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ABSTRACT
A representation learning method is considered stable if it
consistently generates similar representation of the given data
across multiple runs. Word Embedding Methods (WEMs) are a
class of representation learning methods that generate dense
vector representation for each word in the given text data. The
central idea of this paper is to explore the stability measure-
ment of WEMs using intrinsic evaluation based on word simi-
larity. We experiment with three popular WEMs: Word2Vec,
GloVe, and fastText. For stability measurement, we investigate
the effect of five parameters involved in training these models.
We perform experiments using four real-world datasets from
different domains: Wikipedia, News, Song lyrics, and Euro-
pean parliament proceedings. We also observe the effect of
WEM stability on three downstream tasks: Clustering, POS
tagging, and Fairness evaluation. Our experiments indicate
that amongst the three WEMs, fastText is the most stable,
followed by GloVe and Word2Vec.
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1 INTRODUCTION
Word Embedding Methods (WEMs) are based on the idea that
contextual information alone constitutes a feasible representa-
tion of linguistic terms. For each word in the vocabulary, these
methods learn dense and low-dimensional vector represen-
tations, also referred as embeddings . These embeddings are
observed to capture various semantic properties of words. In
distributional semantics, vector space models are being used
since the 1990s to capture contextual features. Some of the
influential early models include the Latent Semantic Analysis
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[10] and Latent Dirichlet Allocation [3]. But the populariza-
tion and utilization of word embeddings in natural language
processing (NLP) tasks can be attributed to Mikolov and others
who created Word2Vec [24]. Two other popular WEMs are
GloVe [27] and fastText [4].

The quick answer to the questions in the title of this paper
is: WEMs are not stable and we should care about it. Given a
text corpus𝐶 and aWEM𝐴, we can train multiple sets of word
embeddings by varying different parameters related to 𝐶 and
𝐴. Each such set corresponds to an embedding space. Consider
a word𝑤 and two embedding spaces 𝐸1 and 𝐸2. The represen-
tation or embedding of𝑤 in respective spaces be 𝐸1 (𝑤) and
𝐸2 (𝑤). We can evaluate the stability of representation of 𝑤
across 𝐸1 and 𝐸2 by comparing various properties of 𝐸1 (𝑤)
and 𝐸2 (𝑤). The overall stability of WEM 𝐴 over corpus 𝐶 can
be computed as an aggregate over the vocabulary of𝐶 . Several
benchmarks such as WordSim-353 [15] and MEN [5] exist for
evaluating the quality of word embeddings. The former con-
tains 353-word pairs while the latter contains 3000-word pairs.
However, evaluating models using these tests gives only a
partial representation of the model performance. In this work,
rather than focusing on only a small subset of words, we focus
on evaluating the stability of each word in the vocabulary.

Stability evaluation of WEMs has received a lot of atten-
tion in the recent past [1, 8, 11, 21, 22, 32]. Such evaluation
is crucial because word embeddings are widely used today
for a variety of NLP tasks such as sentiment analysis [23, 30],
named entity recognition [20, 29] and part-of-speech (POS)
tagging [31, 32]. However, WEMs are sensitive to a number of
factors including the size of the corpus, seeds for random num-
ber generations and other algorithmic parameters like number
of vector dimensions, size of context window and number of
training epochs. This leads to a question: what if the WEMs
themselves are not stable? This could have implications for
downstream tasks.

We explore the stability evaluation of three popular WEMs:
Word2Vec, GloVe, and fastText. For a word 𝑤 , we compute
the stability of representing 𝑤 across 𝐸1 and 𝐸2 in terms of
number of shared nearest neighbors that 𝐸1 (𝑤) and 𝐸2 (𝑤)
have. Newman-Griffis and Fosler-Lussier [26] have shown
that nearest neighbor information alone is sufficient to capture
most of the performance benefits of word embeddings. Our
findings and comparison with existing stability evaluation
studies is summarized in the Table 1. This work makes three
specific contributions. First, we evaluate stability of WEMs
on diverse real-world datasets. Second, we study the effect of
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WEM Stabil-
ity factor

Previous Work Our Work

Datasets used
(no. of tokens)

