
ar
X

iv
:2

10
5.

06
73

7v
2

 [
cs

.D
C

]
 2

9
Ju

l 2
02

1

Linearizability: A Typo

GAL SELA, Technion, Israel

MAURICE HERLIHY, Brown University, USA

EREZ PETRANK, Technion, Israel

Linearizability [4] is the de facto consistency condition for concurrent objects, widely used in theory and practice. Loosely speaking,

linearizability classifies concurrent executions as correct if operations on shared objects appear to take effect instantaneously during

the operation execution time. This paper calls attention to a somewhat-neglected aspect of linearizability: restrictions on how pending

invocations are handled, an issue that has become increasingly important for software running on systems with non-volatile main

memory. Interestingly, the original published definition of linearizability includes a typo (a symbol is missing a prime) that concerns

exactly this issue. In this paper we point out the typo and provide an amendment to make the definition complete. We believe that

pointing this typo out rigorously and proposing a fix is important and timely.

CCSConcepts: • Software and its engineering→Correctness; •Theory of computation→Concurrent algorithms; •Computing

methodologies → Concurrent algorithms.

Additional Key Words and Phrases: Linearizability; Correctness; Verification; Concurrent Algorithms; Concurrent Data Structures

The conference version of this paper is available at [9].

1 INTRODUCTION

Linearizability is the prevalent correctness condition for concurrent executions on shared objects. It determineswhether

a concurrent execution is correct by relating it to a sequential execution that satisfies the sequential specification of the

object. To relate a valid sequential execution to a concurrent one, linearizability specifies an order of the concurrent

operations, denoted linearization order. On the one hand, linearizability requires that if we execute the operations se-

quentially one by one according to their linearization order (with the same parameters as in the concurrent execution),

we obtain a sequential execution (with the same operation results as in the concurrent execution) that satisfies the

sequential specification of the object. On the other hand, linearizability dictates that the linearization order preserve

the order of non-overlapping operations in the original concurrent execution. Namely, if an operation op1 completes

before another operation op2 begins, then op1 must precede op2 in the linearization order. A concurrent execution is

called linearizable if it can be related as above to a legal sequential execution (i.e., one that satisfies the sequential

specification of the object). The formal definition is provided in Section 2.2.

So far, we ignored pending invocations in the execution. These are invocations of operations that start during the

execution, but do not complete. The issue that we point out in this paper concerns the treatment of pending invocations.

The original linearizability definition provides a treatment of pending invocations, stating which executions with

pending invocations are linearizable. However, in this paper we argue that, due to a typo, this treatment of pending

invocations is lacking. It contradicts our intuition about linearizable executions, and furthermore, causes the locality

and nonblocking properties to not hold. We then propose a simple fix for the typo that fits intuition and obtains these

desirable properties also for executions with pending invocations.

Linearizability allows eliding some of the pending invocations, namely, excluding their operations from the related

sequential execution. This can be interpreted as operations that do not yet take effect before the execution ends. The

This work was supported by the United States - Israel BSF grant No. 2018655.

1

http://arxiv.org/abs/2105.06737v2

Gal Sela, Maurice Herlihy, and Erez Petrank

rest of the pending invocations appear in the sequential execution with a response, i.e., completion and returned results.

These can be interpreted as operations in the concurrent execution that have taken effect although their responses have

not yet been returned to the caller. The responses appended in the sequential execution are determined in a way that

fits the overall execution. In particular, responses are set so that the related sequential execution satisfies the sequential

specification of the object.

The problem that arises, due to the typo in the original definition, is that the definition does not restrict the order

of operations that have pending invocations, even when these operations take effect, i.e., are included in the related

sequential execution. In particular, a pending invocation of an operation opmay be placed in a linearization order before

other operations that completed earlier in the execution, even operations that completed before op started. Imagine an

execution that starts with an operation op1 that reads a shared variable G . While G is initially 0, the operation weirdly

reads the value 1, and then completes and returns 1. Later a new operation op2 is invoked on a different process.

Operation op2 writes 1 into G and does not complete before the execution ends. Intuitively, this does not seem like an

acceptable linearizable execution. However, under the existing definition with the typo, it is linearizable, because the

pending invocation of operation op2 (that writes 1) can be ordered before the completed operation op1 that reads 1.

Interestingly, beyond contradicting intuition, the typo in the original definition does not allow it to yield neither

locality nor the nonblocking property. In Section 3 we describe the intuitive problem with the typo in the definition

and formally show that it is not local neither nonblocking.

We propose a (syntactically very minor) modification to the definition that restricts the linearization order of opera-

tionswith pending invocations that take effect. Similarly to completed operations, operationswith pending invocations

are ordered later than any operation that completes before they start. This modification makes the odd execution de-

scribed above not linearizable. In Section 2 we recall the formal original definition of linearizability (with the typo).

