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1 INTRODUCTION

Processing vast amounts of data on traditional von Neumann architectures involves many data transfers between the
central processing unit (CPU) and the memory. These transfers degrade performance and consume energy [10, 13, 30,
32, 35, 36]. Enabled by emerging memory technologies, recent memristive processing-in-memory (PIM)1 solutions
show great potential in reducing costly data transfers by performing computations using individual memory cells [8,
24, 27, 33, 43]. Research in this area has led to better circuits and micro-architectures [6, 24, 25], as well as applications
using this paradigm [15, 21].

PIM solutions have recently been integrated into application-specific [9] and general-purpose [19] architectures.
General-purpose PIM-based architectures usually rely on memristive logic gates which are functionally complete sets
to enable the execution of arbitrary logic functions within the memory. Different memristive logic techniques have
been designed and implemented, including MAGIC [24], IMPLY [8], resistive majority [41], Fast Boolean Logic Circuit
(FBLC, [44]), and Liquid Silicon ([46]).

Despite the recent resurgence of PIM, it is still very challenging to analyze and quantify the advantages or disadvan-
tages of PIM solutions over other computing paradigms. We believe that a useful analytical modeling tool for PIM can
play a crucial role in addressing this challenge. An analytical tool in this context has many potential uses, such as in (i)
evaluation of applications mapped to PIM, (ii) comparison of PIM versus traditional architectures, and (iii) analysis of
the implications of new memory technology trends on PIM.

Our Bitlet model (following [23]) is an analytical modeling tool that facilitates comparisons of PIM versus traditional
CPU2 computing. The name Bitlet reflects PIM’s unique bit-by-bit data element processing approach. The model is
inspired by past successful analytical models for computing [12, 14, 16, 17, 42] and provides a simple operational view
of PIM computations.

The main contributions of this work are:
• Presentation of use cases where using PIM has the potential to improve system performance by reducing data
transfer in the system, and quantification of the potential gain and the PIM computation cost of these use cases.
• Presentation of the Bitlet model, an analytical modeling tool that abstracts algorithmic, technological, as well as
architectural machine parameters for PIM.
• Application of the Bitlet model on various workloads to illustrate how it can serve as a litmus test for workloads
to assess their affinity on PIM as compared to the CPU.
• Delineation of the strengths and weaknesses of the new PIM paradigm as observed in a sensitivity study
evaluating PIM performance and efficiency over various Bitlet model parameters.

It should be emphasized that the Bitlet model is an exploration tool. Bitlet is intended to be used as an analysis tool
for performing limit studies, conducting first-order comparisons of PIM and CPU systems, and researching the interplay
among various parameters. Bitlet is not a simulator for a specific system.

The rest of the paper is organized as follows: Section 2 provides background on PIM. In Section 3, we describe the
PIM potential use cases. In Section 4, we assess the performance of a PIM, CPU, and a PIM-CPU hybrid system. Section 5
discusses and compares the power and energy aspects of these systems. Note that Sections 3-5 combine tutorial and
research. These sections go deep into explaining step by step, using examples, both the terminology and the math
behind PIM related use cases, performance, and power. In Section 6, we present the Bitlet model and its ability to
evaluate the potential of PIM and its applications. We conclude the paper in Section 7.
1We refer to memristive stateful logic [34] as PIM, but the concepts and model may apply to other technologies as well.
2The Bitlet model concept can support systems other than CPU, e.g., GPU. See Comparing PIM to systems other than CPU in Section 6.5.
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2 BACKGROUND

This section establishes the context of the Bitlet research. It provides information about current PIM developments,
focusing on stateful logic-based PIM systems and outlining different methods that use stateful logic for logic execution
within a memristive crossbar array.

2.1 Processing-In-Memory (PIM)

The majority of modern computer systems use the von Neumann architecture, in which there is a complete separation
between processing units and data storage units. Nowadays, both units have reached a scaling barrier, and the data
processing performance is now limited mostly by the data transfer between them. The energy and delay associated with
this data transfer are estimated to be several orders of magnitude higher than the cost of the computation itself [30, 31],
and are even higher in data-intensive applications, which have become popular, e.g., neural networks [37] and DNA
sequencing [22]. This data transfer bottleneck is known as the memory wall.

The memory wall has raised the need to bridge the gap between where data resides and where it is processed. First,
an approach called processing-near-memory was suggested, in which, computing units are placed close to or in the
memory chip. Many architectures were designed using this method, e.g., intelligent RAM (IRAM) [30], active pages [28],
and 3D-stacked dynamic random access memory (DRAM) architectures [1]. However, this technique still requires data
transfer between the memory cells and the computing units. Then, another approach, called PIM was suggested, in
which, the memory cells also function as computation units. Various new and emerging memory technologies, e.g.,
resistive random access memory (RRAM) [2], often referred to as memristors, have recently been explored. Memristors
are new electrical components that can store two resistance values: 𝑅𝑂𝑁 and 𝑅𝑂𝐹𝐹 , and therefore can function as
memory elements. In addition, by applying voltage or passing current through memristors, they can change their
resistance and therefore can also function as computation elements. These two characteristics make the memristor an
attractive candidate for PIM.

2.2 Memristive Memory Architecture

Like other memory technologies, memristive memory is usually organized in a hierarchical structure. Each RRAM
chip is divided into banks. Each bank is comprised of subarrays, which are divided into two-dimensional memristive
crossbars (a.k.a. XBs). The XB consists of rows (wordlines) and columns (bitlines), with a memristive cell residing at each
junction and logic performed within the XB. Overall, the RRAM chip consists of many XBs, which can either share the
same controller and perform similar calculations on different data, or have separate controllers for different groups of
XBs and act independently.

2.3 Stateful Logic

Different logic families, which use memristive memory cells as building blocks to construct logic gates within the
memory array, have been proposed in the literature. These families have been classified into various categories according
to their characteristics: statefulness, proximity of computation, and flexibility [34]. In this paper, we focus on ‘stateful
logic’ families, so we use the term PIM to refer specifically to stateful logic-based PIM, and we use the term PIM

technologies to refer to different stateful logic families. A logic family is said to be stateful if the inputs and outputs of
the logic gates in the family are represented by memristor resistance.

Manuscript submitted to ACM
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Fig. 1. MAGIC NOR gates. (a) MAGIC NOR gate schematic. (b) Two MAGIC NOR gates mapped to crossbar array rows, operated in
parallel. (c) Two MAGIC NOR gates mapped to crossbar array columns, operated in parallel.