• Wikipedia (1.5B) [22]
• NYT(58M) and Europarl (61M)[32]
• Brown, Project Gutenberg and Reuters (10k each)[8]
• US Federal Courts of Appeals (38k), NYT (22k) and Reddit (26k)[1]
• NIPS between 2007 and 2012 (2M)[11]
• Ohsumed dataset (34M)[21]
• Google N-gram cor-pus: English Fiction(4.8B) and German(0.7B)[18]
• BNC and ACL An-thology Reference corpus[28]

Wikipedia, News-Crawl (2007), Lyrics
and Europarl (50M each)

Methods stud-
ied

Word2Vec [8, 11, 21, 28, 32], GloVe [1, 22, 32], PPMI [1, 22, 32], SGNS
[1, 18, 22], SVD [22], LSA [1], SGHS [18]

Word2Vec, GloVe and fastText

*Number of
nearest
neighbors

• Reliability while considering different nearest neighbors is very similar
for all languages and time spans and WEMs considered [18]
• A few nearest neighbors are enough for stability evaluation [32]

•Stability of fastText reduces slightly
with increase in the number of nearest
neighbors.

Word fre-
quency

• Medium frequency words have the lowest reliability [18]
• Frequency is not a major factor in stability [32]
•Words having a low and high frequency range have a tendency to display
more variation. Medium frequency words show more stability [28]
• Frequency does not directly affect the stability of medical word embed-
dings [21]

•All word groups(low, medium, and
high frequency) show high variance in
word stability.
• A single WEM need not produce the
most stable embedding for each word
in the vocabulary

Number
of vector
dimension

• Embedding size is a causal factor and varies across corpora [8]
• Stability increases considerably as the dimensionality increases, but it
diminishes or becomes slightly invariant after 200 dimensions [11]

•Stability improves with increase in the
vector dimensions. But the improve-
ment plateaus after 300 dimensions

Number
of training
epochs

• Reliability increases for each subsequent epoch under negative sampling.
SGHS has higher reliability than SGNS when trained on 1 epoch while
there’s no difference in terms of accuracy [18]

• Stability of GloVe reduces with
the number of training epochs. Effect
on fastText is negligible. Stability of
Word2Vec improves significantly with
the number of training epochs.

Context win-
dow size

•Larger context window size leads to better accuracy of word representa-
tions.but, it shows a diminishing return after a certain point [11]
• Increase in context window size gives varied results for WEMs [28]

•Stability of fastText reduces slightly
with increase in the context window
size. Stability of Word2Vec reduces with
increase in the context window size.
GloVe stability increases slightly with
increase in the context window size.
•Higher values of context window size
have negligible effect on WEM stability.

Downstream
Tasks

Word similarity [22, 32], Word analogy [11, 22], POS tagging [32] Word Clustering, POS Tagging and Fair-
ness Evaluation

Table 1: Summary of our findings and comparison with existing WEM stability evaluation work

multiple parameters on WEMs stability. Third, we analyze the
effect of WEMs instability on three downstream applications.

Rest of the paper is organized as follows. Our experiment set
up is described in Section 2. Our results on stability evaluation
are discussed in Section 3. Effect on downstream tasks are
analyzed in Section 4. Related work is covered in Section 5.
Finally we conclude and discuss future work in Section 6.

2 EXPERIMENT SET UP
This section describes the datasets used, training methodology,
and stability measurement. All code and datasets for our work
are publicly available on the Web for reproducibility1.

2.1 Datasets
We performed experiments using four publicly available real-
world datasets. Please refer to Table 2 for the statistics about
the datasets. These datasets represent diverse styles of natural
language usage. Online collaborative writing style is covered