In Section 4 we formally specify the amended definition, and in Section 5 we revisit the issues that the typo raises

and show that they are resolved. We also show in Section 7 that an alternative equivalent definition of linearizability

[6] is actually not equivalent to the definition of linearizability with the typo, but it is equivalent to the version that

we propose without the typo. In Section 6 we discuss an alternative interpretation of the original definition (with the

typo, but with a different definition of what an operation means) and explain why this alternative interpretation is

problematic as well. Finally, we put the various linearizability definitions covered throughout the paper in context in

Section 8.

It is clear that the flaw in the definition is a typo, not a conceptual error, and the authors’ intended meaning is clear in

context.We believe no prior paper was rendered incorrect by relying on the original definition. However, linearizability

is extremely important for concurrent executions. It has been used in thousands of papers and the definition with

the typo has been replicated in numerous subsequent publications. We believe it is important to point out this typo

and provide a rigorous discussion and a fix. The issue of pending invocations is becoming increasingly important as

architectures with non-volatile main memory become commonplace. Non-volatile memory models encompass various

definitions [e.g. 1–3, 5] where a major focus is dealing with invocations pending at the time of a crash. In this realm,

pending invocations become critically important, making the fix of this typo timely.

2 SYSTEM MODEL AND LINEARIZABILITY DEFINITION

We follow the terminology of the original linearizability paper [4], which contains additional motivation and detailed

explanations.

2

Linearizability: A Typo

2.1 Histories Terminology

An execution of a concurrent system is modeled by a history. A history is a finite sequence of operation invocation and

response events. Each invocation or response event is associated with some object and some process. An invocation

includes also an operation name and argument values, and a response includes a termination condition and results.

A response matches an invocation if it is associated with the same object and process. An invocation is pending in a

history if no matching response follows the invocation. An extension of� is a history constructed by appending to the

end of� responses to zero or more pending invocations of� . A subhistory of a history� is a subsequence of the events

of � . complete(H) is the maximal subhistory of � consisting only of invocations and matching responses, without any

pending invocations. For a process % , the process subhistory � |% is the subsequence of all events in � associated with

the process % . For an object G , the object subhistory � |G is the subsequence of all events in � associated with the object

G . Two histories � and � ′ are equivalent if for every process % , � |% = � ′ |% .

A history � is sequential if it comprises a sequence of pairs of an invocation and a matching response, except

possibly the last invocation, which might be the last event in the history, not accompanied by a matching response.

A history that is not sequential is concurrent. A history is well-formed if each of its process subhistories is sequential.

A single-object history is one in which all events are associated with the same object. A sequential specification for an

object is a prefix-closed set of single-object sequential histories for that object. A sequential history � is legal if each

object subhistory � |G belongs to the sequential specification for G .

We recall the exact definition of operations from [4], which is inherent to the definition of linearizability:

Definition 2.1. (Operation) An operation in a history is a pair consisting of an invocation and the next matching

response.

An operation 40 precedes (synonymously happens before) an operation 41 in a history � if 40 ends before 41 begins,

namely, 41’s invocation event occurs after 40’s response event in � . Precedence in � induces a partial order on oper-

ations of � , denoted <� . Informally, <� captures the "real-time" precedence order of operations in � . We stress that

only invocations that have matching responses are considered operations and the order <� applies only to them.

2.2 Linearizability Definition

The original definition of linearizability according to [4] follows:

Definition 2.2. (Linearizability) A well-formed history � is linearizable if it has an extension � ′ such that:

L1: There exists a legal sequential history (, to which 2><?;4C4 (� ′) is equivalent.

L2: <�⊆<(.

(is denoted the linearization of � , and operations that appear in complete(� ′) are denoted linearized operations.

Definition 2.2 requires the existence of a linearization (that satisfies two conditions. Condition L1 refers to each

process individually, guaranteeing that all its linearized operations are in the same order and with the same results as

in the legal sequential history (. Due to this equivalence to a legal sequential history, operations in � act as if they

were interleaved at the granularity of complete operations, and adhere to the sequential specification. Condition L2

guarantees that (preserves the order of non-concurrent operations in � , so that it respects possible dependencies

between operations in � .

3

Gal Sela, Maurice Herlihy, and Erez Petrank

3 ISSUES WITH THE DEFINITIONWITH THE TYPO

Linearizability enforces real-time precedence order on operations. Definition 2.2 enforces it only on operations that

include both an invocation and a response in the given history. Fixing the typo extends the enforcement to linearized

operations related to pending invocations as well, so that overall, the order is enforced on all linearized operations.

To establish the necessity of the typo fix, we present in Section 3.1 motivating examples of executions classified as

linearizable by Definition 2.2 although intuitively they do not seem like acceptable linearizable executions. Moreover,

we show in Section 3.2 that linearizability as defined in Definition 2.2 is not local, and show in Section 3.3 that it is not

nonblocking.

