
Ultra-Sparse Near-Additive Emulators

Michael Elkin1 and Shaked Matar1

1Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Email: elkinm@cs.bgu.ac.il, matars@post.bgu.ac.il

Abstract

Near-additive (aka (1 + ε, β)-) emulators and spanners are a fundamental graph-algorithmic
construct, with numerous applications for computing approximate shortest paths and related
problems in distributed, streaming and dynamic settings.

Known constructions of near-additive emulators enable one to trade between their sparsity
(i.e., number of edges) and the additive stretch β. Specifically, for any pair of parameters ε > 0,

κ = 1, 2, . . . , one can have a (1 + ε, β)-emulator with O(n1+
1
κ ) edges, with β =

(
log κ
ε

)log κ
. At

their sparsest, these emulators employ c · n edges, for some constant c ≥ 2. We tighten this
bound, and show that in fact precisely n1+

1
κ edges suffice.

In particular, our emulators can be ultra-sparse, i.e., we can have an emulator with n+ o(n)

edges and β =
(

log logn
ε

)log logn(1+o(1))

.

We also devise a distributed deterministic algorithm in the CONGEST model that builds
these emulators in low polynomial time (i.e., in O(nρ) time, for an arbitrarily small constant
parameter ρ > 0).

Finally, we also improve the state-of-the-art distributed deterministic CONGEST-model con-
struction of (1+ε, β)-spanners devised in the PODC’19 paper [EM19]. Specifically, the spanners

of [EM19] have O(β ·n1+ 1
κ ) edges, i.e., at their sparsest they employ O

(
log logn

ε

)log logn

·n edges.

In this paper, we devise an efficient distributed deterministic CONGEST-model algorithm that

builds such spanners with O(n1+
1
κ ) edges for κ = O

(
logn

log(3) n

)
. At their sparsest, these spanners

employ only O(n · log log n) edges.

This research was supported by the ISF grant No. (2344/19).

1

ar
X

iv
:2

10
6.

01
03

6v
1 

 [
cs

.D
S]

  2
 J

un
 2

02
1



1 Introduction

1.1 Background and Our Results

Given an unweighted undirected n-vertex graph G = (V,E), and a pair of parameters α ≥ 1, β ≥ 0,
a graph G′ = (V ′, E′), with V ⊆ V ′ is called an (α, β)-emulator for G, if for every pair of vertices
u, v ∈ V it holds that

dG(u, v) ≤ dG′(u, v) ≤ αdG(u, v) + β.

If G′ is a subgraph of G, it is called an (α, β)-spanner.
In STOC’01, Elkin and Peleg [EP01] showed that for any ε > 0 and κ = 1, 2, . . . , there exists a

β = β(ε, κ) such that for any n-vertex graphG there exists a (1+ε, β)-emulator of size O(log κ·n1+ 1
κ )

and a (1+ε, β)-spanner of size O(β ·n1+ 1
κ ). Emulators and spanners with these parameters are called

near-additive. The parameter β is called the additive stretch or error of the respective emulator or

spanner. In [EP01] the additive stretch is β ≈
(

log κ
ε

)log κ−1
, and this estimate stays the state-of-

the-art. Based on [AB16], Abboud et al. [ABP18] showed a lower bound of β = Ω
(

1
εlog κ

)log κ−1
.

In SODA’06, Thorup and Zwick [TZ06] devised another scale-free construction of near-additive
emulators. Their size and additive stretch are similar to those in [EP01], but the same construction
applies for all ε > 0.

Near-additive emulators and spanners were a subject of intensive research in the last two decades
[Elk01, EZ04, TZ06, Pet07, Pet08, Pet10, EN16a, EN17a, EN20, EP01, ABP18, HP18, EM19].
They found numerous applications for computing almost shortest paths and distance oracles in
various computational settings [Elk01, EZ04, BR11, EP15, EN17a, ASZ20]. Moreover, a strong
connection between them and hopsets was discovered in [EN16a, EN17a, HP17]. Hopsets are also
extremely useful for dynamic and distributed algorithms [HKN18, Coh94, HKN16, LP15, EN16b,
EN17b, CDKL19, DP20, LN20]. See also a recent survey [EN20] for an extensive discussion about
the relationship between emulators, spanners and hopsets.

A significant research effort was put into decreasing the sparsity level of near-additive emulators
and spanners [Pet07, Pet08, Pet10, EN17a, ABP18]. Pettie [Pet08] showed that one can efficiently
construct near-additive spanners of size O(n · (log log n)φ), where φ ≈ 1.44 (with κ = log n and

β =
(

log logn
ε

)φlog logn
). He then further improved the size bound to O(n · (log(4) n)), where log(4) n

is the four-times iterated logarithm [Pet10]. The latter construction is however less efficient. (By
efficient construction, we mean here centralized running time of O(|E| ·nρ), for an arbitrarily small
constant ρ > 0, and a distributed CONGEST time of O(nρ). We also call the latter low polynomial
time.)

Elkin and Neiman [EN17a] devised an efficient construction of near-additive spanners with size
O(nlog log n) and of linear-size emulators. In the same paper, they also came up with an efficient
distributed construction of ultra-sparse (i.e., of size n+ o(n)) multiplicative spanners1.

In the current paper we devise the first construction of ultra-sparse near-additive emulators.

Specifically, we show that for any ε > 0 and κ = 1, 2, . . . , there exists β = β(ε, κ) ≈
(

log κ
ε

)log κ−1
,

such that for any n-vertex graph G = (V,E), there exists a (1 + ε, β)-emulator of size at most

n1+ 1
κ . (Note that the leading constant in front of n1+ 1

κ is 1.) By substituting here κ = ω(log n),

one obtains a near-additive emulator with β =
(

log logn
ε

)log logn(1+o(1))
and size n+ o(n).

1A subgraph G′(V,H) is said to be a multiplicative k-spanner of G = (V,E) if for every pair of vertices u, v ∈ V ,
dG′(u, v) ≤ k · dG(u, v). The ultra-sparse multiplicative spanners of [EN17a] have stretch logn · f(n) for an arbitrary
slow-growing function f(n) = ω(1).

2



We also devise efficient (in the above sense) centralized and distributed deterministic algorithms
that construct ultra-sparse emulators. Specifically, for any arbitrarily small constant ρ > 0 (in ad-
dition to ε > 0 and κ = 1, 2, . . . ), there exists β = β(ε, κ, ρ) such that our distributed deterministic
CONGEST-model algorithm (see Section 1.5.1 for the definition of CONGEST model) computes

(1+ ε, β)-emulators with at most n1+ 1
κ edges, for β =

(
log κρ+1/ρ

ερ

)log κρ+1/ρ
in time O(βnρ). In par-

ticular, our algorithm can construct ultra-sparse emulators with β =
(
ρlog logn+1/ρ

ερ

)log logn(1+o(1))

in deterministic distributed low polynomial time.
A variant of our algorithm also constructs sparse near-additive spanners. Specifically, the

state-of-the-art distributed CONGEST-model deterministic algorithm for building near-additive
spanners is due to [EM19]. For any ε > 0, κ = 1, 2, . . . , ρ > 0, there exists β = β(ε, κ, ρ) =(

log κρ+1/ρ
ερ

)log κρ+1/ρ
, such that there for any n-vertex graph G = (V,E), the algorithm of [EM19]

constructs a (1 + ε, β)-spanner with O(β · n1+ 1
κ ) edges in low polynomial time O(βnρ). At their

sparsest, the spanners of [EM19] employ n ·
(

log logn+1/ρ
ερ

)log logn+O(1)
edges. Improving upon this

result, we devise a deterministic CONGEST-model algorithm with the same running time that con-
structs (1+ ε, β)-spanners with O(log κ ·n1+ 1

κ ) edges. At their sparsest, these spanners employ just
O(nlog log n) edges.

1.2 Technical Overview

All known constructions of sparse near-additive emulators and spanners can be roughly divided into
those that follow the superclustering-and-interconnection (henceforth, SAI) approach of [EP01] and
those that follow its scale-free version [TZ06]. (The constructions of [Elk01, EZ04] follow a different
approach, and result in emulators of size at least Ω(nlog n).)

In the SAI approach, one starts with a partition P0 = {{v} | v ∈ V } of the vertex set into
singleton clusters. Let ` ≈ log κ. There are ` + 1 phases, numbered 0, 1, . . . , `, and in all phases
except the last one there are two steps: the superclustering and the interconnection. In the last
phase, the superclustering step is skipped. The input to each phase i ∈ [0, `] is a partial partition2

Pi of V . The phase also accepts as input two parameters, δi and degi, where the distance threshold
δi determines which clusters of Pi are considered close or nearby (those whose centers are at distance
at most δi in G from one another), and degi determines how many nearby clusters a cluster needs
to have to be considered popular (at least degi).

Intuitively, popular clusters C then create superclusters around them, which contain C and all
the nearby clusters. Unpopular clusters are interconnected via emulator edges of weight equal to
the distance between them. The set of superclusters is the partial partition Pi+1 for the (i + 1)st
phase.

In Thorup-Zwick’s [TZ06] scale-free version of this construction, clusters of Pi are sampled
independently at random, with probability 1

degi
each, and each unsampled cluster joins the closest

sampled cluster. In this way superclusters of Pi+1 are created. In addition, for every unsampled
cluster C, it is connected via an emulator edge to every other unsampled cluster C ′ which is closer
to it than the closest sampled cluster. The weight of this edge is equal to the distance in G between
the respective cluster centers. This is an analogue of the interconnection step from [EP01].

In both these approaches, ultimately the number of edges in the emulator is analyzed as the
sum over all phases i of the number of edges added to the emulator on phase i. One notes that each
superclustering step forms a forest and thus contributes O(n) edges. In addition, in [EP01], the

2A family A of pairwise disjoint subsets of a set B is called a partial partition of B.

3



degree sequence degi is designed in such a way that the interconnection step of each phase i con-
tributes at most n1+ 1

κ edges. As a result, the overall size of the emulator is O((log κ)(n+n1+ 1
κ )) =

O(log κ · n1+ 1
κ ). For κ = log n this becomes O(n · log logn). Subsequent improvements in the

sparsity level of near-additive emulators and spanners [Pet08, Pet10, EN17a, ABP18, HP18, Pet07]
optimized the degree sequence deg0, deg1, . . . ,deg`, so that the numbers of edges m0,m1, . . . ,m`

contributed on the interconnection steps of phases 0, 1, . . . , `, respectively, decrease geometrically
and the total number of edges sums up to O(n1+ 1

κ ).

In this way one can guarantee that the overall contribution of interconnection steps is O(n1+ 1
κ ),

while the additive stretch β grows very little if at all. Elkin and Neiman [EN17a] argued also that
the overall contribution of superclustering steps is O(n) (as opposed to the naive O(nlog κ)), and
as a result derived an emulator of linear size.

Our main technical contribution is in a novel analysis. We adopt the original degree sequence
of [EP01] as is, rather than using the optimized degree sequences from [Pet08, Pet10, EN17a]. We
then argue that the overall contribution of all the superclustering and interconnection steps together
is at most n1+ 1

κ . We achieve this by carefully charging edges inserted to the emulator during the
entire algorithm to vertices, and arguing that no vertex is overloaded. By doing so we obtain a new
structural understanding of this important construction, and derive the existence of ultra-sparse
near-additive emulators.

We also show an efficient centralized implementation of this algorithm. Specifically, given
parameters ε > 0, ρ > 0 and κ = 1, 2, . . . , our algorithm constructs a (1 + ε, β)-emulator with at

most n1+ 1
κ edges and β = β(ε, κ, ρ) =

(
log κρ+1/ρ

ε

)log κρ+1/ρ
in O(|E| · nρ) deterministic time. This

running time matches the state-of-the-art running time known for building denser near-additive
emulators and spanners [Pet10, EN17a, EM19].

1.2.1 Distributed Implementation

Our distributed algorithm is deterministic, and at the end of it, every vertex v ∈ V knows about
all emulator edges incident on it.

A large research effort was invested in implementing the SAI approach efficiently in the dis-
tributed CONGEST model in the context of near-additive spanners and hopsets [EP01, EN16a,
EN17a, HP17, EM19]. Implementing this approach in the CONGEST model in the context of near-
additive emulators presents a new challenge, since for every new emulator edge e = (u, v), both its
endpoints need to be aware of its existence and weight. Specifically, the center of every supercluster
needs to learn of all clusters that have joined its supercluster. Since the number of clusters that
join a single supercluster might be very large, this causes congestion. This issue does not arise in
the construction of near-additive spanners, as spanner edges can be added locally, and the center
of the supercluster does not need to learn of all the clusters that have joined its supercluster. In
the context of hopsets, this challenge was addressed by broadcasting messages along a BFS tree
that spanned the entire graph. This approach results in running time which is at least linear in the
graph’s diameter, which may be prohibitively large.

In the current paper, we devise a superclustering scheme that ensures that the number of
messages each vertex has to send in every step is relatively small. This is done by splitting very
large superclusters into many superclusters. Intuitively, such a splitting may result in an increased
number of levels ` of the construction, and therefore, in a higher additive term β and increased
running time. We show that this is not the case for our algorithm.

To our knowladge, there are no known distributed deterministic algorithms for building near-
additive emulators of linear size. The only existing algorithm with these properties is the random-

4



ized algorithm of Elkin and Neiman [EN16a]. However, the algorithm of [EN16a] does not ensure
that for every emulator edge (u, v), both endpoints know of its existence. (Our algorithm provides,
in fact, ultra-sparse emulators, while that of [EN16a] guarantees just linear size.)

The only known distributed CONGEST deterministic algorithm for building near-additive span-
ners [EM19] constructs spanners of size O(βn1+ 1

κ ). The construction there can be adapted to build

emulators of size O(log κ · n1+ 1
κ ) (i.e., of size Ω(n · log log n)), but, like the algorithm of [EN16a], it

does not guarantee that for every emulator edge e = (u, v) both u and v will be aware of it.