1https://github.com/AnganaB/Stability-of-WEMs
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in ourWikipedia (Sample) dataset2. It contains a subset of Eng-
lish Wikipedia articles from October 2017 Wikipedia dump.
News articles are covered in the NewsCrawl(2007) dataset3.
We have used the News Crawl articles for the year 2007. The
Lyrics dataset represents creative writing style4. It contains
over 400K English songs of around 7.2K artists from the pe-
riod 1938 to 2016. Formal parliamentary communication is
covered in our Europarl (Sample) dataset5. It includes the Eng-
lish version of the proceedings of Bulgarian, Czech, Slovak,
Slovene, Romanian and Polish parliaments. Our Lyrics dataset
had around fifty million tokens. We sampled other datasets
to match the size of our Lyrics dataset. We have deliberately
chosen these diverse corpora that vary in corpus parameters
like size of vocabulary and topics to assess our models with
realistic examples. We have pre-processed these corpora by
tokenizing sentences and removing non-alphabetic characters
and converting all characters to lower cases. We have also
removed the stop words by using the stop words corpora of
NLTK 6. We have also considered a minimumword occurrence
of five and removed all words that appear less than five times
in a corpus.

Table 2: Datasets Statistics.

Dataset Vocab Size No. of Tokens
Wikipedia (Sample) 216,580 46,359,850
News Crawl (2007) 116,401 45,149,886

Lyrics 85,378 49,127,358
Europarl (Sample) 41,674 41,330,440

2.2 Training
Evaluating all the WEMs that are currently available is beyond
the scope of this work. We focused on three popular WEMs:
Word2Vec, GloVe, and fastText. For Word2Vec, we used the
Continuous Bag of Words (CBOW) variant from the Gensim 7

Python library to train our models. For the fastText, we used
both the original fastText 8 library and its Gensim version.
The original fastText library does not provide the option for
setting a random seed value, which is provided by the Gensim
version. We trained the GloVe models using the original GloVe
code 9 with a slight modification to input random seed as a
parameter. For all the models trained on all the three WEMs,
we experimented with the vector dimensions, iterations, and
window size, keeping all other parameters at default settings.
For all the experiments on a corpus, we measured stability
across five randomized embedding spaces trained with an
algorithm and took the average among them. We used the
same random seeds for all the WEMs.

2https://dumps.wikimedia.org/enwiki/
3http://www.statmt.org/wmt16/translation-task.html
4Datasets from [2] and[14]
5http://www.statmt.org/wmt16/translation-task.html
6http://www.nltk.org/
7https://github.com/RaRe-Technologies/gensim/tree/develop/gensim/
8https://github.com/facebookresearch/fastText
9https://github.com/stanfordnlp/GloVe

2.3 Stability Evaluation
Consider a dataset 𝐶 with vocabulary of size 𝑉𝑜𝑐𝑎𝑏𝑆𝑖𝑧𝑒 . A
WEM 𝐴 is used to learn word representations in an embed-
dings space using the dataset 𝐶 . Let 𝐸1 and 𝐸2 be two such
embedding spaces. These two embedding spaces correspond
to two distinct executions of WEM𝐴 over the dataset𝐶 . These
two executions of𝐴 can differ from each other in terms of one
or multiple parameters. We evaluate the stability of 𝐴 across
𝐸1 and 𝐸2 as follows

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝐴) =
∑𝑉𝑜𝑐𝑎𝑏𝑆𝑖𝑧𝑒
𝑖=1 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑤𝑖 )

𝑉𝑜𝑐𝑎𝑏𝑆𝑖𝑧𝑒
(1)

Stability of each word𝑤 in the vocabulary is computed as
follows

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑤) =
��𝐾𝑁𝑁𝐸1 (𝑤)⋂𝐾𝑁𝑁𝐸2 (𝑤)

��
𝑘

(2)

𝐾𝑁𝑁𝐸 (𝑤) represents the set of top 𝑘 nearest neighbors of
word𝑤 in the embedding space 𝐸. These nearest neighbors are
computed using the cosine similarity between the word em-
beddings. Existing stability evaluation studies use the similar
method for stability computation.

3 RESULTS
This section describes our experimental results on stability
evaluation. We have experimented with five parameters that
can affect the stability evaluation. For each such parameter,we
will present results here only for one dataset due to the space
limitation. However, we have observed similar trends across
all four datasets. These additional experimental results are
available along with our code.

