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Over the years, population protocols with the goal of reaching consensus have been studied in great depth. However, many systems

in the real-world do not result in all agents eventually reaching consensus, but rather in the opposite: they converge to a state of rich

diversity. Consider for example task allocation in ants. If eventually all ants perform the same task, then the colony will perish (lack

of food, no brood care, etc.). Then, it is vital for the survival of the colony to have a diverse set of tasks and enough ants working on

each task. What complicates matters is that ants need to switch tasks periodically to adjust the needs of the colony; e.g., when too

many foragers fell victim to other ant colonies. A further difficulty is that not all tasks are equally important and maybe they need

to keep certain proportions in the distribution of the task. How can ants keep a healthy and balanced allocation of tasks?

To answer this question, we propose a simple population protocol for = agents on a complete graph and an arbitrary initial

distribution of : colours (tasks). In this protocol we assume that each colour 8 has an associated weight (importance or value) F8 ≥ 1.

By denoting F as the sum of the weights of different colours, we show that the protocol converges in $ (F2= log=) rounds to a

configuration where the number of agents supporting each colour 8 is concentrated on the fair shareF8=/F andwill stay concentrated

for a large number of rounds, w.h.p.

Our protocol has many interesting properties: agents do not need to know other colours and weights in the system, and our

protocol requires very little memory per agent. Furthermore, the protocol guarantees fairness meaning that over a long period each

agent has each colour roughly a number of times proportional to theweight of the colour. Finally, our protocol also fulfils sustainability

meaning that no colour ever vanishes. All of these properties still hold when an adversary adds agents or colours.

1 INTRODUCTION

Diversification, i.e., the action of diversifying something, is omnipresent: companies balancing the ratio of male to

female employees, farmers sowing a large variety of crops, investment funds diversifying their portfolios to be more

resilient, bees reallocating tasks to guarantee the survival of the hive, etc.

In order to understand how diversification works on a global scale through local choices, we study the problems from

a population protocols perspective: through simple local choices. Consider a population of = agents, where each agent

has one of : colours and each colour has an associated weight greater than or equal to 1. The main question we ask

ourselves is: Assuming limited interactions between the agents, does there exist a population protocol that converges

to a state where each colour has a support which is, roughly, proportional to its weight?

Before answering such a question, it is relevant to explain why this problem is not trivial. At first we may wonder

why we just don’t trivially choose a random colour with probability proportional to its weight? There are a couple of

reasons for not doing this. First, in order to carry out such simple protocol, each agents needs to know the normalisation

constant of the distribution, and thus we need to know all the different colours presented in the system and their

respective weights, which requires too much memory and computation. Second, if one colour is removed from the

system (e.g. an external agent recolours all red agents blue1), other agents will not be notified of this change. The

same happens if nature changes the colour of an agent by a completely new one (e.g. an ant notices that the nest

temperature is too hot and starts fanning). Therefore, the trivial protocol is not robust to changes in the structure of

the population, and therefore it is not good to solve the diversification task. In order to make this protocol more robust,

1This could arise when a task is fulfilled and no longer necessary.
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agents would need to constantly broadcast their list of colours, implying a lot of time, memory, local computation, and

large messages, likely exceeding the capabilities of simple organisms such as ants.

In this work, we propose a much more biologically plausible protocol, the Diversification protocol, where each

agent only requires one extra bit of memory (besides remembering its own colour and its corresponding weight), and

agents only need to communicate their own colour and weight. We will show that the Diversification protocol

achieves diversity, and we will also show that our protocol is fair and sustainable. By fairness, we mean that over a

long enough period, each agent D has each colour 8 ∈ [:] a portion of time which is roughly proportional to the weight

F8 ≥ 1,F8 ∈ R associated to the colour. For example, in the context of task-allocation, this means that all agents

perform every task for roughly the same amount of time.

Sustainability refers to the process guaranteeing (with probability 1) that no colour ever vanishes. Our protocol is

also robust to structural changes: even when an adversary adds agents and colours, the protocol quickly returns into

a state of diversity and fairness. Note that none of these properties implies one another.

Our Diversification process is not only simple, but also very efficient in converging, as it takes$ (F2= log =) time-

steps to converge, whereF =
∑:
8=1F8 is the sum of the : weights of the different colours in the system. Assuming that

the total weight F does not depend on the size of the population, the protocol is even asymptotically optimal, as for

example, if a colour is supported by exactly one agent out of =, then such colour has to propagate to at least a set of

agents of size Θ(=), which takes at least time Ω(= log =) in a population protocol by simple broadcasting arguments.

Interestingly, the questions of diversity, fairness and sustainability have not been asked in the context of population

protocols, yet.2 Instead, research has focused almost uniquely on understanding the opposite question: how can the

population agree on one colour?

1.1 Related work

The closest works to ours are [32–34] by Yasumi et al., where they study population protocols designed to obtain equi-

sized partitions. In these works the authors focused on deterministic scheduling (worst-case), and investigated several

space-complexity problems under several assumptions on, e.g., initial states, power of the (deterministic) adversarial

scheduling, etc, where the main objective is to find protocols that use the least number of states. Our approach is

rather different as we assume a random schedule, where no adversary is trying to boycott our protocol by slowing

down interactions between agents, and thus we focus on finding a fast and simple protocol.

Diversity can be seen as an opposite problem of consensus, which is the most studied problem in the field of popula-

tion protocols. Here = agents start with one of : distinct colours and the goal is to converge quickly to a single colour.

The required time is called the consensus time. This finds application in understanding spreading phenomena, for ex-

ample the spread of infectious diseases, rumours and opinions in societies, or viruses/worms in computer network.

Arguably, the simplest model is the so-called Voter model, where each agent simply samples a neighbour uniformly

at random and adopts its opinion. See [11, 21, 28] for the state-of-the-art. Other well studied consensus population

protocols include 2-Choices and 3-Majority to reach consensus. In the former each agent D samples two other agents

in each time-step and updates its colour if both other agents have the same colour. In the latter, D samples two agents

and if together with D’s own colour there is a majority, then D picks the corresponding colour; otherwise it picks one

uniformly at random among the three colours. See [4, 6, 12–14, 16, 22, 26] for references of the state-of-the-art. While

2-Choices and 3-Majority are not exactly a population protocol in the sense that interactions are not pairwise, those

2There has been some work by Yasumi et al. on finding equi-sized partitions in deterministic population protocol settings. See Section 1.1 for more
details.
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protocols have been extended to actual population protocols, with the help of extra memory per agent [5]. The state-

of-the-art for population protocols reaching consensus is [7] (with elaborate communication and timing strategies).

Other related spreading/consensus processes include theMoran process [18, 23], contact processes, and other classic

epidemic processes [8, 24, 27].

Another protocol closely related to ours is the anti-voter model, where each agent starts with one of two opposite

colours. In this protocol agents interact in the same way as the Voter model, but agents adopt the opposite colour of

the sampled neighbour. It is proven that in the long term agents reach an equilibrium and that agents are constantly

changing colours [1, 31]. However, it is worth noting that this protocol works only for two colours and that agents

know the colours, thus it is not straightforward to extend this protocol to more colours, without the use of extra

memory by the agents.

Another related type of protocols are averaging processes [2], in which upon a pairwise interaction, both agents

adopt the average of their opinions. In [29], the authors considered various average processes, in the context of load bal-

ancing. Their most related process is the so-called diffusion load-balancing process in the matching model, in which

each node starts with some load and in every round the nodes are randomly matched and average their load. The

authors obtained bounds on the convergence time and the load discrepancy over time. Recently, authors of [25] con-

sidered the noisy-averaging population protocol. Here, each agent has an initial value and the goal is to agree on the

average. The catch is that the communication is noisy and the value communicated by the agents can be altered. The

authors studied the behaviour of the simple averaging protocol in which two agents are chosen uniformly at random

and both set their values to the average of the received value and their own value.

Population protocols have also been used in the context of community detection. Most of the research here has

focused on the stochastic block model where each agent belongs to one of two communities. The agents from the same

community have an edge with probability ? and agents from different communities have an edge with probability @,

where @ < ? . The goal is to recover the hidden partition. See [3, 17, 26] for more details.

There has also been a large body of research on task allocation. Note that our problem is a special case of task

allocationwhere each task has a demand proportional toF8 . See [15, 19, 30] for ant-inspired research on task allocation.

The main difference from our work is that this line of research assumes that the ants receive feedback from the tasks

indicating whether there are too many or too few ants working on the task. In our setting, there is no such explicit

feedback; agents receive implicit feedback through sampling the current colour of other agents.

1.2 Model and protocol

We study the following population protocol. Initially, there are = agents, each of which has one colour out of : colours;

and each colour 8 ∈ [:] has an associated weight F8 ≥ 1. The system evolves as follows: at every time-step an agent

D is scheduled u.a.r. (uniformly at random). The scheduled agent D then samples another agent E u.a.r, and observes

the colour of E , as well as its weight, and then processes such information, leading to a possible change of colour and

the associated weight. We denote by 2D (C) the colour of agent D after the C-th time-step, and 2D (0) its initial colour.
Additionally, we denote by �8 (C) the number of agents with colour 8 at time-step C , i.e., �8 (C) = |E ∈ [=] : 2E (C) = 8 |.

We now introduce the properties we will study in this paper: diversity, fairness, and sustainability.

Definition 1.1.
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(1) Diversity. A protocol is diverse if there exists a C0 ≥ 0 and ) = Ω(=U ) such that w.h.p.3�����8 (C)=
− F8

F

���� = $̃

(
1
√
=

)
, (1)

for any C ∈ {C0, . . . ,) } and 8 ∈ [:]. In words, the population stabilises in a subset of configurations such that

each colour 8 appears in the population proportionally to its weightF8 for Ω(=U ) time-steps. Note that ifF8 = 1

for all colour 8 , then achieving diversity is equivalent to finding a uniform partition of the vertices.

(2) Fairness. A protocol is fair if there exists ) = Ω(=V ) such that for any ) ′
> ) , it holds that w.h.p

|{C ′ ∈ [0,) ′] : 2D (C ′) = 8}|
) ′ = (1 ± > (1))F8

F
,

for any 8 ∈ [:] and any agent D . In words, each agent has, roughly, colour 8 for a proportionF8/F of the times.

(3) Sustainability. A protocol is sustainable if for all C > 0 and any colour 8 , there exists at least one agent with

colour 8 at time C . In other words, no colour ever vanishes.

If a protocol is diverse, fair, and sustainable, it is called good.