Several PIM technologies have been designed, including IMPLY [8] and MAGIC [24] gates. MAGIC gates have
become a commonly used PIM technology. Figure 1(a) shows the MAGIC NOR logic gate structure, where the two input
memristors are connected to an operating voltage, 𝑉𝑔 , and the output memristor is grounded. Since MAGIC is a stateful
logic family, the gate inputs and output are represented as memristor resistance. The input memristors are set with the
input values of the logic gate and the output memristor is initialized at 𝑅𝑂𝑁 . The resistance of the output memristor
changes during the execution according to the voltage divider rule, and switches when the voltage across it is higher
than 𝑉𝑔

2 . The same gate structure can be used to implement an OR logic gate, with minor modifications (the output
memristor is initialized at 𝑅𝑂𝐹𝐹 and a negative operating voltage 𝑉𝑔 is applied) [18]. As depicted in Figures 1(b) and
1(c), a single MAGIC NOR gate can be mapped to a memristive crossbar array row (horizontal operation) or column
(vertical operation). Multiple MAGIC NOR gates can operate on different rows or columns concurrently, thus enabling
massive parallelism. Overall, logic is performed using the exact same devices that store the data.

2.4 Logic Execution within a Memristive Crossbar Array

A functionally complete memristive logic gate, e.g., a MAGIC NOR gate, enables in-memory execution of any logic
function. The in-memory execution is performed by a sequence of operations performed over several clock cycles.
In each clock cycle, one operation can be performed on a single row or column, or on multiple rows or columns
concurrently, if the data is row-aligned or column-aligned. The execution of an arbitrary logic function with stateful
logic has been widely explored in the literature [4, 5, 40, 45]. Many execution and mapping techniques first use a
synthesis tool, which synthesizes the logic function and creates a netlist of logic gates. Then, each logic gate in the
netlist is mapped to several cells in the memristive crossbar and operated in a specific clock cycle. Each technique
maps the logic function according to its algorithm, based on different considerations, e.g., latency, area, or throughput
optimization.

Many techniques use several rows or columns in the memristive crossbar array for the mapping [5, 7, 40] to reduce
the number of clock cycles per a single function or to allow mapping of functions that are longer than the array row size
by spreading them over several rows. The unique characteristic of the crossbar array, which enables parallel execution
of several logic gates in different rows or columns, combined with an efficient cell reuse feature that enables condensing
long functions into short crossbar rows, renders single instruction multiple data (SIMD) operations attractive. In SIMD
operations, the same function is executed simultaneously on multiple rows or columns. Executing logic in SIMD mode
increases the computation throughput; therefore, by limiting the entire function mapping to a single row or column, the
throughput can be substantially improved. This is applied in the SIMPLER [4] mapper. Specifically, efficient cell reuse is
implemented in SIMPLER by overwriting a cell when its old value is no longer needed. With cell reuse, SIMPLER can
squeeze functions that require a long sequence of gates into short memory rows, e.g., a 128-bit addition that takes about
Manuscript submitted to ACM
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Fig. 2. The mMPU architecture. (a) The interfaces between the mMPU controller, the memory and the CPU. (b) A block diagram of
the mMPU controller. The mMPU controller receives instructions from the CPU, optionally including data to be written, and returns
read data to the CPU via the data lines.

1800 memory cells without cell reuse is compacted into less than 400 memory cells with cell reuse. In this paper, we
assume, without loss of generality, that a logic function is mapped into a single row in the memristive crossbar and
cloned to different rows for different data.

2.5 The memristive Memory Processor Unit (mMPU) Architecture

A PIM system requires a controller to manage its operation. In [3], a design of a memristive memory processing
unit (mMPU) controller is presented. Figure 2 depicts the mMPU architecture, as detailed in [3]. Figure 2(a) describes
the interfaces between the mMPU controller, the memory, and the CPU. The CPU sends instructions to the mMPU
controller, optionally including data to be written to memory. The mMPU processes each instruction and converts it
into one or more memory commands. For each command, the mMPU determines the voltages applied on the wordlines
and bitlines of the memristive memory arrays so that the command will be executed. Figure 2(b) depicts the internal
structure of the mMPU controller. The instruction is interpreted by the decoder and then further processed by one
of the green processing blocks according to the instruction type. The set of mMPU instruction types consists of the
traditional memory instruction types: Load, Store, Set/Reset, and a new family of instructions: PIM instructions. Load
and store instructions are processed in the read and write blocks, respectively. Initialization instructions are processed
in the Set/Reset block. PIM instructions are processed in the PIM ("arithmetic") block. The PIM block breaks each PIM
instruction into a sequence of micro-instructions, and executes this sequence in consecutive clock cycles, as described in
abstractPIM [11]. The micro-instructions supported by the target mMPU controller can be easily adapted and modified
according to the PIM technology in use, e.g., MAGIC NOR and IMPLY. Load instructions return data to the CPU through
the controller via the data lines.

For PIM-relevant workloads, the overhead of the mMPU controller on the latency, power, and energy of the system
is rather low. This is due to the fact that each PIM instruction operates on many data elements in parallel. Thus, the
controller/instruction overhead is negligible relative to the latency, power, and energy cost of the data being processed
within the memristive memory and the data transfer between memory and CPU [39].

Manuscript submitted to ACM



6 Ronen, et al.

Fig. 3. Data size reduction illustration. Blue squares: data to be transferred, white: saved data transfer, yellow: bit vector of selected
records to transfer.

3 PIM USE CASES AND COMPUTATION PRINCIPLES

After presenting the motivation for PIM in the previous section, in this section, we describe potential use cases of PIM.
We start with a high-level estimate of the potential benefits of reduced data transfer. Later, we define some computation
principles, and using them, we assess the performance cost of PIM computing.

3.1 PIM Use Cases and Data Transfer Reduction

As stated in Section 2, the benefit of PIM comes mainly from the reduction in the amount of the data transferred
between the memory and the CPU. If the saved time and energy due to the data transfer reduction is higher than the
added cost of PIM processing, then PIM is beneficial. In this sub-section, we list PIM use cases that reduce data transfer
and quantify this reduction.

For illustration, assume our data reflect a structured database in the memory that consists of 𝑁 records, where
each record is mapped into a single row in the memory. Each record consists of fields of varying data types. A certain
compute task reads certain fields of each record, with an overall size of 𝑆𝑖 bits, and writes back 𝑆𝑜 (potentially zero) bits
as the output. Define 𝑆 = 𝑆𝑖 + 𝑆𝑜 as the total number of accessed bits per record. Traditional CPU-based computation
consists of transferring 𝑁 × 𝑆𝑖 bits from memory to the CPU, performing the needed computations, and writing back
𝑁 × 𝑆𝑜 bits to the memory. In total, these computations require the transfer of 𝑁 × 𝑆 bits between the memory and
the CPU. By performing all or part of the computations in memory, the total amount of data transfer can be reduced.
This reduction is achieved by either reducing (or eliminating) the bits transferred per record (”𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑛𝑔”), and/or by
reducing the number of transferred records (”𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔”).