3.1 Number of Nearest Neighbors
The word stability computation formula in the Section 2.3
involves a parameter 𝑘 . It indicates the number of nearest
neighbors considered for stability evaluation. If the value of 𝑘
is set close to one then it is too restrictive and we expect the
stability value for WEMs to be low. As we increase the value of
𝑘 , we expect the stability to increase. However, with very high
value of 𝑘 , the stability evaluation will be meaningless. For
example, in the extreme case of 𝑘 = 𝑉𝑜𝑐𝑎𝑏𝑆𝑖𝑧𝑒 − 1, stability
of any WEM will be hundred percent.

Please refer to Figure 1. This figure shows the variation
in the stability of WEMs with respect to the value of 𝑘 .We
can observe that for Word2Vec and GloVe, the stability in-
creases with increase in the value of 𝑘 . However, it plateaus
after 𝑘 = 10. This observation correlates with existing sability
evaluation studies[32]. In contrast, we observe unexpected
behavior for the fastText. With increase in the value of 𝑘 , its
stability actually reduces slightly. This indicates that fastText
maintains the top nearest neighbors across the embedding
spaces. However, fastText fails to maintain the stability for
the lower ranked nearest neighbors. Still, fastText is the most
stable WEM amongst the three.
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(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 1: WEM stability plateaus for higher values of 𝑘

3.2 Word Frequency
Consider a dataset𝐶 with the vocabulary of size𝑉𝑜𝑐𝑎𝑏𝑆𝑖𝑧𝑒 . To
observe the effect of word frequency on word stability, we di-
vide the vocabulary into five groups of equal size (𝑉𝑜𝑐𝑎𝑏𝑆𝑖𝑧𝑒/5).
Based on the word frequency, these groups are named as : Very
Low Frequency (𝑉𝐿), Low Frequency (𝐿), Medium Frequency
(𝑀), High Frequency (𝐻 ), and Very High Frequency (𝑉𝐻 ). Each

group accounts for twenty percent of the words ranked by fre-
quency. For example, the 𝑉𝐻 group will have the top twenty
percent most frequent words from 𝐶 and the 𝑉𝐿 group will
have the bottom twenty percent frequent words from 𝐶 .

Please refer to Figures 2, 3 4. These figures show the boxplot
for word stability when words are grouped based on frequency
as described before. Previous studies have reported that sta-
bility of a word group increases with increase in the average
frequency of the group [32]. Which means that as we move
from 𝑉𝐿 group to 𝑉𝐻 group, the average or median word
stability should increase. Our experimental results correlate
with the existing studies. However, Wendlandt et al also re-
port low variance in word stability for low as well as high
frequency word groups [32]. They report high variance in
word stability only for medium frequency word groups. In
contrast, we observe that all word groups have high variance
in word stability.

We can also observe from Figure 5 that the stability of a
word varies with word embedding methods used. The words in
Figure 5a were randomly picked from the Wikipedia (sample)
corpus and these words have different frequencies ranging
from 7 occurrences for "lieutenant" to 174163 for "one". To
generalize this observation to the whole vocabulary, we com-
puted the stability of each word using three WEMs. For each
word 𝑤 , now we had three stability values. For the word 𝑤 ,
we chose the WEM with highest stability value amongst the
three values. We observed that out of all words, each WEM
was chosen for the following percentage of words: fastText
(63%), GloVe (24%), and Word2Vec (13%). This implies that fast-
Text is in general a more stable WEM. However, a particular
WEM need not be the most stable method for each word in
the vocabulary.

3.3 Number of Vector Dimensions
One of the design choices withword embeddings is the number
of dimensions. Lower number of dimensions reduce the com-
putation but they might fail to represent all semantic relations.
On the other hand, higher number of dimensions increase the
computation while providing better semantic representation.
Here we explore this design choice from the stability point of
view. Figure 6 shows variation in stability with respect to the
number of dimensions for word embeddings. For each WEM,
we are comparing stability between two embedding spaces
with the same dimensionality. These two embedding spaces
differ from each other only in terms of the initial random seeds.
For example, two embedding spaces of 300 dimensioanlity that
are trained using fastText, have stability of eighty percent. As
expected, the stability improves with increase in the number
of dimensions. However, the improvement plateaus after 300
dimensions for all WEMs. Stability of fastText is higher than
GloVe and Word2Vec for all dimension sizes. Stability of GloVe
is lower for lower dimensions but increases rapidly till dimen-
sion 300. After dimension 300, the stability of GloVe becomes
comparable to fastText. Stability for Word2Vec is the lowest
compared to the other WEMs. We would recommend users to
train their models using a vector dimension of around 300 for
optimal stability.
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(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 2: All word groups have high variance in word
stability for fastText

