−E, k] for x = k + 1, ..., E
x,N 7→ x+N [−k,E] for x = −E, ...,−k − 1

〈cancel〉

Here we write N [a, b] :=
∑b
i=aN(i) for the total number of adjacent agents with contri-

bution in the interval [a : b]. As we use the synchronous scheduler, at each step all agents
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make a move. It is thus easy to see that 〈cancel〉 preserves the sum of all contributions∑
v C(v) for a configuration C, and that it does not increase

∑
v |C(v)|.

We can now show that the above protocol converges in the following sense:

Lemma 6.1. Let π = (C0, C1, ...) denote a run of Pcancel with
∑
v C0(v) < 0. Then

there exists i ≥ 0 such that either all configurations Ci, Ci+1, ... only have states in
{−E, ...,−1}, or they only have states {−k, ..., k}.

Convergence and Failure Detection. The overall protocol waits until Pcancel converges,
i.e. either all agents have “small” contributions, or all contributions are negative. In the
latter case, we can safely reject the input, as the total sum of contributions is negative.
In the former case we perform a broadcast, doubling all contributions. As we only double
once all contributions are small, each agent can always store the new value. This idea of
alternating cancelling and doubling phases has been used extensively in the population
protocol literature [5, 9, 10, 21].
To detect whether Pcancel has already converged, and to perform the doubling, we

elect a subset of agents as leaders. A “true” leader election, with only one leader at the
end, is impossible due to weak fairness, but we can elect a “good enough” set of leaders:
whenever two leaders disagree, we can eliminate one of them and restart the computation
with a non-empty, proper subset of the original set of leaders.

We use weak absence-detection transitions to determine whether Pcancel has converged.
Set QL := {0, L, Ldouble, L�} and let (Q, δ) := Pcancel ×QL. (Recall the notation from
Section 5.) We define Pdetect := (Q∪{⊥,�}, δ, Qcancel×{L}, A), where A are the following
absence-detection transitions, for x ∈ Qcancel, s ⊆ Q ∪ {⊥,�}.

(x, L), s 7→ ⊥ if � ∈ s
(x, L), s 7→ (x, 0) if ⊥ ∈ s
(x, L), s 7→ (x, Ldouble) if s ⊆ {−k, ..., k} × {0}
(x, L), s 7→ (x, L�) if s ⊆ {−E, ...,−1} × {0}

〈detect〉

Intuitively, ⊥ and Qcancel × {L,Ldouble, L�} are leader states, and � is the (only) re-
jecting state. State ⊥ is an error state: an agent in that state will eventually restart
the computation. Via Lemma 4.9 we get a DAf-automaton P ′detect = (Q′detect, δ

′
detect)

simulating Pdetect.
We want our broadcasts to interrupt any (simulated) absence-detection transitions of

P ′detect, by moving agents in intermediate states Q′detect \Qdetect to their last “good” state
in Qdetect. To this end, we introduce the mapping last : Q′detect → Qdetect, which fulfils
last(Ci(v)) ∈ {last(Ci−1(v)), Ci(v)} for all runs π = C0C1... of P ′detect and i > 0, where
C0 has only states of Qdetect. It is, of course, not true that last exists for any simulation
P ′detect of Pdetect. However, one can extend any simulation which does not, by having
each agent “remember” its last state in Qdetect.
We construct a DAf-automaton with weak broadcasts Pbc by adding the following
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transitions to P ′detect.

(x, Ldouble) 7→ (2x, L),
(
{(y, 0) 7→ (2y, 0) : y ∈ {−k + 1, ..., k − 1}}
∪ {q 7→ ⊥ : q ∈ Qcancel × {L,Ldouble, L�}}

)
◦ last

〈double〉

(x, L�) 7→ �,
(
{(y, 0) 7→ � : y ∈ {−E, ...,−1}}
∪ {q 7→ ⊥ : q ∈ Qcancel × {L,Ldouble, L�}}

)
◦ last

〈reject〉

These transitions are written somewhat unintuitively. Recall that we write a weak
broadcast transition as q 7→ q′, f , where q, q′ ∈ Q′detect are states and f : Q′detect →
Q′detect is the transfer function. Usually, we specify f as simply a set of mappings
{r 7→ f(r) : r ∈ Q′detect}. Here, our transition essentially is q 7→ q′, (f ◦ last), where ◦
denotes function composition, and f is given as a set of mappings. This means that
broadcasts first move all agents to their last state in Qdetect, and then apply the other
mappings as specified.
Before extending Pbc with resets that restart the computation from an error state,

we analyse the behaviour of Pbc in more detail. To talk about accepting/rejecting
runs, we define the set of rejecting states as {�}. (All other states are accepting.) Let
π := (C0, C1, ...) denote a fair run of Pbc starting in a configuration C0 where all agents
are in states {−E, ..., E} × {0, L}, and at least one agent is in a state ( · , L). We refer
to the agents starting in ( · , L) as leaders. Note that it is not possible to enter a state
in Q × {L,Ldouble, L�} ∪ {⊥} without being a leader. We usually disregard the first
component (if any) while referring to states of leaders.
To argue correctness, we state two properties of Pbc. First, it is not possible for all

leaders to enter ⊥, which ensures that a reset restarts the computation with a proper
subset of the leaders. Second, Pbc works correctly if no agent enters an error state. Here,
LG : X → N denotes the label count of the input graph, i.e. LG(xi) = |C−1

0 (ai)| for
i = 1, ..., l.

Lemma 6.2. Assuming that no agent enters state ⊥, π is accepting iff ϕ(LG) = 1.
Additionally, π cannot reach a configuration with all leaders in state ⊥.

Resets. Finally, we can add resets to the protocol, to restart the computation in case of
errors. We use Lemma 4.7 to construct a DAf-computation P ′bc = (Q′bc, δ

′
bc) simulating

Pbc, and then set Preset := P ′bc ×Qcancel + 〈reset〉, where the broadcasts are defined as
follows, for q0 ∈ Qcancel.

(⊥, q0) 7→ ((q0, L), q0), {(r, r0) 7→ ((r0, 0), r0) : (r, r0) ∈ Q′bc ×Qcancel} 〈reset〉

To actually compute ϕ, we add the initialisation function I(xi) := ((ai, L), ai) and the
set of rejecting states N := {�} to Preset (all other states are accepting).

Proposition 6.3. For every predicate ϕ : Nl → {0, 1} such that ϕ(x1, ..., xl)⇔ a1x1 +
...+ alxl ≥ 0 with a1, ..., al ∈ Z there is a bounded-degree DAf-automaton computing ϕ.
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7. Conclusion
We have characterised the decision power of the weak models of computation studied
in [16] for properties depending only on the labelling of the graph, not on its structure.
For arbitrary networks,the initially twenty-four classes of automata collapse into only four;
further, only DAF can decide majority. For bounded-degree networks (a well-motivated
restriction in a biological setting, also used in e.g. in [3, 12]), the picture becomes more
complex. Counting and non-counting automata become equally powerful, an interesting
fact because biological models are often non-counting. Further, the class DAf, which
uses adversarial scheduling, substantially increases its power, and becomes able to decide
majority. So, while majority algorithms require (pseudo-)random scheduling to work
correctly for arbitrary networks, they can work correctly under adversarial scheduling
for bounded-degree networks. In particular, there exist a synchronous deterministic
algorithm for majority in bounded-degree networks.
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A. Proofs of Section 3
Definition A.1. For every labelled graph G = (V,E, λ) over the finite set of Labels L
we write LG for the multiset of labels occurring in G, i.e. LG : L → N, LG(x) = |{v ∈
V |λ(v) = x}| for all labels x. We call LG the label count of G.
A graph property ϕ is called a labelling property if for all labelled graphs G,G′ with

LG = LG′ we have ϕ(G) = ϕ(G′). In such a case we also write ϕ(LG) instead of ϕ(G).

Lemma 3.1. Let A be a DaF-automaton. For all graphs G and H containing a cycle,
ϕA(G) = ϕA(H).

Proof. Assume there exist cyclic graphs G and H such that A accepts G and rejects H.
We construct a graph GH and a run of A on GH such that at least one node of GH
halts in an accepting state, and at least one node of GH halts in a rejecting state. This
contradicts the assumption that A satisfies the consistency condition.

Let ρG and ρH be fair runs of A on G and H, and let g and h be the earliest times at
which all nodes of G and H have already halted.
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Fix edges eG = {uG, vG} and eH = {uH , vH} belonging to cycles of G and H. We
construct the graph GH in three steps. First, we put 2g + 1 copies of G and 2h + 1
copies of H side by side. Let Gi, H i denote the i-th copy of G and H, and let wiG and
wiH denote the copy of a node wG in Gi or wH in H i. Second, we remove the edges
{u0

G, v
0
G}, ..., {u

2g
G , v

2g
G }, {u0

H , v
0
H}, ..., {u2h

H , v
2h
H }. Third, we add the edges

{v0
G, u

1
G}, ..., {v

2g−1
G , u2g

G }, {v
2g
G , u

0
H}, {v0

H , u
1
H}, ..., {v2h−1

H , u2h
H }

The construction is depicted in Figure 3. Observe that, since eG and eH belong to cycles
of G and H, the graph GH is connected.

Figure 3: Construction in proof of Lemma 3.1. The dashed edges are removed and
replaced by the blue edges. Only the four red states can initially detect the
change.

Let ρGH be any fair run of A on GH that during the first max{g, h} steps selects
exactly the copies of the nodes selected at the corresponding steps of ρG and ρH . (Notice
that ρGH exists, because whether a run is fair or not does not depend on any finite prefix
of the run.) Initially, every node of GH except u0

G, v
2g
G , u0

H , and v2h
H “sees” the same

neighbourhood as its corresponding node in G or H (i.e. the same number of neighbours
in the same states). Therefore, after the first step of ρGH all nodes of GH, except possibly
these four, are in the same state as their corresponding nodes in G or H after one step
of ρG or ρh. Since the nodes of Gg are at distance at least g from u0

G, v
2g
G , u0

H , and v2h
H ,

during the first g steps of ρGH any node wgG of Gg visits the same sequence of states as
the node wG of G during the first g steps of ρG. Since all nodes of G halt after at most g
steps by definition, all nodes of Gg halt in accepting states. Similarly, after h steps all
nodes of Hh halt in rejecting states.

Lemma 3.2. Let A be a DAf-automaton. For all graphs G and H, if H is a covering of
G, then ϕA(G) = ϕA(H).