1.3 Related Work

The problem of efficiently constructing ultra-sparse multiplicative spanners and emulators was
extensively studied in [ADD+93, HZ96, RZ04, DMP+05, DMZ06, Pet07, Pet10, EN17a].

Spanners and emulators are known to be related to spectral sparsifiers [KP12, JS20]. Ultra-
sparse sparsifiers, or shortly ultra-sparsifiers, play a key role in a variety of efficient algorithms.
Spielman and Teng [ST04] used them for computing sequences of preconditioners. See also [CKM+14,
KLOS14, KMST10, She13] for their applications to maximum flow and other fundamental problems.

We believe that the problem of devising ultra-sparse near-additive emulators is as fundamental
as that of devising ultra-sparse multiplicative spanners and ultra-sparsifiers.

1.4 Outline

Section 1.5 provides basic definitions for this paper. In Section 2 we present a construction of
ultra-sparse near-additive emulators in the centralized model. The properties of the construction
are summarized in Corollaries 2.14 and 2.15. In Section 3 we show a distributed CONGEST im-
plementation of our algorithm. The properties of the distributed construction are summarized in
Corollaries 3.11 and 3.12. In Section 3.3 we provide an efficient centralized construction of ultra-
sparse near-additive emulators, which is based on our distributed construction. The properties
of the construction are summarized in Theorems 3.13 and 3.14. Section 4 contains an efficient,
deterministic CONGEST-model construction of sparse near-additive spanners. The properties of
the construction are summarized in Corollary 4.4.

1.5 Preliminaries

Throughout this paper, we denote by rC the center of the cluster C and say that C is centered
around rC . The center rC is a designated vertex from C, i.e., rC ∈ C. Throughout the paper,
when the logarithm base is unspecified, it is equal to 2. For a pair of integers a, b, where a ≤ b, the
term [a, b] stands for {a, a+ 1, . . . , b}.

1.5.1 The Distributed CONGEST Model

In the distributed model [Pel00] we have processors residing in vertices of the graph. The processors
communicate with their graph neighbors in synchronous rounds. In the CONGEST model, messages
are limited to O(1) words, i.e., O(1) edge weights3 or ID numbers. The running time of an algorithm
in the distributed model is the worst case number of communication rounds that the algorithm
requires.

3In our case, the input graph is unweighted.

5



1.5.2 Ruling Sets

Given a graph G = (V,E), a set of vertices W ⊆ V and parameters α, β ≥ 0, a set of vertices
A ⊆ W is said to be an (α, β)-ruling set for W if for every pair of vertices u, v ∈ A, the distance
between them in G is at least α, and for every u ∈W there exists a representative v ∈ A such that
the distance between u, v is at most β.

2 Centralized Construction

In this section we devise an algorithm that, given a graph G = (V,E) on n vertices and parameters

ε < 1 and κ ≥ 2 constructs a (1 + ε, β)-emulator for G with at most n1+ 1
κ edges in polynomial

time in the centralized model, where β = O
(

log κ
ε

)log κ−1
. In particular, by setting κ = ω(log n),

we construct an emulator with n+ o(n) edges with β =
(

log logn
ε

)log logn+O(1)
.

Section 2.1 contains a general overview of the centralized construction. The properties of the
resulting emulator and of the construction are analyzed in Section 2.2.

Our centralized construction is based on the centralized algorithm of Elkin and Peleg [EP01].
As was described in the introduction, both algorithms (of [EP01] and ours) follow the SAI approach
to constructing near-additive emulators. There are, however, some important differences in both
the algorithm and in its analysis. In the algorithm of [EP01] popular clusters C (see Section 1.5
for its definition) create superclusters Ĉ around them, that contain only clusters that are close
to the cluster C. All unpopular clusters C ′′ that are not merged into one of the superclusters
are then interconnected with other nearby unpopular clusters, but not with nearby superclusters.
To guarantee connectivity (and small stretch) between the superclusters and nearby unpopular
clusters, the algorithm of [EP01] employs a separate ground partition. The spanning forest of this
ground partition contributes at most n− 1 additional edges to the emulator, which are swallowed
by the overall size estimate of O(n1+ 1

κ ).

On the other hand, in our current algorithm we aim at a size bound of exactly n1+ 1
κ , and

thus we cannot afford using a separate ground partition. Instead, once our algorithm creates a
star-like supercluster Ĉ, it also inserts all unclustered clusters C ′′ that are nearby the supercluster
Ĉ into a set Ni of buffer clusters. These buffer clusters will not be allowed to create superclusters
around them. They will be allowed to join other superclusters that will be constructed in future.
However, if no future supercluster will incorporate them, the supercluster Ĉ will do so. As a result,
superclusters created in our algorithm may have larger radii in comparison to those constructed
in [EP01]. This adaptation of the SAI approach of [EP01] takes care of the connectivity (and
small stretch) between superclusters Ĉ and their nearby unclustered clusters C ′′, without paying
an additional (additive) term of n− 1 edges in the size of the emulator.

In addition, the size analysis of [EP01] also analyzes separately contributions of different phases
of the algorithm, and then sums them up. This is also the case in all subsequent works [TZ06, Pet09,
EN17a, EM19]. As was discussed in the introduction, this naive summation (even with optimized

degree sequences) is doomed to result in an emulator of size at least n1+ 1
κ +n−O(1) ≥ 2n−O(1).

Our size analysis carefully combines contributions of all different phases altogether, and thus results
in the bound of exactly n1+ 1

κ .
Finally, the adaptation that we discussed above induces some modifications of stretch analysis

as well. This is since, as discussed earlier, the radii of clusters constructed by our algorithm may
be larger than the radii of clusters constructed in [EP01]. Specifically, both in our result and in

that of [EP01], β = O
(

log κ
ε

)log κ−1
, but the constant hidden by the O-notation in our bound is

6



slightly larger than that in [EP01].
Yet another variant of the construction of [EP01] was given in [EN17a]. In this variant of the

construction, cluster centers are sampled, and clusters that are close to sampled clusters join them
to create superclusters. As a result, the connectivity (and small stretch) between superclusters
Ĉ and nearby unclustered clusters C ′′ is ensured without employing a ground partition. On the
other hand, this scheme requires randomization, while our approach is deterministic. Also, the size
analysis of [EN17a], like that of [EP01], analyzes each phase separately, and as a result, it cannot
be used to provide ultra-sparse emulators.

2.1 The Construction

Our algorithm initializes H = ∅ and proceeds in phases. The input to each phase i ∈ [0, `] is
a collection of clusters Pi, a degree parameter degi and a distance threshold parameter δi. The
parameters `, {degi, δi | i ∈ [0, `]} are specified in Section 2.1.2. The set P0 is initialized as the
partition of V into singleton clusters, i.e., clusters containing one single vertex each.

Consider an index i ∈ [0, `], and let C,C ′ be a pair of clusters in Pi, centered around vertices
rC , rC′ , respectively. We say that rC , rC′ are neighboring cluster centers if dG(rC , rC′) ≤ δi. If
rC , rC′ are neighboring cluster centers, their respective clusters C,C ′ are said to be neighboring
clusters.

Intuitively, in each phase i the algorithm sequentially considers centers of clusters from Pi
and connects them with their neighboring cluster centers, i.e., it adds to the emulator H an edge
between them. The weight of each new edge is set to be the length of the shortest path in G
between its endpoints. Each added edge is charged to a center of a cluster in Pi. Centers of clusters
that do not have many neighboring cluster centers are charged with all the edges that were added
to the emulator when they were considered. However, cluster centers that have many neighboring
cluster centers, i.e., popular cluster centers, require a different approach. They are still connected
with their neighboring cluster centers, but they are not charged with these edges. Instead, their
neighbors are required to share the burden.

Generally speaking, in each phase, we interconnect cluster centers that are not popular, and
form superclusters around popular cluster centers. The set of superclusters formed in phase i is
the input Pi+1 for phase i + 1. This allows us to defer work on these dense areas of the graph to
later phases of the algorithm.

2.1.1 Execution Details

We now describe the execution of a phase i ∈ [0, `] of the algorithm. At the beginning of phase i,
define Si to be the set of centers of clusters C ∈ Pi and Ui, Ni = ∅. Ui is the set of unclustered
clusters during phase i. Ni is an additional auxiliary set of cluster centers, which will be eventually
superclustered. On the other hand, once a cluster C joins Ni, it will not be allowed to create a
supercluster around it.

The algorithm sequentially considers vertices from Si. While the set Si is not empty, the
algorithm removes a single vertex rC from Si. A Dijkstra exploration is executed from rC to depth
δi. Let Γ(rC) be the set of vertices rC′ ∈ Si∪Ni that were discovered by the exploration (note that
rC /∈ Si ∪Ni, and so rC /∈ Γ(rC)). For each vertex rC′ ∈ Γ(rC), the edge (rC , rC′) is added to the
emulator H with weight dG(rC , rC′).

If |Γ(rC)| < degi, then the center rC is charged with all edges added to H as a result of an
exploration originated from it. See Figure 1 for an illustration. The cluster C of the vertex rC is
added to the set Ui of unclustered clusters.

7



Figure 1: Interconnection edges.
The considered (dark gray) cluster cen-
ter does not have many neighbors. The
direction of the edges indicates that
they are charged to the center of C.

Figure 2: Superclustering edges. The considered
cluster center (dark gray) has many neighbors. A su-
percluster Ĉ is formed around C and contains the neigh-
bors C ′ to which C added an edge. The direction of the
edges indicates that the white clusters are charged to the
centers of the neighbors of C.

However, if |Γ(rC)| ≥ degi, then rC cannot be charged with these edges. A new supercluster Ĉ
is formed around rC . The new supercluster contains the cluster C ∈ Pi of rC , and all clusters C ′

such that their centers are in Γ(rC). The vertex rC becomes the center of the new supercluster Ĉ.
The new supercluster Ĉ joins the set Pi+1, which is the input collection for the next phase. See
Figure 2 for an illustration. The cluster centers in Γ(rC) are removed from Si and from Ni. Thus,
they will not be considered by the algorithm.

The algorithm described thus far is not sufficient. Consider a case where the algorithm has
already formed some superclusters in phase i, and then it considers a cluster center rC that has at
least degi neighboring cluster centers, but many of them have been superclustered in this phase.
See Figure 3 for an illustration. The cluster center rC must be connected with its neighboring
cluster centers. However, the center rC cannot be charged with these edges, nor can we form a
supercluster around it containing all of its neighbors, as many of them already belong to other
superclusters.

To avoid such occurrences altogether, when a supercluster Ĉ is formed around a vertex rC in
phase i, every cluster center rC′′ ∈ Si with δi < dG(rC , rC′′) ≤ 2δi is removed from Si, and is added
to a set Ni.

Consider a vertex rC′ ∈ Ni. If at the end of phase i it has not been superclustered, it is added
to the supercluster Ĉ that was formed when rC′ was added to Ni. Let rC be the center of Ĉ. The
edge (rC , rC′) is added to H with weight dG(rC , rC′). This edge is charged to rC′ . See Figure 4 for
an illustration.

This completes the description of phase i. Observe that the designation of a cluster center as
popular or unpopular depends on the order in which the algorithm removes cluster centers from Si.
For example, consider the star graph G = (V,E) with V = {u0, u1, . . . , un} and E = {(u0, ui)|i ∈
[1, n]}. If in phase 0 the algorithm begins by considering the cluster center u0, then it is designated
as popular. However, if the algorithm considers the cluster center u0 last, then it will not be
designated as a popular cluster, since it does not have any neighbors from Si ∪Ni (as at this point
the sets Si, Ni are empty). Hence we cannot a-priori define a set of popular clusters.

This completes the description of the algorithm. The pseudocode of the algorithm is given in
Algorithm 1.

8



Figure 3: The cluster C (depicted as white cir-
cle) can have many neighbors in Pi that have
joined superclusters in phase i (the gray curved
areas) before its center was considered. When
we consider the center rC of C, we cannot con-
nect it with its neighboring cluster centers, since
we cannot charge rC for the added edges, nor
can we require its neighbors to be charged for
them. In the figure, the solid and dotted lines
represent emulator and graph edges, respec-
tively.

Figure 4: Clusters from Ni join a neighbor-
ing supercluster. In the figure, the gray curved
area represents a supercluster centered around
C. The dark gray circles represent neighbors
of C that joined Ĉ when it was formed. The
stripped circles represent clusters that had cen-
ters in Si when Ĉ was formed, and remained in
Ni until the end of phase i. At the end of phase
i, they join the cluster Ĉ. Their cluster centers
are charged with the edges that connect them
with Ĉ.

Algorithm 1 Construction of a Near-Additive Emulator

Input: Graph G = (V,E), a parameter ` ∈ N, and sequences 〈deg0, . . . , deg`〉, 〈δ0, . . . , δ`〉
1: P0 = {{v} | v ∈ V }
2: for i ∈ [0, `] do
3: Si ← all centers of clusters from Pi
4: Ui, Ni, Pi+1 ← ∅
5: while Si 6= ∅ do
6: remove a cluster center rC from Si
7: for all cluster centers rC′ ∈ Si ∪Ni s.t. dG(rC , rC′) ≤ δi do
8: add to the emulator H an edge (rC , rC′) with weight dG(rC , rC′)

9: if rC has less than degi neighboring cluster centers in Si ∪Ni then
10: add the cluster C of rC to Ui
11: else
12: Ĉ ← C
13: r

Ĉ
← rC

14: for all clusters rC′ ∈ Si ∪Ni such that dG(rC , rC′) ≤ δi do
15: remove rC′ from Si or Ni.
16: let C ′ be the cluster centered at rC′

17: Ĉ ← Ĉ ∪ {C ′}
18: for all clusters rC′′ ∈ Si such that dG(rC , rC′) ≤ 2δi do
19: Si = Si \ {rC′′}
20: Ni = Ni ∪ {rC′′}
21: Pi+1 ← Pi+1 ∪ {Ĉ}
22: for all cluster centers rC′′ ∈ Ni do
23: let Ĉ be the supercluster that was formed when rC′′ joined Ni, and let rC be the center

of Ĉ
24: let C ′′ be the cluster centered at rC′′

25: add to the emulator H an edge (rC , rC′′) with weight dG(rC , rC′′)
26: Ĉ ← Ĉ ∪ {C ′′}

9



2.1.2 Setting Parameters

In this section we specify the selection of the parameters degi, ` and δi.
The degree parameter degi controls the number of edges added to the emulator, and also the

number of phases required until we are left with a small number of clusters. For every i ∈ [0, `], we

set degi = n
2i

κ .
Set ` =

⌈
log κ+1

2

⌉
. In Section 2.2.1 we show that |P`| ≤ deg`. Therefore, there are no popular

cluster centers in phase `, and superclusters are not formed during this phase. It follows that
P`+1 = ∅ and U` = P`.