Please refer to Figure 7. Here we are computing stability be-
tween embedding spaces of different dimensionality. For each
WEM, consider two embedding spaces 𝐸1 and 𝐸2. Let𝐷𝑖𝑚(𝐸1)
and 𝐷𝑖𝑚(𝐸2) represent dimensionality of the respective em-
bedding spaces.We set𝐷𝑖𝑚(𝐸1) to 100.We vary𝐷𝑖𝑚(𝐸2) from
50 to 800. We can observe that for all WEMs, stability values

(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 3: All word groups have high variance in word
stability for GloVe

peaks when𝐷𝑖𝑚(𝐸2) is 100. It is expected as at𝐷𝑖𝑚(𝐸2) = 100,
we are comparing embedding spaces of the same dimension-
ality. For 𝐷𝑖𝑚(𝐸2), as we move away from 100, the stability
decreases. This indicates that as we change the dimensionality
of embedding spaces, the underlying captured semantics also
change. The decrease in stability is rapid for lower number
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(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 4: All word groups have high variance in word
stability for Word2Vec.

of dimensions. Probable reason for this rapid decrease is that
we lose a lot of semantic information as we move to the lower
number of dimensions. However, stability reduction is not that
rapid as we move towards higher dimensions. We can observe
only slight reduction in stability from dimension size 300 to
800. With higher dimensions, we do capture new semantic

(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 5: For a set of randomly sampled words, stability
of words with each WEM

information. However, with higher dimension size, the rate of
growth of semantic information also slows down. This might
be a probable reason for slow reduction in stability for higher
dimension size.
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(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 6: Stability improvement plateaus after 300 di-
mensions

3.4 Number of Training Epochs
While training the word embeddings, another design parame-
ter is the number of training epochs. Ideally, we will expect
the word embeddings to stabilize with increase in the number
of training epochs. Figure 8 shows trends in the stability with
variation in the number of training epochs. Given a particular

(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 7: Stability between embedding spaces 𝐸1 and 𝐸2.
𝐷𝑖𝑚(𝐸1) = 100. X-axis represents 𝐷𝑖𝑚(𝐸2)

number of training epochs on the X-axis, we are computing
stability between two embeddings spaces that are trained for
the same number of epochs. However, these embedding spaces
differ in the random initial seeds. We can observe that varia-
tions in the stability of fasText are minimal. For Word2Vec, the
stability improves significantly with increase in the training
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epochs. GloVe shows a rather interesting trend. The stabil-
ity sharply increases as we increase the number of training
epochs from 1 to 5. After that, stability starts falling signifi-
cantly with further increase in the number of training epochs.
This appears to contradict the intuition that increasing the
number of training epochs will increase the stability. Further-
more, fastText performs better than both GloVe and Word2Vec
for all the datasets. Stability of Word2Vec is inferior compared
to the other two WEMs. However, its stability approaches that
of GloVe with increase in the training epochs. Even after 30
training epochs, stability of Word2Vc and GloVe is below 60%.
This indicates that choice of initial seed matters for these two
WEMs. In contrast, stability of fastText hovers around 90%,
indicating that choice of initial seed is insignificant.

We also wanted to quantify the changes in word embed-
dings across successive epochs. Please refer to Figure 9. For
a given WEM, we are comparing two embedding spaces 𝐸1
amd 𝐸2. Both these embedding spaces are identical to each
other except for the number of training epochs. Let𝑇𝑟𝑎𝑖𝑛(𝐸1)
and𝑇𝑟𝑎𝑖𝑛(𝐸2) be the number of training epochs for respective
embedding spaces. X-axis in the Figure 9 represents 𝑡𝑟𝑎𝑖𝑛(𝐸1).
We set 𝑡𝑟𝑎𝑖𝑛(𝐸2) = 𝑇𝑟𝑎𝑖𝑛(𝐸1) − 1. For example, using fastText
as the WEM when we compare 𝐸1 and 𝐸2 with 𝑇𝑟𝑎𝑖𝑛(𝐸1) = 5
and𝑇𝑟𝑎𝑖𝑛(𝐸2) = 4, the stability is close to 60%. Even in this sce-
nario, fastText is the most stable WEM. It indicates that word
embeddings in fastText do not change significantly across suc-
cessive iterations. So we can terminate the training of fastText
after a few training epochs. In contrast, Word2Vec and GloVe
have significantly lower stability across successive iterations.
The stability value for this experiment does not reach close
to 100% for any of the WEMs. This indicates that even with
high number of training epochs, top ten nearest neighbors for
many words do not stabilize.