Proof. Let A be a DA$-automaton accepting ϕ. Let f : VH → VG be a covering map
respecting the labelling, i.e. fulfilling λH = λG ◦ f . We prove that A accepts G iff it
accepts H.
Let ρG = (C0, C1, ...) be the synchronous run of A on G, and let ρH = (C ′0, C ′1, ...)

be the synchronous run of A on H. Observe that, since selection is adversarial, the
synchronous runs are fair runs. Since A satisfies the consistency condition, it suffices
to show that ρG accepts G iff it accepts H. For this we prove by induction on t that
Ct(v) = Ct(f(v)) holds for every node v of H and t ≥ 0. For t = 0 this follows from
the fact that f respects the labelling. For t > 0, assume Ct(v) = Ct(f(v)) we prove
Ct+1(v) = Ct+1(f(v)). Pick an arbitrary node u. Since Ct(u) = Ct(f(u)), both u and
f(u) occupy the same state in Ct. Since the run is synchronous, both are selected. Since
the restriction of the covering f to the neighbourhoods of u and f(u) is a bijection, and
Ct(v) = Ct(f(v)) holds for all v, in particular for all neighbours of u, both u and f(u)
move to the same states. So Ct+1(u) = Ct+1(f(u))
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Corollary 3.3. Let A be a DAf-automaton deciding a labelling property. For all graphs
G and H, if LH = λLG for some λ ∈ N>0, then ϕA(G) = ϕA(H). This also holds when
restricting to k-degree-bounded graphs.

Proof. Let L be a multiset of labels and enumerate it as L = (λ1, λ2, ..., λ|L|). Enumerate
λ · L by repeating this sequence λ times. Since ϕ is a labelling property, the underlying
graph does not influence whether the property holds. We consider the following graphs:
The cycle G labelled with L in the order we established, and the cycle G′ labelled with
λ · L in the order above. We have that G′ covers G, and therefore using Lemma 3.2
obtain ϕ(L) = ϕ(λ ·L). Since the graphs G and G′ are 2-degree-bounded, this statement
holds also when restricting to k-bounded-degree.

Lemma 3.4. Let A be a DAf-automaton with counting bound β that decides a labelling
property. For all graphs G and H, if dLGeβ+1 = dLHeβ+1 then ϕA(G) = ϕA(H), i.e. ϕA
admits a cutoff.

Proof. Let A be a DA$-automaton with counting bound β that decides ϕ.
Since ϕ is a labelling property, A accepts a graph G iff it accepts the unique clique G′

(up to isomorphism) such that LG = LG′ . Therefore, it suffices to prove ϕ(G) = ϕ(H)
for the case in which G and H are cliques satisfying dLGeβ+1 = dLHeβ+1.
Since A is an automaton with adversarial selection, the synchronous runs ρG =

(CG0, CG1, ...) of A on G, and ρH = (CH0, CH1, ...) of A on H are fair runs of A. Since A
satisfies the consistency condition, A accepts G iff ρG is an accepting run, and similarly
for H. So it suffices to show that ρG is an accepting run iff ρH is.

LetQGt : Q→ N be the mapping that assigns to each state q of A the number of nodes of
G that are in state q at time t. Define QHt analogously. We claim: dQGteβ+1 = dQHteβ+1
for every t ≥ 0. The proof is by induction on t. For the base case t = 0, let q be a state.
By definition, QG0(q) is the number of nodes of G that are initially at state q. Let Λq be
the set of labels that are mapped to q by the initialisation function of A. Then we have
QG0(q) =

∑
`∈Λq

LG(`). Since dLGeβ+1 = dLHeβ+1, we get dQG0eβ+1 = dQH0eβ+1.
For the induction step, assume dQGteβ+1 = dQHteβ+1. We prove dQG(t+1)eβ =
dQH(t+1)eβ. It suffices to show that if two nodes u and v of G ∪ H are in the same
state at time t, then they are also in the same state (possibly a different one) at time
t+ 1. For this, observe first that, since G and H are cliques, all nodes of G respectively
H are neighbours. So, since dQGteβ+1 = dQHteβ+1, the nodes u and v see the same
neighbourhood up to β at time t (i.e. they see the same number of nodes in each state
up to bound β; we go from β + 1 to β because the neighbourhood of the node does
not contain the node itself). In other words, NCGt

u = NCGt
v holds. Since the runs ρG

and ρH are synchronous, both u and v are selected at time t to make a move. Since
NCGt
u = NCGt

v , they move to the same state, and the claim is proved.
Assume that ρG is an accepting run of A. Then there is a time t such that for every

j ≥ 0 all nodes of G are at accepting states in CG(t+j). By the claim, the same holds for
CH(t+j). So ρH is an accepting run of A. The other direction is analogous.
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Lemma 3.5. Let A be a dAF-automaton that decides a labelling property. There exists
K ≥ 0 such that for every graph G and H, if dLGeK = dLHeK then ϕA(G) = ϕA(H),
i.e. ϕA admits a cutoff.

Proof. We start by repeating some notation of the proof sketch. Let A be the dAF-
automaton, and let Q be its set of states. We first gather some properties of A on star
graphs. A star is a graph in which a node called the center is connected to an arbitrary
number of nodes called the leaves, and no other edges exist. Since we consider graphs up
to isomorphism, a configuration of a star graph is completely determined by the state of
the center and the number of nodes in each state. So in the rest of the proof we assume
that a configuration of a star graph G is a pair C = (Cctr, Csc), where Cctr denotes the
state of the center of G, and Csc is the state count of C, i.e. the mapping that assigns to
each q ∈ Q the number Csc(q) of nodes of G that are in state q at C. We denote the
cutoff of C as dCem := (Cctr, dCscem).

Given a configuration C of A, recall that C is rejecting if all states are rejecting. We
say that C is stably rejecting if C can only reach configurations which are rejecting. Given
an initial configuration C0, it is clear that A must reject if it can reach a stably rejecting
configuration C from A. Conversely, if it cannot reach such a C, then A will not reject
C0, as there is a fair run starting at C0 which contains infinitely many configurations
which are not rejecting.

The statement missing in the proof sketch is the following: There exists a number
m ∈ N such that a star configuration C is stably rejecting if and only if dCem is stably
rejecting.

To define m, we have to first define some additional concepts. Given two configurations
C,D of A on stars G and H, we say that C � D holds if (a) Cctr = Dctr, (b) Csc ≥ Dsc,
and (c) Dsc(q) = 0 implies Csc(q) = 0 for every q ∈ Q. It is easy to see that � is a partial
order. Further, if C � D then C is accepting (rejecting) iff D is accepting (rejecting). A
set C of configurations is upward closed if C ∈ C and D � C implies D ∈ C.
Let C →∗ D denote that A can reach the configuration D from C in zero or more

steps. Given a set of configurations C, let Pre∗(C) be the set of configurations C such
that C →∗ D for some D ∈ C. The following two claims will finally allow us to define m:

(1) If C →∗ D and C ′ � C, there exists D′ � D such that C ′ →∗ D′.
Since C ′ � C, we can obtain C ′ from C by adding leaves in states which already
occur. Similar to the last argument given in the proof sketch, we let every one of
these extra leaves copy one of the leaves from C which starts in the same state.
Formally, let vnew,1, ..., vnew,n be the extra leaves. For every extra leaf vnew,i let
vold,i be some leaf starting in the same state, not necessarily distinct for i1 6= i2.
Now let ρ = (v1, ..., v`) ∈ V ∗ denote a sequence of selections for A to go from C to
D. We construct a sequence σ ∈ V ∗ by inserting a selection of vnew,i after every
selection of vold,i, if multiple i have the same vold,i, insert all of them after vold,i in
some order. Define D′ as the configuration which A reaches after executing σ from
C ′. We claim that D′ is the same as D, apart from having additional leaves in the
same states as vold . This follows from a simple induction: vold,i and vnew,i start in
the same state and see only the root node. As they are always selected without the

26



root being selected in between, they will remain in the same state as each other.
For the centre we use the property that A cannot count: it cannot differentiate
between seeing just vold,i, or seeing one (or maybe more) additional nodes in the
same state.

(2) For every upward-closed set of configurations C, the set Pre∗(C) has finitely many
minimal configurations w.r.t. �. We denote this finite set by MinPre∗(C).
Assume for contradiction that Pre∗(C) has infinitely many minimal configurations.
We can enumerate its elements to obtain an infinite sequence C1, C2, ... of con-
figurations of star graphs. By the pigeonhole principle, there exists an infinite
subsequence Ci1 , Ci2 , ... such that Cctr

ij
= q for some state q and every j ≥ 0, and

Csc
ij

(q) = 0 iff Csc
ik

(q) = 0 for every j, k ≥ 1 and every state q. By Dickson’s Lemma
(for every infinite sequence of vectors v1, v2, ... ∈ Nk, there exist two indices i < j
such that vi ≤ vj with respect to the pointwise partial order), there exist j, k such
that Cij ≤ Cik . But then Cij and Cik satisfy conditions (a)-(c) of the definition of
�, and so Cij � Cik , which is a contradiction.

Now we can define m. Consider the set C of non-rejecting configurations of A on all
star graphs, with any number of leaves. It is easy to see that C is upward closed. By the
claim the set MinPre∗(C), i.e. the set of smallest configurations from which it is possible
to reach a non-rejecting configuration, is finite. Let m be the number of nodes of the
largest star such that some configuration of it belongs to MinPre∗(C). In other words:
for every star with more than m nodes, and for every configuration C of this star that can
reach a non-rejecting configuration, i.e. is not stably rejecting, there is a configuration
C ′ ≺ C of another star that can also reach a non-rejecting configuration, i.e. is not stably
rejecting. Combining this with the fact that MinPre∗(C) is upward-closed, we obtain
that for every configuration C, C is not stably rejecting if and only if dCem is not stably
rejecting. By contraposition, this implies the statement we wanted to prove.

B. Proofs of Section 4
The main goal of this section as a whole is to prove that the different models with weak
broadcasts, weak absence detection as well as rendezvous transitions can be simulated.
We will proceed as follows.

1. We start by proving Lemmata B.1 and 4.4, which are general properties of reorder-
ings.

2. In subsection B.1 we show a general lemma concerning reorderings of three-phase
protocols, which are used for both weak broadcasts and weak absence detection. In
particular, we prove that there is a reordering where all nodes move in lock step.

3. This will dramatically shorten the proofs that weak broadcasts and weak absence
detection can be simulated, which make up the next two subsections.

4. At last, we prove that rendezvous transitions can be simulated by DAF-automata.
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Lemma B.1. Let G = (V,E, λ) be a labelled graph. Let π = (C0, C1, ...) denote a run
on G, πf = (C ′0, C ′1, ...) a reordering of π, and v a node. For all t ∈ N0 where v is
selected for a non-silent transition and all nodes u adjacent or identical to v we have
Ct(u) = C ′f(t)(u).

Proof. Write the node sequence π as (v0, v1, v2, ...). Write the neighbourhood of a node
v as N(v). Write the reordered run as π′ = (C ′0 = C0, C

′
1, C

′
2, ...). We assume wlog that

all silent transitions were removed, unless no non-silent transition is enabled. The proof
will proceed by induction on t.

For the induction basis t = 0 we have to prove that before time f(0), no neighbour
of v0 has changed state yet in the reordered run. Assume for contradiction that some
neighbour has changed state already, i.e. we have f(i) < f(0) for some i with vi ∈ N(v0).
Since i > 0 and {vi, v0} ∈ E, we would have f(i) > f(0), contradicting the definition of
a reordering.