Several potential use cases follow, all of which differ in the way a task is split between PIM and CPU. In all cases, we
assume that all records are appropriately aligned in the memory, so that PIM can perform the basic computations on all
records concurrently (handling unaligned data is discussed later in Section 3.2). Figure 3 illustrates these use cases.

• CPU Pure. This is the baseline use case. No PIM is performed. All input and output data are transferred to the
CPU and back. The amount of data transferred is 𝑁 × 𝑆 bits.
• PIM Pure. In this extreme case, the entire computation is done in memory and no data is transferred. This kind
of computation is done, for example, as a pre-processing stage in anticipation of future queries. See relevant
examples under PIM Compact and PIM filter below.
• PIM Compact. Each record is pre-processed in memory in order to reduce the number of bits to be transferred
to the CPU from each record. For example, each product record in a warehouse database contains 12 monthly
shipment quantity fields. The application only needs the yearly quantity. Summing ("Compacting") these 12
elements into one reduces the amount of data transferred by 11 elements per record. Another example is an
application that does not require the explicit shipping weight values recorded in the database, but just a short

Manuscript submitted to ACM
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Table 1. PIM Use Cases Data Transfer Reduction

Use Case Records Size Data Transferred Data Transfer Reduction
𝐶𝑃𝑈 𝑃𝑢𝑟𝑒 𝑁 𝑆 𝑁 × 𝑆 0
𝑃𝐼𝑀 𝑃𝑢𝑟𝑒 0 0 0 𝑁 × 𝑆

𝑃𝐼𝑀 𝐶𝑜𝑚𝑝𝑎𝑐𝑡 𝑁 𝑆1 𝑁 × 𝑆1 𝑁 × (𝑆 − 𝑆1)
𝑃𝐼𝑀 𝐹𝑖𝑙𝑡𝑒𝑟1 𝑁1 𝑆 𝑁1 × 𝑆 + 𝑁 𝑁 × 𝑆1 − 𝑁
𝑃𝐼𝑀 𝐹𝑖𝑙𝑡𝑒𝑟2 𝑁1 𝑆 𝑁1 × (𝑆 + 𝑙𝑜𝑔2 (𝑁 )) 𝑁 × 𝑆 − 𝑁1 × (𝑆 + 𝑙𝑜𝑔2 (𝑁 ))
𝑃𝐼𝑀 𝐻𝑦𝑏𝑟𝑖𝑑 𝑁1 𝑆1 𝑁1 × 𝑆1 + 𝑁 𝑁 × (𝑆 − 1) − 𝑁1 × 𝑆1

𝑃𝐼𝑀 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛0 1 𝑆1 1 × 𝑆1 𝑁 × 𝑆 − 𝑆1
𝑃𝐼𝑀 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛1 𝑁1 = ⌈𝑁𝑅 ⌉ 𝑆1 𝑁1 × 𝑆1 𝑁 × 𝑆 − 𝑁1 × 𝑆1
𝑁 /𝑁1: overall/selected number of records; 𝑆/𝑆1: original/final size of records.
𝐹𝑖𝑙𝑡𝑒𝑟1/𝐹𝑖𝑙𝑡𝑒𝑟2: bit-vector/list of indices; 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛0/𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛1: all records/per XB

class tag (light, medium, heavy) instead. If the per-record amount of data is reduced from 𝑆 to 𝑆1 bits, then the
overall reduction is 𝑁 × (𝑆 − 𝑆1) bits.
• PIM Filter. Each record is processed in memory to reduce the number of records transferred to the CPU. This is
a classical database query case. For example, an application looks for all shipments over $1M. Instead of passing
all records to the CPU and checking the condition in the CPU, the check is done in memory and only the records
that pass the check ("Filtering") are transferred. If only 𝑁1 out of 𝑁 records of size 𝑆 are selected, then the overall
data transfer is reduced by (𝑁 − 𝑁1) × 𝑆 bits. Looking deeper, we need to take two more factors into account:

(1) When the PIM does the filtering, the location of the selected records should also be transferred to the CPU,
and the cost of transferring this information should be accounted for. Transferring the location can be done
by either (𝐹𝑖𝑙𝑡𝑒𝑟1) passing a bit vector (𝑁 bits) or by (𝐹𝑖𝑙𝑡𝑒𝑟2) passing a list of indices of the selected records
(𝑁1 × 𝑙𝑜𝑔2 (𝑁 ) bits). The amount of the total data to be transferred is therefore𝑚𝑖𝑛(𝑁 × 1, 𝑁1 × 𝑙𝑜𝑔2 (𝑁 )). For
simplicity, in this paper, we assume passing a bit vector (𝐹𝑖𝑙𝑡𝑒𝑟1). The overall cost of transferring both the data
and the bit vector is 𝑁1 × 𝑆 + 𝑁 . The amount of saved data transfer relative to CPU Pure is 𝑁 × 𝑆1 − 𝑁 bits.

(2) When filtering is done on the CPU only, data may be transferred twice. First, only a subset of the fields (the
size of which is 𝑆1) that are needed for the selection process are transferred, and only then, the selected records
or a different subset of the records. In this CPU Pure case, the amount of transferred data is 𝑁 × 𝑆1 + 𝑁1 × 𝑆 .
• PIM Hybrid. This use case is a simple combination of applying both PIM Compact and PIM filter. The amount
of data transferred depends on the method we use to pass the list of selected records, denoted above as 𝐹𝑖𝑙𝑡𝑒𝑟1 or
𝐹𝑖𝑙𝑡𝑒𝑟2. For example, when using 𝐹𝑖𝑙𝑡𝑒𝑟1, the transferred data consists of 𝑁1 records of size 𝑆1 and a bit-vector
of size 𝑁 bits. That is 𝑁1 × 𝑆1 + 𝑁 .
• PIM Reduction. The reduction operator "reduces the elements of a vector into a single result"3, e.g., computes the
sum, or the minimum, or the maximum of a certain field in all records in the database. The size of the result may
be equal to or larger than the original element size (e.g., summing a million of 8-bits arbitrary numbers requires
28 bits). "Textbook" reduction, referred to later as 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛0, replaces 𝑁 elements of size 𝑆 with a single element
of size 𝑆1 (𝑆1 ≥ 𝑆), thus eliminating data transfer almost completely. A practical implementation, referred to later
as 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛1, performs the reduction on each memory array (XB) separately and passes all interim reduction
results to the CPU for final reduction. In this case, the amount of transferred data is the product of the number of
memory arrays used by the element size, i.e., ⌈𝑁

𝑅
⌉ × 𝑆1, where 𝑅 is the number of records (rows) in a single XB.