3.1 Executions Counter-Intuitively Classified As Linearizable

We start with two simple examples of executions on a single object, that intuitively seem non-linearizable, but are

classified as linearizable by Definition 2.2. This stems from allowing operations related to pending invocations to

appear to take effect before operations by other processes that precede them, since L2 enforces order among � ’s

operations only, and excludes all pending invocations of � .

Consider the execution�1 that appears in Figure 1, involving two processes:� and �, operating on a register object

initialized to 0.�1 is intuitively unacceptable, as� cannot "predict the future" and read the value that � has not yet even

asked to write, and it cannot distinguish between the given execution and an execution in which � does not invoke any

write. Therefore, � should return 0 and not 1. Nevertheless, Definition 2.2 classifies the execution as linearizable, as

there is an extension� ′
1 and a legal sequential execution (1 (see Figure 1) that adhere to the conditions in Definition 2.2:

L1 holds since the events per process in 2><?;4C4 (� ′
1) and in (1 are identical. L2 vacuously holds since it enforces order

only on operations of �1, and �1 has a single operation (since a pending invocation does not count as an operation,

see Definition 2.1). In particular, L2 does not force �’s write to occur in (1 after the read operation by �.

Fig. 1. Executions on a register:

• �1 – an execution with a return value conflicting with the order between the pending write and the preceding read.

• 2><?;4C4 (� ′
1) – identical to � ′

1, an extension of �1.

• (1 – a linearization of �1.

�1:

A

B

Read() 1

Write(1)

2><?;4C4 (� ′
1):

A

B

Read()
1

Write(1)

(1:

A

B

Read()
1

Write(1)

4

Linearizability: A Typo

Fig. 2. Executions on a FIFO queue:

• �2 – an execution with a return value conflicting with the order between the pending enqueue and the preceding enqueue.

• 2><?;4C4 (� ′
2) – identical to � ′

2, an extension of �2.

• (2 – a linearization of �2.

�2:

A

B

Enq(x) Deq() y

Enq(y)

2><?;4C4 (� ′
2):

A

B

Enq(x) Deq()
y

Enq(y)

(2:

A

B

Enq(x) Deq() y

Enq(y)

We bring as a second example the execution �2 demonstrated in Figure 2, involving two processes: � and �, oper-

ating on a FIFO queue initialized to be empty. �2 is intuitively unacceptable due to the return value of the dequeue

operation, which returns an item enqueued by the second enqueue operation rather than the first one, thus violating

the FIFO requirement. Nonetheless, as Condition L2 of Definition 2.2 does not enforce linearizations of �2 to place�’s

enqueue before �’s enqueue, �2 is considered linearizable, by the extension � ′
2 and the linearization (2 that appear in

Figure 2.

3.2 Linearizability With The Typo Is Not Local

A property of a concurrent system is local (synonymously composable) if the system as a whole satisfies it whenever

each object in the system satisfies it individually. Locality enables implementing and verifying objects independently,

thus maintaining modularity. To demonstrate that linearizability as defined with the typo is not local, we bring an

execution � in Figure 3, involving two processes: A and B, operating on two register objects initialized to 0: x and y.

For each of x and y, the object subhistory of the presented execution � is similar to �1 (see Figure 1). As shown in Sec-

tion 3.1, these subhistories are linearizable by Definition 2.2. However,� as a whole is not linearizable by Definition 2.2:

An appropriate extension � ′ must include responses to both writes for the writes to be included in 2><?;4C4 (� ′), oth-

erwise there will be no legal sequential execution (equivalent to 2><?;4C4 (� ′), because the read operations could

not legally return 1. Together with the order enforced by Condition L1 on operations by each process, we get the

following order requirements, which form a cycle: x.Read() must occur before y.Write(1) for (to preserve the order of

A’s events (due to Condition L1 that requires (|� = 2><?;4C4 (� ′) |�); y.Write(1) must occur before y.Read() for (to

be a legal register history (which dictates in particular that 1 be a legal return value of y.Read()); y.Read() must occur

before x.Write(1) for (to preserve the order of B’s events (due to Condition L1 that requires (|� = 2><?;4C4 (� ′) |�);

and finally x.Write(1) must occur before x.Read() for (to be a legal register history.

5

Gal Sela, Maurice Herlihy, and Erez Petrank

Fig. 3. � , a non-linearizable execution on two registers, although the object subhistory for each register is linearizable

� :

A

B

x.Read() 1

y.Read()
1

y.Write(1)

x.Write(1)

3.3 Linearizability With The Typo Is Not Nonblocking

We look at pending invocations of total operations, which are operations defined for every object value (following

the terminology of [4]). A property of a concurrent system is nonblocking if processes invoking total operations are

never forced to wait for another pending invocation to complete. Formally, linearizability is nonblocking if for each

linearizable execution that has some pending invocation 8=E of a total operation, there exists a matching response for

8=E such that appending it to the execution results in a linearizable execution.