For the induction step, let v ∈ N(vt). We have to prove Ct(v) = C ′f(t)(v). Consider the
latest time s < t where v has been selected. We obtain Ct(v) = Cs+1(v). By induction
hypothesis, we have Cs(N(v)) = C ′f(s)(N(v)). This implies Cs+1(v) = C ′f(s)+1(v). Since v
is a neighbour of vt, we have f(s) < f(t). We claim that v has not been selected between
time f(s) and f(t) in the reordered run. Assume for contradiction that v has been
selected at time f(s) < t′ < f(t). Let m be such that f(m) = t′, which exists because we
removed silent transitions. Since f(s) < f(m) < f(t) and {vm, vt} ∈ E, we have m < t.
We similarly obtain s < m. Therefore s would not have been the latest time before t
where v moved, yielding a contradiction. Therefore we have C ′f(s)+1(v) = C ′f(t)(v).

Lemma 4.4. Let P = (Q,Run, δ0, Y,N) denote a generalised graph protocol deciding
a predicate ϕ, and P ′ an automaton simulating P . Then there is an automaton P ′′

simulating P which also decides ϕ.

Proof. For P ′′ we reuse δ0 as initialisation function. We change P ′ so that each agent
remembers its last non-intermediate state. We define Y ′ as the set of states where the
last non-intermediate state is in Y , and define N ′ analogously. Then we use Y ′, N ′ as
accepting/rejecting states for P ′′. Any run π of P ′′ starting in an initial configuration has
a reordering πf which is an extension of a run τ of P . If P accepts, then every node v is
only finitely often in a state Q \ Y in τ , which then also holds for πf and π. Thus, v will
eventually remain in Y ′, and π accepts as well. Similarly, P ′′ will reject if P does.

This lemma also explains why we treat silent transitions separately: To simulate weak
broadcasts, we use a three-phase protocol and want to prove that we can reorder the run
such that all nodes move to phase 1, then all to phase 2 and so on. However, Lemma B.1
shows that if some node v observes a neighbour who is behind a phase and a neighbour
who is ahead, then this would have to be reflected at some point in time in the reordered
run, making it impossible for all nodes to be at most one phase apart. However, in this
case our protocols have v do nothing, so removing silent transitions resolves the issue.
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B.1. Reorderings in three-phase automata
As we want to make a general statement about three-phase protocols, we start by formally
introducing the notion. The idea is that each state belongs to one of three phases, that
agents may not move directly to the previous phase, and that an agent does nothing,
unless all its neighbours are in the same or the next phase. Further, we require that an
agent either moves to the next phase or does nothing, if it has a neighbour in the next
phase. The last condition is rather technical, it will later allow us construct a reordering
which executes the transitions that do not move agents into the next phase first, before
executing the other transitions.

Definition B.2. Let P = (Q, δ0, δ, Y,N) denote an automaton with counting bound β.
We say that P is a three-phase automaton if Q = Q0 ∪Q1 ∪Q2, for some pairwise disjoint
Q0, Q1, Q2, and for all states q ∈ Qi and neighbourhoods N : Q→ [β] we have

1. δ(q,N) = q if N(r) > 0 for some r ∈ Qi−1,
2. δ(q,N) ∈ Qi ∪Qi+1, and
3. δ(q,N) ∈ {q} ∪Qi+1 if N(r) > 0 for some r ∈ Qi+1.

Here, we set Q3 := Q0 and Q−1 := Q2 for convenience. We refer to states in Qi as phase-i
states.

As defined above, it is possible for a three-phase automaton to get “stuck” when some
agents move to the next phase, but others cannot make progress. Our protocols will not
have this problem, so we define the following semantic constraint.

Definition B.3. A three-phase automaton P = (Q, δ0, δ, Y,N) is nonblocking if every
reachable configuration C : V → Q which has agents from at least two phases will
eventually execute a transition where an agent changes phase.

With these definitions we can now state the main proposition of this section.

Proposition B.4. Let P = (Q, δ) denote a nonblocking three-phase automaton and
C0 : V → Q0 an initial configuration. Then every fair run π = (C0, C1, ...) of P has a
reordering πf = (C ′0, C ′1, ...) which fulfils, for each step i,

1. C ′i(V ) ⊆ Qj ∪Qj+1 for some j, and at step i an agent moves to its next phase, or
2. C ′i(V ) ⊆ Qj for some j.

The proof will take up the remainder of this section. We now fix such a P = (Q, δ)
and π = (C0, C1, ...).
It will be convenient to count the total number of phases changes of a node, so we

define the phase count pc(v, i) ∈ N as the smallest function which is non-decreasing
w.r.t. i and has Ci(v) ∈ Qj for all i, v and j := (pc(i, v) mod 3). Intuitively, this
means that we increment pc whenever a node moves to the next phase. Observe that
pc(v, i+ 1)− pc(v, i) ≤ 1, as a node can move at most one phase per transition.

Lemma B.5. For all adjacent nodes u, v ∈ V we have |pc(u, i)− pc(v, i)| ≤ 1 for all i.
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Proof. Assume for contradiction that the statement does not hold and prick appropriate
u, v, i where i is minimal and pc(u, i) = pc(v, i) − 1. Then at step i − 1 node v must
move to the next phase, but this is prohibited by condition (2) of Definition B.2.

Lemma B.5 implies that if one node has infinitely many phase changes, then all nodes
do. We will now show the stronger statement that if a node has m phase changes, for
m ∈ N ∪ {∞}, then all other nodes have as well. Here we use that P is nonblocking, so
it is not possible for nodes to become stuck in prior phases.

Lemma B.6. If pc is bounded, i.e. pc(v, i) ≤M for some M ∈ N and all v, i, then there
are m, i ∈ N with pc(v, j) = m for all nodes v and j ≥ i.

Proof. Assume that pc is bounded. As pc is non-decreasing we can thus find a i s.t.
no node moves to another phase after step i. If Ci has two nodes u, v with different
phase counts, i.e. pc(u, i) < pc(v, i), then must also be such u, v which are adjacent. Due
to Lemma B.5, the phase counts of u and v differ only by 1, therefore we know that
Ci(u) ∈ Qj and Ci(v) ∈ Qj+1 for some j. As P is nonblocking, eventually an agent will
move to its next phase, contradicting our choice of i. So at step i all phase counts must
be pairwise equal.

Lemma B.6 is crucial for the reordering, since in the new run of A all nodes are supposed
to perform the same number of phase changes. Now we can define the reordering f . Let
(v0, v1, v2, ...) ∈ V ω be the sequence of selections inducing run π.

We define a new ordering on natural numbers by

i ≤f j ⇔ (pc(vi, i), pc(vi, i+ 1), i) ≤lex (pc(vj , j), pc(vj , j + 1), j)

where ≤lex denotes the lexicographical ordering. The intuition is that we always execute
a transition from a node with the lower phase count. Amongst those, we pick one that
will not move the node to its next phase, if possible. Finally, from the remaining choices
we pick the one that occurred first in the original run π. Let I := {i ∈ N : Ci 6= Ci+1}
denote the indices of non-silent steps of π. The function f : I → N can now be defined
as f(i) := |{j ∈ I : j ≤f i}| − 1. (We will see shortly that f is indeed well-defined.)

Lemma B.7. πf is a reordering.

Proof. We first check that f is well-defined. For this not to be the case, we would have
to have an i with j ≤f i for infinitely many j. In particular, there must be a node u s.t.
there are infinitely many j ≤f i with vj = u, which implies that pc(u, j) < pc(vi, i+1) for
infinitely many j. Therefore pc must be bounded by Lemma B.5, but then Lemma B.6
implies that pc(v, j) < pc(vi, i+ 1) can only occur for finitely many j, a contradiction.

The function f is clearly a bijection. In order to show that it induces a reordering, let
i, j ∈ I with i < j and vi, vj being adjacent. (Note that the transitions at steps i and
j are not silent, by definition of I.) We need to show that f(i) < f(j). Assuming that
f(i) ≥ f(j) holds, i.e. i ≥f j, there are two possible cases.
Case 1: pc(vi, i) > pc(vj , j). As pc( · , t) is non-decreasing in t and i < j, we get

pc(vi, i) > pc(vj , i). Further, vi and vj are adjacent, so Lemma B.5 implies that pc(vi, i) =
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pc(vj , i) + 1. But then, by condition (1) of Definition B.2, the transition at step i must
be silent, contradicting our assumption.
Case 2: pc(vi, i) = pc(vj , j) and pc(vi, i + 1) > pc(vj , j + 1). Again, pc( · , t) is non-

decreasing in t, so pc(vi, j) ≥ pc(vi, i+ 1) > pc(vj , j + 1) ≥ pc(vj , j). Using Lemma B.5
we now get pc(vi, j) = pc(vj , j) + 1 and thus pc(vj , j + 1) = pc(vj , j). So at step j node
vi is one phase ahead of its neighbour vj and vj moves neither to the next phase, nor
does it perform a silent transition. This contradicts condition (3) of Definition B.2.

Let π′ := πf denote the reordered execution and define pc′ analogously to pc. To
complete the proof of Proposition B.4, it suffices to show that at each step of π′ an agent
with the smallest phase count will be selected, and amongst those the agents that do
not move to the next phase are preferred. Intuitively, this sounds reasonable, as we have
defined the reordering f in precisely this manner. We do, however, need to argue briefly
that the phase counts pc′ of the reordered execution correspond directly to the original
phase counts pc.

Lemma B.8. Let v denote a node and let i ∈ I with vi = v. Then pc′(v, f(i)) = pc(v, i).

Proof. This follows from a simple induction on i combined with Lemma B.1.

This concludes the proof of Proposition B.4.

B.2. Simulating Weak Broadcasts
Lemma 4.7. Every automaton with weak broadcasts is simulated by some automaton of
the same class without weak broadcasts.

(We repeat the construction from the proof sketch for clarity.)
Let P = (Q, δ0, δ, QB, B) denote an automaton with weak broadcasts. We define an

automaton P ′ = (Q′, δ′0, δ′) simulating P . The automaton P ′ has three phases, called 0,1,
and 2. A node moves to the next phase (modulo 3) only if every neighbour is in the same
phase or in the next. The states of P ′ are Q′ := Q ∪ Q × {1, 2} × QQ. Intuitively, an
agent of P ′ in state q ∈ Q is in phase 0, and simulates an agent of P in state q; an agent
of P ′ in state (q, i, f) ∈ Q× {1, 2} ×QQ is in phase i, and simulates an agent executing
P in state q, and initiating or responding to a broadcast with response function f .

Let β denote the counting bound of P . To specify the transitions, for a neighbourhood
N : Q′ → [β] we write N [i] :=

∑
q,f N((q, i, f)) for i ∈ {1, 2} and N [0] :=

∑
q∈QN(q)

to denote the number of adjacent agents in a particular phase, and choose a function
g(N) ∈ QQ ∪ {�} s.t. g(N) = f 6= � implies N((q, 1, f)) > 0, and g(N) = � implies
N [1] = 0. The function g is used to select which broadcast to execute, if there are
multiple possibilities. We define the following transitions for δ′, for all states q ∈ Q and
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neighbourhoods N : Q→ [β].

q,N 7→ δ(q,N) if q /∈ QB and N [0] = |N | (1)
q,N 7→ (q′, 1, f) if q ∈ QB and N [0] = |N |, with (q′, f) := B(q) (2)
q,N 7→ (f(q), 1, f) if g(N) = f 6= � (3)

(q, 1, f), N 7→ (q, 2, f) if N [0] = 0 (4)
(q, 2, f), N 7→ q if N [1] = 0 (5)

We will use the definitions and results from the previous section, Appendix B.1, where
we have constructed a general reordering for three-phase protocols.