Diversification Protocol. We proceed to define the Diversification protocol, which satisfies all the above proper-

ties. In the Diversification protocol all agents have an extra bit of memory, which can be observed by other agents

when they interact. This bit represents the degree of confidence they have in their current colour. Agents whose bit is 1

will not change their current colour, whereas agents whose bit is 0 are open to change their current colour. Pictorially,

we call colours with bit 0 light, and those with bit 1 dark, both of which are also referred to as shade. Therefore, a

dark colour needs to become light before changing into a completely different one. Let 1D (C) represents the extra bit of
memory of agent D after the C-th iteration. We assume that 1D (0) = 1 for all agents D . The Diversification protocol

is defined as follows: suppose that in the (C + 1)-th time-step agent D is scheduled and it samples another agent E u.a.r.

If D has a light colour, and E has a dark colour, then D adopts the colour of E and its shade. If both D and E have the

same dark colour 8 , then D changes its colour to light (i.e. it changes the value of the extra bit to 0) with probability

1/F8 , where F8 ≥ 1 is the associated weight of colour 8 . Formally, the changes occur according to the following rule:

(2D (C + 1), 1D (C + 1)) =




(2E (C), 1) if 1D (C) = 0 and 1E (C) = 1 ,

(2D (C), 0) F.?. 1
F2D (C )

if 1D (C) = 1E (C) = 1 , and 2D (C) = 2E (C) ,

(2D (C), 1D (C)) otherwise.

(2)

Note that when all weights are equal to 1, our protocol gives a deterministic protocol for the uniform partition

problem.

The intuition of the protocol, from the agent point of view, is that if agent D observes another agent E with the same

colour, then this suggests that this colour is over-represented. Of course, using only one observation to decide if one

colour is over-represented is very crude. Nonetheless, in expectation this approach works: the colour distribution ap-

proaches the target distribution (e.g., uniform distribution if all weights are 1). Now, since we have = agents performing

the same protocol over long periods, emergent behaviour appears: the colour distribution will be concentrated around

its expected value, the target distribution.

To ensure that the protocol indeed converges towards the target distribution, two rules are important. The first

one is that only light shaded colours can change their colour (first line of Eq. (2)), the second rule is that dark shaded

3We use w.h.p. to denote “with high probability" meaning w.p. at least 1 − 1/=.
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colours change their shade to light if they observe another same colour with dark shade with probability equals to the

inverse of the weight of the colour, otherwise they keep the shade (second line of Eq. (2)). This causes heavy weighted

colours to change less often than light weighted ones, and thus we expect to see more of the former than the latter.

A rough idea of why this protocol works is that for each colour 8 , the ’rate’ at which colours 8 decrease by 1 is
1
=2�8 (C)2/(F8 ), whereas the ’rate’ 8 increases by 1 is 1

=2�8 (C)
∑:

9=1� 9 (C)/F 9 , hence equilibrium is achieved when all

values �8 (C)/F8 are roughly the same, that is �8 ≈ F8=/F , leading to diversity. Fairness is obtained by noting that an

agent changes its colour to colour 9 with probability proportional to � 9 (C), and since the protocol eventually reaches

a configuration with � 9 (C) ≈ F 9=/F , we have that for large C , an agent has colour 9 with probability, approximately,

a F 9 /F fraction of the time. Sustainability simply follows from the fact that an agent with a dark shade of a colour

changes its colour only when the agent encountered another agent with the same dark shaded colour. Since only one

agent changes its colour at a given time step, no dark shaded colour can ever vanishes .Moreover, Sustainability is

preserved if new agents are added to the system, or new colours are added, as long as the new colours are initially

dark, and they do not replace the last dark version of another colour.

In the next section we will formalise these ideas, and we will show that the Diversification protocol satisfies the

Diversity and Fairness properties.

Derandomisation. Before finishing this section, we describe a derandomised version of our protocol that avoids the

sampling procedure in the second line of Eq. (2). Here we shall assume that all weights are non-negative integers. Then,

the derandomised Diversification protocol is described as following: Instead of having light and dark shades, we will

have 1+F8 different shades of grey which are enumerated from 0 (light) toF8 (dark). Whenever agent D that has colour

8 and shade greater than 0 is scheduled and it chooses another agent with the same colour and shade greater than 0,

thenD reduces the shade of its colour by 1. If an agent D has colour 8 and shade 0 chooses an agent E with shade greater

than 0, then D adopts the colour of E , say 9 , and sets its shade to F 9 . In all other interactions, the agents do nothing.

Note this algorithm requires ⌈log2 (1 +F8 )⌉ extra bits of memory when it adopts colour 8 .

1.3 Results

For simplicity, in this work we assume that : andF are constants, however, we state most of the intermediate results

in terms of : andF , but we do not attempt to optimise the terms involving : orF .

Theorem 1.2. For constant : and F , the Diversification protocol is good, i.e., it achieves diversity, fairness and sus-

tainability.

To prove the previous theorem we just need to prove that the protocol is diverse and fair as we already argued that

the protocol achieves sustainability. For diversity, we rely heavily on the following theorem, which directly gives the

desired result.

Theorem 1.3. There exists ) = $ (F2= log =), such that w.h.p. it holds that for every colour 8 we have

:∑
8=1

:∑
9=1

�����8 (C)F8
−
� 9 (C)
F 9

����
2

= $ (F= log=) ,

for all C in the interval [), =8].
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Dividing by 2:2 both sides of the previous equation, expanding the squared, and rearranging some terms yields

1

:

:∑
8=1

(
�8 (C)
F8

− G

)2
= $ (F=(log=)/:2) , (3)

where G = (1/:) ∑:
8=1�8 (C)/F8 . From here we will deduce that

�8 (C)
F8

=
=

F
+$ (:

√
F= log=) (4)

holds after $ (= log =) time-steps for at least Ω(=8) time-steps, with high probability. To derive Eq. (4) we just need to

verify that G = =/F +$ (:
√
F= log =). For that notice that Eq. (3) yields

�8 (C) = F8G +F8$ (
√
F:= log=) (5)

hence, by using that
∑:
8=1�8 (C) = =, we get

= = FG +F$ (
√
F:= log =) (6)

from which we deduce that G =
=
F +$ (

√
F:= log =), and thus Eq. (4) holds.

The previous result implies that the Diversification protocol is diverse. While we proved that U in the definition

of diversity can be chosen as U = 8, a simple inspection of our proof shows that U can be chosen as an arbitrarily large

constant. The proof of Theorem 1.3 can be found in Section 2 .

The proof of fairness is provided in Section 2.3 , which is built on the results proved in Section 2 . Themain idea is that

after $ (= log =) time-steps the whole system stabilises for at least Ω(=8) time-steps in configurations where colours

(including light and dark versions) are almost perfectly distributed among the agents (according to the appropriate

weight values). Therefore, the plan is that, instead of following the colours of agents in the Diversification protocol,

we follow agents in a new system where the (dark and light) colours are perfectly distributed among the agents.

1.4 Summary of contributions and main techniques

The main contribution of this paper is to propose and demonstrate that the Diversification protocol achieves diver-

sification, fairness, and sustainability. The analysis of the protocol is mainly probabilistic, and it is divided into three

phases. In the first phase the main technique is to couple certain statistics of our protocol with biased random walks

on the integers in order to achieve rapid convergence (despite the fact that this is the slowest part of the process as the

initial configurations of colours are arbitrary). In the second phase we introduce two potential functions that decrease

over time, and introduce a general concentration inequality to analyse those potentials. Finally, in the third and final

phase we couple the trajectory of the states of agents, that is (2D (C), 1D (C))C≥0 with a Markov chain % that represents

the system in “perfect equilibrium", and show that both processes roughly hit every colour the same amount of times.

To prove our coupling is correct we make use of Chernoff’s Bounds for Markov Chains.

2 ANALYSIS OF THE DIVERSIFICATION PROTOCOL

We begin by setting some notations that will be used throughout the analysis of our protocol. For simplicity, we assume

that the colours are enumerated from 1 to : with corresponding weights F1, . . . ,F: , and we set F =
∑:
8=1F8 . Recall

that 2D (C) denotes the colour of agent D after C-th iterations, and 1D (C) its corresponding shade indicator, 1 for dark

shade, 0 for light shade. We denote by �8 (C) and 08 (C) the number of agents having colour 8 at time C with dark shade

6
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(bit value 1) and light shade (bit value 0), respectively, i.e. for C > 0 ,

08 (C) = |{D : 2D (C) = 8, 1D (C) = 0}|,

and

�8 (C) = |{D : 2D (C) = 8, 1D (C) = 1}| .

Define �(C) = ∑:
8=1�8 (C) and 0(C) = ∑:

8=1 08 (C), and denote by b (C) the process containing all the information at

time C , that is,

b (C) = (�1(C), . . . , �: (C), 01(C), . . . , 0: (C)) .

Let Ω = {(�1, . . . , �: , 01, . . . , 0: ) : �8 ≥ 1, 08 ≥ 0,
∑:
8=1(�8 + 08 ) = =} be the space state where the process b (C) takes

values. Clearly the initial state is such that �8 (0) ≥ 1 for all colours 8 .

As is usually done in population protocol, our analysis is divided in several phases. In each of these phases the

configuration of the system (i.e., the colours of the agents) will be attaining properties that are maintained for long

periods of time (much larger than the duration of those phases), and each successive phase will make use of the

previously achieved properties. The main idea revolves around showing that perfect equilibrium is attained at the

values

08 (C)/= =
F8/F
1 +F and �8 (C)/= =

F8

1 +F , (7)

for all 8 ∈ {1, . . . , :}. The analysis of our protocol requires three phases which we proceed to describe.

Phase 1 starts at time 0 and ends at time g1 = $ (F2= log =). In this phase we will show that w.h.p. the equality

in Eq. (7) can be attained up to multiplicative constants (see Theorem 2.5). This property is shown to hold for at least

Ω(=10) time-steps, enough to be carried to the next phases of the analysis. The analysis of this phase is in Section 2.1.

Phase 2 starts exactly at the end of Phase 1, and lasts for g2 = $ (F= log =) time-steps. This phase is divided in two

consecutive subphases. The first subphase lasts for g2,1 = $ (F= log =) time steps, while the second subphase lasts for

g2,2 = $ (F= log =) time steps. Clearly g2 = g2,1 + g2,2 .
In this phase we will analyse two potential functions q and k , given by

q (C) =
:∑
8=1

:∑
9=1

(
�8 (C)
F8

−
� 9 (C)
F 9

)2
, and k (C) =

:∑
8=1

:∑
9=1

(
08 (C)
F8

−
0 9 (C)
F 9

)2
.