Define recursively R0 = 0, and for every i ∈ [1, `] define Ri+1 = 2δi+Ri. The distance threshold
parameter is defined by δi = (1/ε)i + 2Ri, for every i ∈ [0, `]. Intuitively, Ri is an upper bound on
the radii of clusters in Pi, i.e., the maximal distance in the emulator H between a center rC of a
cluster C ∈ Pi and a vertex u ∈ C. In Lemma 2.5 we prove that this inequality indeed holds.

2.2 Analysis of the Construction

In Section 2.2.1 we analyze the size of the emulator. In Section 2.2.3 we show that the algorithm
can by executed in polynomial time. Finally, in Section 2.2.2 we analyze the stretch of the emulator.

2.2.1 Analysis of the Number of Edges

In this section, we analyze the size of the emulator H. We will charge each edge in the emulator
H to a single vertex. We begin by proving that in the concluding phase ` there are no popular
clusters. To do so we show that the size of P` is at most deg`.

Lemma 2.1. For every index i ∈ [0, `], each supercluster Ĉ constructed in phase i consists of at
least degi + 1 clusters from Pi.

Proof. Let i ∈ [0, `], and let Ĉ be a supercluster that was created around a cluster C in phase i.
The algorithm added edges from C to at least degi clusters from Si ∪ Ni. These clusters, and C
itself, all became superclustered into Ĉ. Thus, Ĉ contains at least degi + 1 clusters from Pi.

In the next lemma, we argue that superclusters are disjoint, and thus Lemma 2.1 can be used
to bound the number of superclusters formed during each phase.

Lemma 2.2. For i ∈ [0, `− 1], all superclusters formed during phase i are pairwise disjoint.

Proof. Let Ĉ be a supercluster formed during phase i. Recall that all centers of clusters that have
joined Ĉ were in Si ∪ Ni until they joined Ĉ. Also recall that once a cluster joins a supercluster,
its center is removed from Si and from Ni, and it is not added to Si or Ni in the future.

On the one hand, this implies that all clusters that have joined Ĉ did not join any other
supercluster before they joined Ĉ. On the other hand, once a cluster joined Ĉ, its center is removed
from Si and Ni, and therefore it will not join another supercluster in future. Hence, we conclude
that all superclusters formed during phase i are pairwise disjoint.

In the next lemma we provide an upper bound in the size of Pi, for every index i ∈ [0, `].

Lemma 2.3. For i ∈ [0, `], we have |Pi| ≤ n1− 2i−1
κ .

10



Proof. The proof is by induction on the index i. For i = 0, the right-hand side of the equation is
equal to n. Thus the claim is trivial.

For the induction step, assume that the claim holds for some i ∈ [0, `− 1]. By Lemmas 2.1 and
2.2 and the induction hypothesis, we obtain:

|Pi+1| ≤ n1− 2i−1
κ · (degi + 1)−1 ≤ n1− 2i−1

κ · n−
2i

κ ≤ n1− 2i+1−1
κ .

Hence the claim holds also for i+ 1.

Recall that ` =
⌈
log κ+1

2

⌉
. Observe that Lemma 2.3 implies that

|P`| ≤ n1− 2`−1
κ ≤ n

2`

κ = deg`. (1)

Therefore, in phase ` there are no popular clusters. It follows that P`+1 is an empty set, and
that U` = P`.

Next, we examine the edges added by each phase i of the algorithm, and charge each edge to a
center of a cluster C ∈ Pi. Recall that there are two types of edges in the emulator:

1. Interconnection edges, added when the algorithm considered an unpopular cluster center rC .
These edges are charged to rC . See Figure 1.

2. Superclustering edges, added when a cluster C ′ joined a supercluster Ĉ that was formed around
a cluster C, where C 6= C ′. See Figures 2, 4 for an illustration. These edges are charged to
the centers of clusters C ′ that were superclustered into the new supercluster formed around
C. For example, if for some h ≥ 1, clusters C1, C2, . . . , Ch, centered at vertices v1, v2, . . . , vh,
respectively, are clustered into a supercluster rooted at a cluster C, then each of these centers
v1, v2, . . . , vh is charged with a single edge. Note that the center of the cluster C is not charged
with any edges in phase i.

Interconnection edges that were added in phase i are charged to centers of clusters C ∈ Ui.
Observe that a cluster C has joined Ui only if its center has added less than degi edges to the
emulator H. Therefore, phase i adds at most |Ui| · degi interconnection edges to the emulator H.
(Note that Ui might be empty.)

Superclustering edges that were added in phase i are charged to centers of clusters that did
not join Ui, and also that no supercluster was formed around them in phase i. Thus, phase i adds
exactly |Pi| − |Ui| − |Pi+1| superclustering edges.

Hence, in phase i ∈ [0, `], the number of edges added to the emulator H is at most:

|Ui| · degi + |Pi| − |Ui| − |Pi+1| = |Pi|+ |Ui| · (degi − 1)− |Pi+1|. (2)

In particular, this bound applies to the last phase i = `. Recall that by eq. (1) we have |P`| =
|U`| ≤ deg`, and also |P`+1| = ∅. Therefore the bound becomes just |P`| · deg`.

We will now use the size of Pi+1 to bound the size of Ui. Observe that by Lemma 2.1 and
because superclusters of Pi+1 are disjoint, we have that for all i ∈ [0, `],

|Ui| ≤ |Pi| − |Pi+1| · (degi + 1). (3)

By eqs. (2) and (3) we have that in phase i, the number of edges added to the emulator H is
at most:

|Pi|+ |Ui| · (degi − 1)− |Pi+1|
≤ |Pi|+ (|Pi| − |Pi+1| · (degi + 1)) · (degi − 1)− |Pi+1|
= |Pi| · degi − |Pi+1| · (deg2

i − 1)− |Pi+1|
= |Pi| · degi − |Pi+1| · deg2

i .

(4)

We are now ready to bound the size of the emulator H.

11



Lemma 2.4. The number of edges in the emulator H satisfies |H| ≤ n1+ 1
κ .

Proof. By eq. (4), and since P`+1 is an empty set, we obtain that the number of edges added by all
phases of the algorithm is at most:

∑̀
i=0

(|Pi| · degi − |Pi+1| · deg2
i ) = |P0| · deg0 +

∑̀
i=1
|Pi| · (degi − deg2

i−1).

Recall that for all i ∈ [0, `] we have degi = n
2i

κ thus degi−deg2
i−1 = 0. Also, recall that |P0| = n.

Thus, the number of edges added to the emulator by all phases i ∈ [0, `] is at most n1+ 1
κ .

2.2.2 Analysis of the Stretch

In this section we analyze the stretch of the emulator H. We begin by providing an upper bound
on the radii of clusters in Pi.

For an index i ∈ [0, `] and a cluster C ∈ Pi centered around a vertex rC , the radius of C is
defined to be Rad(C) = max{dH(rC , v) | v ∈ C}. The radius of the collection of clusters Pi is
defined to be Rad(Pi) = max{Rad(C) | C ∈ Pi}. We begin by proving that Ri is an upper bound
on the radii of clusters in Pi, for all i ∈ [0, `]. Recall that δi = (1/ε)i + 2Ri, for every i ∈ [0, `].
Also, recall that R0 = 0, and for every i ∈ [1, `], we have Ri+1 = 2δi +Ri.

Lemma 2.5. For every index i ∈ [0, `], we have Rad(Pi) ≤ Ri.

Proof. The proof is by induction on the index of the phase i. For i = 0, all clusters in Pi are
singletons, and also R0 = 0, and so the claim holds.

Assume the claim holds for some index i ∈ [0, `− 1] and prove that it holds for i+ 1. Consider
a cluster Ĉ ∈ Pi+1. This cluster was formed around a vertex rC during phase i. Consider a vertex
u ∈ Ĉ.

Case 1: The vertex u belonged to the cluster of rC in Pi. In this case, by the induction
hypothesis we have dH(rC , u) ≤ Ri ≤ Ri+1.

Case 2: The vertex u belonged to a cluster C ′ ∈ Pi, where rC /∈ C ′. Denote by rC′ the center of
the cluster C ′. Since the center rC′ joined the supercluster of rC , we conclude that dG(rC , rC′) ≤ 2δi.
When rC′ joined the supercluster Ĉ, the edge (rC , rC′) was added to the emulator H, with weight
dG(rC , rC′). Thus, dH(rC , rC′) ≤ 2δi. By the induction hypothesis, we also have dH(rC′ , u) ≤ Ri.
Hence,

dH(rC , u) ≤ dH(rC , rC′) + dH(rC′ , u) ≤ 2δi +Ri = Ri+1.

We now provide an upper bound on Ri. Observe that for every i ∈ [1, `], we have Ri+1 =
2δi +Ri = 2 (1/ε)i + 5Ri.

Lemma 2.6. For every index i ∈ [0, `], we have

Ri = 2 ·
i−1∑
j=0

ε−j · 5i−1−j .

Proof. The proof is by induction on the index i. For i = 0, both sides of the equation are equal to
0. So the base case holds.

12



Assume that the claim holds for some index i ∈ [0, `− 1], and prove that it holds for i+ 1. By
definition and the induction hypothesis we have:

Ri+1 = 2 (1/ε)i + 5 · 2 ·
∑i−1

j=0 ε
−j · 5i−1−j = 2 ·

∑i
j=0 ε

−j · 5i−j

By Lemma 2.6, we derive the following explicit bound on Ri, for all i ∈ [0, `].

Ri = 2 · 5i−1
∑i−1

j=0(5ε)−j ≤ 2 · 5i−1 ·
(

1
5ε

)i−1 ·
(

1
1−5ε

)
= 2

1−5ε ·
(

1
ε

)i−1
.

Assume that ε ≤ 1/10. It follows that

Ri ≤ 4

(
1

ε

)i−1

. (5)

Next, we show that the emulator H contains edges that connect every center of a cluster in Ui
with all its neighboring cluster centers.

Lemma 2.7. Let i ∈ [0, `] and let rC be a center of a cluster C ∈ Ui. Then, for every neighboring
cluster center rC′ of rC , we have

dH(rC , rC′) = dG(rC , rC′).

Proof. Let rC be a center of a cluster C ∈ Ui and let rC′ be a neighboring cluster center of rC ,
such that rC′ ∈ C ′ and C ′ ∈ Pi. By definition, dG(rC , rC′) ≤ δi. Since C ∈ Ui, the algorithm has
considered rC , and executed a Dijkstra exploration from it during phase i.

Case 1: The cluster center rC′ was in Si ∪ Ni when the cluster center rC was considered by
the algorithm. In this case, since dG(rC , rC′) ≤ δi, the edge (rC , rC′) was added to H with weight
dG(rC , rC′).

Case 2: The cluster center rC′ was not in Si∪Ni when the cluster center rC was considered by
the algorithm. Then, the cluster C ′ of rC′ has either joined Ui or became superclustered before the
cluster center rC was considered by the algorithm. Assume towards contradiction that C ′ became
superclustered before rC was considered. Therefore, a supercluster was grown around a cluster
center rC′′ with dG(rC′′ , rC) ≤ 2δi, and so rC was removed from Si, contradiction (see line 19
of Algorithm 1). Therefore, we conclude that C ′ has joined Ui before rC was considered by the
algorithm. The algorithm has executed a Dijkstra exploration from rC′ , and since dG(rC , rC′) ≤ δi,
the emulator H contains the edge (rC , rC′) with weight dG(rC , rC′).

We now show that for every vertex v ∈ V there exists an index i ∈ [0, `] such that v belongs to
a cluster that joins the set Ui. For notational purposes, define U−1 = ∅, and U (i) =

⋃i
j=−1 Ui for

all i ∈ [−1, `]. We say that a vertex v is U (i)-clustered for some i ∈ [0, `] if there exists a cluster
C ∈ U (i) such that v ∈ C.

Lemma 2.8. For every index i ∈ [0, `], the set Pi ∪ U (i−1) is a partition of V .

Proof. The proof is by induction on the index of the phase i. For i = 0, the claim is trivial since
P0 is a partition of V into singleton clusters.

Assume the claim holds for some index i ∈ [0, `− 1]. Let v ∈ V . By the induction hypothesis,
v belongs to a cluster C ∈ Pi ∪U (i−1). If C ∈ U (i−1), then, by definition, C ∈ U (i). If C ∈ Pi, then
in phase i, the cluster C has either been superclustered into a supercluster of Pi+1, or it has joined
Ui. In any case, C ∈ Pi+1 ∪ U (i), and so Pi+1 ∪ U (i) is a partition of V . Thus the claim holds for
i+ 1.

13



Recall that by eq. (1), we have that |P`| ≤ deg` and thus, P`+1 = ∅. Therefore, Lemma 2.8
implies that U (`) is a partition of V .

In the following lemma we argue that superclusters form a laminar family.

Lemma 2.9. Let 0 ≤ j ≤ i ≤ ` be a pair of indices. Let C ∈ Ui be a cluster, and v ∈ C be a
vertex. Then, there exists a cluster C ′ ∈ Pj such that v ∈ C ′.

Proof. The proof is by induction on i− j. The induction base is i− j = 0. Then, C ′ = C, and we
are done.

For the induction step, suppose that the assertion holds for some non-negative integer h. We
prove it for h+ 1.