Lemma B.9. The automaton P ′ is a nonblocking three-phase automaton.

Proof. Using Qi to denote the phase i states as defined above, it is easy to check that P ′ is
a three-phase automaton. It remains to show that P ′ is nonblocking, so let π = (C0, C1, ...)
denote a fair run of P ′ and Ci : V → Q′ a configuration where two agents are in different
phases. We define the phase count pc as for the proof of Proposition B.4, meaning that
pc(v, j) is the number of phase changes of node v until step j.
Let U := {u ∈ V : pc(u, i) = minv pc(v, i)} denote the set of nodes which have a

minimal number of phase changes at step i. We know that Ci has nodes of two different
phases, so U is a proper subset of V and we can pick adjacent nodes u, v with u ∈ U and
v /∈ U . We claim that the next step selecting u will move it to its next phase. This can
be seen by a simple case distinction: if u is in phase 0, 1, or 2, then transition (3), (4),
or (5) will move it to the next phase, respectively. Selecting u ∈ U ensures that u has
no neighbours in the previous phase, which already suffices to enable (4) and (5), while
having u adjacent to v ensures that (3) can be executed.

Again, let π denote a fair run of P ′. Using Proposition B.4 we find a specific reordering
πf = (C0, C1, ...) of π. In particular, every configuration Ci either has all agents in the
same phase, or it has agents in at most two phases and at step i one agent moves to the
its next phase. We are now going to show that πf is an extension of a fair run τ of P ,
which will complete the proof of Lemma 4.7.

First, note that in πf there are infinitely many configurations Ci where all agents are
in the same phase. Due to transitions (4) and (5) it is not possible to perform a silent
transition if all agents are in phase 1 or 2, respectively. So the set I := {i ∈ N : Ci(V ) ⊆ Q}
of indices i where Ci has only phase 0 agents has infinitely many elements. We define the
mapping g : N → N as the unique bijection with g(N) = I which is strictly increasing,
and set τ := (K0,K1, ...) where Ki := Cg(i) for all i.

Lemma B.10. πf is an extension of τ .

Proof. Fix any i, j ∈ N with g(i) < j < g(i+ 1). Due to the definition of g we know that
Cg(i)+1 does not contain only phase 0 agents, while Cg(i) does. So an agent has moved to
the next phase at step g(i) in πf and the properties of πf guarantee us that there are t1, t2
with g(i) < t1, t2 < g(i+ 1) s.t. Ct1 (Ct2) has only agents in phase 1 (phase 2). Moreover,
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we know that in πf every step t with g(i) ≤ t < t1 or t2 ≤ t < g(i+ 1) moves an agent to
its next phase or is silent. As phases 1 and 2 consist of only intermediate states, this
implies that Cg(i) ∼Q Cj if j < t1, Cg(i+1) ∼Q Cj if j > t2, and Cg(i) ∼Q Cj ∼Q Cg(i+1)
if t1 ≤ j ≤ t2.

The next lemma is mostly a matter of looking carefully at the definition of our
transitions (1)-(5).

Lemma B.11. τ is a run of P .

Proof. Fix any i ∈ N. If g(i + 1) = g(i) + 1, then step g(i) of πf has simply executed
transition (1), which correctly performs a neighbourhood transitions for an agent not
in a broadcast-initiating state. Otherwise, as we argued for Lemma B.10, there is a
g(i) < t1 < g(i+ 1) s.t. Ct1 has only agents in phase 1. Let S denote the set of agents
executing transition (2) between steps g(i) and t1 in πf . As agent can only move from
phase 0 to phase 1 via transitions (2) and (3), and transition (3) is enabled iff a neighbour is
already in phase 1, we find that S is both nonempty and an independent set. Additionally,
the definition of (2) ensures that S contains only agents in broadcast-initiating states
(i.e. Ki(v) ∈ QB for v ∈ S).

Now we simply note that Ki+1 is the result of executing a weak broadcast transition
on Ki on the selection S. Transition (2) correctly perform the local update, while (3)
moves the node according to some response function.

Finally, we have to show that τ is fair.

Lemma B.12. τ is fair.

Proof. There are two cases, depending on whether P uses adversarial or pseudo-stochastic
scheduling.
We start with the former. Here, π either contains infinitely many transitions where

an agent moves to the next phase, in which case τ executes infinitely many broadcasts
and is fair by definition, or there is some i with Ki + j = Cg(i)+j for all j ∈ N. The
transitions in πf after step i do not move to new phases, so they are not affected by the
reordering f . In particular, as π is fair, so is τ .
Now we consider the case of pseudo-stochastic scheduling. It is well-known that a

pseudo-stochastic schedule (i.e. every finite sequence of selections appears infinitely often)
implies that every configuration C which can be reach infinitely often will be reached
infinitely often. (This follows from there being only finitely many distinct configurations
in a run.) That argument can be strengthened to show that, for any finite sequence σ of
selections, σ will be executed starting from C infinitely often.

Further note that any configuration C which appears infinitely often in τ and thus in
πf can be reached infinitely often in π. This can be seen by choosing a specific reordering
which executes the transitions of π faithfully up to a point, and then only executes only
the transitions necessary to reach C in πf . It is easy to see that this a valid reordering
(using that πf is reordering).
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Now let σ denote any finite sequence of selections of P , the automaton with weak
broadcasts. We want to show that σ is infinitely often in τ . So we pick any configuration
K appearing infinitely often in τ , and therefore can be reached infinitely often π. It
would now suffice to show that, in τ , K is followed infinitely often by the selections of σ.
As we know that for any sequence σ′ of selections of P ′ we have that K appears infinitely
often in π followed by the selections of σ′, it now suffices to show that we can pick an
appropriate σ′ that would lead to σ being executed in τ .
To execute a selection (n, v) at configuration K : V → Q, i.e. a neighbourhood

transition of node v ∈ V , we either have K(v) /∈ QB and select v, thus executing
transition (1), or we do nothing. (To be precise, in the latter case we would have to
append a copy of K to τ , and modify g s.t. τ is still an extension of πf .) For a selection
(b, S) with S ⊆ V an independent set of broadcast initiating nodes, we either have S′ = ∅
with S′ := S ∩K−1(QB) and again do nothing, or we select all agents in S′ to move
them to phase 1 via transition (2), then move all other nodes to phase 1 via transition
(3), and then use transitions (4) and (5) to move all nodes to phase 2 and then back to
phase 0.

B.3. Simulating Weak Absence Detection
Lemma 4.9. Every DA$-automaton with weak absence detection is simulated by some
DAf-automaton, when restricted to bounded-degree graphs.

The proof will take up the remainder of this section.
As mentioned in the main paper, we combine a three-phase protocol with a distance-

labelling, the latter allowing us to propagate information about the states that have been
seen back to the agents initiating the absence detection. Before we define the necessary
transitions, we briefly characterise the distance labelling we are going to use.

Definition B.13. Let k ∈ N. We use D to denote a set of (distance) labels, where
D := Z2k+1 ∪ {root}. We define increment on D by using the usual arithmetic (modulo
2k+ 1) for elements in Z2k+1, and setting root + 1 := 1 ∈ Z2k+1. We refer to root as root
label. For all d ∈ D we say that d+ 1 is the child label of d.

Nodes initiating the absence detection use the root label. Each other node will pick a
child label d of one of its neighbours, taking care that no neighbour holds a child label
of d. At this point we will use the bound on the maximum degree of the graph, which
makes it easy to see that this is always possible.

Lemma B.14. Let S ⊂ D with 0 < |S| ≤ k. Then there is a label d ∈ D s.t. d+ 1 /∈ S
and there is some label d′ ∈ S with d′ + 1 = d.

Proof. Note that the statement can be simplified to there being a d ∈ S with d+ 2 /∈ S.
Pick any d ∈ S. As 2k+1 is odd, the sequence d, d+2, d+4, ..., d+2k is pairwise distinct.
Additionally, it contains 2k + 1 > |S| elements, and thus at least one element not in S.
Moreover, we can thus find two subsequent elements d′, d′ + 2 with d′ ∈ S, d′ + 2 /∈ S in
that sequence.
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We will now formally define our construction. Let P = (Q, δ,QA, A) denote the
automaton we want to simulate, k the maximum degree of our graph. We will construct
a DAf-automation P ′ = (Q′, δ′) simulating P . As states we use Q′ := Q0 ∪ Q1 ∪ Q2,
where Qi contains the phase i states. In particular, we set Q0 := Q, Q1 := Q2 ×D and
Q2 := Q × 2Q. For (q, r, i) ∈ Q1, an agent v carries its phase 0 state r and a distance
label i ∈ D. In phase 2 an agent stores the set of states that it has seen so far, which
will be propagated to its parents.

To define the transitions δ′, we introduce some notation. For any neighbourhood
N : Q′ → N we write N(S) :=

∑
q∈S N(q) for S ⊆ Q′. We set old(N) := N ′, where

N ′(q) := N(q) + N(Q × {q} × {0, ..., 2k}) is the number of agents that were in q ∈ Q
in phase 0. We will use old(N) to determine which neighbourhood transition of P to
execute.
We also define a unique child label child(N) for each N with N(Q1) > 0. For this,

let S := {d ∈ D : N(Q2 × {d}) > 0} denote the set of distance labels appearing in N .
As we have at most k neighbours, Lemma B.14 yields a suitable choice d =: child(N).
Intuitively, this means that d is the child label of a neighbour, but no neighbour is a
child of d, which ensures that we never create cycles.

Finally, we write union(N) :=
⋃
{S′ : (q′, S′) ∈ Q2, N((q′, S′)) > 0} for the union of all

states indicated by phase 2 neighbours. Our transitions δ′ are now defined as follows, for
all q,N .

q,N 7→ (q′, q, root) if N(Q2) = 0 and q′ := δ(q, old(N)) ∈ QA (1)

q,N 7→ (q′, q, child(N))
if N(Q2) = 0 and q′ := δ(q, old(N)) /∈ QA

and N(Q1) > 0
(2)

(q, r, i), N 7→ (q,union(N) ∪ {q}) if N(Q0) = 0 and N(Q2 × {i+ 1}) = 0 (3)
(q, S), N 7→ A(q, S) if N(Q1) = 0 and q ∈ QA (4)
(q, S), N 7→ q if N(Q1) = 0 and q /∈ QA (5)

Transitions (1) and (2) move the agents from phase 0 to phase 1, executing a neighbour-
hood transition of δ in the process (synchronously). The move is initiated by agents in
QA, which pick root as distance label, while the others wait for a neighbour to enter
phase 1, at which point they become a child of that neighbour. In phase 1, each node
waits until all children have entered phase 2 (and thus indicate the set of states they have
observed), and then executes (3) to move to phase 2, indicating the union of all sets of
its children. Finally, the absence-detection initiating nodes move to phase 0 by executing
the absence-detection via (4), moving into the appropriate state, while (5) simply moves
the other agents to phase 0 without changing their states.

It is crucial that the distance-labels assigned by transition (2) never form a cycle; else
we would get a deadlock. Our choice of child ensures that this is the case.