Then, in the first subphase we show that the potential q (C) decreases to$ (F= log =) w.h.p. (Lemma 2.6), and in the

second subphase, k (C) is shown to decrease to $ (F= log =) w.h.p. (Lemma 2.7). These properties hold for at least =8

time steps (see Theorem 2.8). The analysis of Phase 2 is in Section 2.2.

The analysis of the first two phases is enough to prove diversity, however, to prove fairness we need an extra phase.

Phase 3 starts exactly after the end of Phase 2, and lasts for g3 = $ (F= log =) time-steps. In this phase we show

that the system is very close to perfect equilibrium, indeed, Eq. (7) holds up to a small additive error, and such property

holds up to time =8 whp (see Theorem 2.13). To get such approximation, we will show that the potential function f2

given by

f2 (C) = (�(C)/F − 0(C))2

7
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decreases to $ (F= log =), which combined with the fact that the potential functions q (C) and k (C) are already of the

same size, gives us enough information to obtain the desired approximation. Phase 3 is analysed in Section 2.3.

For quick reference, Fig. 1 below shows a short summary of the three phases.

time

Phase 1

g1

$ (1) multiplicative-

error approximation

of Eq. (3)

g3g2,1 g2,2

q (C )
decreases to

O(F= log=)

k (C )
decreases to

O(F= log=)

(Thm 2.5.)

Phase 2

(Thm 2.8.)

Lemma 2.6 Lemma 2.7

Phase 3

(Thm 2.13.)

> (1) additive-error
approximation

of Eq. (3)

W.h.p

All previous

properties

hold up to

time =8

g2

Fig. 1. Summary of the three phases of the analysis.

2.1 Phase 1: The rise of the minorities

In the first phase of the analysis, we handle colours that are largely over-represented or largely under-represented, and

we will show that the system stabilises in a configuration such that for any 8 ∈ [:] ,

08 (C)/= ≈ F8/F
1 +F and �8 (C)/= ≈ F8

1 +F , (8)

where the approximation holds up to a multiplicative constant. For this, we will demonstrate that the process, little by

little, starts improving its configuration, in the sense that we are closer to achieve Eq. (8) over time. At the beginning

the process is rather slow at making progress as some colours may have only one agent supporting them, but as long

as the configuration improves, the speed at which the process improves the configuration increases as well. To discuss

this in detail, we first show that 0(C) = ∑:
8=1 08 (C) quickly increases to roughly (1 − Y)=/(1 +F) (recall that 0(0) = 0).

We achieve this by coupling the process 0(C) with a biased random walk. To see why 0(C) has bias towards increasing
its value, note that at the beginning all agents have dark colours, and therefore interactions between agents of the same

colour are likely to be between agents of the same shade, thus enlarging the chance of increasing the value of0(C). After
obtaining a healthy proportion of light-coloured agents (which are available to change their current colour to any other

colour), we can show that under-represented colours start growing by another biased random walk argument. At first,

we will show that under-represented dark shaded colours, say �8 , have bias toward increasing their representation:

At the beginning, it is unlikely for an agent to sample an under-represented colour 8 and therefore it is unlikely that

an agent switches to 8 , however, it is even less likely that an agent of colour 8 switches to a different colour, so at the

beginning, �8 (C) grows very slowly. Then, as the popularity of colour 8 grows, it becomes more likely to sample 8 , thus

�8 (C) will start to grow increasingly faster, until �8 (C)/= is close toF8/(1 +F) , at which point the bias of the process

start being less relevant to make significant progress. The same can be applied to each under-represented light shaded

colour, say 08 (C), and also to over-represented colours with dark and light shades respectively. By the end of Phase 1

the bias presented in the system is very small, and thus coupling with biased random walks are not enough to prove

improvements in the approximation of Eq. (8).

8



Diversity, Fairness, and Sustainability in Population Protocols

For the formal analysis it is convenient to define the following regions in terms of a constant parameter Y ∈ (0, 1/4):

'1 =

{
b ∈ Ω :

0

=
≥ (1 − Y) 1

F + 1

}

(1 =

{
b ∈ Ω :

0

=
≥ (1 − 2Y) 1

F + 1

}

'2 =

{
b ∈ Ω : ∀8 ∈ [:], �8

=
≥ (1 − 3Y) F8

1 +F

}
∩ (1

(2 =

{
b ∈ Ω : ∀8 ∈ [:], �8

=
≥ (1 − 4Y) F8

1 +F

}
∩ (1

(3 =

{
b ∈ Ω : ∀8 ∈ [:], �8

=
≤ (1 + 4YF) F8

1 +F

}
∩ (2

(4 =

{
b ∈ Ω :

0

=
≤ (1 + 4YF) 1

1 +F

}
∩ (3 .

Note that ' 9 ⊆ ( 9 . Define )0 = 0 and )8 = min{C ≥ )8−1 : b (C) ∈ '8 } , and define ) ′
8 = min{C ≥ )8 : b (C) ∈ Ω \ (8 } .

Lemma 2.1. Let 2 > 0 be a sufficiently small constant. For any b (0) ∈ Ω , we have that)1 = $ (=F/Y) with probability

at least 1 − exp(2Y=) . Moreover, if b (0) ∈ '1 then ) ′
1
> exp(2=Y2/F) with probability at least 1 − exp(−2=Y2/F) .

Lemma 2.2. Let 2 > 0 be a sufficiently small constant. For any b (0) ∈ Ω , we have )2 = $ (F= log=/Y) with

probability at least 1 − exp
(
−2=Y2/F

)
. Additionally, if b (0) ∈ '2 then ) ′

2
> exp(2=Y2/F) with probability at least

1 − exp
(
−2=Y2/F

)
.

Lemma 2.3. Assume that b (C) ∈ (2 . Then, b (C) ∈ (3 .

Proof. Using the lower bounds, we have,�8 ≤ =−0−∑
9≠8 � 9 ≤ =− (1−2Y)=/(F +1)− (1−4Y)=(F−F8 )/(1+F) ≤

=
F8

F+1 + =4Y F
F+1 .

�

Lemma 2.4. Assume that b (C) ∈ (3 . Then, b (C) ∈ (4 .

Proof. Using the lower bounds, we have, 0 ≤ = −∑:
8=1�8 ≤ (1 − 4Y)=F/(1 +F) ≤ =

F+1 + 4Y=F/(1 +F) . �

For any X > 0 define the set of configurations E = E(X) ⊆ Ω by

E(X) =
{
b ∈ Ω :

�8

F8
∈

[
(1 − X)=
1 +F ,

(1 + X)=
1 +F

]
∀8 ∈ [:], and 0 ∈

[
(1 − X)=
1 +F ,

(1 + X)=
1 +F

]}
. (9)

By applying the previous lemmas in order with Y = X
4F we obtain the following result.

Theorem 2.5. Let X > 0 be fixed, then there exists g1 = $ (F2= log =) such that

P
©­
«
g1+=10⋂
C=g1

{b (C) ∈ E}ª®
¬
≥ 1 − exp

(
−Ω(=/F3)

)
.

Note that g1 in the previous theorem implicitly depends on the choice of X . For our purposes, we just fix X as a small

enough constant (for our analysis X = 0.0001 is more than enough). The second phase of the process starts exactly at

9
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time g1 of Theorem 2.5 , where we know that w.h.p. �8 (C)/F8 and 0(C) are equal up to multiplicative constants, and

this is valid for at least =10 time-steps.

The proof of the previous theorem and the respective lemmas can be found in Section 4.1.

2.2 Phase 2: Reaching Equilibrium - Proving Diversity

The second phase starts when the proportions 08/F8 are all equal up to a multiplicative constant, as well as the pro-

portions �8/F8 . It is convenient to restart time back to 0 for the analysis of phase 2 of the process. Therefore we set

the starting configuration of phase 2 as b (0) . We know that b (0) ∈ E and it has the property b (C) ∈ E for at least =10

time-steps.

As it was mentioned at the beginning of this section, in the second phase we will analyse two potential functions q

and k , given by

q (C) =
:∑
8=1

:∑
9=1

(
�8 (C)
F8

−
� 9 (C)
F 9

)2
, (10)

and

k (C) =
:∑
8=1

:∑
9=1

(
08 (C)
F8

−
0 9 (C)
F 9

)2
. (11)

Also, recall that Phase 2 is divided into two consecutive subphases, Subphase 2.1 and Subphase 2.2, lasting g2,1 and g2,2

time-steps, respectively. In the first one we prove that q (C) reduces its value to$ (F= log=), and in the second one we

show the same for k (C).
It is worth mentioning that both potential functions depend on each other implicitly. Potential function q only

depends on terms containing �8 (C)’s, however, there is an implicit dependency on light shaded colours, as only light

shaded agents can transform into dark shaded ones. The same holds for the potential function k . Fortunately, the

properties proved in Phase 1 of our analysis (that hold for very long periods of time) allow us to control the implicit

dependency between the potentials. In particular,wewill verify that bothq andk are approximately super-martingales,

and both present a drift towards reducing their value, and indeed, we will show that their values halve every $ (F=)
time-steps. In order to obtain strong w.h.p. bounds for q andk , we introduce a Chung-Lu-type concentration to bound

a general class of processes containing q and k (see Lemma 2.11), which may be of independent interest. Using our

new bounds, we are able to show that the potentials quickly reach size $ (F= log =) (Lemma 2.6 and Lemma 2.7).

Recall that we restart time at the beginning of Phase 2. For the analysis of Subphase 2.1 we define the event �C by

�C = {b (B) ∈ E , for all B ∈ {0, 1, . . . , C − 1}} , (12)

then we have the following result.

Lemma 2.6. Given A > 10 , there exists � > 0 and g2,1 = $ (F= log =) such that with probability at least =10−A ,

1�C

:∑
8=1

:∑
9=1

(
�8 (C)
F8

−
� 9 (C)
F 9

)2
≤ �F= log = , (13)

for all C ∈ {g2,1, g2,1 + 1, . . . , g2,1 + =9} .
10
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Note that in the above lemma we prove the result for 1�Cq (C) instead of q (C) . This is just for the sake of the formal

analysis, as we know from Phase 1 that the events �C hold true w.h.p..

Similarly, we can prove that the second potential k also decreases very fast to a value of $ (F=) . However, we can
only prove this after Subphase 2.1 is over as our analysis uses the fact that q (C) is already small. Again, it is convenient

to restart time at g2,1 (i.e. we start Subphase 2.1 at time 0).