By the induction hypothesis, there exists a cluster C̃ ∈ Pi−h such that v ∈ C̃. Also, the
cluster C̃ is a disjoint union of clusters from P(i−h)−1. Hence, in particular, there exists a cluster
C ′ ∈ Pi−h−1 = Pi−(h+1) such that v ∈ C ′.

We are now ready to bound the stretch of the emulator H. The outline of the proof is as follows.
Consider a pair of vertices u, v ∈ V and let π(u, v) be the shortest path between them in G. We
will show that π(u, v) can be divided into smaller segments, and that for each such segment there is
a path in H between its endpoints u′, v′ that is not significantly longer than the distance between
u′, v′ in the original graph G.

Define recursively β0 = 0, α0 = 1, and for i > 1 define βi = 2βi−1 +6Ri and αi = αi−1 + εi

1−εi ·βi.

Lemma 2.10. Let u, v ∈ V be a pair of vertices and let π(u, v) be a shortest path between them.
Let i be the minimal index such that all vertices on the path π(u, v) are U (i)-clustered. Then,

dH(u, v) ≤ αi · dG(u, v) + βi.

Proof. The proof is by induction on the index i. For i = 0, all vertices on the path π(u, v) are
U0-clustered, thus they all added to the emulator H all edges that are incident to them.(Recall
that δ0 = 1/ε0 + 2R0 = 1. See also lines 7 to 10 of Algorithm 1.) Therefore, the path π(u, v) itself
is contained in the emulator H.

Let i ∈ [1, `]. Assume that the claim holds for i − 1, and prove that it holds for i. Let (u, v)
be a pair of vertices such that all vertices on a shortest path π(u, v) are U (i)-clustered. Denote
d = |π(u, v)|. For convenience, we imagine that the vertices of π(u, v) appear from left to right,
where u is the leftmost vertex and v is the rightmost vertex.

We divide the path π(u, v) into segments S1, S2, . . . Sq, each of length exactly b(1/ε)ic, except

for the last segment that can be shorter than b(1/ε)ic. Hence, q ≤ d d
b(1/ε)ice ≤ d

d
(1/ε)i−1

e = d dεi
1−εi e.

Consider a single segment S. Denote by x, y the left and the right endpoints of S, and denote by
S = π(x, y) the subpath of π(u, v) between them. (It is convenient to visualize the path π(u, v) as
going from the leftmost vertex u to the rightmost vertex v.)

Case 1: The segment S does not contain a Ui-clustered vertex. Then, all the vertices of the
segment are U (i−1) clustered. Hence, by the induction hypothesis

dH(x, y) ≤ αi−1 · dG(x, y) + βi−1.

Case 2: Let z1, z2 be the first and the last Ui-clustered vertices on the path π(x, y), respectively.
Let C1, C2 ∈ Ui be the clusters such that z1 ∈ C1 and z2 ∈ C2. (Note that it is possible that
C1 = C2.) Both clusters intersect S = π(x, y), and the length of S is at most (1/ε)i. In addition,
by Lemma 2.5 we have that the radii of the clusters C1, C2 is at most Ri. Let r1, r2 denote the
centers of clusters C1, C2, respectively. It follows that dG(r1, r2) ≤ (1/ε)i+2Ri = δi. Hence clusters

14



Figure 5: The analysis of the stretch of the em-
ulator. For a pair u, v ∈ V such that a shortest
path π(u, v) between them is U (i)-clustered, we
divide the path π(u, v) into segments of length
at most (1/ε)i. For a single segment, denote by
C1, C2 the first and the last Ui-clustered clusters
on the path π(u, v). The emulator H contains
an edge between the centers r1, r2 of the clusters
C1, C2 with weight dG(r1, r2).

Figure 6: The path in H between w1, r1, where
z1 is the first Ui-clustered vertex on the segment
S, w1 is the predecessor of z1 on S, and r1 is
the center of the cluster C1 such that z1 ∈ C1.
The dotted line represents the path x, y in G.
The straight solid lines represent edges of the
emulator, and the curved lines represent paths
in the emulator between vertices and the centers
of their respective clusters in phase j.

C1, C2 are neighboring. By Lemma 2.7 we have that dH(r1, r2) = dG(r1, r2). See Figure 5 for an
illustration. As a result, by triangle inequality,

dH(r1, r2) = dG(r1, r2) ≤ Ri + dG(z1, z2) +Ri.

Next, we bound the distances dH(x, r1), dH(r2, y). Let w1, w2 be the predecessor and successor
of z1, z2 on π(x, y), respectively. See Figure 6 for an illustration. Observe that both w1, w2 are
U (i−1)-clustered.

We will show that there is a path of length at most 2Ri from w1 to r1. (This is also true for
r2, w2, and the proof is analogous.)

Let C ′ ∈ Uj be the cluster such that w1 ∈ C ′. Observe that j < i. Let C ′1 ∈ Pj such that
z1 ∈ C ′1 (by Lemma 2.9, such a cluster exists). Denote r′, r′1 the centers of the clusters C ′, C ′1,
respectively.

By Lemma 2.5, we have
dH(w1, r

′) ≤ Rj . (6)

In phase j, the cluster C ′ joined Uj . Since there is an edge between the clusters C ′, C ′1, and
since their radii are at most Rj , we have dG(r′, r′1) ≤ 2Rj + 1 ≤ δj . By Lemma 2.7, we have

dH(r′, r′1) = dG(r′, r′1) ≤ 2Rj + 1. (7)

Since r′1 belongs to the cluster C1, we also have by Lemma 2.5 that

dH(r′1, r1) ≤ Ri. (8)

By eqs. (6) to (8) we have dH(w1, r1) ≤ 3Rj + 1 + Ri. Observe that Ri = 2
(

1
ε

)i−1
+ 5Ri−1 ≥

2 + 5Rj . It follows that
dH(w1, r1) ≤ 2Ri. (9)

Similarly, we have
dH(r2, w2) ≤ 2Ri. (10)

Recall that all vertices on the subpaths of π(x, y) between x,w1 and w2, y, are U (i−1)-clustered.
Thus the induction hypothesis is applicable to them. It follows that:

dH(x,w1) ≤ αi−1 · dG(x,w1) + βi−1 and dH(w2, y) ≤ αi−1 · dG(w2, y) + βi−1 (11)

15



By eqs. (9) to (11) and section 2.2.2 we derive:

dH(x, y) ≤ dH(x,w1) + dH(w1, r1) + dH(r1, r2) + dH(r2, w2) + dH(w2, y)
≤ dH(x,w1) + 2Ri + 2Ri + dG(z1, z2) + 2Ri + dH(w2, y)
≤ αi−1 · dG(x,w1) + dG(z1, z2) + αi−1 · dG(w2, y) + 2βi−1 + 6Ri
≤ αi−1 · dG(x, y) + 2βi−1 + 6Ri.

Since we divided the path π(u, v) into q ≤ d dεi
1−εi e such segments, we obtain that for the pair

u, v, their distance in the emulator H satisfies:

dH(u, v) ≤
∑q

j=1(αi−1 · dG(xj , yj) + 2βi−1 + 6Ri)

≤ αi−1 · dG(u, v) + (dG(u, v) · εi

1−εi + 1) · (2βi−1 + 6Ri)

≤ dG(u, v) ·
(
αi−1 + εi

1−εi · (2βi−1 + 6Ri)
)

+ 2βi−1 + 6Ri.

Recall that βi = 2βi−1 + 6Ri and that αi = αi−1 + εi

1−εi · βi. It follows that:

dH(u, v) ≤
(
αi−1 + εi

1−εi · βi
)
· dG(u, v) + βi = αi · dG(u, v) + βi.

Recall that U (`) is a partition of V . As a corollary to Lemma 2.10 we have:

Corollary 2.11. For every pair of vertices u, v ∈ V , the distance between them in H satisfies:

dH(u, v) ≤ α` · dG(u, v) + β`.

It is left to provide an upper bound on α`, β`. Recall that β0 = 0, α0 = 1, and for i > 1 we have
βi = 2βi−1 + 6Ri and αi = αi−1 + εi

1−εi · βi.

Lemma 2.12. For all i ∈ [0, `], we have: βi =
∑i

j=0 2i−j · 6Rj .

Proof. The proof is by induction on the index of the phase i. For i = 0, since β0 = 0 and R0 = 0,
both sides of the equation are equal to 0.

We assume that the claim holds for some i ∈ [0, `− 1], and prove that it holds for i+ 1. By the
induction hypothesis we obtain:

βi+1 = 2βi + 6Ri+1 = 6Ri+1 + 2 ·
∑i

j=0 2i−j · 6Rj =
∑i+1

j=0 2i+1−j · 6Rj

We will now provide an explicit bound on βi. By eq. (5) for all i ∈ [1, `], we have that

Ri ≤ 4 ·
(

1
ε

)i−1
. Recall also that R0 = 0. Since we assume ε ≤ 1/10, we have

βi ≤
∑i

j=1 2i−j · 6Rj ≤
∑i

j=0 2i−j · 24 ·
(

1
ε

)j−1 ≤ 24
1−2ε ·

(
1
ε

)i−1 ≤ 30
(

1
ε

)i−1
. (12)

For all i ∈ [1, `], we have αi = αi−1 + εi

1−εi ·βi. Thus, αi ≤ αi−1 + 30ε
1−εi ≤ αi−1 + 34ε. (Note that

ε ≤ 1/10.) Since α0 = 1, we have:
αi = 1 + 34ε · i. (13)

As a corollary to Corollary 2.11 and eqs. (12) and (13), we have:

Corollary 2.13. For every pair of vertices u, v ∈ V the distance between them in the emulator H
satisfies:

dH(u, v) ≤ (1 + 34ε · `) · dG(u, v) + 30 ·
(

1

ε

)`−1

.

16



2.2.3 Analysis of the Running Time

The algorithm runs for ` + 1 phases. Each phase i ∈ [0, `] consists of executing at most |Pi| ≤ n

Dijkstra explorations, each requires O(|E|+ nlog n) time. By 2.3 we have that |Pi| ≤ n1− 2i−1
κ for

all i ∈ [0, `]. Recall that ` =
⌈
log κ+1

2

⌉
. Hence, the running time of the entire algorithm is bounded

by ∑̀
i=0

O(|E|+ nlog n) · |Pi| ≤ O(|E|+ nlog n) ·
∑̀
i=0

n1− 2i−1
κ (14)

2.2.4 Rescaling

Define ε′ = 34ε · `. Observe that we have ε = ε′

34` . We replace the condition ε < 1/10 with the much
stronger condition ε′ < 1.

Recall that ` =
⌈
log κ+1

2

⌉
. Note that

⌈
log κ+1

2

⌉
≤ log κ for all κ ≥ 2. The additive term β` now

translates to:

β` ≤ 30 ·
(

1

ε

)`−1

= 30 ·

(
1(
ε′

34`

))`−1

= 30 ·
(

34log κ

ε′

)log κ−1

Denote now ε = ε′.

Corollary 2.14. For any parameters ε < 1 and κ ≥ 2, and any n-vertex graph G = (V,E), our

algorithm constructs a (1 + ε, β)-emulator with at most n1+ 1
κ edges in polynomial deterministic

time in the centralized model, where

β = O

(
log κ

ε

)log κ−1

.

Note that be setting κ = f(n) · (log n), for a function f(n) = ω(1), we obtain an emulator of
size at most

n
1+ 1

f(n)logn = n · 2
1

f(n) = n

(
1 +O

(
1

f(n)

))
= n+ o(n).

By Corollary 2.14, we derive:

Corollary 2.15. For any parameter ε < 1 and any n-vertex graph G = (V,E), our algorithm
constructs a (1 + ε, β)-emulator with n+o(n) edges in poly(n) deterministic time in the centralized
model, where

β =

(
log logn

ε

)(1+o(1))log logn

.

Using techniques discussed in Section 3 one can improve the running time in this result to
O(|E| · nρ) , for an arbitrarily small parameter ρ > 0, at the expense of increasing β to(

log(ρlog n) + ρ−1

ερ

)log(ρlogn)+ρ−1+O(1)

.

17



3 A Construction of Ultra-Sparse Near-Additive Emulators in the
CONGEST Model

In this section we provide an implementation of the algorithm described in Section 2 in the dis-
tributed CONGEST model. Here we aim at a low polynomial time, i.e., O(nρ) for an arbitrarily
small constant parameter 1/κ < ρ < 1/2. Recall that κ is a parameter that controls the size
of the resulting emulator. We will show that for any parameters κ ≥ 2, and 1/κ ≤ ρ < 1/2,
and any n-vertex unweighted undirected graph G = (V,E), our algorithm constructs a (1 + ε, β)-

emulator with at most n1+ 1
κ edges, in O (nρ · β) deterministic time in the CONGEST model, where

β =
(

log κρ+ρ−1

ερ

)log κρ+ρ−1+O(1)
.

In particular, by setting κ = ω(log n), we obtain a (1 + ε, β)-emulator of size n + o(n), with

β =
(

log(ρlogn)+ρ−1

ερ

)log(ρlogn)+ρ−1+O(1)
, in deterministic CONGEST model in low polynomial time.

From this point until the end of the paper, we assume that all vertices have unique IDs such
that for all v, v.ID ∈ [0, n − 1], and all vertices know their respective IDs. Moreover, we assume
that all vertices know the number of vertices n. In fact, our results apply even if vertices know an
estimate ñ for n, where n ≤ ñ ≤ poly(n), and have distinct ID numbers in the range [1, ñ].

3.1 The Construction

As in the centralized variant of the algorithm, the distributed variant also initializes H = ∅ and
proceeds in phases. The input to each phase i ∈ [0, `] is a collection of clusters Pi, a degree
parameter degi and a distance threshold parameter δi. The parameters `, {degi, δi | i ∈ [0, `]} are
slightly different in the current variant of the algorithm, and are specified in Section 3.1.1. The set
P0 is initialized as the partition of V into singleton clusters.

In the distributed model, sequentially considering clusters requires too much time. Hence, the
definition of popular clusters and cluster centers is slightly different in the distributed variant of
the algorithm.