Lemma B.15. The automaton P ′ cannot reach a configuration C with a cycle of nodes
(v0, ..., vl), i.e. v0 = vl and vi is adjacent to vi+1 for all i, where each vi has label
(i mod 2k + 1) ∈ Z2k+1.
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Proof. It is only possible for a node to receive a label d ∈ Z2k+1 via transition (2). (Note
that (1) only assigns label root, which cannot be part of a cycle.) However, transition (2)
will never close such a cycle, due to the definition of child.

We will proceed in a similar manner as in the previous section. We want to use
Proposition B.4 to construct our reordering, will show that P ′ is a nonblocking three-
phase automaton. Afterwards, we argue that the given reordering is an extension of a
run of P .

Lemma B.16. The automaton P ′ is a nonblocking three-phase automaton.

Proof. Again, it is easy to check that P ′ is a three-phase automaton by inspecting
transitions (2)-(5). To show that P is nonblocking the proof is similar to the proof of
Lemma B.9.
Let π = (C0, C1, ...) denote a fair run of P ′ and Ci : V → Q′ a configuration where

two agents are in different phases. We define the phase count pc as for the proof of
Proposition B.4, meaning that pc(v, j) is the number of phase changes of node v until
step j.
Let U := {u ∈ V : pc(u, i) = minv pc(v, i)} denote the set of nodes which have a

minimal number of phase changes at step i. If all nodes in U are in phase 0 or phase 2,
then selecting any node in U will move it to the next phase via transitions (1), (2) or (4),
(5), respectively. Otherwise, we pick any node u ∈ U and write d for the distance label
of u. As u is in phase 1, the only non-silent transition it could perform is (3). If (3) is
enabled, then executing it moves u to the next phase, and we are done. If that is not the
case, there must be a node u adjacent to v, s.t. v is also in phase 1 and has label d+ 1.
We now set u := v and repeat this process. There are only finitely many nodes and the
distance labels form no cycles (due to Lemma B.15), so this must terminate.

As for weak broadcasts, let π denote a fair run of P ′. Using Proposition B.4 we find a
specific reordering πf = (C0, C1, ...) of π. In particular, every configuration Ci either has
all agents in the same phase, or it has agents in at most two phases and at step i one
agent moves to the its next phase. We are now going to show that πf is an extension of
a run τ of P .
Again, note that in πf there are infinitely many configurations Ci where all agents

are in the same phase. However, to construct g and the extension τ we will now have
to argue slightly differently. If all agents are in phase 1 then there must be at least one
agent where transition (3) is enabled. This follows from the same argument as used in
the proof of Lemma B.16. If all agents are in phase 2, then either transition (4) or (5)
will be enabled for each agent.

The set I := {i ∈ N : Ci(V ) ⊆ Q} of indices i where Ci has only phase 0 agents thus
has infinitely many elements, as before. We then define I ′ := I \ {i : Ci = Ci−1, ∃j > i :
Cj 6= Ci} by removing all steps which perform a silent transition and are followed by a
non-silent transition from I.
We define the mapping g : N → N as the unique bijection with g(N) = I ′ which is

strictly increasing, and set τ := (K0,K1, ...) where Ki := Cg(i) for all i.
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Lemma B.17. πf is an extension of τ .

Proof. The proof is analogous to Lemma B.10, as the removal of silent transitions does
not affect the notion of extension.

Finally, we argue that τ is a run of P . There is no need to argue that τ is fair, as all
runs of P are fair.

Lemma B.18. τ is a run of P .

Proof. Fix any i ∈ N. If g(i+ 1) = g(i) + 1 then must have executed a silent transition at
step g(i) of πf , as else it is impossible to remain in phase 0. However, we have removed
silent transitions followed by non-silent transition from I ′ and therefore g, so step i is
followed by an infinite sequence of silent transitions Cg(i) = Cg(i)+1 = ... . We know that
π and thus πf are fair (w.r.t. an adversarial scheduler), so this means that transition (1)
is not enabled for any node. Therefore Ki(V ) ∩QA = ∅ and Definition 4.8 states that P
hangs in this case, so Ki+1 = Ki should hold, which is what we have.
Otherwise, there is a g(i) < t1, t2 < g(i+ 1) s.t. Ct1 (Ct2) has only agents in phase 1

(phase 2). First, every node executes either (1) or (2), effectively moving to configuration
C ′ with (C ′(v), · , · ) = Ct2(v) for v ∈ V . In particular, transitions (1) and (2) use the
phase 0 state of each agent, so this executes a synchronous neighbourhood transition (i.e.
one with selection V ).
Let S denote the set of agents executing transition (1) between steps g(i) and t1 in

πf . A brief look at transition (1) reveals that S = (C ′)−1(QA) contains precisely the
agents which are in absence-detection initiating states after executing the synchronous
neighbourhood transition.
Now we simply note that Ki+1 is the result of executing a weak absence-detection

transition on C ′ using selection S. Here, we observe that every node v /∈ S must pick a
child label of a neighbour u in transition (2). Agent u will only execute transition (3)
once v is in phase 2, so the information of v will be propagated to u, then to a parent of u,
and so on, until it reaches an agent in S. The agents in S then perform transition (4) and
move according to the weak absence-detection transition, while all other nodes execute (5)
and remain in their original state.

B.4. Simulating Rendez-vous Transitions
Definition B.19. A graph population protocol is a tuple (Q, δ), where Q is a finite set of
states, and δ : Q2 → Q2 is a set of transitions that describes the rendez-vous interactions
between two adjacent nodes. In particular, if δ(p, q) = (p′, q′), then we write p, q 7→ p′, q′.
Further, let δ1(p, q) = p′ and δ2(p, q) = q′ be functions for the first and second component
of δ. The definitions of configurations and runs are equivalent to the ones of distributed
machines. Selections are ordered pairs of adjacent nodes, i.e. the set of possible selections
is {(u, v) : {u, v} ∈ E}. If (u, v) ∈ V 2 is the selection in some configuration C, then the
successor configuration is C ′ with C ′(u) := δ1(C(u), C(v)), C ′(v) := δ2(C(u), C(v)) and
C ′(x) := C(x) for all x ∈ V \ {u, v}. We require the schedules the be pseudo-stochastic,
so every finite sequence of selections has to appear infinitely often in a schedule.
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Lemma 4.10. Every graph population protocol is simulated by some DAF-automaton.

Proof. Let P = (Q, δ) be a population protocol on graphs. We define a DAF-automaton
M = (Q′, δ′) that simulates P . We set the counting bound β := 2. Let Q¦ = Q, Qü =
Q×{ü}, Q� = Q×{�} and QË = Q×{Ë}×Q. We define Q′ := Q¦∪Qü∪Q�∪QË.
Intuitively, each node stores its state in the original protocol in the first component
and has a status that helps to simulate rendez-vous transitions. The status can be
“waiting” (¦), “searching” (ü), “answering” (�) or “confirming” (Ë) and initially every
node is waiting. Additionally, a confirming node stores the state it would have after
the rendez-vous transition is completed. This is necessary, because the other node will
performs its part of the rendez-vous interaction first.

Now will define the transition function δ′ of M , for states q, q′, q′′ ∈ Q and neighbour-
hood N ∈ [β]Q′ . Let N(¦) :=

∑
q∈QN(q) be the number of detectable waiting neighbours.

Further, we use the auxiliary function f(N) to denote the unique non-waiting neighbour,
if any, i.e. we set f(N) := x if N(¦) = |N |− 1 and N(x) = 1. If no such neighbour exists,
we set f(N) := ¦ if N [¦] = |N | (all neighbours are waiting), and f(N) := ⊥ otherwise.
Figure 4 contains the formal definition of δ and a diagram that visualises how nodes
change their status.

q,N 7→ (q,ü) for f(N) = ¦

q,N 7→ (q,�) for f(N) = (q′,ü)
(q,ü), N 7→ (q,Ë, δ1(q, q′)) for f(N) = (q′,�)
(q,�), N 7→ δ2(q′, q) for f(N) = (q′,Ë, q′′)

(q,Ë, q′), N 7→ q′ for f(N) = ¦

Figure 4: Neighbourhood transitions that simulate rendez-vous interactions. The left
side show the formal definition of the transition function δ′. For all inputs x,N
where δ′(x,N) is undefined, the status is set to waiting (¦) by changing to the
original state saved in the first component of x. The right side visualises the
neighbourhood transitions as a graph. States in the diagram only show the
status of a node. A node only change its status by following an edges in the
diagram, if its neighbourhood satisfies the condition on the edge. If a node is
selected and no edge can be followed, it instead changes its status to waiting
(¦). The edges that apply the rendez-vous transition δ are drawn dashed.

Intuitively, the simulation of a rendez-vous transition p, q 7→ p′, q′ starts with a waiting
(¦) agent with original state p that only sees waiting nodes. This agent searches for
a partner by changing its status to ü. Then, its waiting neighbours can answer by
changing to � if they detect exactly one search. If the searching agent detects exactly
one answer, it confirms by changing to Ë while remembering the state it would have
after the rendez-vous with the answering node. If the answering node with original state
q sees exactly one confirmation, it applies the state change (q to q′) and waits. Then,
the confirming node detects that the answering node is now waiting and applies the
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state change it remembered (p to p′). However, once a node detects an irregularity in
the simulation (e.g. more than one non-waiting neighbour) it cancels the interaction by
changing its state to ¦.
We still have to show that M simulates P . We call a change to the original state

of a node a state change. In other words, neighbourhood transitions that change the
first component of a nodes state perform a state change. We will now argue, that state
changes only occur in pairs and that they simulate the rendez-vous transitions in δ. First
note, that from a configuration C where two nodes u, v and their neighbours are waiting,
scheduling the sequence u, v, u, v, u correctly applies the state changes δ1(C(u), C(v)) for
u and δ2(C(u), C(v)) for v. For a node u to enter the confirming state, it must have
exactly one answering neighbour v and all other neighbours must be waiting. u cannot
perform its state change before v because it needs to wait until all nodes are waiting.
Once the answering agent v performs its state change, all of u’s neighbours are waiting
and cannot change their status because they see that u is confirming. Thus, the next time
u is scheduled, it must perform its state change. Further, v can only perform the state
change if it sees exactly one confirming state and all other of v’s neighbours are waiting.
Thus, once one of nodes in the rendez-vous interaction performs the state change, the
full rendez-vous interaction will be performed. Further, it is impossible for more than
two nodes to interact simultaneously, because selection is exclusive and whenever a node
detects more than one non-waiting neighbour, it cancels the interaction and waits.

Next, we need to reorder a given run π′ of M such that it is an extension of some run
π in P . For this, we make sure that after an answering node performs the state change,
the corresponding confirming node is scheduled immediately so that it can perform
its state change. Intuitively, the reordering makes sure that the state changes in the
simulation of two different rendez-vous transitions are not executed in an interleaving
manner. Thus, the reordered run is indeed an extension of a run in P where the state
changes of rendez-vous interactions happen atomically. The reordering is valid, because
after the answering node performs the state change, the nodes in the neighbourhood of
the confirming node are all waiting and they cannot change their status because they see
a confirming node. Thus, scheduling the confirming agent earlier in the reordered run
does not interfere with the neighbourhood transitions that were executed between the
two state changes in π′.