Define the set of configurations E′ ⊆ Ω as

E′
=



b ∈ Ω :

:∑
8=1

:∑
9=1

(
�8

F8
−
� 9

F 9

)2
≤ �F=



∩ E , (14)

where E is defined in Eq. (9) , and define the event � ′
C = {b (B) ∈ E′ ,∀B ∈ {0, . . . , C − 1}}, which we know it holds true

after Phase 2.1 for at least =9 time-steps by Lemma 2.6.

Lemma 2.7. Given A > 9 , there exists � ′
> 0 and g2,2 = $ (F= log=) such that with probability at least =9−A ,

1�′
C

:∑
8=1

:∑
9=1

(
08 (C)
F8

−
0 9 (C)
F 9

)2
≤ � ′F= , (15)

for all C ∈ {g2,2, . . . , g2,2 + =8} .

Again, note that we prove the result for the process 1�′
C
k (C) instead of k (C) , but, as before, this is just for having

simpler analysis as in practice the events � ′
C hold w.h.p. in Phase 2.2 .

Combining Theorem 2.5, Lemma 2.6, and Lemma 2.7 gives the main result of this section.

Theorem 2.8. Consider the Diversification protocol starting from an arbitrary configuration in Ω. Then for any

constant A > 0, there exists a time-step g = g1 + g2,1 + g2,2 = $ (F2= log=) and a constant � > 0 such that with

probability at least 1 −$ (=−A ) we have that
:∑
8=1

:∑
9=1

(
�8 (C)
F8

−
� 9 (C)
F 9

)2
≤ �F= log = , and

:∑
8=1

:∑
9=1

(
08 (C)
F8

−
0 9 (C)
F 9

)2
≤ �F= log = ,

for all C ∈ {g, g + 1, . . . , g + =8} .

We note that Theorem 1.3 is a straightforward corollary of Theorem 2.8 . The strategy to prove Lemma 2.6 and

Lemma 2.7 is to show that after$ (F=) time-steps the value of each potential function halves (in the respective phases).

In order to prove the potentials halve, we use the following lemmas that establish some properties about q and k

respectively.

Denote by FC the filtration generated by the configurations of colours up to time C , and let �C be an increasing

sequence of events such that�C ∈ FC−1 for C ≥ 1 and�0 ∈ F0 . The potential functions satisfy the following properties:

Lemma 2.9. Let ) ≥ 0 be an integer. Suppose that event {bC ∈ E} is contained in �C+1 for all C ≥ ) , then there exist

constants �1,�2,�3,�4, �5 and �6 (independent of ) , : , etc.) such that for any C ≥ ) ,

(1) E(1�C+1q (C + 1) |FC ) ≤ 1�C+1q (C)
(
1 − �1

=F

)
+�2 ,

(2) V0A (1�C+1q (C + 1) |FC ) ≤ �31�C
q (C)/F +�4 ,

(3) |1�C+1q (C + 1) − E(1�C+1q (C + 1) |FC ) | ≤ �5:
√
1�C

q (C) +�6: .

11
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Lemma 2.10. Let) ≥ 0 be an integer. Suppose that event {bC−1 ∈ E} ∩ {k (C −1) ≥ max(16q (C −1), :2)} is contained
in�C , then there exist constants �1,�2, �3, �4,�5,�6 (independent of ) , : , etc.) such that for any C ≥ )

(1) E(1�C+1k (C + 1) |FC ) ≤ 1�C
k (C)

(
1 − �1

=

)
+�2 ,

(2) V0A (1�C+1k (C + 1) |FC ) ≤ �3:1�C
k (C) +�4 ,

(3) |1�C+1k (C + 1) − E(1�C+1k (C + 1) |FC ) | ≤ �5:
√
1�C

q (C) +�6: .

We remark that the only difference between the previous two results is that the second lemma requires an extra

condition on the event �C . This difference is key, as any meaningful application of Lemma 2.10 requires knowing that

k (C − 1) ≥ 16q (C − 1) , and thus q (C − 1) needs to be already small for any simple application of it.

The previous two lemmas are not particularly useful by themselves, however we prove the following concentration

inequality, which combining with the previous results leads to the proof the main results of this phase.

Lemma 2.11. Let " (C) be a stochastic process adapted to a filtration FC . Suppose that " (C) ≥ 0 satisfies

(i) E(" (C) |FC−1) ≤ (1 − U)" (C − 1) + V , with 0 < U < 1, and V > 0 ;

(ii) |E(" (C) |FC−1) −" (C) | ≤ W ;

(iii) V0A (" (C) |FC−1) ≤ X2 .

Then for any _ > 0 ,

P(" (C) ≥ E" (C) + _) ≤ exp
©­
«
− _2/2

X2

(2U−U2) +
_W
3

ª®¬
. (16)

Lemma 2.9 and Lemma 2.10 are proved in Section 4.2.1. The proofs of Lemma 2.6 and Lemma 2.7 are deferred to

Section 4.2.2, and finally the proof of Lemma 2.11 can be found in Section 4.2.3.

2.3 Phase 3: A finer Equilibrium

Our next goal is to prove the next theorem.

Theorem 2.12. For constant : and F , the Diversification protocol achieves fairness.

In order to demonstrate fairness, we need to prove a finer characterisation of the colour distribution for large times.

Such characterisation can only be proved by using the properties that are proved to hold after the first two phases of

the process. Therefore, this new characterisation is proved in Phase 3, which starts immediately after phase 2 and last

for g3 time steps.

Theorem 2.13. Given A > 9 there exists � > 0 and g = g1 + g2,1 + g2,2 + g3 = $ (F2= log=) such that with high

probability 1 −$ (=−A ), it holds that for all 8 ∈ {1, . . . , :} and for all C ∈ {g, . . . , =8} .����8 (C) −
F8

1 +F =
��� ≤ �=3/4(log=)1/4 , and

����08 (C) − F8

(1 +F)F =

���� ≤ �=3/4(log=)1/4 .

As usual, for the proof of the theorem it will be convenient to restart time after phase 2. Recall that � ′
C = {b (B) ∈

E′ ,∀B ∈ {0, . . . , C − 1}}, where E′ is defined in Eq. (14) . For the proof of the Theorem 2.13 we define the set Ê ⊆ Ω as

Ê =



b ∈ Ω :

:∑
8=1

:∑
9=1

(
08

F8
−

0 9

F 9

)2
≤ � ′F= log =



∩



b ∈ Ω :

:∑
8=1

:∑
9=1

(
�8

F8
−
� 9

F 9

)2
≤ � ′F= log =




12
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where� ′
> 0 is a large constant. By Theorem 2.8, we have that b (C) ∈ Ê for all C after Phase 2 for at least =8 time steps

with probability at least 1 −$ (=−A ) (the constant � ′ depends on A ). Define �̂C = {b (B) ∈ Ê,∀B ∈ {0, . . . , C − 1}}.
The proof of Theorem 2.13 follows by combining Theorem 2.8 and the following lemma.

Lemma 2.14. Given A > 9 there exists �̂ > 0 and g3 = $ (F= log =) such that with probability at least =9−A , we have

for all C ∈ {0, . . . , =8 − g3} ,

1
�̂C

(
�(C)
F

− 0(C)
)2

≤ �̂=3/2
√
log = . (17)

To see why Theorem 2.13 follows, we recall that Theorem 2.8 tells us that proportions are respective between the

number of vertices representing colours of the same shade, however, we do not know how many vertices there are

of each shade. Fortunately, Lemma 2.14 tells us that if we wait g3 extra steps after the time Theorem 2.8 starts working

(given by g1 + g2,1 + g2,2), then Lemma 2.14 provides one extra equation, which is enough to completely determine the

number of agents supporting each dark colour and light colour, up to a small additive error.

The proof of Lemma 2.14 is provided in Section 4.3, which follows the same steps of the proof of Lemma 2.6 and

Lemma 2.7.

2.4 Proof of Theorem 2.12 - Via Markov Chain approximation

Recall that each agent has one of : colours, and each colour is either light or dark shaded. We denote by �8 the dark

shaded version of colour 8 , and !8 its light shaded version. Therefore, in our protocol, we can imagine that each agent is

moving in the state space {�1, . . . , �: , !1, . . . , !: } according to some transition rule that depends on the current state

of the agent as well as the states of all other agents (i.e. the trajectory of one agent is not a Markov chain by itself). Let

"> (C) denote the trajectory of a particular agent on the state space {�1, �2, . . . , �: , !1, !2, . . . , !: }.
Even though "> is not a Markov chain, we can approximate it by one. Indeed, let " be the Markov chain on the

state space {�1, �2, . . . , �: , !1, . . . , !: } with transition matrix % given by

% (!9 , �8 ) =
F8

(1 +F)= , for all 8, 9 ;

% (!8 , !8) = 1 − F

(1 +F)= , for all 8 ;

% (�8 , !8 ) =
1

(1 +F)= , for all 8 ;

% (�8 , �8 ) = 1 − 1

(1 +F)= , for all 8 ,

while all other entries of % are 0. We introduce" as it describes the trajectory of a particle across all the states of the

system when the system is perfectly balanced: with probability 1/= the agent is chosen to observe a random neighbour,

and in perfect equilibrium, each dark shaded colour appears in a proportionF8/(1 +F), and each light shaded colour

in proportionF8/(F (1 +F)) (c.f. Theorem 2.13). The idea is that, despite the fact that such perfect equilibrium is very

unlikely to be achieved, Theorem 2.13 ensures that the system stays close to such equilibrium for long periods of time.

We claim that the stationary distribution of" is given by

c (!8) =
F8/F
1 +F , and c (�8 ) =

F8

1 +F ,

13



Nan Kang, Frederik Mallmann-Trenn, and Nicolás Rivera

which can be directly verified by definition of stationary distribution, that is,

c (�8 ) = c (�8 )% (�8 , �8 ) +
:∑
9=1

c (!9 )% (!9 , �8 ) , and

(18)

c (!8) = c (!8 )% (!8 , !8 ) + c (�8 )% (�8 , !8) . (19)

Now, we use the transition matrix % to approximate the trajectory of "> , indeed, let 4AA = 2 (log=)1/4/=1/4, for
some large enough constant 2 . Then by Theorem 2.13, for any C ∈ {g, . . . , =8} we have, that the following holds w.p.

1 − X where X = $ (=−A ).