For every index i ∈ [0, `], a pair of distinct clusters C,C ′ ∈ Pi and their respective centers
rC , rC′ are said to be neighboring clusters and neighboring cluster centers if dG(rC , rC′) ≤ δi. A
cluster C and its center rC are said to be popular, if C has at least degi neighboring clusters.

Intuitively, each phase is divided into two consecutive steps. The superclustering step of phase i
begins by detecting popular clusters from Pi and clusters that have a neighboring popular cluster,
and continues by grouping them into superclusters. When this step terminates, all clusters that
have not been superclustered are not popular, and also, all of their neighboring clusters are not
popular. Denote by Ui the set of clusters from Pi that did not join a supercluster during phase i. In
the interconnection step, clusters from Ui are interconnected with their neighboring clusters. The
details of the implementation of the superclustering step and the interconnection step are given in
Sections 3.1.2 and 3.1.3, respectively.

As in the centralized version, we will show that in the last phase `, we will have that |P`| ≤ deg`,
and therefore there are no popular clusters. Hence, the superclustering step of this phase is skipped,
and we move directly to the interconnection step.

3.1.1 Setting Parameters

Define recursively R0 = 0, and for every i ∈ [1, `] define Ri+1 = (4
ρ + 2)δi + Ri. The distance

threshold parameter is defined to be δi = (1/ε)i + 2Ri, for every i ∈ [0, `].

18



In our distributed implementation of the algorithm, the execution of each phase i requires
Ω(degi) time. Recall that we aim at a low polynomial time. Therefore, we ensure that degi ≤ nρ

for all phases i ∈ [0, `]. We divide the phases into two stages. In the exponential growth stage,

that consists of phases {0, 1, . . . , i0 = blog κρc}, we set degi = n
2i

κ . For the fixed growth stage, that
consists of phases {i0 + 1, i0 + 2 . . . , ` = i0 + κ+1

κρ − 1}, we set degi = nρ.

3.1.2 Superclustering Step

In this section, we provide the execution details for the superclustering step of phase i ∈ [0, `− 1].
During this step, we complete three tasks. The first task is to detect the set of popular clusters. The
second task is to select representatives around which superclusters will be constructed. The third
and most complicated task is to construct the superclusters around the selected representatives,
such that all popular clusters are superclustered.

Task 1: Detecting popular clusters. To detect popular clusters, we employ the modified
Bellman-Ford exploration, devised in [EM19].

Generally speaking, we initiate a modified parallel Bellman-Ford exploration from the set of
centers of clusters in Pi. The exploration consists of δi + 1 strides. In stride 0, each vertex v ∈ V
initializes a list L(v) = ∅. Each center rC of a cluster C ∈ Pi writes the element 〈rC , 0〉 to its
list L(rC). In every stride j ∈ [1, δi], each vertex v ∈ V delivers to its neighbors in G messages
regarding the (up to) degi + 1 cluster centers it has learnt about during stride j − 1. If a vertex
has received messages regarding more than degi + 1 centers during some stride j ∈ [0, δi − 1], it
arbitrarily chooses degi + 1 of these messages to forward during stride j + 1. Observe that stride 0
requires O(1) time, and each one of the strides j ∈ [1, δi] require O(degi) communication rounds.
When the exploration terminates, each center rC of a cluster C ∈ Pi that has received messages
regarding at least degi other cluster centers is defined popular. Denote by Wi the set of popular
cluster centers.

For completeness, the pseudo-code of the algorithm appears below. Theorem 3.1 summarizes
the properties of the algorithm. For its proof, see Theorem 2.1 in [EM19].

Algorithm 2 Detecting Popular Clusters

1: Input: graph G = (V,E), a set of clusters Pi, parameters degi, δi
2: Output: a set Wi.
3: Each vertex v ∈ V initializes a list L(v) = ∅.
4: Each rC ∈ Si adds 〈rC .ID, 0〉 to L(rC).
5: for j = 1 to δi do
6: for degi rounds do
7: if v received at most degi + 1 messages 〈rC , j − 1〉 then
8: For each received messages 〈rC , j − 1〉, v sends 〈rC , j〉
9: if v received more than degi + 1 messages 〈rC , j − 1〉 then

10: For arbitrary degi + 1 received messages 〈rC , j − 1〉, v sends 〈rC , j〉
11: Each rC ∈ Si that has learned about at least degi other cluster centers joins Wi.

Theorem 3.1. Given a graph G = (V,E), a collection of clusters Pi centered around cluster centers
Si and parameters δi, degi, Algorithm 2 returns a set Wi in O(degi · δi) time such that:

1. Wi is the set of all centers of popular clusters from Pi.

19



2. Every cluster center rC ∈ Si that did not join Wi knows the identities of all the centers
rC′ ∈ Si such that dG(rC , rC′) ≤ δi. Furthermore, for each pair of such centers rC , rC′, there
is a shortest path π between them such that all vertices on π know their distance from rC′.

Alternatively4, one can accomplish the task of Algorithm 2 even faster, in time O(degi + δi),
via the (S, d, k)-source detection algorithm of Lenzen and Peleg [LP13]. In the (S, d, k)-source
detection problem, one is given a subset S of sources, and two integers d and k. The algorithm of
[LP13] computes for every vertex v ∈ V at most k sources s ∈ S that satisfy dG(v, s) ≤ d. The
running time of their (deterministic) algorithm is O(min{d,D}+ min{k, |S|}). In our case, S = Si,
d = δi, k = degi, and as a result the running time is O(degi + δi). The algorithm of [LP13] can also
produce the shortest path π between cluster centers rC and rC′ as above, within the same running
time. Our algorithm, however, has a number of other steps that require O(degi · δi) time, and thus
using the (simpler) algorithm given in Algorithm 2 for detecting popular clusters is good enough
for our purposes.

Task 2: Selecting representatives. To select a subset of the popular clusters, we compute a
(2δi+1, 2δi/ρ)-ruling set for Wi w.r.t. the graph G. See Section 1.5.2 for the definition of ruling sets.
This is done using the algorithm of [SEW13, KMW18]. Theorem 3.2 summarizes the properties of
the returned ruling set Si.

Theorem 3.2. [SEW13, KMW18] Given a graph G = (V,E), a set of vertices Wi ⊆ V and

parameters q ∈ {1, 2, . . .}, c > 1, one can compute a (q + 1, cq)-ruling subset for Wi in O(q · c · n
1
c )

deterministic time, in the CONGEST model.

For the sake of brevity, denote sepi = 2δi+1 and ruli = (2/ρ) ·δi. By Theorem 3.2, the returned
subset Si is a (sepi, ruli)-ruling set for the set of popular clusters Wi.

Task 3: Constructing superclusters. First, a BFS exploration rooted at the ruling set Si
is executed to depth ruli + δi in G. As a result, a forest Fi is constructed, rooted at vertices of Si.

Consider a cluster center rC ∈ Si, and let TC be its tree in the forest Fi. A cluster C ′ is
said to be spanned by TC if its center rC′ is spanned by TC . Intuitively, we would like to form
a new supercluster Ĉ centered around rC , that will contain all the clusters C ′ spanned by TC .
This requires informing rC of all the centers of clusters that are spanned by TC , which may cause
significant congestion. Therefore, we use a different approach, that may form several superclusters
that will cover all clusters spanned by TC .

To form superclusters, we backtrack the BFS exploration that has created TC . The backtracking
procedure operates for ruli+ δi strides, each consists of b2degic+ 2 communication rounds. During
each stride d, each vertex v ∈ V that is spanned by TC and has dTC (rC , v) = ruli + δi − d sends
messages to its parent in the tree TC . For d = 0, let M = ∅. For d > 0, let M be the set of messages
that v has received during stride d−1 of the procedure. If v is a center of a cluster from Pi, it adds
the message mv = 〈v, dG(rC , v)〉 to M . If the number of messages in M is smaller than 2degi + 2,
then v sends all the messages in M to its parent w.r.t. TC during stride d.

Consider the case where |M | ≥ 2degi + 2. In this case, we say that v is a hub-vertex. Since it
cannot send |M | messages to its parent in TC , the vertex v decides to split from TC and form new
superclusters. Note that the vertex v receives messages from its children in the tree TC only during
stride d− 1, where d = dTC (rC , v).

If v is a center of a cluster from Pi, it forms a single new supercluster Ĉv, and v is set to be the
center of the new supercluster Ĉv. For every message mrC′ = 〈rC′ , dG(rC , rC′)〉 in M , it adds the
edge (v, rC′) to the emulator with weight dG(v, rC′) = dG(rC , rC′)−dG(rC , v). The vertex v informs

4We are grateful to an anonymous reviewer of PODC’21 for pointing this to us.

20



rC′ of the new edge and its weight. This is done by sending the message mr
rC′

= 〈(v, rC′), dG(v, rC′)〉
along the same route that the message mrC′ has traversed.

If v is not a center of a supercluster from Pi, we do not allow it to be a center of a cluster of
Pi+1, and therefore it forms other superclusters. The vertex v partitions its children in TC into
sets V1, V2, . . . , Vt, such that for every j ∈ [1, t] the number of messages that v has received from all
vertices in Vj is between 2degi + 2 and 6degi + 6. For every j ∈ [1, t], let Zj be the set of vertices
in TC that have sent messages that have arrived v via a vertex in Vj . Intuitively, a supercluster

Ĉj is formed for every j ∈ [1, t]. This supercluster will contain every cluster C ′ ∈ Pi such that its
centers rC′ is in Zj . See Figure 7 for an illustration.

Partitioning the children of v into t sets is done in the following way. For a set X of children
of v, denote by M(X) the set of messages that v has received from all vertices in X. The vertex v
greedily adds its children into sets V1, V2, . . . , Vt′ , such that each set Vj is filled until |M(Vj)| is at
most 4degi + 4. Note that since the number of messages received by v from each one of its children
is less than 2degi + 2, we have that |M(Vj)| ≥ 2degi + 2, for any j ∈ [1, t′ − 1]. If for the last set
Vt′ we have |M(Vt′)| < 2degi + 2, we add the set Vt′ to the set Vt′−1. Let t be the number of sets
formed by this process (i.e., if |M(Vt′)| < 2degi + 2 then t = t′ − 1. Otherwise, t = t′). Now we
have that 2degi + 2 ≤ |M(Vj)| ≤ 6degi + 6 for every j ∈ [1, t].

For every j ∈ [1, t], the vertex v selects a single vertex r ∈ Zj to be the center of Ĉj . Then,

v must inform all vertices in Zj that their attempt to join Ĉ has failed, and provide information

regarding their new cluster center and superclustering edge. To this aim, we define the tree T jC to

be the tree that contains all paths from TC between a vertex in Zj and v. Observe that T jC does
not contain any other hub-vertices.

The vertex v broadcasts the message 〈r〉 in the tree T jC . This informs all centers in Zj that their

attempt to join Ĉ has failed, and that the center of their new supercluster is r. In addition, for
every r′ ∈ Zj , the vertex v broadcasts the message 〈r′, dG(r′, v) + dG(v, r)〉 to all vertices in T jC . In
particular, this step informs the vertices r, r′ that the edge (r, r′) was added to the emulator H with
weight dG(r′, v)+dG(v, r). Observe that the vertex v knows dG(rC , v), dG(rC , r) and dG(rC , r

′), and
since it belongs to shortest rC − r and rC − r′ paths, it can infer dG(v, r) and dG(v, r′). In addition,
by triangle inequality, these superclustering edges never shorten distances w.r.t. the graph G.

After the ruli + δi strides terminate, for every message 〈rC′ , dG(rC , rC′)〉 that arrives to rC ,
the edge (rC , rC′) is added to the emulator H with weight dG(rC , rC′). All vertices that belong to
the cluster C ′ centered around rC′ join the supercluster Ĉ. This completes the description of the
procedure for forming superclusters.

In the following lemma, we analyze the running time of Task 3, and show that all computation
terminate within the ruli + δi strides.

Lemma 3.3. For every index i ∈ [0, `− 1], Task 3 requires O( δiρ · degi) communication rounds.

Proof. Consider an index i ∈ [0, ` − 1]. On our way to constructing superclusters, we execute a
BFS exploration that forms the forest Fi and a backtracking procedure. In addition, we take care
of hub-vertices.

The BFS exploration that forms the forest Fi is executed to depth ruli + δi from the set of
vertices in Si. Thus, it requires O(ruli + δi) time. The backtracking procedure of phase i is done
in ruli + δi strides, where each stride consists of O(degi) communication rounds. Thus, its overall
running time is O((ruli + δi)degi).

It is left to analyze the time required to take care of hub-vertices. Let v be a hub-vertex in
some tree TC ∈ Fi. If v is a center of a cluster of Pi, it forms a new supercluster around itself. For
every vertex rC′ such that v has received the message mrC′ from rC′ , the vertex v sends a message

21



Figure 7: Forming superclusters that cover all clusters of Pi spanned by the BFS tree TC . In the
figure, the vertex rC is the root of the tree TC . The four gray areas are four superclusters, and
the big squares are their respective centers. The dashed lines from v1, v3 to rC represent the fact
that v1, v3 have more than 2degi + 2 messages to deliver to rC . The vertex v1 is a center of a
cluster of Pi, and so it becomes the center of a new supercluster. The vertex v3 is not a center of
a supercluster, and so it divides its children into two sets, and chooses a representative from each
set to become the center of its respective supercluster.

mr
rC′

. This message is sent along the same route that the message mrC′ has traversed. Note that
v has received less than 2degi + 2 messages from each one of its children. Therefore, v sends less
than 2degi + 2 messages to each one of its children. The distance each such message is required
to traverse is at most ruli + δi. Hence, all messages returned by v to their senders arrive within
O(ruli + δi + degi) communication rounds (via pipelined broadcast).

If v is not a center of a cluster in Pi, its partitions its children into sets V1, V2, . . . , Vt. Note
that this partition is computed locally. Recall that for every j ∈ [1, t], the number of messages
that v has received from all vertices in Vj is |Zj | ≤ 6degi + 6. Also recall that v broadcasts O(|Zj |)
messages along the edges of the tree T jC . The depth of the tree is at most O(ruli + δi). Hence, a
broadcast that originated from v terminates within O(ruli + δi + degi) communication rounds (via
pipelined broadcast).