To demonstrate that linearizability as defined with the typo is not nonblocking, we look at the execution �1 (see

Figure 1). This execution is linearizable by the original definition (as shown above) and has a pending invocation –

the invocation of B’s write. Appending a response A4B? for this write to �1 results in the non-linearizable execution

�1 · A4B? : The pending write becomes an operation in �1 · A4B? and is thus ordered by <�1 ·A4B? as appearing after A’s

read. Condition L2 of Definition 2.2 dictates that a linearization of �1 · A4B? respect this order and place the write after

the read, which makes it impossible for A’s read to legally return 1.

Another counterexample is the execution �2 (see Figure 2). It is linearizable by the original definition (as shown

above) and has a pending invocation – the invocation of B’s enqueue. Appending a response A4B? for this enqueue to

�2 results in the non-linearizable execution �2 · A4B? : The pending enqueue becomes an operation in �2 · A4B? and is

thus ordered by <�2 ·A4B? as appearing after A’s enqueue. Condition L2 of Definition 2.2 dictates that the linearization

respect this order and place B’s enqueue after A’s enqueue, which makes it impossible for A’s dequeue to return y

while obeying the FIFO specification of a FIFO queue.

4 AMENDED LINEARIZABILITY

We bring the amended definition of linearizability, which fixes a typo in Condition L2 with a fix that enforces real-time

precedence order on linearized operations related to pending invocations:

Definition 4.1. (Amended Linearizability) A well-formed history � is linearizable if it has an extension � ′ such that:

L1: There exists a legal sequential history (, to which 2><?;4C4 (� ′) is equivalent.

L2: <2><?;4C4 (� ′)⊆<(.

L2 is equivalent to <� ′⊆<(because 2><?;4C4 (� ′) and � ′ differ only in pending invocations and according to the

definitions in [4], which we use too, pending invocations are not considered operations and a happens-before order

does not apply to them. While writing L2 as above makes the definition easier to understand, note that writing L2 as

<� ′⊆<(provides a fix that is within a single prime sign from the original definition. This missing prime is the typo

in the original definition.

Some papers have used an alternative definition of operations, in which pending invocations are also considered

as operations, to which a happens-before relation applies. We consider this alternative definition (with the original

linearizability definition) in Section 6 and show that it does not yield an adequate definition for linearizability.

6

Linearizability: A Typo

5 ISSUES REVISITED

We explain how the typo fix solves the issues raised in Section 3.

5.1 Executions Become Non-Linearizable As Expected

We have shown in Section 3.1 that �1 (see Figure 1) is linearizable by Definition 2.2 although intuitively it is not an

acceptable linearizable execution.With the amendment of L2,�1 becomes non-linearizable by Definition 4.1: To satisfy

Condition L1, an appropriate extension � ′
1 must include a response for the write operation, otherwise there will be

no legal sequential execution (1 equivalent to 2><?;4C4 (� ′
1), because the read operation could not legally return 1. In

addition, an appropriate linearization (1 must satisfy the amended L2 Condition, which dictates that the read precede

the write in (1 because it precedes it in 2><?;4C4 (� ′
1). This means the read must return 0 in (1 for (1 to be legal, which

contradicts Condition L1 that requires (1 to have the same return values as 2><?;4C4 (� ′
1).

In a similar fashion,�2 (see Figure 2) becomes non-linearizable by Definition 4.1 as desired: an appropriate extension

� ′
2 must include a response for Enq(y); thus, Enq(y) must happen in (after Enq(x); and so Deq() must return G in (, in

contradiction to L1.

5.2 Linearizability Becomes Local

With the typo fix, the history � demonstrated in Figure 3 does not stand anymore as a counterexample to the locality

of linearizability, since � ’s object subhistories for G and ~ are not linearizable by Definition 4.1, as explained for �1 in

Section 5.1. We will show that linearizability with the typo fix is indeed local.

Next, we repeat the locality proof from the original paper, explain why the proof does not hold for the definition

with the typo, and describe an amendment of the proof that makes it correct for Definition 4.1. We start by recalling

the theorem and its proof as in the original paper. (We note that � mentioned in the theorem is assumed to be a

well-formed history, as all histories in [4].)

Theorem 5.1. � is linearizable if and only if, for each object G , � |G is linearizable.

Proof. The "only if" part is obvious.

For each G , pick a linearization of � |G . Let 'G be the set of responses appended to � |G to construct that

linearization, and let <G be the corresponding linearization order. Let � ′ be the history constructed by

appending to� each response in'G .Wewill construct a partial order< on the operations of 2><?;4C4 (� ′)

such that: (1) For each G , <G⊆<, and (2) <�⊆<. Let (be the sequential history constructed by ordering

the operations of 2><?;4C4 (� ′) in any total order that extends <. Condition (1) implies that (is legal,

hence that L1 is satisfied, and Condition (2) implies that L2 is satisfied.