3.5 Effect of Context Window Size on
Stability

The intuition behind any WEM is to generate the represen-
tation for a word by learning from its context. The context
is limited only to the sentence that the word belongs to. Size
of the context window is also a design parameter while train-
ing the word embeddings. Figure 10 shows variation in WEM
stability with respect to the context window size. For fast-
Text, there is slight reduction in stability. Word2Vec and GloVe
show contrasting behavior.After the context window size of
ten, these is not significant change in the stability value for any
WEM. This is expected as long sentences are rare in real-world
datasets that we have considered. Even for this experiment,
fastText turns out to be the most stable WEM.

4 EFFECT OF STABILITY ON
DOWNSTREAM TASKS

In the previous section, we have analyzed various factors af-
fecting the WEM stability. None of the WEMs are completely
stable. Word embeddings are used for various downstream
tasks. These embeddings typically serve as initial input for
various task specific algorithms and machine learning models.

(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 8: Stability of WEMs with respect to the number
of training epochs

The question we want to ask is: What is the effect of WEM in-
stability on downstream tasks? For our experiments, we have
shortlisted three tasks to cover multiple paradigms. First is an
unsupervised learning task of word clustering using SNND
algorithm. Second is a supervised learning task of POS tagging
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(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 9: Stability of WEMs across successive training
epochs

using a Deep Learning model. Third is a fairness evaluation
task involving subjective human opinions.

4.1 Word Clustering
There is a vast variety of clustering algorithms available in
the literature. Out of these algorithms we have chosen Shared

(a) Wikipedia

(b) Europarl

(c) Lyrics

(d) News 2007

Figure 10: Stability ofWEMswith respect to the context
window size

Nearest Neighbor Density Based Clustering (SNND) algorithm
[12] for the following two reasons. First, SNND is a well known
robust clustering algorithm for high-dimensional data. Second,
this algorithm clusters data based on the shared top K-nearest
neighbors (KNN). This intuition of clustering correlates with
our stability measurement.
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Figure 11: Decrease in clustering agreement plateaus
with increase in the number of embedding spaces.

Figure 12: Accuracy of POS tagging task increases with
inputs from multiple embedding spaces

SNND is a combination of two influential clustering algo-
rithms: Jarvis-Patrick [19] and DBScan [13]. In the first step,
SNND builds a graph representation of data using the concepts
from Jarvis-Patrick algorithm. Then it clusters this graph using
concepts from DBScan algorithm. SNND begins by building
KNN list for each data point. Similarity between any two data
points is the extent of overlap between their KNN lists. Next
step is to build the SNN-Graph. In this graph, each data point
is a vertex and two vertices have an edge if their similarity is
above a predefined threshold 𝛿𝑠𝑖𝑚 . A vertex is labelled as core
if its degree is above another predefined threshold 𝛿𝑑𝑒𝑔𝑟𝑒𝑒 . A
vertex is labelled as noise if it is not core and it is not connected
to any other core point. The remaining vertices are labelled as
non-core. All core vertices are initially considered as a sepa-
rate clusters. In the merging phase, two clusters are merged
if at least one core point from each cluster is connected with
each other in the SNN-graph. This iterative step is repeated till
no more clusters can be merged. Noise vertices are removed
from clustering. For each non-core vertex, the cluster having
the strongest link with it is chosen.