P("> (C + 1) = !8 |"> (C) = �8 ,FC ) =
�8 (C)/F8

=(= − 1) = % (�8 , !8 ) ± 4AA , (20)

since with probability 1/= the agent is chosen, and it changes its colour from dark to light with probability�8 (C)/(F8 (=−
1)), by the definition of the protocol. In a similar fashion, we have

P("> (C + 1) = �8 |"> (C) = �8 ,FC ) = % (�8 , �8 ) ± 4AA

P("> (C + 1) = � 9 |"> (C) = !8 ,FC ) = % (!8 , � 9 ) ± 4AA, for all 8, 9

P("> (C + 1) = !8 |"> (C) = !8 ,FC ) = % (!8 , !8) ± 4AA . (21)

Note that other transitions have probability 0 as they are impossible by design of the protocol (they have also probability

0 in the transition matrix % ).

Now, fix some state, say �ℓ , and define the following transition matrix %+
�ℓ

, given by

%+�ℓ
(�ℓ , !ℓ ) = % (�ℓ , !ℓ ) − 4AA ,

%+�ℓ
(�ℓ , �ℓ ) = % (�ℓ , �ℓ ) + 4AA ,

%+�ℓ
(�8 , !8) = % (�8 , !8 ) + 4AA , for 8 ≠ ℓ ,

%+�ℓ
(�8 , �8 ) = % (�8 , �8 ) − 4AA , for 8 ≠ ℓ ,

%+�ℓ
(!8 , �ℓ ) = % (!8 , �ℓ ) + :4AA , for all 8 ,

%+�ℓ
(!8 , � 9 ) = % (!8 , � 9 ) − 4AA , for 8 , and 9 ≠ ℓ ,

%+�ℓ
(!8 , !8) = % (!8 , !8) − 4AA , for all 8 .

The idea is that %+
�ℓ

is a transition matrix, such that it increases the probability of all the transitions of "> that

move the agent closer to the state �ℓ and decreases the probabilities of the transitions of "> that prevent the agent

from getting closer to �ℓ . In a similar way we can define %−
�ℓ

, which is defined the same way as %+
�ℓ

but changing the

sign for the 4AA term, and thus representing a transition matrix that decreases transition probabilities that move the

agent closer to �ℓ , and increases the others. Similarly, we define %+
!ℓ

and %−
!ℓ
.

Now, it is convenient to restart time at time g in which the approximation of Theorem 2.13 starts holding true. Recall

that the even of Theorem 2.13 holds with probability 1−X , where X = $ (=−A ) for fixed A > 9. Let #>
�ℓ

(C) be the number

of times "> has been in state �ℓ up to time C , and similarly # +
�ℓ

(C) the number of times a particle moving according

to %+
�ℓ

hits �ℓ up to time C , and define #−
�ℓ

similarly. By the construction of the transitions matrices %+
�ℓ

and %−
�ℓ

, w.p

14
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at least 1 − X the following majorisation between the random variables holds:

#−
�ℓ

(C) - #>
�ℓ

(C) - # +
�ℓ

(C)

for all C ≤ =8−g . To see this, note that starting at any state G ≠ �ℓ one can use a coupling to show that the time it takes

for the process"> to reach �ℓ from G is at most the time it takes the chain %+
�ℓ

to reach �ℓ from G . A similar argument

can be made for the time the chain stays put at �ℓ . With the same argument we can see that #−
�ℓ

(C) - #>
�ℓ

(C).
In the low-probability event (w.p. X) that the event of Theorem 2.13 does not hold, we consider the simple bound

0 ≤ #>
�ℓ

(=8) ≤ =8.

Note that %+
�ℓ

is a recurrent and ergodic Markov chain with (unique) stationary distribution denoted by c+. Note

that the state space has size 2: which is finite, and thus the mixing time is finite as well. Therefore, by the Chernoff’s

bounds for Markov chains (see Theorem A.2), given A > 0 there exists 2 > 0 such that

|# +
�ℓ

(C) − c+ (�ℓ )C | ≤ 2
√
c+ (�ℓ )C log=

with probability 1 − X .

Finally, we notice that %+
�ℓ

is just a small perturbation of % , and it can be easily verified that c+ (�ℓ ) = c (�ℓ )+$ (4AA )
(see Eq. (19)), therefore

# +
�ℓ

(C) ≤ Fℓ C

1 +F +$
(√

FℓC log =

1 +F + (4AA · C)
)

with probability at least ? = 1 − X for arbitrary A > 0. The same argument applies to #−
�ℓ

.

We conclude the proof by noting that from the beginning of the process, the approximations in Eq. (20) and Eq. (21)

only hold from time g = $ (F= log =) as stated in Theorem 2.13, and such approximation is valid up to time =8 with

polynomially large probability. Therefore, we still need to count the number of hits to�ℓ in the interval [0, g], however,
since g = $ (= log=), even the worst-case bounds in such interval are second-order terms compared to the hits in the

interval [g, =8]
We deduce that with probability at least 1 −$ (X) we have that for a particular agent D ,��{C ∈ [0, =8] : 2D (C ′) = ℓ, 1D (C) = 1}

��
=8

=
Fℓ

1 +F (1 ± > (1)) ,

and similarly, by repeating the same argument for !ℓ , we get, with the same probability that��{C ∈ [0, =8] : 2D (C ′) = ℓ, 1D (C) = 0}
��

=8
=

Fℓ

(1 +F)F (1 ± > (1)) ,

and by the union bound, with probability at least 1 −$ (X) it holds that��{C ∈ [0, =8] : 2D (C ′) = ℓ}
��

=8
=
Fℓ

F
(1 ± > (1)) ,

and finally the same holds for all 8 ∈ {1, . . . , :} and all agents at the same time by the union bound, with probability

1 −$ (=:X). Note that we just prove the approximation up to time =8, but for larger times we divide time in segments

of length =8, and in each segment we allow g time-steps in order to reach the approximation of Theorem 2.13, and

then we apply the previous domination argument. Note that the probability that we have a successful approximation

is 1−$ (:=X) = 1−$ (=−A+1) in each interval where A is arbitrarily large. In case something the event of Theorem 2.13

15



Nan Kang, Frederik Mallmann-Trenn, and Nicolás Rivera

does not hold, we just bound the number of visits by =8 and 0, respectively. Choosing A > 10 ensures that w.h.p.

fairness is achieved in the interval. Using Chernoff’s bounds, one can also show fairness over longer intervals.

3 FUTUREWORK AND CONCLUSIONS

We have introduced the notion of diversity, fairness and sustainability to the realm of population protocols.We showed

that the simple Diversification protocol achieves those properties.

Natural open problems are to analyse the derandomised version of our protocol, and to extend our analysis to : and

F depending on the number of agents =. Another research direction is to find protocols that attain a stronger notion

of diversity, where the error term in Eq. (1) is much smaller than $̃ (1/
√
=). We think that finding such protocol will

lead to very interesting trade-off between time and space complexity. Another line of research is to investigate the

diversification protocol in different graph topologies, other than the complete graph.

An interesting research direction is to describe what lies in between consensus and diversification? Finally, one can

ask whether our protocol emerges naturally in the context of learning, or in other distributed systems, perhaps even

in biology.

4 PROOFS

Recall that we assume that theF8 , 8 ∈ [:] and : are constants.

4.1 Proof of Section 2.1

Proof of Lemma 2.1. To begin with, note that

:∑
8=1

�2
8

F8
= F

:∑
8=1

(
�8

F8

)2
F8

F
≥ F

(
:∑
8=1

�8

F8

F8

F

)2
=
�2

F
,

where in the first inequality we used the Jensen’s inequality since F8/F > 0 and
∑:
8=1F8/F = 1 .

Let ? be the probability of increasing 0 and @ the probability of decreasing it. Using the above inequality, we get

? =

:∑
8=1

�8 (�8 − 1)
=(= − 1)F8

≥ �2

F=(= − 1) −
�

=(= − 1) , and

@ =

:∑
8=1

08

=

�

= − 1
=

0�

=2 − =
. (22)

W.l.o.g. assume that the current configuration is not in '1 , we must have that 0 < =(1 − Y) 1
F+1 and therefore,

� ≥ = − =(1 − Y) 1
F+1 . Thus,

�

0
≥

1 − 1−Y
F+1

1−Y
1+F

=
1 +F − 1 + Y

1 − Y
=
F + Y
1 − Y

.

Then, Eq. (22) yields that the probability to decrease in an active time-step (i.e. when 0 changes its value) is

@

@ + ?
≤ 0�

0� +�2/F −�
≤ F

F +�/0 ≤ 1

2
− F + Y − 2(1 − Y)F

2(F + Y) ≤ 1

2
− Y

3
.

This yields a biased random walk, that maintain the probability of increasing at least 1/2 + Y/3 until b (C) ∈ '1 .

Consider only active steps, where 0(C) either increases or decreases its value, and define the stopping time ) ∗
=

minactive step C {b (C) ∈ '1} , and an interval of active time-steps of length ℓ . Hence, according to the Azuma-Hoeffding

16
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inequality, for the number of increases � minus the number of decreases � we have

P

(
� − � ≤ ℓY

5

)
≤ exp

©­­
«
−

(
ℓY
5

)2
2ℓ

ª®®
¬
.

Choosing ℓ = 10=/Y , it guarantees that ) ∗ ≤ ℓ w.p. at least 1 − exp
(
− Y=
50

)
. It remains to show the relationship

between active time-steps and regular time-steps. Recall,

? ≥ �2/F −�

=2 − =
≥ �2 −�F

F=2
= Ω(1/F) .

Hence, there is only a factor F difference throughout the entire regime until ) ∗ . This yields the first part of the

claim.

For the second part, we consider the setting where the biased random walk starts at =(1 − 3Y/2) 1
F+1 and increases

w.p. at least 1/2 + Y/3 . We will apply Theorem A.1 to determine the probability of hitting =(1 − Y) 1
F+1 before hitting

=(1− 2Y) 1
F+1 . We define /C = 0C − (1− 3Y/2) =

F+1 + (Y/2) =
F+1 , 1 = Y =

F+1 , B =
Y
2

=
F+1 . Let ) = min{C ≥ 0 | /C ∈ {0, 1}}.

Then, applying Theorem A.1 and using that
~−G
1−G ≤ ~, we get

P (/) = 0) =

(
1/2−Y/3
1/2+Y/3

)B
−

(
1/2−Y/3
1/2+Y/3

)1
1 −

(
1/2−Y/3
1/2+Y/3

)1 ≤
(
1/2 − Y/3

1/2

)B
≤ (1 − 2Y/3)B

≤ (1 − 2Y/3)
Y
2

=
F+1 = exp

(
−22 =Y

2

F

)
,

for 2 > 0 small enough.