3https://en.wikipedia.org/wiki/Reduction_Operator
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Fig. 4. PIM operation complexity in cycles for different types of operations and data sizes.

Table 1 summarizes all use cases along with the amount of transferred and saved data. In this table, 𝑁 and 𝑁1 reflect
the overall and selected number of the transferred records. 𝑆 and 𝑆1 reflect the original and final size of the transferred
records.

3.2 PIM Computation Principles

Stateful logic-based PIM (or just 𝑃𝐼𝑀 throughout this paper) computation provides very high parallelism. Assuming
the structured database example above (Section 3.1), where each record is mapped into a single memory row, PIM
can generate only a single bit result per record per memory cycle (e.g., a single NOR, IMPLY, AND, based on the PIM
technology). Thus, the sequence needed to carry out a certain computation may be rather long. Nevertheless, PIM can
process many properly aligned records in parallel, computing one full column or full row per XB per cycle4. Proper
alignment means that all the input cells and the output cell of all records occupy the same column in all participating
memory rows (records), or, inversely, the input cells and the output cell occupy the same rows in all participating
columns.

PIM can perform the same operation onmany independent rows, andmanyXBs, simultaneously. However, performing
operations involving computations between rows (e.g., shift or reduction) or in-row copy of an element with a different
alignment in each row, has limited parallelism. Such copies can be done in parallel among XBs, but within a XB, are
performed mostly serially. When the data in a XB are aligned, operations can be done in parallel (as demonstrated in
Figures 1(b) and 1(c) for row-aligned and column-aligned operations, respectively). However, operations on unaligned
data cannot be done concurrently, as further elaborated in Section 3.2.

To quantify PIM performance, we first separate the computation task into two steps: Operation and Placement and

Alignment. Below, we assess the complexity of each of these steps. For simplicity, we assume 𝑁 computations done on
𝑅 rows and 𝑋𝐵𝑠 memory arrays, i.e., 𝑁 = 𝑅 × 𝑋𝐵𝑠 .

Operation Complexity (𝑂𝐶). As described in Section 2.3, PIM computations are carried out as a series of basic
operations, applied to the memory cells of a row inside a memristive memory array. While each row is processed
bit-by-bit, the effective throughput of PIM is increased by the inherent parallelism achieved by simultaneous processing
of multiple rows inside a memory array and multiple memory arrays in the system memory. We assume the same
computations (i.e., individual operations) applied to a row are also applied in parallel in every cycle across all the rows
(𝑅) of a memory array.

4The maximum size of a memory column or row may be limited in a specific PIM technology due to e.g., wire delays and write driver limitations.
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Fig. 5. Horizontal Copies (𝐻𝐶𝑂𝑃𝑌 ) and Vertical Copies (𝑉𝐶𝑂𝑃𝑌 ) using PIM. HCOPY: all elements move together, bit per cycle
(case e). VCOPY: all bits move together, element per cycle (case c). Applied together in case g.

We define Operation Complexity (𝑂𝐶) for a given operation type and data size, as the number of cycles required
to process the corresponding data. Figure 4 shows how the input data length (𝑊 ) affects the computing cycles for
PIM-based processing. The figure shows that this number is affected by both the data size, as well as operation types
(different operations follow a different curve on the graph). In many cases, 𝑂𝐶 is linear with the data size, for example,
in a MAGIC NOR-based PIM,𝑊 -bit AND requires 3𝑊 cycles (e.g., for𝑊 =16 bits, AND takes 16x3 = 48 cycles), while
ADD requires 9𝑊 cycles5. Some operations, however, are not linear, e.g., full precision MULTIPLY𝑊 ×𝑊 → 2𝑊 bits
requires 13𝑊 2 − 14𝑊 cycles [15] or approximately 12.5𝑊 2 cycles, while low precision MULTIPLY𝑊 ×𝑊 →𝑊 bits
requires about half the number of cycles, or approximately 6.25𝑊 2 cycles. The specific Operation Complexity behavior
depends on the PIM technology, but the principles are similar.

Placement and Alignment Complexity (𝑃𝐴𝐶). PIM imposes certain constraints on data alignment and place-
ment [38]. To align the data for subsequent row-parallel operations, a series of data alignment and placement steps,
consisting of copying data from one place to another, may be needed. The number of cycles needed to perform these
additional copy steps is captured by the placement and alignment complexity parameter, denoted as 𝑃𝐴𝐶 . Currently,
for simplicity, we consider only the cost of intra-XB data copying, we ignore the cost of inter-XB data copying, and we
assume that multiple memory arrays continue to operate in parallel and independently. Refining the model to account
for inter-XB data copying will be considered in the future (see Section 6.5).

The PAC cycles required to copy the data in a memory array to the desired locations can be broken down into a series
of horizontal row-parallel copies (𝐻𝐶𝑂𝑃𝑌 ), and vertical column-parallel copies (𝑉𝐶𝑂𝑃𝑌 ). Figure 5 shows examples
of VCOPY and HCOPY operations involving copying a single element (Figures 5(a), 5(b), 5(d)) and multiple elements
(Figures 5(c), 5(e), 5(f), 5(g)). HCOPYs and VCOPYs are symmetric operations: HCOPY can copy an entire memory
column (or part of it) in parallel, while VCOPY can copy an entire memory row (or part of it) in parallel. Figure 5(g)
depicts the case of copying𝑚 column-aligned elements, each𝑊 -bit wide (in green,𝑚=2, 𝑛=5), into different rows to
be placed in the same rows as other column aligned elements (in orange). First, HCOPYs are performed in a bit-serial,

5ADD can be improved to 7𝑤 cycles using four-input NOR gates instead of two-input NOR gates.
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element-parallel, manner (copying elements from green to brown). In the first HCOPY cycle, all the first bits of all
involved𝑚 elements are copied in parallel. Then, in the second cycle, all the second bits of all involved𝑚 elements are
copied in parallel. This goes on for𝑊 cycles until all𝑊 bits in all𝑚 elements are copied. Next, VCOPYs are performed
in an element-serial, bit-parallel manner (copying from brown to green). In the first VCOPY cycle, all the𝑊 bits of the
first selected element are copied, in parallel, to the target row. Then, in the second cycle, all the𝑊 bits of the second
selected element are copied, in parallel. This goes on for𝑚 cycles until all𝑚 elements are copied.