Lastly, we need to argue about fairness. Let π be the simulated run of P for some fair
run π′ of M . Let C be some configuration that is visited infinitely often in π. Further,
let S = (u1, v1), · · · , (uk, vk) ∈ (V × V )∗ be a finite sequence of selections such that
scheduling S in C leads to come configuration Cf . As C is visited infinitely often, there
are infinitely many configurations C ′1, C ′2, · · · ∈ π′ with C ∼Q C ′i for all i > 0. Because
there are only finitely many different configurations for a given graph, there is at least
one configuration C ′ that is visited infinitely often in π′ such that C ∼Q C ′. C ′ can reach
a configuration C ′′ ∼Q C ′ where all nodes are waiting by scheduling all confirming nodes,
then all answering nodes and lastly all searching nodes. C ′′ can reach a configuration
C ′f ∼q Cf by simulating all selections (ui, vi) of S one after the other by scheduling
ui, vi, ui, vi, ui. Because π′ is fair, C ′f is visited infinitely often in π′. Therefore, Cf is
visited infinitely often in π and π is fair.
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C. Proofs of Section 5
As mentioned in the introduction, we are interested in labelling properties.

Definition C.1. For every labelled graph G = (V,E, λ) over the finite set of Labels L
we write LG for the multiset of labels occurring in G, i.e. LG : L → N, LG(x) = |{v ∈ V :
λ(v) = x}| for all labels x. We call LG the label count of G.
A graph property ϕ is called a labelling property if for all labelled graphs G,G′ with

LG = LG′ we have ϕ(G) = ϕ(G′). In such a case we also write ϕ(LG) instead of ϕ(G).

In this section, we will use L for multisets of labels.

C.1. DaF only decides trivial properties
Proposition C.2. Let ϕ be a labelling property decided by a DaF-automaton in the
unrestricted set of graphs or in the set of k-degree-bounded graphs. Then ϕ is trivial, i.e.
either always false or always true.

Proof. Assume that ϕ is not always false, i.e. ϕ(L) = 1 for some L. We have to prove
that ϕ is always true, i.e. ϕ(L′) = 1 for all labelling multisets L′. Let L′ be any
labelling multiset. By our general assumption, network graphs have at least 3 nodes, i.e.
|L|, |L′| ≥ 3. Since ϕ is a labelling property, we can choose the underlying graph. Let
G be the cycle with |L| nodes labelled with L, and let G′ be the cycle with |L′| nodes
labelled with L′. By Lemma 3.1, we cannot distinguish G and G′ and therefore have
ϕ(L′) = ϕ(L) = 1 as claimed. This also holds in the k-degree-bounded case since the
graph constructed in the proof of Lemma 3.1 is k-degree-bounded, if both G and G′

were.

C.2. DAf decides at most Cutoff(1)
Proposition C.3. Let ϕ be a labelling property decided by a DAf-automaton. Then
ϕ ∈ Cutoff(1).

Proof. Let A be a DAf-automaton with ϕA = ϕ. Let K = β + 1 be as in Lemma 3.4, i.e.
the natural number such that ϕ(L) = ϕ(dLeK) for all labelling multisets L. In addition,
we know that ϕ is closed under scalar multiplication by Corollary 3.3. We use this
corollary with λ = K to scale up L with the factor K, then cut if off at K and scale
down again.
Formally, we start by proving dλ · Leλ = λ · dLe1 = dλ · dLe1eλ for all λ ∈ N by case

distinction, namely if some label x occurs, then all those three functions equal λ, and
otherwise they all equal 0.
We use this to obtain the following chain of equalities:

ϕ(L) C3.3= ϕ(K · L) L3.4= ϕ(dK · LeK) = ϕ(K · dLe1) = ϕ(dK · dLe1eK)
L3.4= ϕ(K · dLe1) C3.3= ϕ(dLe1)
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C.3. dAf can decide Cutoff(1)
Proposition C.4. dAf-automata can decide all labelling properties ϕ ∈ Cutoff(1).

Proof. Let ϕ ∈ Cutoff(1). Let x1, ..., xn be the variables occurring in ϕ. Then ϕ
corresponds to a subset M in {0, 1}{1,...,n}, describing whether we accept if exactly the
variables with indices i 7→ 1 occur. By [16, Proposition 12], dAf-automata can decide the
language B of graphs with a black node, i.e. the labelling predicate ϕ(x, y)⇔ x ≥ 1. On
the level of subsets M , this means the set

Mi := {f : {1, ..., n} → {0, 1} : f(i) = 1}

of all functions with i 7→ 1 can be decided. We can write every subset M via unions,
complements and intersections of sets Mi. This corresponds to writing ϕ as a boolean
combination of xi ≥ 1, which can be decided.

C.4. dAF can decide exactly Cutoff
Lemma C.5. For every property ϕ : Nl → {0, 1} with ϕ(x, y1, ..., yl−1) ⇔ x ≥ k for
some k ∈ N there is a dAF-automaton deciding ϕ.

Proof. We construct a dAF-automaton P = (Q, ∅, I, O), which we will augment with weak
broadcast transitions. As states we use Q := {0, 1, ..., k}, the input mapping is given by
I(x) := 1 and I(y1) = ... = I(yl−1) = 0, and the set of accepting states is O := {k}. We
add the following broadcasts, with i = 1, ..., k − 1.

i 7→ i, {i 7→ i+ 1} 〈level〉
k 7→ k, {q 7→ k : q ∈ Q} 〈accept〉

Using Lemma 4.7 we get an equivalent dAF-automaton.
Let C0 denote an initial configuration with c := |C−1

0 (1)| set to the number of agents
starting in state 1. It is easy to see that C0 is accepting iff it can reach a configuration C
with k ∈ C(V ), i.e. at least one agent in state k. Of course, 〈accept〉 cannot be used to
reach k as the initiator is already in state k, so we now consider only configurations C
reachable by 〈level〉.

It is only possible for an agent to go from state i to i+ 1 by receiving broadcast 〈level〉
initiated by an agent in state i, for i = 1, ..., k− 1. The initiator remains in state i, so we
have that i+1 ∈ C(V ) implies i ∈ C(V ). Therefore k ∈ C(V ) implies {1, 2, ..., k} ⊆ C(V )
and thus at least k agents have started in state 1, i.e. c ≥ k, as it is not possible to leave
state 0 via 〈level〉.

To summarise, the protocol accepts only initial configuration which should be accepted.
It remains to show that the converse holds as well, so we require c ≥ k and set C to an
arbitrary configuration reachable from C0 with only 〈level〉. We have pseudo-stochastic
fairness, so it is enough to show that C can reach a configuration C ′ with k ∈ C ′(V ).
Let mi := |C−1(i)| denote the number of agents in state i, for i = 1, ..., k. We

define an ordering on the set of configurations by ordering the tuples (mk,mk−1, ...,m1)
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lexicographically. If C does not have a node in state k, then it has c ≥ k occupying states
1 to k − 1, i.e. m1 + ...+mk−1 = k and, by pigeonhole principle, there is some 1 ≤ j < k
with mj ≥ 2. By executing transition 〈level〉 on one of those agents exclusively, at least
one agent moves to state j + 1. Hence the resulting configuration is strictly larger w.r.t.
our ordering. There are only finitely many configurations with n agents, so we can repeat
this procedure until at least one agent has state k, thereby proving that C reaches some
accepting configuration.

Proposition C.6. The set of labelling properties decided by dAF-automata is precisely
Cutoff.

Proof. By Lemma 3.5, the expressive power is contained in Cutoff.
Now let ϕ ∈ Cutoff. Let K ∈ N be as in the definition of Cutoff. Let x1, ..., xn be the

variables occurring in ϕ. Then ϕ corresponds to a M ∈ [K]{1,...,n} of accepted cutoffs. If
we can decide all formulas corresponding to 1-element subsets of {0, 1, ...,K}{1,...,n}, then
we can decide ϕ, since ϕ can be written as a disjunction of such formulas. Let M be such
a 1-element subset, write this element as f : {1, ..., n} → {0, 1, ...,K}. Let S ⊆ {1, ..., n}
be the set of indices i with f(i) = K. The formula corresponding to M is∧

i/∈S
(xi ≥ f(i) ∧ ¬(xi ≥ f(i) + 1)) ∧

∧
i∈S

(xi ≥ f(i)),

which can be decided since by Lemma C.5, we can compute xi ≥ f(i), and the set of
decidable properties is closed under boolean combinations.

C.5. DAF can decide exactly the labelling properties in NL
Lemma 5.1. DAF-automata decide exactly the labelling properties in NL.

Proof. As argued in the main paper, DAF-automata can decide at most the predicates in
NL. We now restate the construction from the proof sketch for clarity.
It is known that strong broadcast protocols decide exactly the predicates in NL [11,

Theorem 15]. Therefore, it suffices to show that for every strong broadcast protocol
there is an equivalent DAF-automaton. By Lemma 4.7 DAF-automata can simulate weak
broadcasts, and so, loosely speaking, the task is to simulate strong broadcasts with weak
ones.

Let P = (Q, δ, I, O) be a strong broadcast protocol. We start with a graph population
protocol Ptoken := (Qtoken, δtoken), with states Qtoken := {0, L, L′,⊥} and rendez-vous
transitions δtoken given by

(L,L) 7→ (0,⊥), (0, L) 7→ (L, 0), (L, 0) 7→ (L′, 0) 〈token〉

Now we construct a DAF-automaton P ′token = (Q′token, δ
′
token) simulating Ptoken using

Lemma 4.10, and combine it with P by setting Pstep := P ′token×Q+ 〈step〉 , where 〈step〉
is a weak broadcast defined as

(L′, q) 7→ (L, q′), {(t, r) 7→ (t, f(r)) : (t, r) ∈ Q′token ×Q} 〈step〉
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for each broadcast q 7→ q′, f in δ. Finally, let P ′step = (Q′step, δ
′
step) be a DAF-automaton

simulating Pstep, which exists by Lemma 4.7.
Intuitively, agents in states L,L′ have a token. If we could ensure that initially there

is only one token in L,L′, then we would be done. Indeed, in this case at each moment
only the agent with the token can move; if in L, it initiates a (simulated) rendez-vous
transition, and if in L′, a weak broadcast. Since no other agent is executing a weak
broadcast at the same time, the weak broadcast is received by all agents, and has the
same effect as a strong broadcast.

We cannot ensure that initially there is only one token, but if the computation starts
with more than one, then two tokens eventually meet using transition 〈token〉 and an
agent moves into the error state ⊥. We design a mechanism to restart the computation
after this occurs, now with fewer agents in state (L, · ), guaranteeing that eventually
the computation is restarted with only one token. For this we again add an additional
component to each state and consider the protocol Preset := P ′step ×Q+ 〈reset〉, where
〈reset〉 are the following broadcast transitions, for each q, q0 ∈ Q.