By taking union bound over exp(2=Y2/F) time-steps yields that ) ′
1
≥ exp(2=Y2/F) w.p. at least 1 − exp

(
−2 =Y2F

)
.

This completes the proof.

�

Proof of Lemma 2.2. Let ? be the probability of increasing �8 and @ the probability of decreasing it. We have

? =

:∑
9=1

0 9

=

�8

= − 1
=

0�8

=2 − =
, and

@ =
�8

=

(�8 − 1)
= − 1

1

F8
.

Assume that�8 does not satisfy the property of region '2 and note that 0 is in region (1 such that 0 ≥ (1−2Y)=/(F+
1) , then

�8

0F8
≤

(1−3Y)F8

1+F
(1−2Y)
1+F F8

=
1 − 3Y

1 − 2Y
.

Again, only considering active steps, we get for Y ≤ 2/5 ,
?

@ + ?
=

0
�8−1
F8

+ 0
≥ 1

1 + �8

0F8

≥ 1 − 2Y

1 − 2Y + 1 − 3Y
≥ 1

2
+ Y

4
.

Using a similar biased random work analysis on the active steps as in the proof of Lemma 2.1 , we get that in$ (=/Y)
active steps �8 has the desired size with overwhelming probability.
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Note that the ratio of active steps is proportional to ? , which is up to constants due to our lower bound on 0 and

�8/(F=) . Thus increasing �8 by 1 takes $ ( =F�8Y
) time-steps. Hence, the total time to raise �8 all the way up to linear

in =F8/F is dominated by the geometric series
∑log=/2
8=0 28 ·$ (=F

28Y
) = $ (F= log=

Y ) .
Finally, similar to Lemma 2.1 , �8 remains within the stated bounds with overwhelming probability. �

4.2 Proofs of Section 2.2

4.2.1 Proof of Lemma 2.9 and Lemma 2.10. We proceed to prove Lemma 2.9 and Lemma 2.10 . In the proofs we abuse

notation and use lower-case letter such as 2 , 21, 22, etc. to denote constants, and for convenience we reuse the same

name for different constants.

Proof of Lemma 2.9. We first introduce some notation. For simplicity, let �8 = �8 (C) and �′
8 = �8 (C +1) . We define

the following variables 38 =
�′
8

F8
− �8

F8
, and @8 =

�8

F8
. Let �A =

∑:
8=13

A
8 , and &A =

∑:
8=1 @

A
8 , for A = {1, 2, · · · } . Finally,

denote @8 9 = @8 − @ 9 and 38 9 = 38 − 3 9 .

With the above notations, the potential function q defined in Eq. (10) becomes q (C) = ∑:
8=1

∑:
9=1 @

2
8 9 , and we obtain

1�C+1q (C + 1) = 1�C+1

:∑
8=1

:∑
9=1

(@8 9 + 38 9 )2 = 1�C+1
©­«
q (C) + 2

:∑
8=1

:∑
9=1

@8 938 9 +
:∑
8=1

:∑
9=1

328 9
ª®
¬
. (23)

Note that38 is the proportional change of the value�8 in one step, and that�8 increases its value by 1with probability
0�8

= (=−1) and decreases by 1 with probability
�8 (�8−1)
F8= (=−1) . Then,

E(38 |FC ) =
1

F8

(
0�8

=(= − 1) −
�8 (�8 − 1)
=(= − 1)F8

)
=

1

=(= − 1)

(
0@8 − @28 + @8

F8

)
, and

E(328 |FC ) =
1

F8

(
0�8

=(= − 1) +
�8 (�8 − 1)
=(= − 1)F8

)
=

1

=(= − 1)

(
0@8 + @28 − @8

F8

)
. (24)

Notice that
��E(38 |FC ) − (0@8 − @28 )/=

2
�� ≤ 3/= . Then we have the following bound on the term

∑:
8=1

∑:
9=1 @8 938 9

in Eq. (23) . For some constant 2 > 0 ,

1�C+1E
©­
«

:∑
8=1

:∑
9=1

@8 938 9

������FC
ª®¬
≤ 1�C+1

:∑
8=1

:∑
9=1

@8 9

=2

[
0@8 − @28 − (0@ 9 − @29 )

]
+

:∑
8=1

:∑
9=1

|@8 9 |
3

=

= 1�C+1

:∑
8=1

:∑
9=1

@28 9
0 − (@8 + @ 9 )

=2
+ 2 ≤ −1�C+1

1 − 3X

(1 +F)=q (C) + 2 ,

where in the last step we used the facts that {b (C) ∈ E} ⊆ �C+1 . By the definition of E in Eq. (9) we have 0 ≤ (1+X)=/F
and @8 ≥ (1 − X)=/F , where X is sufficiently small.

As for the term
∑:
8=1

∑:
9=1 3

2
8 9 in Eq. (23) , we notice that 383 9 = 0 for 8 ≠ 9 , which yields

1�C+1E
©­
«

:∑
8=1

:∑
9=1

328 9

������FC
ª®¬
= 1�C+12(: − 1)E

(
:∑
8=1

328

�����FC
)
≤ 1�C+12(: − 1)

:∑
8=1

0@8 + @28
=2

≤ 1�C+1
4:2 (1 + X)2
(1 +F)2

,

where in the last stepwe apply that 0 ≤ (1+X)=/F and @8 ≤ (1+X)=/F for sufficiently small X since {b (C) ∈ E} ⊆ �C+1 .
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Notice that : ≤ F . Thus, replacing Eq. (23) with the above calculations and bounds yields, for some constants

�1, �2 > 0 ,

1�C+1q (C + 1) = 1�C+1

(
q (C) − 2(1 − 3X)

(1 +F)= q (C) + 2 + 4:2 (1 + X)2
(1 +F)2

)
≤ 1�C+1q (C)

(
1 − �1

F=

)
+�2 .

We continue to prove Item 2. We start by noting that

q (C) =
:∑
8=1

:∑
9=1

(@8 − @ 9 )2 = 2:&2 − 2&2
1,

and

q (C + 1) = 2:

:∑
8=1

(@8 + 38)2 − 2(&1 + �1)2

= 2:

(
&2 + �2 + 2

:∑
8=1

@838

)
− 2&2

1 − 2�2
1 − 4&1�1

= q (C) + 4:

:∑
8=1

@838 − 4&1�1 + (2: − 2)�2 .

We compute V0A (1�C+1q (C + 1) − 1�C
q (C) |FC ) by using the previous equation. First note that if 1�C+1 = 0 then

V0A (1�C+1q (C + 1) − 1�C
q |FC ) = V0A (1�C

q (C) |FC ) = 0, since 1�C
q (C) ∈ FC and 1�C+1 ∈ FC . If 1�C+1 = 1, then

1�C
= 1 and thus

V0A (1�C+1q (C + 1) − 1�C
q (C) |FC ) = 1�C+1V0A (q (C + 1) − q (C) |FC )

= 1�C+1V0A

(
:∑
8=1

(4:@8 − 4&1)38 + (2: − 2)�2

�����FC
)

≤ 1�C+1E
©­
«
[
:∑
8=1

(4:@8 − 4&1)38 + (2: − 2)�2

]2������FC
ª®¬

≤ 2 · 1�C+1E
©­
«
[
:∑
8=1

(4:@8 − 4&1)38

]2������FC
ª®
¬
+ 2 · 1�C+1E

(
[(2: − 2)�2]2

��FC ) (25)

We upper bound each of the terms in the equation above as follows: By Eq. (24) and the fact that 0 ≤ (1+X)=/F and

@8 ≤ (1+X)=/F for sufficiently small X since {b (C) ∈ E} ⊆ �C+1 , we know thatE(38) ≤ 4X2

(1+F)2 and E(328 ) ≤
2(1+X)2
(1+F)2 .

Also notice that E(32A+18 ) = E(38) and E(348 ) ≤ E(328 ). Then for term at the right in Eq. (25) we have,

2 · 1�C+1E
(
[(2: − 2)�2]2

��FC ) = 8 · 1�C+1 (: − 1)2
:∑
8=1

E
(
348

��FC ) ≤ 8 · 1�C+1:
2 2(1 + X)2:

(1 +F)2
≤ 8(1 + X)2: = �4: .

For the term at the left in Eq. (25), we notice that 383 9 = 0 for 8 ≠ 9 , and q (C) = 2:&2 − 2&2
1
, and then

2 · 1�C+1E
©­«
[
:∑
8=1

(4:@8 − 4&1)38

]2������FC
ª®
¬
= 2 · 1�C+1

:∑
8=1

(4:@8 − 4&1)2E(328 |FC )

= 16 · 1�C+12(:2&2 − :&2
1)E(3

2
8 |FC ) ≤ 16 · 1�C+1:q (C)

2(1 + X)2
(1 +F)2

≤ 1�C+1
�3

F
q (C) .
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Hence, substituting Eq. (25) with the above calculations yields for �3,�4 > 0

V0A (1�C+1q (C + 1) − 1�C
q (C) |FC ) = 1�C+1

�3

F
q (C) +�4: .

Finally, for Item 3, recall that @8 9 = @8 − @ 9 and 38 9 = 38 − 3 9 , and then from Eq. (23) we get

|1�C+1q (C + 1) − E(1�C+1q (C + 1) |FC ) | = 1�C+1

������
:∑
8=1

:∑
9=1

[
2@8 9 (38 9 − E(38 9 |FC )) + 328 9 − E(328 9 |FC )

] ������
≤ 1�C+1

©­­
«
2

√√√√ :∑
8=1

:∑
9=1

@28 9

√√√√ :∑
8=1

:∑
9=1

(38 9 − E(38 9 |FC ))2 +
:∑
8=1

:∑
9=1

328 9 + E(328 9 |FC )
ª®®
¬

≤ 21�C
q (C)

√
16: + 4: ,

where in the first inequality we used the Cauchy-Schwarz inequality, and the fact that |38 9 | ≤ 1 . �

We show Lemma 2.10 using a similar idea as the proof of Lemma 2.9 .

Proof of Lemma 2.10. Let 08 = 08 (C), 0′8 = 08 (C + 1), @̄8 = 08/F8 , 3̄8 = (0′8 − 08)/F8 . Define &̄ 9 =
∑:
8=1(@̄8) 9 and

�̄ 9 =
∑:
8=1(3̄8) 9 . Recall that � =

∑:
8=1�8 and we denote � = �(C) . We also consider all the notation defined in the

proof of Lemma 2.9.