Let < be the transitive closure of the union of all <G with <� . It is immediate from the construction

that < satisfies Conditions (1) and (2), but it remains to be shown that < is a partial order. We argue by

contradiction. If not, then there exists a set of operations 41, . . . , 4= , such that 41 < 42 < · · · < 4= , 4= < 41,

and each pair is directly related by some <G or by <� . Choose a cycle whose length is minimal.

Suppose all operations are associated with the same object G . Since <G is a total order, there must exist

two operations 48−1 and 48 such that 48−1 <� 48 and 48 <G 48−1, contradicting the linearizability of G .

7

Gal Sela, Maurice Herlihy, and Erez Petrank

The cycle must therefore include operations of at least two objects. By reindexing if necessary, let 41 and

42 be operations of distinct objects. Let G be the object associated with 41. We claim that none of 42, . . . , 4=

can be an operation of G . The claim holds for 42 by construction. Let 48 be the first operation in 43, . . . , 4= ,

associated with G . Since 48−1 and 48 are unrelated by <G , they must be related by <� ; hence the response

of 48−1 precedes the invocation of 48 . The invocation of 42 precedes the response of 48−1, since otherwise

48−1 <� 42, yielding the shorter cycle 42, . . . , 48−1. Finally, the response of 41 precedes the invocation of

42, since 41 <� 42 by construction. It follows that the response to 41 precedes the invocation of 48 , hence

41 <� 48 , yielding the shorter cycle 41, 48 , . . . , 4= .

Since 4= is not an operation of G , but 4= < 41, it follows that 4= <� 41. But 41 <� 42 by construction, and

because <� is transitive, 4= <� 42, yielding the shorter cycle 42, . . . , 4= , the final contradiction.

�

The above proof does not hold for the definition with the typo since the history (constructed in the proof is not

guaranteed to satisfy Condition L1 of linearizability. L1 requires (to preserve the precedence order of the linearized

operations by each process. But the constructed (is not guaranteed to preserve the order between two linearized

operations by the same process on two different objects, if the later operation of the two is related to a pending

invocation in� . For operations on different objects, (is guaranteed to preserve order only among linearized operations

whose invocations are not pending in � , due to Condition (2) with the typo in the proof (namely, <�⊆< rather than

<2><?;4C4 (� ′)⊆<). For example, the history (demonstrated in Figure 4 may be constructed by the proof (when using

Definition 2.2) as a linearization of � from Figure 3. Due to the reversed order for �, 2><?;4C4 (� ′) |� ≠ (|�, and so (

does not satisfy L1 for � .

To fix the proof, we replace every reference to <� in the proof with <2><?;4C4 (� ′) , similarly to the typo fix of

the definition. The fixed proof is correct when applied to the linearizability definition with the typo fix. In particular,

thanks to the fix of Condition (2), L1 is guaranteed to be satisfied. We note that the fixed proof naturally holds for the

definition with the typo fixed, but it does not work for the linearizability definition with the typo, which is not local

as proven above. The barrier in this case is that the constructed < is not necessarily a partial order, but rather might

contain cycles. In detail, the above proof argues by contradiction that < is a partial order. It assumes an operation

cycle 41 < 42 < · · · < 4= < 4= < 41 satisfying certain properties and needs to reach a contradiction. In the case

that all operations in this cycle are associated with the same object G , then as the proof states, there must exist two

operations in the cycle, 48−1 and 48 , such that 48−1 <2><?;4C4 (� ′) 48 (referring to <2><?;4C4 (� ′) rather than <� is due

to the proof fix) and 48 <G 48−1. This contradicts the linearizability of � |G if linearizability is defined with the typo fix,

namely, L2 for � |G requires <2><?;4C4 (� ′) |G⊆<G , because then 48−1 <2><?;4C4 (� ′) 48 leads to 48−1 <G 48 , contradicting

the asymmetry of <G . However, without the definition fix (namely, with L2 for � |G requiring <� |G⊆<G), we do not

reach a contradiction if 48 is an operation related to a pending invocation of � . The reason is that for such an 48 ,

48−1 <2><?;4C4 (� ′) 48 does not lead to 48−1 <� |G 48 (since <� |G does not refer to 48 at all), and so L2 does not imply

Fig. 4. (, a sequential history that might be constructed in the proof of Theorem 5.1 as a linearization of �

(:

A

B

x.Read()
1

y.Read()
1

y.Write(1)

x.Write(1)

8

Linearizability: A Typo

48−1 <G 48 . Consider, for example, � from Figure 3, and let 41 be x.Read() and 42 be x.Write(1). < constructed in the

proof contains the cycle 41 < 42 < 41, which stems from 41 <2><?;4C4 (� ′) 42 and 42 <G 41.

5.3 Linearizability Becomes Nonblocking

With the typo fix, the histories �1 and �2 do not stand anymore as counterexamples to linearizability being nonblock-

ing, since they are not linearizable by Definition 4.1, as explained in Section 5.1. We will show that linearizability with

the typo fix is indeed nonblocking.