When the involved data elements across different rows are not aligned, separate HCOPYs are performed individually
for each data element, thus requiring additional cycles. A VCOPY for a given data element, on the other hand, can be
done in parallel on all the bits in the element, which are in the same row. However, each row within a XB has to be
vertically copied separately, in a serial manner.

The number of cycles it takes to perform a single bit copy (either HCOPY or VCOPY) depends on the PIM technology
used. For example, MAGIC OR-based PIM technology ( [18]) supports logic OR as a basic operation, allowing a 1-cycle
bit copy (see Figure 5(a), 5(c), 5(d), and 5(e)). PIM Technologies that do not support a 1-cycle bit copy (e.g., MAGIC
NOR-based PIM technology), have to execute two consecutive NOT operations that take two cycles to copy a single bit
(Figure 5(b)). However, copying a single bit using a sequence of a HCOPY operation followed by a VCOPY operation
can be implemented as two consecutive OR or NOT operations that take two cycles regardless of the PIM technology
used (Figure 5(f) and 5(g)).

We define Computation complexity (𝐶𝐶) as the number of cycles required to fully process the corresponding data.
𝐶𝐶 equals the sum of 𝑂𝐶 and 𝑃𝐴𝐶 .

Below are examples of PIM 𝐶𝐶 cycles. We use the terms Gathered and Scattered to refer to the original layout of the
elements to be aligned. Gathered means that all input locations are fully aligned among themselves, but not with their
destination, while Scattered means that input locations are not aligned among themselves.

• Parallel aligned operation. Adding two vectors, 𝐴 and 𝐵, into vector 𝐶 , where 𝐴𝑖 , 𝐵𝑖 and 𝐶𝑖 are in row 𝑖 . The
size of each element is𝑊 -bits. A MAGIC NOR-based full adder operation takes 𝑜 (= 9) cycles. Adding two𝑊 -bit
elements in a single row takes 𝑂𝐶 = 𝑜 ×𝑊 cycles. At the same 𝑂𝐶 cycles, one can add either one element or
millions of elements. Since there are no vertical or horizontal copies, the𝐶𝐶 equals the𝑂𝐶 . The above-mentioned
PIM Compact, PIM Filter, and PIM Hybrid use cases are usually implemented as parallel aligned operations.
• Gathered placement and alignment copies. Assume we want to perform a shifted vector copy, i.e., copying
vector 𝐴 into vector 𝐵 such that 𝐵𝑖−1 ← 𝐴𝑖 .6 The size of each element is𝑊 -bit. With stateful logic, the naive
way of making such a copy for a single element is by a sequence of 𝐻𝐶𝑂𝑃𝑌 operations followed by 𝑉𝐶𝑂𝑃𝑌
operations. For a given single element in a row 𝐴𝑖 , first, copy all𝑊 bits of 𝐴𝑖 in parallel, so 𝐵𝑖 ← 𝐴𝑖 , then, copy
𝐵𝑖−1 ← 𝐵𝑖 . Copying𝑊 -bits in a single row takes𝑊 cycles. As in the above parallel aligned case, in the same𝑊
cycles, one can copy either one element or many elements. However, in this case, we also need to copy the result
elements from one row to the adjacent one above. Copying𝑊 -bits between two rows takes a single cycle, as all
𝑊 bits can be copied from one row to another in parallel. But, copying all rows is a serial operation, as it must be
done separately for each row in the XB. Hence, if the memory array contains 𝑅 rows, the entire copy task will
take 𝐶𝐶 = (𝑊 + 𝑅) cycles. Still, these operations can be done in parallel on all the XBs in the system. Hence,
copying all 𝑁 elements can be completed in the same (𝑊 + 𝑅) cycles.

6We ignore the elements of 𝐵 that are last in each XB.
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• Gathered unaligned operation. The time to perform a combination of the above two operations, e.g., 𝐶𝑖−1 ←
𝐴𝑖 + 𝐵𝑖 , is the sum of both computations, that is 𝐶𝐶 = (𝑂𝐶 +𝑊 + 𝑅) cycles.
• Scattered placement and alignment. We want to gather 𝑅 unaligned𝑊 -bit elements into a row-aligned
vector 𝐵, that is, all 𝐵 elements occupy the same columns. Assume the worst case where all elements have to be
horizontally and vertically copied to reach their desired location, as described above for Gathered placement and

alignment. To accomplish this, we need to do𝑊 horizontal 1-bit copies and one parallel𝑊 -bit copy for each
element, totaling overall 𝐶𝐶 = (𝑊 + 1) × 𝑅 cycles.
• Scattered unaligned operation. Perform a Scattered placement and alignment followed by a parallel aligned
operation, takes the sum of both computations, that is, 𝐶𝐶 = (𝑂𝐶 + (𝑊 + 1) × 𝑅) cycles.
• Reduction. We look at a classical reduction where the reduction operation is both commutative and associative
(e.g., a sum, a minimum, or a maximum of a vector). For example, we want to sum a vector𝐴 where each element,
as well as the final sum, are of size𝑊 , i.e., 𝑆 =

∑𝑁
𝑖=1𝐴𝑖 . The idea is to first reduce all elements in each XB into a

single value separately, but in parallel, and then perform the reduction on all interim results. There are several
ways to perform a reduction, the efficiency of which depends on the number of elements and the actual operation.
We use the tree-like reduction7, which is a phased process, in which at the beginning of each phase, we start with
𝑘 elements (𝑘 = 𝑅, the number of rows, in the first phase), pair them into 𝑘/2 groups, perform all 𝑘/2 additions,
and start a new phase with the 𝑘/2-generated numbers. For 𝑅 elements, we need 𝑝ℎ = ⌈log2 (𝑅)⌉ phases. Each
phase consists of one parallel (horizontal) copy of𝑊 bits, followed by 𝑘/2 serial (vertical) copies, and ending
with one parallel operation (in our case,𝑊 -bit add). The total number of vertical copies is 𝑅 − 1. Overall, the full
reduction of a single XB in all phases takes 𝐶𝐶 = (𝑝ℎ × (𝑂𝐶 +𝑊 ) + (𝑅 − 1)) cycles. The reduction is done on all
involved XBs in parallel, producing a single result per XB. Later, all per XB interim results are copied into fewer
XBs and the process continues recursively over log2 (𝑁 )

log2 (𝑅)
steps. Copying all interim results into fewer XBs and

using PIM on a smaller number of XBs is inefficient as it involves serial inter-XB copies and low-parallel PIM
computations. Therefore, for higher efficiency, after the first reduction step is done using PIM, all interim results
are passed to the CPU for the final reduction, denoted as 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛1 in Section 3.