We begin by enlisting some properties of 3̄8 . Since 08 increases by 1 with probability
�8 (�8−1)
= (=−1)F8

and decreases by 1

with probability 08�
= (=−1) we have that

E(3̄8 |FC ) =
1

F8

[
�8 (�8 − 1)
=(= − 1)F8

− 08�

=(= − 1)

]
=

1

=2

(
@28 − @̄8�

)
− @8

F8=2

which implies that

����E(3̄8 |FC ) − 1

=2

(
@28 − @̄8�

)���� ≤ 3/= .

Let’s prove the first item. Denote @̄8 9 = @̄8 − @̄ 9 and 3̄8 9 = 3̄8 − 3̄ 9 . Then k (C) = ∑:
8=1

∑:
9=1 @̄

2
8 9 . Note that 3̄83̄ 9 = 0

for 8 ≠ 9 and |3̄8 |A ≤ |3̄8 | ≤ 1 for A ≥ 1 , then

E(k (C + 1) |FC ) = E
©­
«

:∑
8=1

:∑
9=1

(@̄8 9 + 3̄8 9 )2
������FC

ª®
¬

≤ k (C) + 2

:∑
8=1

:∑
9=1

@̄8 9E(3̄8 9 |FC ) + 2:

:∑
8=1

E((3̄8)2 |FC )

≤ k (C) + 2

=2

:∑
8=1

:∑
9=1

@̄8 9 (@28 − @29 −�@̄8 9 ) +
6

=

:∑
8=1

:∑
9=1

��@̄8 9 �� + 2:

:∑
8=1

E( |38 | |FC )

≤
(
1 − 2�

=2

)
k (C) + 2

=2

:∑
8=1

:∑
9=1

@̄8 9@8 9 (@8 + @ 9 ) +
6

=

:∑
8=1

:∑
9=1

��@̄8 9 �� + 2:

:∑
8=1

:∑
9=1

(
@28 + @8�

=2
+ 3

=

)
. (26)
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If we work on the event {b (C) ∈ E}, then @8 ≤ 21=/: for some 21 > 0 . Applying the Cauchy-Schwarz inequality

yields

:∑
8=1

:∑
9=1

@̄8 9@8 9 (@8 + @ 9 ) ≤
√
k (C)q (C)21=/:,

and

:∑
8=1

:∑
9=1

|@̄8 9 | ≤ :
√
k (C) .

It holds that 0 ≤ 22=/: for some 22 > 0 on the event {b (C) ∈ E} . Then for some 23 > 0

2:

:∑
8=1

:∑
9=1

(
@28 + @8�

=2
+ 3

=

)
≤ 2:

:∑
8=1

:∑
9=1

(
@28 + 08�

=2
+ 3

=

)
=

2:

=2
©­
«

:∑
8=1

:∑
9=1

@28 + 0� + 3:=
ª®
¬

≤ 2:

=2
©­
«

:∑
8=1

:∑
9=1

(21=
:

)2
+ 22=

:
� + 3:=

ª®¬
≤ 23 .

Replacing the previous three equations in Eq. (26) yields

E(1�C+1k (C + 1) |FC ) ≤ 1�C+1k (C)
(
1 − 2�

=2

)
+ 2

=2

√
21k (C)q (C)=/: +

6:
√
k (C)
=

+ 23

= 1�C+1k (C)
(
1 −

2� − 2
√
21=q (C)/(k (C):) − 6:=/

√
k (C)

=2

)
+ 23

≤ 1�C+1q (C)
(
1 −

(1 + > (1))= −$ (
√
= log =) − (1 − > (1))=
=2

)
+ 23

= 1�C+1q (C)
(
1 − �1

=

)
+�2 ,

for some �1, �2 > 0, where in the previous to last equation we used that in the event �C+1 it holds that q (C) ≥
max{16q (C), :2}, and that 2� ≥ 2(1 − X)2=F/(F + 1) ≥ (1 + 2)= as X is small enough andF ≥ : ≥ 2 .

We continue with Item 2. We note that

k (C + 1) −k (C) = 4:

:∑
8=1

@̄83̄8 + 4&̄1�̄1 + 2:

:∑
8=1

(3̄8)2 − 2(�̄1)2

= 4:

:∑
8=1

@̄83̄8 + 4&̄1�̄1 + (2: − 2)�̄2 .

Following the same reasoning of Item 2 of Lemma 2.9 yields

V0A (1�C+1k (C + 1) − 1�C
k (C) |FC ) = 1�C+1V0A (k (C + 1) −k (C) |FC )

≤ 21�C+1

(
:∑
8=1

(4:@̄8 − 4&̄1)2V0A (3̄8 |FC ) + E
( [
(2: − 2)�̄2

]2���FC )
)
. (27)
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For the first sum, we use |38 | ≤ 1, thus

:∑
8=1

(4:@̄8 − 4&̄1)2V0A (3̄8 |FC ) ≤ 2: (:&̄2 − (&̄1)2) = 2:k (C) , (28)

and for the second term,

1�C+1E
( [
(2: − 2)�̄2

]2���FC ) ≤ 4:21�C+1E

(
:∑
8=1

(3̄8)4
�����FC

)
≤ 4:21�C+1E

(
:∑
8=1

|3̄8 |
�����FC

)

≤ 1�C+1
4:2

=2
(&2 + &̄1�) ≤ 1�C+1

4:2

=2
(&2 + 0�) ≤ 2: , (29)

where in the previous to last step we used that &̄1 =
∑:
8=1 08/F8 ≤ 0, and in the last step that @8 ≤ 2=/: and 0 ≤ 2=/:

in the event {b (C) ∈ E} ⊆ �C+1 . By combining Eq. (27), Eq. (28) and Eq. (29) we obtain Item 2.

Finally, for Item 3,

|1�C+1k (C + 1) − E(1�C+1k (C + 1) |FC ) | = 1�C+1

������
:∑
8=1

:∑
9=1

[
2@̄8 9 (3̄8 9 − E(3̄8 9 |FC )) + (3̄8 9 )2 − E((3̄28 9 ) |FC )

] ������
≤ 1�C+1

©­­
«
2

√√√√ :∑
8=1

:∑
9=1

@̄28 9

√√√√ :∑
8=1

:∑
9=1

(3̄8 9 − E(3̄8 9 |FC ))2 +
:∑
8=1

:∑
9=1

(3̄8 9 )2 + E(3̄28 9 |FC )
ª®®
¬

≤ 2 (1�C+1q (C)
√
: + :) ≤ 2 (1�C

q (C)
√
: + :) ,

where in the first inequality we used the Cauchy-Schwarz inequality, and in the second we used that at most one

agents changes its colour and thus |38 9 | ≤ 1 . �

4.2.2 Proof of Lemma 2.6 and Lemma 2.7 . The proofs of Lemma 2.6 and Lemma 2.7 are essentially the same as Lemma 2.9

and Lemma 2.10 , showing that both protential functions satisfy the same properties (with different constants).

Proof of Lemma 2.6. Set ) = ⌊@F=⌋ where @ is some constant that we will determine later. Let �1, . . . ,�6 be the

constants in Lemma 2.9.

Define the event B9 by

B9 = {1�Bq (B) ≤ =2/29 ,∀B ∈ { 9) , 9) + 1, . . . , =8}},

and note that P(B0) = 1. Let � = min{ 9 ≥ 0 : =2/29 ≤ � log(=)F=}. We will prove that B�) holds with high

probability.

For any 9 ∈ {1, . . . , � } we have that

P((B9) )2 ) ≤ P

({
∃B ∈ { 9) , . . . , =8} : 1�Bq (B) > =2/29

}
∩ B( 9−1))

)
+P((B( 9−1)) )2 ) .

For the first term on the right-hand side we have

P

({
∃B ∈ { 9) , . . . , =8} : 1�Bq (B) > =2/29

}
∩ B( 9−1))

)
≤

=8∑
B=9)

P(1�B
q (B) > =2/29 ) ,

where �B = �B ∩ {q (( 9 − 1)) ) ≤ =2/29−1} for B ≥ ( 9 − 1)) , and note that�B+1 ∈ FB for B ≥ ( 9 − 1)) .
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Now, we iterate Item 1 of Lemma 2.9, and choose @ large enough such that (1 −�1/(=F)) ⌊@F=⌋ ≤ 1
8 . Then, letting

< = =2/29−1 we obtain for any C ≥ 9) ,

E(1�C
q (C)) ≤ 1� ( 9−1)) q (( 9 − 1)) )(1 −�1/(=F))) +�2F=/�1

≤ </8 + �2

�1
F= ≤ </8 + �F=

4
≤ </4 . (30)

In the last inequality we used the definition of � , and in particular that< ≥ =2/2� −1 > � (log=)F=.
Now, define the process" (C) = 1�C+9) q (C + 9) ) for C ≥ 0 and apply Lemma 2.11 with

U = �1/(F=), V = �2, W = �5:
√
< +�6:, X

2
= �3</: +�4, and _ =</4 ,

then we obtain for C ≥ 0 ,

P (" (C) ≥ </2) ≤ P (" (C) ≥ E(" (0)) +</4) ≤ exp
©­«
− _2/2

X2

(2U−U2) +
_W
3

ª®
¬

≤ exp
(
−2min(</=,<1/2/:)

)
, (31)

where 2 is a small constant that only depends on �1,�2, �3 and �4. Now let A > 0, then by choosing � large enough

we get

exp
(
−2min(</=,<1/2/:)

)
≤ =−A .

Therefore, for all B ≥ 9) ,

P(1�B
q (B) > =2/29 ) ≤ =−A .

Thus we conclude that for any 9 ∈ {1, . . . , � } we have that

P((B9) )2 ) ≤ =8=−A +P((B9 )2 ) ≤ �=8=−A +P(B2
0) = =10=−A ,

since P(B0) = 1 and � = $ (log=). �

As for the proof of Lemma 2.7 , we follow the same steps but replacing 1�Cq (C) by 1�′
C
k (C), and the definition of �

by � = min{ 9 ≥ 0 : =2/29 ≤ � ′ log(=)F=}, with� ′
> 32� (where � is the constant chosen in the definition of the set

of configurations E′ in Eq. (14)), and the constants U , V , W and X are replaced by

U = �1/=, V = �2,W = �5:
√
< +�6:, X

2
= �3:< +�4, and _ =</4 .

With the previous changes the RHS of Eq. (31) is replaced by exp
(
−2min(</(:=),<1/2/:)

)
. Note, however, that

</(:=) ≥ � ′ log =, so we can still choose� ′ large enough such that exp
(
−2min(</(:=),<1/2/:)

)
≤ =−A .