Recall that ruli = (2/ρ) · δi. It follows that the overall time required to complete Task 3 in
phase i is O((ruli + δi)degi) = O( δiρ · degi).

Next, we prove that all popular clusters in Pi and clusters in Pi that have a popular neighboring
cluster are superclustered into superclusters of Pi+1.

Lemma 3.4. Consider a cluster C ∈ Pi. If C is popular or it has a neighboring cluster that is
popular, then C belongs to a supercluster of Pi+1.

Proof. Recall that Wi is the set of centers of popular clusters from Pi and that Si is a (sepi, ruli)-
ruling set for Wi. Consider a cluster C ∈ Pi. If C is popular, then by definition of Si there exists
a vertex v ∈ Si such that the distance between v and the center of C is at most ruli. Hence, the
cluster C became superclustered during the superclustering step of phase i.

If C is not popular but it has a neighboring cluster C ′ that is popular, then there exists a
vertex v ∈ Si such that the distance between v and the center of C ′ is at most ruli. The distance
between the centers of C,C ′ is at most δi. Therefore, there exists a vertex v ∈ Si with distance
at most ruli + δi from the center of C. Hence, the cluster C became superclustered during the
superclustering step of phase i.

3.1.3 Interconnection Step

In this section, we provide the execution details for the interconnection step of phase i ∈ [0, `].
Denote by Ui the set of clusters from Pi that have not been superclustered during the superclustering

22



step of phase i. In the interconnection step of phase i, each cluster in Ui is connected with all its
neighboring clusters from Pi.

For i ∈ [0, `− 1], by Lemma 3.4 we have that every cluster C ∈ Ui is not popular. By Theorem
3.1 the center rC of the cluster C already knows the identities and distances to all its neighboring
cluster centers, since Algorithm 2 was executed during the superclustering step. Hence, the center
rC knows which edges it needs to add to the emulator H, as well as their weights.

Let rC′ be a neighboring cluster center of rC . The center rC must inform rC′ that C has
joined Ui, and therefore the edge (rC , rC′) is added to the emulator H. For this aim, we employ
Algorithm 2, as in the superclustering step of phase i, from the centers of all clusters in Ui. Recall
that by Lemma 3.4 we have that every cluster that has a neighboring cluster that is popular is
superclustered. Since C ∈ Ui, we conclude that rC′ is not popular. Hence, by Theorem 3.1 we have
that during the current execution of Algorithm 2, the cluster rC′ has received a message from rC ,
and thus it knows the identity of rC and the distance dG(rC , rC′). Now, both endpoints of the edge
(rC , rC′) know that it is added to the emulator H with weight dG(rC , rC′).

The interconnection step of phase ` is slightly different. Recall that the superclustering step
of phase ` is skipped. However, as we later show (eq. (17)), all clusters in P` are not popular.
In the interconnection step of phase `, we execute Algorithm 2 from the set P` with parameters
deg`, δ`. By Theorem 3.1, we are guaranteed that all centers of clusters in P` know the identities
and distance to all their neighboring cluster centers. Therefore, each center of a cluster C ∈ P` can
add to the emulator H edges to all its neighboring cluster centers. This completes the description
of the interconnection step of phase i.

3.2 Analysis of the Construction

In this section, we analyze the size and stretch of the emulator, and the running time that is
required to construct it. We begin by showing that in the final phase `, we have |P`| ≤ deg`. Thus,
there are no popular clusters, and the superclustering step can be safely skipped. To do so, we
show that the number of clusters in Pi+1 is significantly smaller than the number of clusters in Pi.

Recall that during the superclustering step of every phase i ∈ [0, ` − 1], a BFS exploration is
executed from the ruling set Si, and that Fi is the ruling forest produced by this exploration.

Lemma 3.5. Let i ∈ [0, ` − 1]. For every tree TC in Fi, let xC be the number of clusters of Pi
that are spanned by TC . Then, the number of superclusters formed around vertices of TC is at most
xC/(degi + 1).

Proof. Consider a tree TC in Fi, and let rC ∈ Si be the root of TC . Recall that rC is the center of
a popular cluster rC . Let s be the number of superclusters formed around vertices of TC .

If s = 1, then we have that all clusters that are spanned by TC belong to the supercluster formed
around the center rC . Recall that the set Si is a (sepi, ruli)-ruling set, where sepi = 2δi+1. Hence,
for every neighboring cluster center rC′ of rC , we have that dG(rC , rC′) ≤ δi and thus, rC is the
closest vertex to rC′ in Si. Therefore, rC′ is spanned by TC . Since C is a popular cluster, it has at
least degi neighbors. Note that C itself is also spanned by TC . Hence, we have that xC ≥ degi + 1,
and the claim holds.

Consider the case where s ≥ 2. Every cluster formed around a vertex v ∈ TC , where v 6= rC
contains at least 2degi + 2 clusters of Pi that are spanned by TC . We conclude that

xC
degi+1 ≥ (s−1)·(2degi+2)

degi+1 = 2s− 2 ≥ s.

23



Observe that Lemma 3.5 implies that for every i ∈ [0, `− 1] we have that

|Pi+1| ≤ |Pi| · deg−1
i . (15)

Next, we provide an explicit bound on the number of superclusters formed in phase i.

Lemma 3.6. For every i ∈ [0, i0 + 1], we have that |Pi| ≤ n1− 2i−1
κ .

Proof. The proof is by induction on the index of the phase i. For the base case, we have that
|P0| = 0, and also n1−(20−1)/κ = n.

Assume that the claim holds for some i ∈ [0, i0], and prove that it holds for i+ 1.
By the induction hypothesis and by eq. (15) we have

|Pi+1| ≤ |Pi| · deg−1
i < n1− 2i−1

κ · n−
2i

κ = n1− 2i+1−1
κ .

Lemma 3.7. For every i ∈ [i0 + 1, `], we have that |Pi| ≤ n1− 2i0+1−1
κ

−(i−i0−1)ρ.

Proof. The proof is by induction on the index of the phase i. The base case (i = i0 + 1) holds since
by Lemma 3.6 we have

|Pi0+1| ≤ n1− 2i0+1−1
κ . (16)

Assume the claim holds for some i ∈ [i0 + 1, ` − 1], and prove that it holds for i + 1. By the
induction hypothesis and by eq. (15) we have

|Pi+1| ≤ |Pi| · deg−1
i < n1− 2i0+1−1

κ
−(i−i0−1)ρ · n−ρ = n1− 2i0+1−1

κ
−(i−i0)ρ.

Recall that i0 = blog κρc and that ` = i0 + dκ+1
κρ e − 1. Note that ρ ≤ 1/2, hence ` > i0, and so

deg` = nρ. By Lemma 3.7, the size of the set P` satisfies

|P`| ≤ n1− 2blog κρc+1−1
κ

−(dκ+1
κρ
e−2)ρ ≤ n1−κρ−1

κ
−κ+1

κ
+2ρ ≤ nρ. (17)

As a result, in the last phase ` we have |P`| ≤ nρ = deg`, and there are no popular clusters in
P`.

3.2.1 Analysis of the Number of Edges

In this section, we analyze the number of edges added to the emulator H by the algorithm. The
analysis follows the lines of the corresponding arguments in Section 2.2.1. As in the centralized
construction, here we can also charge each edge that is added to the emulator H in some phase i
of the algorithm to a center of a cluster in Pi.

Every superclustering edge added to the emulator during phase i can be charged to a center of
a cluster C ∈ Pi that neither joined Ui nor was it selected to grow a supercluster around it during
this phase. Therefore, the number of superclustering edges added to the emulator H during phase
i is exactly |Pi| − |Ui| − |Pi+1|. Every interconnection edge added to the emulator during some
phase i ∈ [0, `] is charged to a center of a cluster C ∈ Ui. Recall that for every cluster C ∈ Ui, its
center rC is charged with less than degi edges. Hence, the number of interconnection edges added
to the emulator during phase i of the algorithm is at most |Ui| · degi. (The equality is achieved

24



when Ui = ∅.) In addition, Lemma 3.5 implies that the number of clusters from Pi that belong to
superclusters of Pi+1 is at least |Pi+1| · (degi + 1). Hence, the number of clusters in Pi that did
not join a supercluster during phase i satisfies |Ui| ≤ |Pi| − |Pi+1| · (degi + 1). Thus, the number of
edges added to the emulator by all phases of the algorithm is bounded by

|H| ≤
∑`−1

i=0 (|Pi| − |Ui| − |Pi+1|+ |Ui| · degi) + |P`| · deg`
=

∑`−1
i=0 (|Pi| − |Pi+1|+ |Ui| · (degi − 1)) + |P`| · deg`

≤
∑`−1

i=0 (|Pi| − |Pi+1|+ (|Pi| − |Pi+1| · (degi + 1))(degi − 1)) + |P`| · deg`
=

∑`−1
i=0

(
|Pi| · degi − |Pi+1| · deg2

i

)
+ |P`| · deg`

= |P0| · deg0 +
∑`−1

i=0

(
|Pi+1| · degi+1 − |Pi+1| · deg2

i

)
.

(18)

We now show that for all i ∈ [0, ` − 1], we have degi+1 ≤ deg2
i . Recall that in the exponential

growth stage, degi = n
2i

κ , and so degi+1 = deg2
i for any i ∈ [0, i0−1]. Recall that i0 = blog κρc, and

so deg2
i0

= n
2i0+1

κ ≥ nρ = degi0+1. In the fixed growth stage, degi = nρ, and so degi+1 < deg2
i for

all i ∈ [i0 + 1, `− 1]. It follows that for all i ∈ [0, `− 1], we have degi+1 ≤ deg2
i . Thus, by eq. (18),

the size of the emulator H is at most

|H| ≤ |P0| · deg0 = n1+1/κ. (19)

3.2.2 Analysis of the Stretch

In this section we analyze the stretch of the emulator H. We follow the lines of the analysis given
in Section 2.2.2. We begin by proving that Ri is an upper bound on the radii of clusters in Pi,
for all i ∈ [0, `]. Recall that R0 = 0, and for every i ∈ [1, `], we have Ri+1 = (4

ρ + 2)δi + Ri (see
Section 3.1.1). Also recall that for every phase i ∈ [0, `], a BFS ruling forest Fi was constructed by
a BFS exploration that was executed to depth ruli + δi = 2δi

ρ + δi = (2/ρ+ 1) · δi. Hence the radius
of each tree in Fi (i.e., the maximal distance between the root of the tree and a vertex spanned
by the tree) is at most (2

ρ + 1)δi as well. For each tree T ∈ Fi, let Rad(T ) denote its radius, and
Rad(Fi) = maxT∈Fi Rad(T ).

Lemma 3.8. For every index i ∈ [0, `], we have Rad(Pi) ≤ Ri.

Proof. The proof is by induction on the index of the phase i. For i = 0, all clusters in Pi are
singletons, and also R0 = 0. Thus the claim holds.

Assume the claim holds for i ∈ [0, ` − 1] and prove that it holds for i + 1. Consider a cluster
Ĉ ∈ Pi+1. This cluster was formed around a vertex rC during phase i. Let C ∈ Pi be the cluster
rooted at rC . Consider a vertex u ∈ Ĉ.

Case 1: The vertex u belongs to the cluster C. Then, by the induction hypothesis, we have
dH(rC , u) ≤ Ri ≤ Ri+1.

Case 2: The vertex u belonged to a cluster C ′ ∈ Pi, where C 6= C ′. Denote by rC′ the center
of the cluster C ′. The centers rC and rC′ are both spanned by the same tree T in Fi. Therefore, we
have dT (rC , rC′) ≤ 2Rad(T ) ≤ (4

ρ + 2)δi. When rC′ joined the supercluster Ĉ, the edge (rC , rC′)

was added to the emulator H, with weight dT (rC , rC′) ≤ (4
ρ + 2)δi.

In addition, by the induction hypothesis, we have dH(u, rC′) ≤ Ri. Hence,

dH(rC , u) ≤ (
4

ρ
+ 2)δi +Ri = Ri+1.

25



We now provide an explicit upper bound on Ri. Recall that for every i ∈ [1, `], we have
δi = (1/ε)i + 2Ri, and therefore

Ri+1 =

(
4

ρ
+ 2

)
δi +Ri =

(
4

ρ
+ 2

)
(1/ε)i +

(
8

ρ
+ 5

)
Ri.

Lemma 3.9. For every index i ∈ [0, `], we have

Ri =

(
4

ρ
+ 2

)
·
i−1∑
j=0

(
1

ε

)j
·
(

8

ρ
+ 5

)i−1−j
.

Proof. The proof is by induction on the index i. For i = 0, both sides of the equation are equal to
0, and so the base case holds.

Assume that the claim holds for some i ∈ [0, ` − 1], and prove that it holds for i + 1. By
definition and the induction hypothesis we have:

Ri+1 = (4
ρ + 2) (1/ε)i + (8

ρ + 5) · (4
ρ + 2) ·

∑i−1
j=0

(
1
ε

)j · (8
ρ + 5

)i−1−j

= (4
ρ + 2) ·

∑i
j=0

(
1
ε

)j · (8
ρ + 5

)i−j
.

By Lemma 3.9, we derive the following explicit bound on Ri, for i ∈ [0, `].

Ri = (4
ρ + 2) ·

∑i−1
j=0

(
1
ε

)j · (8
ρ + 5

)i−1−j

= (4
ρ + 2) ·

(
8
ρ + 5

)i−1
·
∑i−1

j=0

(
1
ε

)j · ( ρ
8+5ρ

)j
≤ (4

ρ + 2) ·
(

8
ρ + 5

)i−1
·

[(
ρ

ε(8+5ρ)

)i
ρ

ε(8+5ρ)
−1

]
= (4

ρ + 2) ·
(

8+5ρ
ρ

)i−1
·
(

ρ
ε(8+5ρ)

)i
· ε(8+5ρ)
ρ−ε(8+5ρ) = 4+2ρ

ρ−ε(8+5ρ) ·
(

1
ε

)i−1
.