Table 2. PIM Computation Cycles for Aligned and Unaligned Computations

Computation type
Operate
Row

Parallel

HCOPY
Row

Parallel

VCOPY
Row
Serial

Total Approximation

Parallel Operation 𝑂𝐶 - - 𝑂𝐶 𝑂𝐶

Gathered Placement & Alignment - 𝑊 𝑅 𝑊 + 𝑅 𝑅

Gathered Unaligned Operation 𝑂𝐶 𝑊 𝑅 𝑂𝐶 +𝑊 + 𝑅 𝑂𝐶 + 𝑅
Scattered Placement & Alignment - 𝑅 ×𝑊 𝑅 (𝑊 + 1) × 𝑅 𝑊 × 𝑅
Scattered Unaligned Operation 𝑂𝐶 𝑅 ×𝑊 𝑅 𝑂𝐶 + (𝑊 + 1) × 𝑅 𝑂𝐶 +𝑊 × 𝑅

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛1 𝑝ℎ×𝑂𝐶 𝑝ℎ ×𝑊 𝑅 − 1 𝑝ℎ×(𝑂𝐶+𝑊 )+(𝑅−1) 𝑝ℎ ×𝑂𝐶 + 𝑅
𝑂𝐶: Operation Complexity,𝑊 : Width of element, 𝑅: Number of rows, 𝑝ℎ: Number of reduction phases.

Table 2 summarizes the computation complexity in cycles of various PIM computation types (ignoring inter-XB
copies, as mentioned above). Usually, 𝑂𝐶 ≫𝑊 and 𝑅 ≫𝑊 , so 𝑂𝐶 ±𝑊 is approximately 𝑂𝐶 , and 𝑅 ± 1 and 𝑅 ±𝑊 are
approximately 𝑅. The last column in the table reflects this approximation. The approximation column hints to where

7https://en.wikipedia.org/wiki/Graph_reduction
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most cycles go, depending on 𝑂𝐶 , 𝑅, and𝑊 . Parallel operations depend on only 𝑂𝐶 and are independent of 𝑅, the
number of elements (rows). When placement and alignment take place, there is a serial part that depends on 𝑅 and is a
potential cause for computation slowdown.

4 PIM AND CPU PERFORMANCE

In the previous section, the PIM use cases and computation complexity were introduced. In this section, we devise the
actual performance equations of PIM, CPU, and combined PIM+CPU systems.

4.1 PIM Throughput

𝐶𝐶 represents the time it takes to perform a certain computation, similar to the latency of an instruction in a computing
system. However, due to the varying parallelism within the PIM system, 𝐶𝐶 does not directly reflect the PIM system
performance. To evaluate the performance of a PIM system, we need to find its system throughput, which is defined as
the number of computations performed within a time unit. Common examples are Operations Per Second (OPS) or
Giga Operations per Second (GOPS). For a PIM Pure case, when completing 𝑁 computations takes 𝑇𝑃𝐼𝑀 time, the PIM
throughput 𝑇𝑃𝑃𝐼𝑀 is:

𝑇𝑃𝑃𝐼𝑀 = 𝑁
𝑇𝑃𝐼𝑀

. (1)

To determine 𝑇𝑃𝐼𝑀 , we obtain the PIM 𝐶𝐶 and multiply it by the PIM cycle time (𝐶𝑇 )8. 𝐶𝑇 depends on the specific
PIM technology used. To compute 𝐶𝐶 , we use the equations in Table 2. The number of computations 𝑁 is the total
number of elements participating in the process. When single-row based computing is used, this number is the number
of all participating rows, which is the product of the number of rows within a XB with the number of XBs, that is,
𝑁 = 𝑋𝐵𝑠 × 𝑅. The PIM throughput is therefore

𝑇𝑃𝑃𝐼𝑀 = 𝑋𝐵𝑠×𝑅
𝐶𝐶×𝐶𝑇 . (2)

For example, consider the Gathered unaligned operation case for computing shifted vector-add, 𝐶𝑖−1 ← 𝐴𝑖 + 𝐵𝑖 .
Assuming 𝑜 = 9 cycles (1-bit add), element size𝑊 = 16 bits, 𝑅 = 1024 rows, and 𝑋𝐵𝑠 = 1024 memory arrays, then
𝑁 = 1𝑀 elements.𝑂𝐶 = 9×16 = 144 cycles. The number of cycles to compute 𝑅 elements also equals the time to compute
𝑁 elements and is 𝐶𝐶 = 𝑂𝐶 + 𝑅 or 144 + 512 = 656 cycles. The PIM throughput per cycle is 𝑁

𝐶𝐶
= 1024×1024

656 = 1598
computations per cycle. The throughput is 1598

𝐶𝑇
computations per time unit. We can derive the throughput per second

for a specific cycle time. For example, for a 𝐶𝑇 of 10ns, the PIM throughput is 1598
10−8 = 159.8 × 109 OPS ≈ 160 GOPS.

In the following sections, we explain the CPU Pure performance and throughput and delve deeper into the overall
throughput computation when both PIM and CPU participate in a computation.

4.2 CPU Computation and Throughput

Performing computation on the CPU involves moving data between the memory and the CPU (Data Transfer), and
performing the actual computations (e.g., ALU Operations) within the CPU core (CPU Core). Usually, on the CPU side,
Data Transfer and CPU Core Operations can overlap, so the overall CPU throughput 𝑇𝑃𝐶𝑃𝑈 is the minimum between
the data transfer throughput and the CPU Core Throughput.

Using PIM to accelerate a workload is only justified when the workload performance bottleneck is the data transfer
between the memory and the CPU, rather than the CPU core operation. In such workloads, the data-set cannot fit in
8We assume that the controller impact on the overall PIM latency is negligible, as explained in Section 2.5.
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the cache as the data-set size is much larger than the CPU cache hierarchy size. Cases where the CPU core operation,
rather than the data transfer, is the bottleneck, are not considered PIM-relevant. In PIM-relevant workloads, the overall
CPU throughput 𝑇𝑃𝐶𝑃𝑈 is dominated by the data transfer throughput.