4.2.3 Proof of Lemma 2.11. We give a proof of Lemma 2.11. Our proof follows a similar method as the one used in the

proofs Theorems 7.3 and 7.5 of [9] .

Let B ≥ 0 to be chosen later. A simple computation shows for C ≥ 1 ,

23
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E(4B" (C) |FC−1) = 4BE(" (C) |FC−1 )E(4B" (C)−E(B" (C) |FC−1 ) |FC−1)

= 4BE(" (C) |FC−1 ) ©­«
∞∑
9=0

B 9E
(
(" (C) − E(" (C) |FC−1) 9 |FC−1

)
9 !

ª®
¬
. (32)

Let � (C) = 2
∑∞

9=2
C 9−2
9! . For C ≤ 3 we have that the function� (C) is increasing and that � (C) ≤ 1/(1 − C/3). Then

∞∑
9=0

B 9

9 !
E

(
(" (C) − E(" (C) |FC−1) 9 |FC−1

)
(33)

= 1 +
∞∑
9=2

B 9

9 !
E

(
(" (C) − E(" (C) |FC−1) 9 |FC−1

)

≤ 1 +� (BW) B
2

2
V0A (" (C) |FC ) (by Item (ii))

≤ exp

(
(BX)2
2

� (BW)
)

(by Item (iii)) . (34)

By replacing Eq. (34) into Eq. (32) and by Item (i) of the statement, we get

E(4B" (C) |FC−1) ≤ 4E(B" (C) |FC−1 )
(
4

(BX )2
2

� (BW)
)

≤ exp

(
(1 − U)B" (C − 1) + BV + (BX)2

2
� (BX)

)
(by Item (i)) .

Taking expectation on the above equation gives

E4B" (C) ≤
(
E4 (1−U )B" (C−1)

)
exp

(
BV + (BX)2

2
� (BW)

)
. (35)

By iterating and using that � (G) is increasing for G ≤ BW < 3 (we will choose B to ensure BW < 3).

E4B" (C) ≤
(
E4 (1−U )B" (C−1)

)
exp

(
BV + (BX)2

2
� (BW)

)

≤ exp

(
(1 − U)C" (0)B + BV

C−1∑
8=0

(1 − U)8 + (BX)2� (BW)
2

C−1∑
8=0

(1 − U)28
)
. (36)

Then by Markov’s inequality,

P(" (C) ≥ E(" (C)) + _) ≤ exp

(
−_B + (BX)2� (BW)

2

C−1∑
8=0

(1 − U)28
)
≤ exp

(
−_B + (BX)2� (BW)

2U − U2

)
.

Set B = _
X2/(2U−U2)+_W/3 , which ensures that BW ≤ 3 (i.e. we are working in the part where� is increasing). Using that

� (G) ≤ 1/(1 − G/3) for G ≤ 3, we get

P(" (C) ≥ E(" (C)) + _) ≤ exp

(
−_2/2

X2

2U−U2 + _W/3

)
.
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4.3 Proof of Section 2.3

For the proof of Lemma 2.14 is rather similar to the ones of Lemma 2.6 and Lemma 2.7. The proof is a corollary of the

following lemma, which is the analogue of Lemma 2.9 and Lemma 2.10 for the potential f (C) = (�(C)/F − 0(C)).

Lemma 4.1. Let ) ≥ 0 be an integer. Let �C be an event such that �̂C ⊆ �C+1 ∈ FC for all C ≥ ) , and such that

�C ⊆ �C+1 . Then there exist constants �1,�2,�3, �4, �5,�6 (independent of ) , : , etc.) such that for any C ≥ )

(1) E(1�C+1f
2 (C + 1) |FC ) ≤ 1�C

f2 (C)
(
1 − �1

=

)
+�2

(2) V0A (1�C+1f
2 (C + 1) |FC ) ≤ �31�C

f2 (C) +�4.

(3) |1�C+1f
2 (C + 1) − E(1�C+1f

2 (C + 1) |FC ) | ≤ �5 |f (C) | +�6 .

With the above lemma, the proof of Lemma 2.14 follows exactly the same steps of proofs of Lemma 2.6 and Lemma 2.7,

and thus omitted.

Proof of Lemma 4.1. In the event �̂C we have that

:∑
8=1

:∑
9=1

(
�8 (C)
F8

−
� 9 (C)
F 9

)2
≤ �̂F= log= . (37)

Rearranging the terms we have that

1

:2

:∑
8=1

:∑
9=1

(
�8 (C)
F8

−
� 9 (C)
F 9

)2
= 2

©­
«

:∑
8=1

(�8 (C)/F8 )2
:

−
(

:∑
8=1

1

:

�8 (C)
F8

)2ª®¬
= 2

(
:∑
8=1

1

:

(
�8 (C)
F8

− - (C)
)2)

≤ �̂F= log=

:2
. (38)

Denote - (C) = 1
:

∑:
8=1

�8 (C)
F8

, then we have that with probability

1

:
|�(C) −F- (C) | ≤ 1

:

�����
:∑
8=1

�8 (C) −F8- (C)
����� = 1

:

�����
:∑
8=1

(
�8 (C)
F8

− - (C)
)
F8

�����
≤

√√√
:∑
8=1

1

:

(
�8 (C)
F8

− - (C)
)2√√√

1

:

:∑
8=1

F2
8 ≤ 21

√
= log =

for some constant 21 > 0 (this constant depends onF and : , however, we have assumed they are constants).

We also have that(
:∑
8=1

�8 (C)2
F8

)
−F- (C)2 =

:∑
8=1

(
�8 (C)2

F2
8

− - (C)2
)
F8

≤

√√√
:∑
8=1

(
�8 (C)
F8

− - (C)
)2√√√ :∑

8=1

(
�8 (C)
F8

+ - (C)
)2

F2
8 ≤ 21=

3/2√log =

since �8 (C) ≤ = and - (C) ≤ =. Thus, combining the two inequalities we get�����
:∑
8=1

�8 (C)2
F8

− �(C)2
F

����� ≤ 21=
3/2√log = . (39)
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Now, denote f (C) = �(C)/F − 0(C), then

E
(
1�C+1f (C + 1)2

��FC ) ≤ 1�C+1

(
f (C)2 + 2f (C)

(
1 + 1

F

)
1

=(= − 1)

(
0(C)�(C) −

:∑
8=1

�8 (C)2/F8

))
+ 4.

In the previous inequality we just wrote f (C + 1) = f (C) + (f (C + 1) − f (C)), and square both sides. Notice that

| (f (C + 1) − f (C)) | ≤ (1 + 1
F ) as at most one agent changes its colour. Also, notice that the probability that a dark

agent changes its colour to light at time C is given by
∑:
8=1

(�8 (C)2/F)
= (=−1) and the probability it changes from light to dark

is
0 (C)� (C)
= (=−1) . By using the bound given in Eq. (39), we get

E
(
1�C+1f (C + 1)2

��FC ) ≤ 1�C+1

(
f (C)2 + 22

f (C)
=2

(
0(C)�(C) − �(C)2

F

))
+ 21

√
log =

=
+ 4

= 1�C+1

(
f (C)2 + 22

f (C)
=2

(
0(C)�(C) − �(C)2

F

))
+ 5

= 1�C+1f (C)2
(
1 − 22

=2
�(C)

)
+ 5

= 1�C+1f (C)2
(
1 − 22

=

)
+ 5

where in the last step we used that in the event �̂C (which is contained in �C+1) we have that �(C) ≥ 23= for some

constant 23 > 0 (the constants 21, 22 etc.. may change value from line to line).

For the variance, notice that

V0A (1�C+1f (C + 1)2 |FC ) = V0A (1�C+1 (f (C) + (f (C + 1) − f (C))2 |FC )

≤ 8f (C)21�C+1V0A (f (C + 1) − f (C) |FC ) + 8V0A (1�C+1 (f (C + 1) − f (C))2 |FC ) ,

where in the inequality we used that 2>E (-,. ) ≤ 2(V0A (- ) +V0A (. )) for any pair of random variables -,. . Finally,

note that |f (C + 1) −f (C) | ≤ 1 + 1/F ≤ 2 as at most only one agent changes its colour from a light one to dark one, or

viceversa. Then

V0A (1�C+1f (C + 1)2 |FC ) ≤ �31�C
f2 (C) +�4 .

Finally, since |f (C + 1) − f (C) | ≤ 2 , we have

E(1�C+1f (C + 1)2 |FC ) − 1�C+1f (C + 1)2 | ≤ 1�C+1

��E(2f (C)(f (C + 1) − f (C)) + (f (C + 1) − f (C))2 |FC )
��

+ 1�C+1

��2f (C)(f (C + 1) − f (C)) + (f (C + 1) − f (C))2
��

≤ 1�C
�5 |f (C) | +�6 .

�

A AUXILIARY RESULTS

Theorem A.1 (Chapter XIV.2, XIV.3 in [20]). Let ? ∈ (0, 1) \ {1/2} and 1, B ∈ N. Consider a discrete time Markov

chain (/C )C≥0 with state space Ω = [0, 1] where

• /0 = B ∈ [0, 1]
• P (/C = 8 | /C−1 = 8 − 1) = ? for 8 ∈ [1, 1 − 1], C ≥ 1

• P (/C = 8 | /C−1 = 8 + 1) = 1 − ? for 8 ∈ [1, 1 − 1], C ≥ 1
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• P (/C = 8 | /C−1 = 8) = 1 for 8 ∈ {0, 1}, C ≥ 1 .

Let) = min{C ≥ 0 | /C ∈ {0, 1}}. Then,

P (/) = 1) =

(
1−?
?

)B
− 1(

1−?
?

)1
− 1

, and P (/) = 0) =

(
1−?
?

)1
−

(
1−?
?

)B
(
1−?
?

)1
− 1

.

Moreover,

E () ) = B

1 − 2?
− 1

1 − 2?

1 −
(
1−?
?

)B
1 −

(
1−?
?

)1 .

The following the Chernoff bound for Markov Chains is from [10], however, we simplified their general statement

for the purposes of our paper.

Theorem A.2 ([10]). Let" be an ergodic Markov Chain with stationary distribution c on a finite state space. Let)<8G

represent the (1/8)-mixing time. Let #8 denote the number of hit of" to the state 8 in the first C steps, then for 0 < X < 1,

it holds that

P( |#8 − c (8)C | ≤ Xc (8)C) ≤ 2 exp
(
−X2c (8)C/(72)<8G )

)
,

where 2 > 0 is a constant independent of X and c , and C .
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