((⊥, q), q0) 7→ ((L, q0), q0), {(r, r0) 7→ ((0, r0), r0) : r ∈ Q′step, r0 ∈ Q} 〈reset〉

For Preset we define the input mapping Ireset(x) := ((L, I(x)), I(x)) and the set of
accepting states Oreset := {((r, q), q0) : q ∈ O, q0 ∈ Q, r ∈ {0, L}}. Using Lemma 4.7 (and
Lemma 4.4) we get a DAF-Automaton equivalent to Preset, so it suffices to show that Preset
is equivalent to P .

As a technical aide to state the proof, we introduce another graph population protocol
P ∗token := (Qtoken, δ

∗
token), where δ∗token := {(L,L) 7→ (0,⊥), (0, L) 7→ (L, 0)}. Essentially,

we want to ignore the difference between L and L′. For this, we consider the mapping
g : Q′token → Q′token, which maps g(L′) := L and all other states to themselves. We
extend g to Qstep by applying it only to the first component, i.e. g((q, r)) := g(q) for
(q, r) ∈ Qstep, and then to configurations C : V → Qstep and runs π of Pstep in the obvious
manner.

Let π denote a fair run of Pstep. If we only consider the first component of the states in
π, this is essentially a run of P ′token, except that at some steps an agent transitions from
L′ to L using 〈step〉. It is not guaranteed that a simulation continues to work under these
conditions, but the construction of Lemma 4.10 does not rely on the non-intermediate
states remaining unchanged between transitions. This means that g(π) has a reordering
which is an extension of a fair run of P ∗token.

Let C∗0 : V → Q denote an initial configuration of P , and let π := (C0, C1, ...) denote a
run of Pstep, starting in a configuration C0 with C0(v) = (0, C∗0 (v)) or C0(v) = (L,C∗0 (v))
for all nodes v.
If C0 has k > 1 tokens, then, we claim, π will reach a configuration with an agent in

an error state, and the set S :=
⋃
iC
−1
i (Q×⊥) of agents to ever reach an error state has

size at most k− 1. We will refer to this property as A(π). Crucially, if A(π) holds for any
run π, then it also holds for any reordering of π, and it also holds for any extension of π.
As we argued before, g(π) is a reordering of an extension of a fair run of P ∗token.

Moreover, this projection does not affect A. So it is sufficient to show A(τ) for all fair
runs τ of P ∗token, which follows immediately from its definitions.
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Let π′ := (C ′0, C ′1, ...) denote a fair run of Preset with initial configuration C ′0 defined
similar to C0, so C ′0(v) = ((0, C∗0 (v)), C∗0 (v)) or C ′0(v) = ((L,C∗0 (v)), C∗0 (v)) for all nodes
v, and the latter holds for exactly k > 1 nodes. (Note that initial configurations of Preset
always have k = n.) As A(π) holds for all fair runs π of Pstep as defined above, we find
that a fair run π′ where 〈reset〉 is never executed will necessarily enable it once. But, as
per Definition 4.5, all states ((⊥, · ), · ) are broadcast-initiating, so they cannot execute a
neighbourhood transition and can only change their state via 〈reset〉. This has to occur
eventually, so let step i denote the first execution of 〈reset〉.
Again, due to A, before step i the number of agents in a state in ({⊥} × Q) × Q is

at most k − 1. So we get C ′i = ((0, C0(v)), C0(v)) or C ′i(v) = ((L,C0(v)), C0(v)) for all
nodes v, and the latter holds for at most k − 1 (but not zero) nodes. (Recall that a weak
broadcast might be executed simultaneously by multiple agents, so it is possible to end
up with more than one token after executing 〈reset〉.) By induction, we eventually find a
suffix of the run starting in a configuration C ′0 as defined above with k = 1, i.e. exactly
one agent is holding a token.
As we argued for A, no agent can ever reach an error state from such an initial

configuration, so transition 〈reset〉 will never be executed and it suffices to show that
any fair run π = (C0, C1, ...) of Pstep stabilises to the correct consensus, where C0(v) =
(L,C∗0 (v)) for some node v and C0(u) = (0, C∗0 (u)) for all other nodes u 6= v.

First, we argue that there is always at most one agent holding a token. Again, applying
g yields a reordering of an extension of a run of P ∗token, and it is clear that the property
holds for any run of P ∗token and any extension τ = (K0,K1, ...) of such a run (with initial
configuration K0 defined s.t. C0(v) ∈ {K0(v)} ×Q for all v). However, we still need to
show that any reordering τf of τ also fulfils the property. It is only possible for a node v
to receive a token by moving from state 0 or an intermediate state to L. If this happens,
say, at step i in τ , then v or an adjacent node u must have left {L,L′} at a step j directly
before i, i.e. a step j < i s.t. in configurations Kj+1,Kj+2, ...,Ki−1 there are no agents
with a token. For the reordering we then have f(j) < f(j), so the token leaves u before
entering v as well in τf .

This means that transition 〈step〉 cannot be executed by multiple agents simultaneously
and it thus updates the states in the same manner as in P . Finally, it remains to show
that π does so in a pseudo-stochastic manner, for which it is sufficient to prove that
any configuration Ci after executing 〈step〉 can, for any node v, reach a configuration C ′
where v has the token without executing 〈step〉.

Intuitively, this clearly holds, based on transitions 〈token〉. To make this formally
precise, we reference the specific construction of Lemma 4.10. Starting with Ci we
repeatedly select agents in intermediate states (and execute the corresponding transition)
until none are left. This will never select the (unique) node v with Ci(v) = (L, · ), and
it will terminate, due to the transitions of Lemma 4.10. Thus we reach a configuration
C ′ with C ′(v) = (L, · ) and all other agents u 6= v have C ′(u) = (0, · ). (We have
already argued that it is not possible to reach a state with more than one token.) As C ′
contains no intermediate states, it is easy to see that there is a sequence of neighbourhood
transitions to move the token to any node.
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D. Proofs of Section 6
D.1. dAf can only decide Cutoff(1)
Proposition D.1. The set of labelling properties decided by dAf-automata in the k-
degree-bounded case for k ≥ 3 is precisely Cutoff(1).

Proof. We know that Cutoff(1) is contained in the expressive power of dAF for k-degree-
bounded graphs, since we can compute predicates in Cutoff(1) even in the unrestricted
set of graphs.

Now let ϕ be a property decided by some dAf-automaton M . We claim that for every
multiset L and every label x with L(x) ≥ 1 we have ϕ(L) = ϕ(L+ x).

Proof of claim: since ϕ is a labelling property, we can choose the underlying graph. Let
G = (V,E, λ) be a line labelled with the set L and the label x on the first end. Define
the graph G′ = (V ′, E′, λ′) by copying G and adding a extra node, which is labelled
with x and connected to the second node only. Since M is consistent, M accepts G if
and only if the synchronous run ρ on G is accepting and it accepts G′ if and only if the
synchronous run ρ′ on G′ is accepting. It follows by induction that every node of the
graph G is always in the same state in both runs, and that the extra node is always in
the same state as the first end.

This shows that ρ is accepting if and only if ρ′ is accepting. Therefore G is accepted if
and only if G′ is accepted, proving the claim.
Now we use the claim to prove the proposition. Let L be some multiset. We have to

prove that ϕ(L) = ϕ(dLe1). For this, we write L = dLe1 +x1 + ...+xn with xi(dLe1) ≥ 1
and use the claim a total of n times.

D.2. dAF and DAF decide exactly the labelling properties in NSPACE(n)
Proposition D.2. A labelling property ϕ can be decided by a dAF-automaton in the
k-degree-bounded case if and only if ϕ ∈ NSPACE(n).
A labelling property ϕ can be decided by a DAF-automaton in the k-degree-bounded case

if and only if ϕ ∈ NSPACE(n).

Proof. By [16, Proposition 22], the expressive power of dAF-automata is equal to the
expressive power of DAF-automata in the k-degree-bounded case. It is therefore enough
to consider DAF.
We start by proving that labelling properties ϕ ∈ NSPACE(n) can be decided. By

[12], when restricting to k-degree-bounded graphs, graph population protocols can
decide all symmetric properties ϕ ∈ NSPACE(n), in particular all labelling properties
ϕ ∈ NSPACE(n), since they are by definition invariant under rearranging the labels. By
Lemma 4.10, all properties decidable by graph population protocols can also be decided
by DAF-automata.

Now let ϕ be a labelling property decided by a DAF-automaton M with counting bound
β. We have to prove that ϕ can be decided by a non-deterministic Turing machine with
linear space. Since every node uses constant space and we have a linear number of nodes,
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a Turing machine with linear space can save configurations of our automaton M . We
claim that checking whether two configurations C,C ′ fulfil C → C ′ can be checked in
NSPACE(n). For this, the Turing machine guesses for each node whether it has to be
selected or not, and then checks for every node v whether

C(v) = C ′(v) if v /∈ S
δ(C(v), dC(N(v))eβ) = C ′(v) if v ∈ S,

i.e. the definition of the semantics. Since C → C ′ can be checked in NSPACE(n), C →∗ C ′
also can. For this, the Turing Machine does the following (|Q|)|V | times (upper bound on
number of configurations): guess a configuration C ′′ and check C → C ′′. Overwrite C
with C ′′. If C ′′ = C ′ accept, if we finish the loop without this occurring reject.

Now we use Immerman–Szelepcsényi theorem in the general version to obtain that
C 6→∗ C ′ can also be checked in NSPACE(n). Due to the automaton M using pseudo-
stochastic fairness, we accept from some initial configuration C0 if and only if there exists
a configuration C fulfilling the following three conditions:

1. C0 →∗ C.
2. C is accepting.
3. For all non-accepting configurations C ′, we have C 6→∗ C ′.

We can check this in NSPACE(n) by guessing the configuration C and checking the
reachability conditions as described above.

D.3. DAf can decide majority
The proof of Lemma 6.1 will use the following lemma, which encapsulates the main
argument.

Lemma D.3. Let π = (C0, C1, ...) denote a fair run of Pcancel. There are only finitely
many Ci with Ci(V ) ∩ {k + 1, ..., E} 6= ∅ and Ci(V ) ∩ {−E, ..., 0} 6= ∅.

Proof. First, we note Ci(V ) ⊆ S ⇒ Ci+1(V ) ⊆ S for S = {0, ..., E}, S = {1, ..., E}, and
S = {−E, ..., k}. In particular, the latter two imply that it suffices to show that there
exists an i with Ci(V ) ∩ {k + 1, ..., E} = ∅ or Ci(V ) ∩ {−E, ..., 0} = ∅.
Our proof will proceed by first showing that Ci(V ) ∩ {k + 1, ..., E} 6= ∅ and Ci(V ) ∩
{−E, ...,−1} 6= ∅ cannot both hold for all i. Afterwards, we will argue that Ci(V ) ∩ {k +
1, ..., E} 6= ∅ and 0 ∈ Ci(V ) also cannot always hold, thus completing the proof.