The data transfer throughput depends on the memory to CPU bandwidth and the amount of data transferred per
computation. We define 𝐵𝑊 as the memory to CPU bandwidth in bits per second (bps), and 𝐷𝐼𝑂 (𝐷𝐴𝑇𝐴 𝐼𝑂) as the
number of bits transferred for each computation. That is:

𝑇𝑃𝐶𝑃𝑈 = 𝐵𝑊
𝐷𝐼𝑂

. (3)

We demonstrate the data transfer throughput using, again, the shifted 16-bit vector-add example. In Table 3, we
present three interesting cases, differing in their 𝐷𝐼𝑂 size. (a) CPU Pure. The two inputs and the output are transferred
between the memory and the CPU (𝐷𝐼𝑂 = 48). (b) Inputs only. Same as CPU Pure, except that only the inputs are
transferred to the CPU; no output result is written back to memory (𝐷𝐼𝑂 = 32). (c) Compaction.Where PIM performs
the add operation and passes only the output data to the CPU for further processing (𝐷𝐼𝑂 = 16). We use the same
data bus bandwidth, 𝐵𝑊 = 1000 GOPS, for all three cases. Note that the data transfer throughput depends only on
the data sizes, it is independent of the operation type. The throughput numbers in the table reflect any binary 16-bit
operation, either simple as OR or complex as divide. The table hints at the potential gain that PIM opens by reducing
the amount of data transfer between the memory and CPU. If PIM throughput is sufficiently high, the data transfer
reduction may compensate for the additional PIM computations and the combined PIM+CPU system throughput may
exceed the throughput of a system using the CPU only with PIM.

Special care must be taken when determining DIO for the PIM Filter and PIM Reduction cases since only a subset
of the records are transferred to the CPU. Note that the DIO parameter reflects the number of data bits transferred
per accomplished computation, even though the data for some computations were not eventually transferred. In these
cases, the DIO should be set as the total number of transferred data bits divided by the number of computations done
in the system. For example, assume a filter, where we process 𝑁 records of size 𝑆 , and pass only𝑀 = 𝑁 × 𝑝 of them
(𝑝 < 1). The DIO, in case we use a bit-vector to identify chosen records, is (𝑁×𝑝×𝑆)+𝑁

𝑁
= (𝑆 × 𝑝) + 1. e.g., if 𝑆 = 200 and

𝑝 = 1%, DIO is 200 × 0.01 + 1 = 2 + 1 = 3 bits. That is, the amount of data transfer per computation went from 200 to 3
bits per computation, i.e., 67× reduction. The data transfer throughput for the filter case is presented in Table 3.

Table 3. Data Transfer Throughput

Computation type Bandwidth (BW)
[Gbps]

DataIO (DIO)
[bits]

Data Transfer Throughput (𝑇𝑃𝐶𝑃𝑈 )
[GOPS]

CPU Pure 1000 48 20.8
Inputs Only 1000 32 31.3
Compaction 1000 16 62.5

Filter (200 bit, 1%) 1000 3 333.3

4.3 Combined PIM and CPU Throughput

In a combined PIM and CPU system, achieving peak PIM throughput requires operating all XBs in parallel, thus
preventing overlapping PIM computations with data transfer9. In such a system, completing 𝑁 computations takes

9Overlapping PIM computation and data transfer can be made possible in a banked PIM system. See Pipelined PIM and CPU in Section 6.5.
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𝑇𝑃𝐼𝑀 PIM time and 𝑇𝐶𝑃𝑈 data transfer time, and the combined throughput 𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is, by definition:

𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑁
𝑇𝑃𝐼𝑀+𝑇𝐶𝑃𝑈

. (4)

Fortunately, computing the combined throughput 𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 does not require knowing the values of 𝑇𝑃𝐼𝑀 and
𝑇𝐶𝑃𝑈 . 𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 can be computed using the throughput values of its components, 𝑇𝑃𝑃𝐼𝑀 and 𝑇𝑃𝐶𝑃𝑈 , as follows:

𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑁
𝑇𝑃𝐼𝑀+𝑇𝐶𝑃𝑈

= 1
𝑇𝑃𝐼𝑀

𝑁
+𝑇𝐶𝑃𝑈

𝑁

= 1
1

𝑇𝑃𝑃𝐼𝑀
+ 1
𝑇𝑃𝐶𝑃𝑈

. (5)

Since the PIM and CPU operations do not overlap, the combined throughput is always lower than the throughput of
each component for the pure cases with the same parameters. For example, in the Gathered unaligned operation case
above, when computing a 16-bit shifted vector-add, i.e., 𝐶𝑖−1 ← 𝐴𝑖 + 𝐵𝑖 , we do the vector-add in PIM, and transfer the
16-bit result vector to the CPU (for additional processing). We have already shown that, for the parameters we use,
the PIM Throughput is 𝑇𝑃𝑃𝐼𝑀 = 160 GOPS, and the data transfer throughput is 𝑇𝑃𝐶𝑃𝑈 = 62.5 GOPS. Using Eq. (5),
the combined throughput 𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 1

1
160×109 +

1
62.5×109

= 44.9 × 109 = 44.9 GOPS, which is indeed lower than 160 and

62.5 GOPS. However, this combined throughput is higher than that of the CPU Pure throughput using higher 𝐷𝐼𝑂=32
or 𝐷𝐼𝑂=48 (31.3 or 20.8 GOPS) presented in the previous subsection. Of course, these results depend on the specific
parameters used here. A comprehensive analysis of the performance sensitivity is described in Section 6.2.

5 POWER AND ENERGY

When evaluating the power and energy aspects of a system, we examine two factors:

• Energy per computation. The energy needed to accomplish a single computation. This energy is determined
by the amount of work to be done (e.g., number of basic operations) and the energy per operation. Different
algorithms may produce different operation sequences thus affecting the amount of work to be done. Physical
characteristics of the system affect the energy per operation. Energy per Computation is a measure of system
efficiency. A system configuration that consumes less energy per a given computation is considered more efficient.
For convenience, we generally use Energy Per Giga Computations. Energy is measured in Joules.
• Power. The power consumed while performing a computation. The maximum allowed power is usually deter-
mined by physical constraints like power supply and thermal restrictions, and may limit system performance. It
is worth noting that the high parallel computation of PIM causes the memory system to consume much more
power when in PIM mode than when in standard memory load/store mode. Power is measured in Watts (Joules
per second).

In this section, we evaluate the PIM, the CPU, and the combined system power and energy per computation and how
it may impact system performance. For the sake of this coarse-grained analysis, we consider dynamic power only and
ignore power management and dynamic voltage scaling.

5.1 PIM Power and Energy

Most power models target a specific design. The below approach is more general and resembles the one used for
floating-point add/multiply power estimation in FloatPIM [20]. In this approach, every PIM operation consumes energy.
For simplicity, we assume that in every PIM cycle, the switching of a single cell consumes a fixed energy 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 . This
is the average amount of energy consumed by each participating bit in each XB, and accounts for both the memristor
access as well as other overheads such as the energy consumed by the wires and the peripheral circuitry connected to
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the specific bitline/wordline10. The PIM energy per computation 𝐸𝑃𝐶𝑃𝐼𝑀 is the product of 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 by the number of
cycles 𝐶𝐶 . The PIM power 𝑃𝑃𝐼𝑀 is the product of the energy per computation 𝐸𝑃𝐶𝑃𝐼𝑀 by the PIM throughput 𝑇𝑃𝑃𝐼𝑀
(see Section 4.1).