Recall that ρ < 1/2, and assume that ρ ≥ 25ε. It follows that for all i ∈ [0, `]:

Ri ≤
4 + 2ρ

ρ− ε(8 + 5ρ)
·
(

1

ε

)i−1

≤ 5

ρ− 12.5ε
·
(

1

ε

)i−1

≤ 10

ρ
·
(

1

ε

)i−1

. (20)

As in Section 2.2.2, define recursively β0 = 0, α0 = 1, and for i > 1 define βi = 2βi−1 + 6Ri and
αi = αi−1 + εi

1−εi · βi.
Recall that when a cluster is added to Ui, for some i ∈ [0, `], the algorithm adds edges from its

center to the centers of all its neighboring clusters. The weight of each such edge is set to be the
distance in G between its two endpoints. Therefore, the assertion of Lemma 2.7 also holds for the
distributed construction. Thus, for every i ∈ [0, `] and a center rC of a cluster C ∈ Ui, an for every
neighboring cluster center rC′ of rC , we have dH(rC , rC′) = dG(rC , rC′). As a result, Lemma 2.10
also holds for the distributed construction. In other words, for every pair of vertices u, v ∈ V such
that all vertices on a shortest u− v path are U (i) clustered, we have that

dH(u, v) ≤ αi · dG(u, v) + βi. (21)

26



Recall that U−1 = ∅, and U (i) =
⋃i
j=−1 Ui for all i ∈ [−1, `]. As in the centralized construction,

here we also have that the set U (`) is a partition of V . Hence, eq. (21) implies that for every pair
of vertices u, v ∈ V we have

dH(u, v) ≤ α` · dG(u, v) + β`. (22)

By Lemma 2.12, we have that the recursion β0 = 0 and βi = 2βi−1 + 6Ri for i > 1 solves to

βi =
i∑

j=0

2i−j · 6Rj . (23)

We will now provide an explicit bound on βi. By eq. (20) for all i ∈ [1, `], we have that

Ri ≤ 10
ρ ·
(

1
ε

)i−1
. Since we assume ε < 1/10, we have

βi ≤
∑i

j=0 2i−j · 6Rj ≤ 60·2iε
ρ ·

[
( 1
2ε

)i+1

1−2ε
2ε

]
= 75

ρ ·
(

1
ε

)i−1
. (24)

By eq. (24) and since ε ≤ 1/10, the recursion α0 = 0 and αi = αi−1 + εi

1−εi ·βi for i > 0 solves to

αi = 1 +
90ε

ρ
· i. (25)

By eqs. (22), (24) and (25) we derive the following corollary.

Corollary 3.10. For every pair of vertices u, v ∈ V the distance between them in the emulator H
satisfies:

dH(u, v) ≤
(

1 +
90ε · `
ρ

)
· dG(u, v) +

75

ρ
·
(

1

ε

)`−1

.

3.2.3 Analysis of the Running Time

In this section, we analyze the running time of the algorithm. We begin by analyzing the running
time of a single phase i ∈ [0, `− 1].

Superclustering Step. To detect the popular clusters, we executes Algorithm 2. By Theorem
3.1, the algorithm requires O(degi · δi) time. By Theorem 3.2, constructing a ruling set for the
popular clusters requires O(δi · 1ρ ·n

ρ) time. By Lemma 3.3, Computing superclusters requires O( δiρ ·

degi) time. Hence, the superclustering step of phase i can be executed in O
(
δi·nρ
ρ

)
deterministic

time in the CONGEST model.

Interconnection Step. The interconnection step consists of executing Algorithm 2, as in the
superclustering step. Hence, the running time of the interconnection step is dominated by the
running time of the superclustering step.

For the final phase `, the superclustering step is skipped. The interconnection step of the final
phase requires executing Algorithm 2, in O(deg` · δ`) time. Recall that δi = (1/ε)i + 2Ri, and also

that by eq. (20) we have that Ri ≤ 10
ρ ·
(

1
ε

)i−1
, for every i ∈ [0, `]. In addition, recall that we assume

ρ > 25ε. Hence, for every i ∈ [0, `] we have

δi = O((1/ε)i) (26)

It follows that the running time of the entire algorithm is at most

O(deg` · δ`) +
∑`−1

i=0 O(n
ρ·δi
ρ ) = O

(
nρ

ε`
+ nρ

ρ ·
∑`−1

i=0 (1/ε)i
)

= O
(
nρ

ε`

)
. (27)

27



3.2.4 Rescaling

Define ε′ = 90ε·`
ρ . Observe that we have ε = ε′ρ

90` . We replace the condition ε < 1/10 with the much

stronger condition ε′ < 1. The assumption ρ > 25ε holds since ε′ < 1.
Recall that ` = blog κρc + dκ+1

κρ e − 1. Note that ` = log κρ + ρ−1 + O(1) for all κ ≥ 2. The
additive term β` now translates to:

β` =
75

ρ
·
(

1

ε

)`−1

=
75

ρ
·
(

90`

ε′ρ

)`−1

=

(
log κρ+ ρ−1

ε′ρ

)log κρ+ρ−1+O(1)

.

Denote

β =

(
log κρ+ ρ−1

ερ

)log κρ+ρ−1+O(1)

.

By eq. (27), the running time of the algorithm is O
(
nρ

ε`

)
= O (βnρ) . Denote now ε = ε′.

Corollary 3.11. For any parameters ε < 1, κ ≥ 2 and 1/κ < ρ < 0.5, and any n-vertex graph

G = (V,E), our algorithm constructs a (1 + ε, β)-emulator with at most n1+ 1
κ edges in O(βnρ)

deterministic CONGEST time, where

β =

(
log κρ+ ρ−1

ερ

)log κρ+ρ−1+O(1)

.

Note that by setting κ = f(n) · (log n), for a function f(n) = ω(1), we obtain an emulator of

size at most n
1+ 1

f(n)logn = n+ o(n). By Corollary 2.14, we derive:

Corollary 3.12. For any parameters ε < 1 and ρ < 0.5, and any n-vertex graph G = (V,E), our
algorithm constructs a (1 + ε, β)-emulator with n+ o(n) edges in O(βnρ) deterministic CONGEST
time, where

β =

(
log(ρlog n) + ρ−1

ε′ρ

)log(ρlogn)+ρ−1+O(1)

.

3.3 Fast Centralized Construction

To devise an efficient construction of ultra-sparse near-additive emulators in the centralized model
of computation, one can simulate the construction provided in Section 3.1 in the centralized model.
Given an unweighted, undirected graph G = (V,E) on n vertices, and parameters ε < 1, κ =
1, 2, . . . and ρ ∈ [1/κ, 1/2], our distributed algorithm runs in O(β · nρ) time. Note that in every
communication round, at most one message of O(log n) bits is sent along each edge of the graph G.
Thus, simulating this algorithm in the centralized model can be done in O(|E| ·β ·nρ) time. In fact,
such a centralized implementation is simpler than the distributed construction. This is because, in
the centralized model, there is no need to inform both endpoints of every emulator edge (u, v) of
the existence of the edge. Thus, constructing superclusters becomes much easier. Specifically, the
execution of Task 3 is simpler, since there is no need to split trees of the forest Fi. The properties
of the centralized construction are summarized in the following theorems.

Theorem 3.13. For any parameters ε < 1, κ ≥ 2 and 1/κ < ρ < 0.5, and any n-vertex graph

G = (V,E), our algorithm deterministically constructs a (1 + ε, β)-emulator with at most n1+ 1
κ

edges in O(|E| · βnρ) time in the centralized model of computation, where

β =

(
log κρ+ ρ−1

ερ

)log κρ+ρ−1+O(1)

.

28



Note that by setting κ = f(n) · (log n), for a function f(n) = ω(1), we obtain an emulator of

size at most n
1+ 1

f(n)logn = n+ o(n). By Corollary 2.14, we derive:

Theorem 3.14. For any parameters ε < 1 and ρ < 0.5, and any n-vertex graph G = (V,E), our
algorithm deterministically constructs a (1 + ε, β)-emulator with n+o(n) edges in O(|E| ·βnρ) time
in the centralized model of computation, where

β =

(
log(ρlog n) + ρ−1

ε′ρ

)log(ρlogn)+ρ−1+O(1)

.

In fact, it is easy to see that the factor β can be shaved off from this running time. We omit the
details in this version of the paper. (The same is true concerning both Theorems 3.13 and 3.14.)

4 Near-Additive Spanners

In this section, we show how one can modify the construction given in Section 3 to obtain sparse
near-additive spanners. Specifically, given an unweighted, undirected graph G = (V,E), and pa-
rameters ε > 0, κ = 2, 3, . . . and ρ ∈ [1/k, 1/2], our current algorithm constructs a (1+ε, β)-spanner

with O(n1+ 1
κ ) edges, in O(βnρ) deterministic CONGEST time, where

β =

(
log κρ+ ρ−1

ερ

)log κρ+ρ−1+O(1+log(3) κ)

. (28)

We follow the construction described in Section 3.1. We define H = ∅ and proceed in phases.
Throughout the algorithm, instead of adding to H an emulator edges (u, v) with weight d, we
add to the spanner H a u − v path from G of length at most d. Recall that in the emulators
construction, whenever a vertex u ∈ V adds an edge (u, v) with weight d to the emulator, it sends
a message to v along a path from G, of weight at most d. In the current version of the algorithm,
we will add to the spanner the entire path from u to v, along which u informs v of the new edge.
As a result, the construction of superclusters becomes simpler, because the message sent from u to
v contains only the details of v, and does not need to contain any information regarding u or the
edge (u, v). Therefore, there is no need to define hub-vertices as in Task 3 of the superclustering
step (see Section 3.1.2). Thus, a single supercluster Ĉ is formed from every tree T in the forest Fi.
Observe that Lemma 3.5 (and as a result, eq. (15)) and Lemma 3.8 hold under this modification.

The distance threshold sequence remains as in Section 3.1. To obtain sparse emulators, we
adopt the degree sequence used in [EN17a], and as a result, the number of phases of the algorithm
slightly increases. The analysis of the number of edges in the current construction is closely related
to the respective analysis in [EN17a].

Let γ = max{2, log log κ}. Define i0 = min{blog γκρc, bκρc}. For the exponential growth stage,

which consists of phases i ∈ [0, i0], we set degi = n
2i−1
γκ

+ 1
κ . Define i0+1 as a transition phase, and set

degi0+1 = nρ/2. For the fixed growth stage, which consists of phases i ∈ [i0+1, `′ = i0+d1/ρ−1/2e],
set degi = nρ. We will show that |P`′ | ≤ nρ. Therefore, there are no popular clusters in the last
phase, and the superclustering step can be safely skipped.

By argument similar to those used in Section 3.2.2 and 3.2.4, one can show that the additive
term β of such a construction is

β =

(
log κρ+ ρ−1

ερ

)log κρ+ρ−1+O(1+log(3) κ)

. (29)

29



In addition, by arguments similar to those used in Section 3.2.3 and 3.2.4, one can show that
the running time of the algorithm can be upper-bounded by

O (βnρ) . (30)

4.1 Analysis of the Number of Edges

In this section, we analyze the number of edges added to the spanner H by every phase of the
algorithm. We begin by analyzing the number of superclustering edges added to the spanner H by
every phase i ∈ [0, `′ − 1] of the algorithm.

Observe that during each phase i, the superclustering edges added to the spanner H all belong
to a forest Fi. Hence, each phase contributes at most n superclustering edges. Since there are
`′ + 1 = O(log γκρ+ 1/ρ) phases, this implies that the the number of superclustering edges in the
spanner H is at most

O(n(log γκρ+ 1/ρ)) = O(n(log κρ+ 1/ρ)). (31)

Next, we analyze the number of interconnection edges added to the spanner H by every phase
i ∈ [0, `′]. Observe that interconnection edges are added only by centers rC of clusters C ∈ Ui. The
center rC is charged with paths to all its neighboring clusters. Since C ∈ Ui, we know that C is
not popular. Therefore, it is charged with at most degi paths. In addition, by definition and by

eq. (26), the length of each such path is at most δi = O

((
90`′

ρε

)i)
. Hence, the number of edges

charged to each center of a cluster in Ui can be upper-bounded by O

(
degi ·

(
90`′

ρε

)i)
.

We restrict ourselves to the case where 90`′

ρε ≤
n

1
2κ

2 , which holds whenever κ ≤ c′logn
log(`′/(ρε)) , for a

sufficiently small constant c′. Observe that Ui ⊆ Pi. The number of interconnection edges added
to the spanner H by each phase i can now be upper-bounded by

O

(
|Pi| · degi ·

(
90`′

ρε

)i)
= O

(
|Pi| · degi ·

(
n

1
2κ /2

)i)
. (32)

In the next three lemmas, we bound the size of Pi for the exponential growth stage, the transition
phase, and the fixed growth stage, respectively.

Lemma 4.1. For i ∈ [0, i0 + 1], we have |Pi| ≤ n1− 2i−1−i
γκ

− i
κ .

Proof. We will prove the lemma by induction on the index of the phase i.

For i = 0, the right-hand side is n
1− 20−1−0

γκ
− 0
κ = n. Thus the claim is trivial.

Assume that the claim holds for some i ∈ [0, `′− 1] and prove it also holds for i+ 1. By eq. (15)
we have that |Pi+1| ≤ |Pi| · deg−1

i .

Together with the induction hypothesis, and since for i, i ∈ [0, i0], we have degi = n
2i−1
γκ

+ 1
κ , we

have that

|Pi+1| ≤ |Pi| · deg−1
i ≤ n

1− 2i−1−i
γκ

− i
κ · n−

2i−1
γκ
− 1
κ = n

1− 2i+1−1−(i+1)
γκ

− i+1
κ .

30



Recall that γ ≥ 2. Observe that by eq. (32) and Lemma 4.1, we have that the number of edges
added to the spanner H by every phase i ∈ [0, i0] is at most

O

(
|Pi| · degi ·

(
n

1
2κ /2

)i)
= O

(
n

1− 2i−1−i
γκ

− i
κ · n

2i−1
γκ

+ 1
κ · n

i
2κ · 2−i

)
= O

(
2−in1+ 1

κ

)
.