Next, we repeat the nonblocking property proof from the original paper, explain why the proof does not hold for

the definition with the typo, and why it does hold for Definition 4.1. We start by recalling the theorem and its proof

as in the original paper.

Theorem 5.2. Let 8=E be an invocation of a total operation. If 〈G 8=E %〉 is a pending invocation in a lineariz-

able history � , then there exists a response 〈G A4B %〉 such that � · 〈G A4B %〉 is linearizable.

Proof. Let (be any linearization of � . If (includes a response 〈G A4B %〉 to 〈G 8=E %〉, we are done,

since (is also a linearization of � · 〈G A4B %〉. Otherwise, 〈G 8=E %〉 does not appear in (either, since

linearizations, by definition, include no pending invocations. Because the operation is total, there exists

a response 〈G A4B %〉 such that (′ = (· 〈G 8=E %〉 · 〈G A4B %〉 is legal. (′, however, is a linearization of

� · 〈G A4B %〉, and hence is also a linearization of � . �

The first part of the above proof does not hold for the definition with the typo, as Condition L2 of Definition 2.2,

applied to the history � · 〈G A4B %〉, might not be satisfied by (: (, as a linearization of � , is guaranteed by L2 of Defini-

tion 2.2 to respect the precedence order <� . The issue is that <� does not enforce any order on pending invocations of

� , in particular 〈G 8=E %〉. Since this invocation is not pending in the history � · 〈G A4B %〉, L2 for this history requires

more than L2 for � guarantees. In particular, it requires that a linearization of � · 〈G A4B %〉 order the operation of

〈G 8=E %〉 after any operation completed beforehand. However, (might not satisfy it (like in the examples brought in

Section 3.3).

The first part of the proof does hold for the amended definition: If (is a linearization of � by Definition 4.1 that

includes a response 〈G A4B %〉 to 〈G 8=E %〉, then there exists an extension � ′ of � , which includes 〈G A4B %〉 as the first

response appended after � , such that (and � ′ satisfy Definition 4.1 for � . This � ′ is also an extension of� · 〈G A4B %〉,

and so the same (and � ′ satisfy Conditions L1 and L2 of Definition 4.1 for � · 〈G A4B %〉 as well.

6 AN ALTERNATIVE INTERPRETATION

While the original paper only considers completed operations, i.e., an operation is a pair of an invocation and the next

matching response, it might seem that if we also consider pending invocations as valid operations, as some papers do,

then the original definition may work adequately, leading to an easy fix for the typo in the original definition. In this

section we show that this is not the case. Formally, an alternative definition for an operation would be:

Definition 6.1. (Operation - alternative definition)An operation in a history is either a pair consisting of an invocation

and the next matching response, or a pending invocation only in case of an invocation that has no matching response

in the execution.

9

Gal Sela, Maurice Herlihy, and Erez Petrank

Fig. 5. �B , an execution on a stack with a second pop that cannot be completed

�B :

A

B

Push(1)

Pop()
1

Pop()

This leads to an alternative interpretation of the linearizability definition with the typo, with <� applied to op-

erations by Definition 6.1 – including pending invocations. This interpretation of operations does solve the problem

pointed out in Section 3 for the original linearizability definition, since it makes Condition L2 cover pending invoca-

tions. But this brings about a new problem, as not only linearized pending invocations are covered, but also pending

invocations that are not linearized, namely, eliminated from 2><?;4C4 (� ′) and ((which are equivalent by Condition

L1). The definition by this interpretation might exclude an execution that seems legitimately linearizable: for an execu-

tion containing a pending invocation 42 that cannot be legally linearized (and hence cannot appear in a linearization ()

and an operation 41 that precedes 42, there exists no appropriate linearization (, since L2 implies that 41 <(42 and in

particular that 42 appears in ((including a response, as (is equivalent to 2><?;4C4 (� ′) by L1, which means it contains

no pending invocations).

An example of such a history that seems naturally linearizable but would be ruled out by the original definition

with the alternative interpretation of an operation follows. Consider a stack object, where if the stack is empty, then a

popping process spins until an item is pushed into the stack. Consider the history�B with processes� and � illustrated

in Figure 5. The first pop’s response precedes the second pop’s invocation in �B , hence 1
BC %>? <�B

2=3 %>? (inter-

preting the happens-before relation relying on the alternative operation definition). Condition L2 of the linearizability

definition implies that the same relation appears in (: 1BC %>? <(2=3 %>? , and in particular the second pop appears

in (. However, the second pop cannot be included in (because it cannot be legally completed on an empty stack.

This problem regarding the definition of linearizability in the alternative interpretation is different from the problem

with the original interpretation (pointed out in Section 3), but we remark that applying our fix, i.e., changing L2 to

<2><?;4C4 (� ′)⊆<(, solves this problem as well and can make the alternative interpretation be an adequate (equivalent)

definition for linearizability.