We experimented with all three WEMs on the Wikipedia
(Sample) dataset to evaluate the effect of WEM instability on
SNND clustering. Using each WEM, we train 𝑃 embedding
spaces: 𝐸1 to 𝐸𝑃 . These embedding spaces differ only in the
random initial seeds. Corresponding to each embedding space,
we obtain the clusterings𝐶1 to𝐶𝑃 . We compute the agreement
of these 𝑃 clusterings as the percentage of edges from 𝐶1 that

are preserved across all 𝑃 clusterings. Please refer to Figure 11.
This figure shows the variation in the clustering agreement
while varying the value of 𝑃 from one to ten. As we increase
the value of 𝑃 , the clustering agreement decreases. However,
this decrease plateaus for higher values of 𝑃 . This indicates
that even with the inherent instability of WEMs, resulting
clustering always preserves significant majority of the edges.
Here again, we observe that fastText results in the highest
clustering agreement.

4.2 Part-Of-Speech Tagging
For POS tagging, we combine a number of corpora using the
NLTK library. These include treebank (consists of 5% of Penn
Treebank), Brown, CONLL (Conference on Computational
Natural Language Learning) 2000, 2002 and 2007. The total
corpora size consists of 2.5 million tokens. We have split the
data into train, validation and test sets in the ratio 70:15:15.

While performing the POS tagging task, our goal is not to
replicate the state of the art. We want to analyze the effect
of WEM instability on the task. Like the previous stability
studies [32], we chose a simple a bidirectional LSTM model
[7]. It has 50 dimensional hidden vectors and the outputs are
passed through a softmax layer. Similar to the clustering task,
we trained 𝑃 embedding spaces 𝐸1 to 𝐸𝑃 using each of the
WEMs. The model requires vector representation of words
as input. While considering 𝑃 embedding spaces to generate
the vector representation of a word, we simply compute the
average of embeddings across all 𝑃 embedding spaces. This
averaging strategy across multiple embedding spaces is shown
to be effective in the literature [9]. Please refer to the Figure
12. This figure shows variation in the POS tagging accuracy
score with respect to the number of embedding spaces con-
sidered. Initially, the accuracy fluctuates with increase in the
number of embedding spaces. However, after crossing seven
embedding spaces, the accuracy increases and then it plateaus.
Here the instability of WEMs actually benefits the task. If the
WEMs were stable and provided similar input across multi-
ple embedding spaces then we will not see any improvement
in the accuracy score. However, the increase in the accuracy
score indicates that diferent embedding spaces provide com-
plementary information to the model.

4.3 Fairness Evaluation Task
Human actions reflect various biases in our thinking. For exam-
ple, musical instruments might seem inspiring and weapons
might seem harmful to some people. Implicit Association Test
(IAT) is designed to measure such biases with human subjects
[16]. The Word Embedding Association Test (WEAT) is pro-
posed by Caliskan et al.[6]. TheWEAT test is an improvisation
over the IAT test such that biases can be measured directly
from the word embeddings in the absence of humans subjects.
This test computes the similarity between words using cosine
similarity. Fairness evaluation task involves measuring biases
in the the given set of word embeddings using the WEAT
test. We selected this test for our experiments because its in-
tuition of cosine based similarity correlates with our stability
evaluation method.
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Test
no.

Target Words Attribute Words fastText GloVe Word2Vec CA IAT

1 flowers vs insects pleasant vs unpleasant 1.17,1.15 1.37,1.25 0.93,0.79 1.5 1.35
2 instruments vs weapons pleasant vs unpleasant 1.64,1.65 1.49,1.45 1.68,1.62 1.53 1.66
3 european american vs african american

names
pleasant vs unpleasant 0.36,0.35 0.39,0.40 0.64,0.59 1.41 1.17

4 male vs female names pleasant vs unpleasant 1.895,1.893 1.80,1.74 1.77,1.75 1.81 0.72
5 maths vs arts male vs female names 0.86,0.84 1.10,1.16 0.49,0.25 1.06 0.82
6 science vs arts male vs female names 1.09,1.08 1.28,1.22 0.42,0.29 1.24 1.47
7 mental disease vs physical disease temporary vs permanent −0.94,−0.93 1.43,1.34 1.4,1.2 1.38 1.01
8 young people vs old people names pleasant vs unpleasant 0.83,0.80 1.16,0.87 0.06,−0.04 1.21 1.42