Assume Ci(V )∩ {k + 1, ..., E} 6= ∅ and Ci(V )∩ {−E, ...,−1} 6= ∅ for all i. We fix an i,
and let S0(Ci) := C−1

i ({−E, ..., 0}) denote the set of agents with nonpositive contribution
in Ci. Due to our assumption, S0(Ci) is nonempty. We write Sd(Ci) for the set of nodes
with distance d to S0(Ci), for d = 1, ..., n, and define λd(Ci) :=

∑
v∈Sd(Ci)Ci(v) as the

sum of contributions of Sd. Finally, we set λ(Ci) := (λ0(Ci), ..., λn(Ci)).
We now claim that λ(Ci) < λ(Ci+1) for each i, using lexicographical ordering, which

is a contradiction, as there are only finitely many different configurations. To show
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the claim, we split the transition from Ci to Ci+1 into a set of pairwise transactions
U ⊆ V × V , s.t. Ci+1(v) = Ci(v) − |U ∩ {v} × V | + |U ∩ V × {v}| for each node v,
and Ci(u) > k ∧ Ci(v) ≤ k or Ci(u) ≥ −k ∧ Ci(v) < −k for all (u, v) ∈ U . Intuitively,
(u, v) ∈ U means that u sends one unit to v.

We always have Ci(u) > Ci(v) for (u, v) ∈ U , so λ0(Ci) ≤ λ0(Ci+1). If there exist
adjacent nodes u, v ∈ V with Ci(u) < 0 < Ci(v) and (v, u) ∈ U then we have λ0(Ci) <
λ0(Ci+1) and our claim follows. Hence we will now exclude this case. In particular, we
thereby exclude the possibility of a node v leaving S0, i.e. v ∈ S0(Ci) \ S0(Ci+1).

Let U+ := {(u, v) ∈ U : u, v /∈ S0(Ci)} denote the set of transitions where neither node
has negative contribution. We pick d, u where u ∈ Sd and Ci(u) > k s.t. d is minimal.
It is clear that d > 1 holds, as else there would be a transaction from u to a node in
S0. There is some node v adjacent to u in Sd−1 which, by choice of u, fulfils Ci(u) ≤ k.
Therefore (u, v) ∈ U+. In particular, u sends one unit to v, thereby increasing Sd−1.

Moreover, all transactions (u′, v′) ∈ U+ have Ci(u′) > k, so it is not possible for any
such transaction to decrease any Sd′ with d′ < d. Neither can such a transaction change
S0. Therefore we find that the transactions in U+ strictly increase λ, without affecting
S0.
Let C denote the configuration where the transaction in U+ have been executed, i.e.

C(v) := Ci(v) − |U+ ∩ {v} × V | + |U+ ∩ V × {v}|. From the above considerations we
get λ(C) > λ(Ci) and S0(C) = S0(Ci). The transactions in U ∩ S0(C)× S0(C) do not
change λ0 and do not affect S0 (a node could go from −k − 1 to −1, but not further), so
we now set C ′ to the configuration after executing those.

Finally, consider a transaction (u, v) ∈ U with v ∈ S0(C) ⊆ S0(C ′) and u /∈ S0(C).
If C ′(u) > 0, then the transactions would strictly increase λ0, without changing S0. If
C ′(u) < 0, then neither λ nor S0 would change. Otherwise, the contribution of u becomes
−1, in which case u would enter S0, and λ0 would remain unchanged. As a consequence
of u entering S0, the distance between some other nodes and S0 might decrease, but that
can only increase λ, as all nodes outside of S0 have nonnegative contribution. We can
now proceed inductively, by updating C ′ corresponding to (u, v).
This concludes the first part of the proof. It remains to argue that Ci(V ) ∩ {k +

1, ..., E} 6= ∅ and 0 ∈ Ci(V ) cannot hold for all i. We argue analogously to before and
assume the contrary. Then we set S0(Ci) := C−1

i (0) and define Sd, λd and λ as before. It
is not possible for a node to enter S0, so a node can leave S0 only finitely often. Choosing
an i large enough, the set S0 thus does not change. Finally, we again pick d, u where
u ∈ Sd and Ci(u) > k s.t. d is minimal, and see that λd−1 and thus λ must increase at
each step, which is a contradiction.

Lemma 6.1. Let π = (C0, C1, ...) denote a run of Pcancel with
∑
v C0(v) < 0. Then

there exists i ≥ 0 such that either all configurations Ci, Ci+1, ... only have states in
{−E, ...,−1}, or they only have states {−k, ..., k}.

Proof. First, note that it suffices to show the claim for a single i, as Ci(V ) ⊆ {−E, ...,−1}
implies Ci+1(V ) ⊆ {−E, ...,−1}, and Ci(V ) ⊆ {−k, ..., k} even implies Ci+1 = Ci.
This then follows from Lemma D.3 together with the following observation: 〈cancel〉

is symmetric w.r.t. negation of all contributions, hence we could flip all signs, apply
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Lemma D.3, and derive the statement that there are only finitely many Ci with Ci(V ) ∩
{−E, ...,−k − 1} 6= ∅ and Ci(V ) ∩ {0, ..., E} 6= ∅.
As 0 >

∑
v C0(v) =

∑
v C1(v) = ..., it is impossible that Ci(V ) ∩ {−E, ..., 0} is empty,

for any i. Hence Lemma D.3 yields that we eventually have Ci(V ) ∩ {k + 1, ..., E} = ∅
for all sufficiently large i. Combining this with the above observation we get the desired
statement.

Lemma 6.2. Assuming that no agent enters state ⊥, π is accepting iff ϕ(LG) = 1.
Additionally, π cannot reach a configuration with all leaders in state ⊥.

We split the proof into two parts, Lemmata D.4 and D.5.

Lemma D.4. Assuming that no agents enters state ⊥, π is accepting iff ϕ(LG) = 1.

Proof. If no weak broadcast is executed in π, then the computation is necessarily accepting
(� is only reachable via 〈reject〉), so we can assume that ϕ(Cϕ) = 0. Additionally, we
know that π is a run of P ′detect as well, which simulates Pdetect, so there is a run τ of Pdetect
s.t. π is a reordering of an extension of τ . As 〈detect〉 does not affect the first component,
we get a run σ = (K0,K1, ...) of Pcancel by projecting τ onto the first component. Due to
ϕ(Cϕ) = 0, Lemma 6.1 implies that any run of Pcancel starting at K0 would eventually
have only states in {−k, ..., k}, or only states in {−E, ...,−1}. In both cases, executing
〈detect〉 would move a leader from L to Ldouble or L�.

In run π, it is not possible for a leader to leave state Ldouble or L�, as these states are
broadcast initiating. This contradicts the weak fairness condition, as then either 〈double〉
or 〈reject〉 must be executed eventually.
Therefore, let i denote the first step at which a weak broadcast is executed in π (i.e.

〈double〉 and/or 〈reject〉), and M ⊆ V the set of its initiators. If there is a leader v /∈M ,
then it cannot be in state ⊥, due to our assumption, nor can it be in �, as 〈reject〉 has
not been executed before step i. But then v would move to state ⊥ in step i, which
cannot happen by assumption. Hence M is precisely the set of leaders.
If both 〈double〉 and 〈reject〉 are executed at step i, i.e. ( · , Ldouble), ( · , L�) ∈ Ci(M),

then Ci+1 has all leaders in state L or �, with at least one in each. Additionally, Ci+1 is
a valid input configuration of Pdetect (it does not contain any intermediate states added in
P ′detect). Any fair run τ of Pdetect starting in Ci+1 has one leader v which starts in state L
and moves to ⊥ upon the first execution of 〈detect〉 as there is an agent in �. So v enters
neither Ldouble nor L� in τ . Therefore, until the second broadcast is executed at step
j > i in π, we have C(v) /∈ Q×{Ldouble, L�} for any configuration C ∈ {Ci+1, ..., Cj}. If
j =∞, then v moves eventually to ⊥ in π, as it does in τ , otherwise either 〈double〉 or
〈reject〉 move v immediately to ⊥. In both cases, our assumption is violated, so at step i
we cannot execute both 〈double〉 and 〈reject〉.

Now there are two cases. If we execute only 〈reject〉 at step i of π, we know that
Ci(v) = ( · , L�) for any leader v. This is only possible if 〈detect〉 moves all leaders to L�

at once, so at some point a configuration in π had only states in last−1({−E, ...,−1}×QL),
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which neither 〈detect〉 nor a transition of Pcancel can change.2 In particular, this means
Ci(V ) ⊆ last−1({−E, ...,−1} × QL), so 〈reject〉 would move all agents (including the
leaders) to �. At that point, no further transitions can be performed and the protocol
moves into a stable 0-consensus. This is correct, as it is only possible for Pcancel to move
all agents to states {−E, ...,−1} if the sum of all contributions in C0 is negative.

The second case is executing only 〈double〉 at step i of π. Similarly, this is only possible
if all leaders move to Ldouble at once using 〈detect〉. For that to happen, all agents must
be in states {−k, ..., k} × {0, L} before executing 〈detect〉, moving the leaders to Ldouble.
It is not possible to execute 〈detect〉 or any transition of Pdetect with only these states,
so we get Ci(V ) ⊆ {−k, ..., k} × {0, Ldouble} as well and 〈double〉 moves the agents back
to states Q× {0, L} by doubling their contributions. Doubling every contribution does
not change whether the sum is negative, so our claim follows inductively in this case, by
considering the suffix Ci+1, Ci+2, ... . (Note that C0, ..., Ci do not contain state �. So if
this case happens infinitely often, which occurs only if the sum of contributions is zero, π
is accepting.)

Lemma D.5. The run π cannot reach a configuration with all leaders in state ⊥.

Proof. If 〈reject〉 is ever executed, then a leader (its initiator) enters state �, from which
it cannot enter ⊥. Otherwise, it is not possible for any agent to enter �, thus 〈detect〉
cannot move an agent to ⊥. Only 〈double〉 remains, but it also leaves the leader initiating
the broadcast in state L.

Proposition 6.3. For every predicate ϕ : Nl → {0, 1} such that ϕ(x1, ..., xl)⇔ a1x1 +
...+ alxl ≥ 0 with a1, ..., al ∈ Z there is a bounded-degree DAf-automaton computing ϕ.

Proof. Let π = C0C1... denote a fair run of Preset starting in a configuration C0 with
C0(V ) ⊆ Qcancel × {0, L}. Note that all valid initial configurations have this form. As
before, we refer to agents starting in (( · , L), · ) as leaders. If no agent ever enters a state
((⊥, · ), · ), then 〈reset〉 is never executed and Lemma D.4 implies that we reach a correct
consensus. If 〈reset〉 is executed at some step i, we move to a configuration Ci+1 with
only states Ci+1(V ) ⊆ Qcancel × {0, L}, i.e. a valid choice for C0. Let π′ := Ci+1Ci+2...
denote the suffix of π starting at i+ 1. Due to Lemma D.5 we know that at least one
leader is not in state ⊥ when executing 〈reset〉, so π′ has strictly fewer leaders than π,
but at least one (the latter follows directly from the definition of 〈reset〉). Hence, we
conclude that 〈reset〉 is executed only finitely often.
It still remains to show that an agent entering (( · ,⊥), · ) at some point implies that

〈reset〉 will be executed. This follows immediately, as all such states are broadcast-
initiating and thus can only execute 〈reset〉.

2It is clear that this holds for some reordering of π. To be entirely precise we would have to argue that
it is impossible to reorder the steps at which the leaders enter L� to before the steps where the other
agents enter {−E, ...,−1} ×QL.
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