7 AN EQUIVALENT DEFINITION

According to the intuitive discussion in the original paper [4], linearizability provides the illusion that each operation

takes effect instantaneously at some point between its invocation and its response. This point was later denoted a

linearization point. Referring to the intuitive meaning of linearizability, it makes sense that if a pending invocation

takes effect, it does so instantaneously at some point after the invocation and before the end of the execution. Such

an interpretation of linearizability has appeared in [6]. Moreover, many data structure implementations [e.g. 7, 8]

are proven to be linearizable by listing linearization points as locations in the code for each of their methods. These

locations naturally occur during the method call, after the invocation (and before the response or the end of the

execution), obliviously of whether the invocation has a matching response in the original execution.

We next specify an equivalent definition of linearizability, similar to the atomicity definition in [6], which formalizes

the above intuitive interpretation of linearizability.

10

Linearizability: A Typo

Definition 7.1. (Linearizability by Linearization Points) A well-formed history � is linearizable if there exist distinct

points in � , denoted linearization points, satisfying the following:

(1) For each operation, there exists a linearization point between its invocation and its response.

(2) There exists a subset) of� ’s pending invocations, such that for each invocation 8=E in) there exists a lineariza-

tion point after the invocation, and there exists a response denoted A4B?8=E for the invocation.

Such that if we place each invocation that has a matching response and its matching response one right after another

at their respective linearization point, do the same for each invocation 8=E in) and its response A4B?8=E, and exclude

pending invocations not in) , then the resulting sequence of invocations and responses, denoted (, is a legal sequential

history.

The original linearizability definition with the typo is not equivalent to Definition 7.1. As a counterexample, �1

demonstrated in Figure 1 is linearizable by Definition 2.2 as shown in Section 3.1, but not by Definition 7.1, since the

pending write must be linearized for the read to return 1, but placing the write’s linearization point after the read’s

one cannot yield a legal register sequential history.

We next show that fixing the typo in the linearizability definition makes the definition equivalent to Definition 7.1,

which formalizes the intuition behind linearizability.

Claim 1. Definition 7.1 (linearizability by linearization points) is equivalent to Definition 4.1 (amended linearizability).

Proof. First we prove that Definition 7.1 implies Definition 4.1: Assume � is linearizable by Definition 7.1. Let)

and (be a subset and a history that satisfy the definition. We will prove that � is linearizable by Definition 4.1 with

the same (. Form � ′ from � by appending (in some arbitrary order) for each invocation in) , the response appended

for it in (. L1 holds: For each process, 2><?;4C4 (� ′) is made of the same events as (. Their order is the same in

2><?;4C4 (� ′) and (, since (is constructed by "shrinking" each operation (invocation and response) to its linearization

point, which is placed by Definition 7.1 between an invocation and a following response. L2 holds as well, since if

one operation precedes another operation in 2><?;4C4 (� ′), meaning the first operation’s response happens before the

second operation’s invocation in 2><?;4C4 (� ′), then this order is preserved in (, in which the response of the first

operation is moved to an earlier point (to the linearization point of the first operation) and the invocation of the second

operation is moved to a later point (to the linearization point of the second operation).

We proceed to prove the other direction - Definition 4.1 implies Definition 7.1. Assume � is linearizable by Defini-

tion 4.1. Let � ′ and (be an extension of � and a linearization that satisfy the definition. We define) to be the set of

all pending invocations in � for which a response is added in � ′. Next, we pick linearization points for operations of

� and for pending invocations of) , namely for operations of 2><?;4C4 (� ′), which are – due to L1 – the operations of

(. Denote the 8Cℎ operation in (by 48 . We pick the linearization point of 48 to be right after the later of the following:

48 ’s invocation, and the linearization point of 48−1.

We will prove that our selected linearization points satisfy the requirements of Definition 7.1. First, Conditions (1)

and (2) of Definition 7.1 hold as the linearization point of each 48 is after its invocation in 2><?;4C4 (� ′) by definition,

and also before its response as we next show. If not, it implies that the linearization point of 48 is set right after the

linearization point of 48−1, and that the linearization point of 48−1 is after 48 ’s response. If the linearization point of

48−1 was picked to be right after its invocation, it means that 48 <2><?;4C4 (� ′) 48−1 and we reach a contradiction by

Condition L2 of Definition 4.1 (thanks to the typo fix). Else, it was picked to be right after the linearization point of

48−2, and we continue with the same arguments until reaching a contradiction (the process is guaranteed to stop at

11

Gal Sela, Maurice Herlihy, and Erez Petrank

41 at the latest). Second, the linearization point order preserves the order of operations in (by our definition of the

linearization points. Therefore, the history constructed in Definition 7.1 by "shrinking" each operation of ((namely,

moving its invocation and response) to its linearization point, is equal to (and is thus a legal sequential history.