Table 3: Stability of WEM correlates with the stability of WEAT results

The WEAT test takes in sets of target and attribute words.
Target words refer to the set of wordswhich denote a particular
group based on a specific criterion such as instrument names
(guitar, flute)and weapons (gun, sword). Attribute words re-
fer to the set of words which denote the characteristics such
as pleasant words (inspiring, creative) and unpleasant words
(dangerous, harmful). Given two sets of target words and two
sets of attribute words, the WEAT test checks if the null hy-
pothesis holds. That is, if the word embeddings are unbiased
then the similarity of the two sets of target words with the at-
tribute words should be almost same. If the result value for the
WEAT test is close to zero then it indicates the absence of bias.
Please refer to Table 3. It lists eight target and attribute word
set tests that we borrowed from Caliskan et al. [6]. The column
𝐼𝐴𝑇 reports the bias measurement results from Greenwal et al.
using the human subjects [16]. The column 𝐶𝐴 reports the re-
sults from Caliskan et al. They trained their word embeddings
using a large scale crawl of the Web.

We ran the WEAT test on the three WEMs and used the
Wikipedia (Sample) dataset for experimentation. For each
WEM, we trained three sets of word embeddings. Using each
set of word embeddigs, we ran the WEAT test. In Table 3,
three columns for the WEMs report stability results for each
method. These three columns contain two values each. These
two values correspond to the maximum and minimum value
obtained for a test using the given WEM across multiple em-
bedding spaces. For example, consider the WEAT results for
test number 1 (flowers vs insects) using the fastText WEM.
Corresponding to three embedding spaces, we obtained three
different result values. In the table, we list the maximum and
minimum of these three values: 1.17 and 1.15. Ideally, our re-
sults should be close to the columns𝐶𝐴 and 𝐼𝐴𝑇 . However, we
have trained our word embeddings on much smaller dataset
as compared to the dataset used by Caliskan et al. That is the
reason why quality of our results does not match well with
𝐶𝐴 and 𝐼𝐴𝑇 . But our goal is not to demonstrate the quality
of output. We aim to measure the stability of the results and
compare it with the stability of the WEMs used. Till now, we
have observed that fastText is the most stable WEM amongst
the three methods. As a consequence, WEAT results for fast-
Text have the highest stability. There is very little difference in
the maximum and minimum values in the 𝐹𝑇 column. WEAT
results for Word2Vec are the least stable. This is expected as

we have observed that Word2Vec is the least stable method
among the three methods considered in this paper.

5 RELATEDWORK
There has been a growing interest among researchers to ex-
plore the stability of the word embedding techniques. Wend-
landt and others [32] showed how various factors contribute to
the stability of word embeddings including frequency of words.
They also analyzed the effects of stability on downstream tasks.
Chugh and others [8] presented the impact of dimension size
and frequency of words on the consistency of a word em-
bedding model using Word2Vec. Pierrejean and Tanguy [28]
explored the variations between different word embeddings
models trained using Word2Vec. Their study shows that varia-
tion is influenced by parameters of a training algorithm. These
parameters influence the geometry of word vectors and their
context vectors [25], thereby causing variations. Hellrich and
Hahn [18] assess the reliability of word embeddings for both
modern and historical English and German and provided in-
sights about optimal parameters for negative sampling method
of Word2Vec and the number of iterations to train for. They
also showed that negative sampling outperforms hierarchi-
cal softmax in terms of reliability [17]. Furthermore, stability
is also affected by document properties as shown by Anto-
niak and Mimno [1]. Their study shows that smaller corpora
are much more affected due to these effects. Related work is
summarized in Table 4.

6 CONCLUSION AND FUTUREWORK
In this work, we have shown that WEMs are not completely
stable. Out of three three WEMs studied, fastText is the most
stable and Word2Vec is the least stable method. We also ob-
served the effect of WEMs instability on three downstream
tasks. While training word embeddings, one needs to carefully
analyze the effect of various design choices on the stability of
word embeddings. In future, we need a deeper analysis and
theoretical explanation for various stability trends observed
in this paper.
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