(33)

Lemma 4.2. The size of the input collection Pi0+1 for the transition phase satisfies |Pi0+1| ≤ n1−ρ.

Proof. By Lemma 4.1, we have

|Pi0+1| ≤ n1− 2i0+1−1−(i0+1)
γκ

− i0+1
κ = n

1− 2i0+1−1
γκ

+
i0+1−γ(i0+1)

γκ = n
1− 2i0+1−1

γκ
− (i0+1)(γ−1)

γκ .

Observe that since i0 > 0 and γ ≥ 2, we have (i0+1)(γ−1)
γκ ≥ 1

γκ .
If i0 = blog γκρc, then

|Pi0+1| ≤ n1− 2blog γκρc+1−1
γκ

− (i0+1)(γ−1)
γκ ≤ n1− γκρ−1

γκ
− 1
γκ = n1−ρ. (34)

Otherwise, if i0 = bκρc, then

|Pi0+1| ≤ n1− 2i0+1−1
γκ

−κρ(γ−1)
γκ = n

1− 2i0+1−2
γκ

− γκρ
γκ ≤ n1−ρ. (35)

Recall that i0 ≤ bκρc. Observe that by eq. (32) and Lemma 4.2, we have that the number of
edges added to the spanner H by phase i0 + 1 is at most

O

(
|Pi0+1| · degi0+1 ·

(
n

1
2κ /2

)i0+1
)

= O
(

2−(i0+1)n1− ρ
2

+κρ+1
2κ

)
= O

(
2−(i0+1)n

1
2κ

)
. (36)

Lemma 4.3. For every j ∈ [2, `′ − i0] we have |Pi0+j | ≤ n1−ρ/2−(j−1)ρ.

Proof. The proof is by induction on the index j. For j = 2, by Lemma 4.2 we have |Pi0+1| ≤ n1−ρ.
In addition, by eq. (15) we have that |Pi0+2| ≤ |Pi0+1| · deg−1

i0+1. Recall that degi0+1 = nρ/2. Hence

we have |Pi0+1| ≤ n1−ρ−ρ/2 and so the claim holds.
Assume that the claim holds for some j ∈ [2, `′− i0−1] and prove it holds for j+ 1. Recall that

degi0+j = nρ. By eq. (15) we have that |Pi0+j+1| ≤ |Pi0+j | · deg−1
i0+j . Together with the induction

hypothesis, we have

|Pi0+j | ≤ n1−ρ/2−(j−1)·ρ · n−ρ = n1−ρ/2−(j+1−1)ρ.

Recall that `′ = i0 + d1/ρ− 1/2e. Hence, by Lemma 4.3 we have

|P`′ | ≤ n1−ρ/2−(d1/ρ−1/2e−1)·ρ ≤ n1−ρ/2−1+(3/2)·ρ = nρ. (37)

Thus, there are no popular clusters during phase `′, and eq. (32) holds also for the last phase.

31



Recall that i0 ≤ bκρc, and therefore i0
2κ ≤

ρ
2 . It follows that(

n
1
2κ

2

)i0
= 2−i0n

i0
2κ ≤ 2−i0n

ρ
2 .

Also, recall that 1/κ < ρ. Observe that by eq. (32) and Lemma 4.3, we have that the number
of edges added to the spanner H by every phase i0 + j, for j ∈ [2, `′ − i0] is at most

O

(
|Pi0+j | · degi0+j ·

(
n

1
2κ /2

)i0+j
)

= O

(
n1−ρ/2−(j−1)·ρ · nρ · nρ/2 · 2−i0

(
n

1
2κ /2

)j)
= O

(
2−i0−jn1−(j−2)· 1

κ
+ j

2κ

)
= O

(
2−i0−jn1+ 1

κ

)
.

(38)

By eqs. (31), (33), (36) and (38) we have that the overall number of edges added to the spanner
H by all phases of the algorithm is

O(n(log κρ+
1

ρ
))+

i0∑
i=0

O
(

2−in1+ 1
κ

)
+O

(
2−(i0+1)n

1
2κ

)
+

`′−i0∑
j=2

O
(

2−i0−jn1+ 1
κ

)
= O

(
n1+ 1

κ

)
. (39)

Recall that we restrict ourselves to the case where κ ≤ c′logn
log(`′/(ρε)) , for a sufficiently small constant

c′. Also recall that `′ ≤ blog γκρc+d1/ρ−1/2e. Note that c′logn
log(`′/(ρε)) ≥

Ω(logn)

log(1/ε)+log(1/ρ)+log(3) n
, where

log(3) n is the three-times iterated logarithm. The following corollary summarizes the properties of
current construction.

Corollary 4.4. For any unweighted, undirected n-vertex graph G = (V,E), and any parameters
ε < 1, κ ∈ [2, clogn

log(1/ε)+log(1/ρ)+log(3) n
], for a constant c and ρ ∈ [1/κ, 1/2], our algorithm computes a

(1 + ε, β)-spanner with O(n1+ 1
κ ) edges in O(βnρ) deterministic CONGEST time, where

β =

(
log κρ+ ρ−1

ερ

)log κρ+ρ−1+O(1+log(3) κ)

.

To obtain the sparsest spanners that one can get with this construction, we set ε > 0 to be an
arbitrarily small constant, and κ = c′logn

log(3) n
. Under this assignment of parameters, the size of the

spanner is just O(nlog logn), and the additive error is β = O( log logn+1/ρ
ρ )log logn+1/ρ.

References

[AB16] Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. In Daniel
Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 351–361. ACM, 2016.

[ABP18] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear
additive spanners. SIAM J. Comput., 47(6):2203–2236, 2018.

32



[ADD+93] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On
sparse spanners of weighted graphs. Discrete & Computational Geometry, 9:81–100,
1993.

[ASZ20] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected
shortest paths via low hop emulators. In Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL,
USA, June 22-26, 2020, pages 322–335. ACM, 2020.

[BR11] Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining ap-
proximate shortest paths under deletions. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, Califor-
nia, USA, January 23-25, 2011, pages 1355–1365, 2011.

[CDKL19] Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast ap-
proximate shortest paths in the congested clique. In Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019, pages 74–83, 2019.

[CKM+14] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,

Anup B. Rao, and Shen Chen Xu. Solving SDD linear systems in nearly mlog1/2n
time. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014,
New York, NY, USA, May 31 - June 03, 2014, pages 343–352. ACM, 2014.

[Coh94] Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 16–26, 1994.

[DMP+05] Devdatt P. Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan,
and Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating
sets and linear-size skeletons. J. Comput. Syst. Sci., 71(4):467–479, 2005.

[DMZ06] Bilel Derbel, Mohamed Mosbah, and Akka Zemmari. Fast distributed graph partition
and application. In 20th International Parallel and Distributed Processing Symposium
(IPDPS 2006), Proceedings, 25-29 April 2006, Rhodes Island, Greece. IEEE, 2006.

[DP20] Michal Dory and Merav Parter. Exponentially faster shortest paths in the congested
clique. In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium
on Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pages
59–68. ACM, 2020.

[Elk01] Michael Elkin. Computing almost shortest paths. In Proceedings of the Twentieth An-
nual ACM Symposium on Principles of Distributed Computing, PODC 2001, Newport,
Rhode Island, USA, August 26-29, 2001, pages 53–62, 2001.

[EM19] Michael Elkin and Shaked Matar. Near-additive spanners in low polynomial determin-
istic CONGEST time. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019.,
pages 531–540, 2019.

33



[EN16a] Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications
to approximate shortest paths. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA, pages 128–137, 2016.

[EN16b] Michael Elkin and Ofer Neiman. On efficient distributed construction of near optimal
routing schemes: Extended abstract. In George Giakkoupis, editor, Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago,
IL, USA, July 25-28, 2016, pages 235–244. ACM, 2016.

[EN17a] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse span-
ners and emulators. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 652–669, 2017.

[EN17b] Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and dis-
tributed routing with low memory. CoRR, abs/1704.08468, 2017.

[EN20] Michael Elkin and Ofer Neiman. Near-additive spanners and near-exact hopsets, A
unified view. Bull. EATCS, 130, 2020.

[EP01] Michael Elkin and David Peleg. (1+epsilon, beta)-spanner constructions for general
graphs. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing,
July 6-8, 2001, Heraklion, Crete, Greece, pages 173–182, 2001.

[EP15] Michael Elkin and Seth Pettie. A linear-size logarithmic stretch path-reporting distance
oracle for general graphs. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 805–821, 2015.

[EZ04] Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1+, varepsilon;,
beta)-spanners in the distributed and streaming models. In Soma Chaudhuri and Shay
Kutten, editors, Proceedings of the Twenty-Third Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, July
25-28, 2004, pages 160–168. ACM, 2004.

[HKN16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic
almost-tight distributed algorithm for approximating single-source shortest paths. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 489–498, 2016.

[HKN18] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-
source shortest paths on undirected graphs in near-linear total update time. J. ACM,
65(6):36:1–36:40, 2018.

[HP17] Shang-En Huang and Seth Pettie. Thorup-zwick emulators are universally optimal
hopsets. CoRR, abs/1705.00327, 2017.

[HP18] Shang-En Huang and Seth Pettie. Lower bounds on sparse spanners, emulators, and
diameter-reducing shortcuts. In David Eppstein, editor, 16th Scandinavian Symposium
and Workshops on Algorithm Theory, SWAT 2018, June 18-20, 2018, Malmö, Swe-
den, volume 101 of LIPIcs, pages 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

34



[HZ96] Shay Halperin and Uri Zwick. Optimal randomized EREW PRAM algorithms for find-
ing spanning forests and for other basic graph connectivity problems. In Éva Tardos,
editor, Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 28-30 January 1996, Atlanta, Georgia, USA, pages 438–447. ACM/SIAM, 1996.

[JS20] Arun Jambulapati and Aaron Sidford. Ultrasparse ultrasparsifiers and faster laplacian
system solvers. CoRR, abs/2011.08806, 2020.

[KLOS14] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-
linear-time algorithm for approximate max flow in undirected graphs, and its multicom-
modity generalizations. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Ore-
gon, USA, January 5-7, 2014, pages 217–226. SIAM, 2014.

[KMST10] Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng. Subgraph
sparsification and nearly optimal ultrasparsifiers. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA,
5-8 June 2010, pages 57–66, 2010.

[KMW18] Fabian Kuhn, Yannic Maus, and Simon Weidner. Deterministic distributed ruling
sets of line graphs. In Structural Information and Communication Complexity - 25th
International Colloquium, SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21,
2018, Revised Selected Papers, pages 193–208, 2018.

[KP12] Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners.
In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science 2012, Cam-
bridge, MA, USA, January 8-10, 2012, pages 393–398. ACM, 2012.

[LN20] Jakub Lacki and Yasamin Nazari. Near-optimal decremental approximate multi-source
shortest paths. CoRR, abs/2009.08416, 2020.

[LP13] Christoph Lenzen and David Peleg. Efficient distributed source detection with limited
bandwidth. In Panagiota Fatourou and Gadi Taubenfeld, editors, ACM Symposium on
Principles of Distributed Computing, PODC ’13, Montreal, QC, Canada, July 22-24,
2013, pages 375–382. ACM, 2013.

[LP15] Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation and appli-
cations. In Chryssis Georgiou and Paul G. Spirakis, editors, Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastián, Spain, July 21 - 23, 2015, pages 153–162. ACM, 2015.

[Pel00] David Peleg. Distributed computing: A locality-sensitive approach. 01 2000.

[Pet07] Seth Pettie. Low distortion spanners. In Lars Arge, Christian Cachin, Tomasz Jur-
dzinski, and Andrzej Tarlecki, editors, Automata, Languages and Programming, 34th
International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceed-
ings, volume 4596 of Lecture Notes in Computer Science, pages 78–89. Springer, 2007.

[Pet08] Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages 253–
262, 2008.

35



[Pet09] Seth Pettie. Low distortion spanners. ACM Trans. Algorithms, 6(1):7:1–7:22, 2009.

[Pet10] Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons.
Distributed Computing, 22(3):147–166, 2010.

[RZ04] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Algorithms
- ESA 2004, 12th Annual European Symposium, Bergen, Norway, September 14-17,
2004, Proceedings, pages 580–591, 2004.

[SEW13] Johannes Schneider, Michael Elkin, and Roger Wattenhofer. Symmetry breaking de-
pending on the chromatic number or the neighborhood growth. Theor. Comput. Sci.,
509:40–50, 2013.

[She13] Jonah Sherman. Nearly maximum flows in nearly linear time. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013,
Berkeley, CA, USA, pages 263–269. IEEE Computer Society, 2013.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago,
IL, USA, June 13-16, 2004, pages 81–90. ACM, 2004.

[TZ06] Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance er-
rors. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 802–809,
2006.

36


	1 Introduction
	1.1 Background and Our Results
	1.2 Technical Overview
	1.2.1 Distributed Implementation

	1.3 Related Work
	1.4 Outline
	1.5 Preliminaries 
	1.5.1 The Distributed CONGEST Model
	1.5.2 Ruling Sets


	2 Centralized Construction
	2.1 The Construction
	2.1.1 Execution Details
	2.1.2 Setting Parameters

	2.2 Analysis of the Construction
	2.2.1 Analysis of the Number of Edges
	2.2.2 Analysis of the Stretch
	2.2.3 Analysis of the Running Time
	2.2.4 Rescaling


	3 A Construction of Ultra-Sparse Near-Additive Emulators in the CONGEST Model
	3.1 The Construction
	3.1.1 Setting Parameters
	3.1.2 Superclustering Step
	3.1.3 Interconnection Step

	3.2 Analysis of the Construction
	3.2.1 Analysis of the Number of Edges
	3.2.2 Analysis of the Stretch
	3.2.3 Analysis of the Running Time
	3.2.4 Rescaling

	3.3 Fast Centralized Construction

	4 Near-Additive Spanners
	4.1 Analysis of the Number of Edges