�

8 COMPARISON OF ALL DEFINITION VERSIONS

Let � be a history. Then for each choice of an extension � ′, we may divide the invocations in � into three categories:

(1) Invocations that have a matching response in � .

(2) Pending invocations in � that have a matching response in � ′.

(3) Pending invocations in � that do not have a matching response in � ′.

The operations related to invocations of categories (1) and (2) form 2><?;4C4 (� ′). Therefore, as implied by Condition

L1 of linearizability, if� is linearizable then the linearization of� which stems from this� ′ is made of these operations.

The different versions of the linearizability definition differ in the operations among which their L2 Condition

enforces order preservation. Definition 2.2 forces preserving order among operationswhose invocations are of category

(1) only. Definition 4.1 (and thus the equivalent Definition 7.1 as well) dictates that the linearization preserve the order

of all operations in 2><?;4C4 (� ′), namely, all linearized operations, which are operations whose invocations are of

categories (1) and (2). Since L2 with the typo fix enforces precedence order on additional operations in comparison to

the original L2, then the typo fix strengthens the definition of linearizability. Namely, the amended definition eliminates

some executions that are linearizable according to the definition with the typo, e.g., executions �1 (see Figure 1) and

�2 (see Figure 2). The typo fix does not include any execution not classified as linearizable by the original definition:

each execution linearizable by Definition 4.1 is linearizable by Definition 2.2 as well because <�⊆<2><?;4C4 (� ′) .

Definition 2.2 with the alternative interpretation of an operation as described in Section 6, forces preserving order

among operations whose invocations are of any of the 3 above-mentioned categories, namely, operations related to

all invocations. L2 in this interpretation implies that a linearization (includes all pending invocations of � (that are

preceded by any response), including those of category (3) – which cannot appear in (by Condition L1. Consequently,

for a history to be classified as linearizable, there must exist an extension� ′ for which� has no invocations of category

(3), namely, all pending invocations are linearized (again, referring only to invocations preceded by a response). Hence,

Fig. 6. The relationship between histories categorized as linearizable by the different versions of linearizability

Histories linearizable

by Definition 2.2

Histories linearizable

by Definition 4.1

Histories linearizable by

the alternative interpretation

of Definition 2.2
.
�1

.
�2

.
�B

12

Linearizability: A Typo

the definition in this interpretation excludes histories with pending invocations (preceded by some response) that

cannot be linearized, like �B (see Figure 5). It is thus stronger than Definition 4.1 – in fact, too strong.

The inclusion relations between the histories categorized as linearizable by the different versions of linearizability

are illustrated in Figure 6.

REFERENCES

[1] Marcos K Aguilera and Svend Frølund. 2003. Strict linearizability and the power of aborting. Technical Report HPL-2003-241 (2003).

https://hpl.hp.com/techreports/2003/HPL-2003-241.html

[2] Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. 2015. Robust shared objects for non-volatile main memory. In OPODIS.

https://doi.org/10.4230/LIPIcs.OPODIS.2015.20

[3] Rachid Guerraoui and Ron R Levy. 2004. Robust emulations of shared memory in a crash-recovery model. In ICDCS.

https://doi.org/10.1109/ICDCS.2004.1281605

[4] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. TOPLAS 12, 3 (1990).

https://doi.org/10.1145/78969.78972

[5] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016. Linearizability of persistent memory objects under a full-system-crash failure

model. In DISC. https://doi.org/10.1007/978-3-662-53426-7_23

[6] Nancy A Lynch. 1996. Distributed algorithms. Elsevier.

[7] Maged M. Michael. 2002. High performance dynamic lock-free hash tables and list-based sets. In SPAA. https://doi.org/10.1145/564870.564881

[8] Maged M. Michael and Michael L. Scott. 1996. Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In PODC.

https://doi.org/10.1145/248052.248106

[9] Gal Sela, Maurice Herlihy, and Erez Petrank. 2021. Brief announcement: Linearizability: A typo. In PODC. https://doi.org/10.1145/3465084.3467944

13

https://hpl.hp.com/techreports/2003/HPL-2003-241.html
https://doi.org/10.4230/LIPIcs.OPODIS.2015.20
https://doi.org/10.1109/ICDCS.2004.1281605
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/3465084.3467944

	Abstract
	1 Introduction
	2 System Model and Linearizability Definition
	2.1 Histories Terminology
	2.2 Linearizability Definition

	3 Issues with the definition with the typo
	3.1 Executions Counter-Intuitively Classified As Linearizable
	3.2 Linearizability With The Typo Is Not Local
	3.3 Linearizability With The Typo Is Not Nonblocking

	4 Amended Linearizability
	5 Issues Revisited
	5.1 Executions Become Non-Linearizable As Expected
	5.2 Linearizability Becomes Local
	5.3 Linearizability Becomes Nonblocking

	6 An Alternative Interpretation
	7 An Equivalent Definition
	8 Comparison of all definition versions
	References