𝐸𝑃𝐶𝑃𝐼𝑀 = 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 ×𝐶𝐶, (6)

𝑃𝑃𝐼𝑀 = 𝐸𝑃𝐶𝑃𝐼𝑀 ×𝑇𝑃𝑃𝐼𝑀 = (𝐸𝑏𝑖𝑡𝑃𝐼𝑀 ×𝐶𝐶) × 𝑋𝐵𝑠×𝑅
𝐶𝐶×𝐶𝑇 =

𝐸𝑏𝑖𝑡𝑃𝐼𝑀×𝑅×𝑋𝐵𝑠
𝐶𝑇

. (7)

5.2 CPU Power and Energy

Here we compute the CPU energy per computation 𝐸𝑃𝐶𝐶𝑃𝑈 and the power 𝑃𝐶𝑃𝑈 . As in the performance model, we
ignore the actual CPU Core operations and consider only the data transfer power and energy. Assume that transferring
a single bit of data consumes 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 . Hence, the CPU energy per computation 𝐸𝑃𝐶𝐶𝑃𝑈 is the product of 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 by
the number of bits per computation 𝐷𝐼𝑂 . The CPU power 𝑃𝐶𝑃𝑈 is simply the product of the energy per computation
𝐸𝑃𝐶𝐶𝑃𝑈 with the CPU Throughput𝑇𝑃𝐶𝑃𝑈 . When the memory to CPU bus is not idle, the CPU power 𝑃𝐶𝑃𝑈 is equal to
the product of the energy per bit 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 with the number of bits per second, which is the memory to CPU bandwidth
𝐵𝑊 .

𝐸𝑃𝐶𝐶𝑃𝑈 = 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 × 𝐷𝐼𝑂, (8)

𝑃𝐶𝑃𝑈 = 𝐸𝑃𝐶𝐶𝑃𝑈 ×𝑇𝑃𝐶𝑃𝑈 = 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 × 𝐷𝐼𝑂 × 𝐵𝑊
𝐷𝐼𝑂

= 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 × 𝐵𝑊 . (9)

If the bus is busy only part of the time, the CPU power 𝑃𝐶𝑃𝑈 should be multiplied by the relative time the bus is
busy, that is, the bus duty cycle,

5.3 Combined PIM and CPU Power and Energy

When a task is split between PIM and CPU, we treat them as if part of each computation is partly done on the PIM and
partly on the CPU (see Section 4.3). The combined energy per computation 𝐸𝑃𝐶𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 is the sum of the PIM energy
per computation 𝐸𝑃𝐶𝑃𝐼𝑀 and the CPU energy per computation 𝐸𝑃𝐶𝐶𝑃𝑈 . The overall system power is the product of
the combined energy per computation and the combined system throughput:

𝐸𝑃𝐶𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐸𝑃𝐶𝑃𝐼𝑀 + 𝐸𝑃𝐶𝐶𝑃𝑈 =
𝑃𝑃𝐼𝑀
𝑇𝑃𝑃𝐼𝑀

+ 𝑃𝐶𝑃𝑈

𝑇𝑃𝐶𝑃𝑈
, (10)

𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐸𝑃𝐶𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ×𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ( 𝑃𝑃𝐼𝑀
𝑇𝑃𝑃𝐼𝑀

+ 𝑃𝐶𝑃𝑈

𝑇𝑃𝐶𝑃𝑈
) ×𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 . (11)

Since PIM and CPU computations do not overlap, their duty cycle is less than 100%. Therefore, the PIM power in the
combined PIM+CPU system is lower than the maximum PIM Power in a Pure PIM configuration. Similarly, the CPU
Power in the combined PIM+CPU system is lower than the maximum CPU Power.

In order to compare energy per computation between different configurations, we use the relevant 𝐸𝑃𝐶 values,
computed by dividing the power of the relevant configuration by its throughput. That is:

𝐸𝑃𝐶𝑃𝐼𝑀 =
𝑃𝑃𝐼𝑀
𝑇𝑃𝑃𝐼𝑀

; 𝐸𝑃𝐶𝐶𝑃𝑈 =
𝑃𝐶𝑃𝑈

𝑇𝑃𝐶𝑃𝑈
; 𝐸𝑃𝐶𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =

𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑

𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑
. (12)

The following example summarizes the entire power and energy story. Assume, again, the above shifted vector-
add example using the same PIM and CPU parameters. In addition, we use 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 = 0.1pJ [26] and 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 =

15pJ [29]. The PIM Pure throughput is 160 GOPS (see Section 4.1) and the PIM Pure power is 𝑃𝑃𝐼𝑀 =
𝐸𝑏𝑖𝑡𝑃𝐼𝑀×𝑅×𝑋𝐵𝑠

𝐶𝑇
=

10We assume that the controller impact on the overall PIM power and energy is negligible, as explained in Section 2.5.
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0.1∗10−12×1024×1024
10−8 = 10.5W. The CPU Pure throughput (using 𝐵𝑊 = 1000 Gpbs) is 20.8 (or 62.5) GOPS for 48 (or 16) bit

DIO (see Section 4.2). The CPU Pure Power is 𝑃𝐶𝑃𝑈 = 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 × 𝐵𝑊 =15*10−12 × 1012 = 15W. A combined PIM+CPU
system will exhibit throughput of𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 44.9 GOPS and power 𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ( 𝑃𝑃𝐼𝑀

𝑇𝑃𝑃𝐼𝑀
+ 𝑃𝐶𝑃𝑈

𝑇𝑃𝐶𝑃𝑈
) ×𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =

( 10.5
160×109 +

15
62.5×109 ) × (44.9 × 10

9) = 13.7W.
Again, these results depend on the specific parameters in use. However, they demonstrate a case where, with PIM,

not only the system throughput went up, but, at the same time, the system power decreased. When execution time and
power consumption go down, energy goes down as well. In our example, 𝐸𝐶𝑃𝐶𝑃𝑈 = 15

20.8×109 = 0.72
109 J/OP = 0.72 J/GOP,

and 𝐸𝐶𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 13.7
44.9×109 = 0.31

109 J/OP = 0.31 J/GOP.

5.4 Power-Constrained Operation

Occasionally, a system, or its components, may be power-constrained. For example, using too many XBs in parallel, or
fully utilizing the memory bus may exceed the maximum allowed system or component thermal design power11 (𝑇𝐷𝑃 ).
For example, the PIM power 𝑃𝑃𝐼𝑀 must never exceed 𝑇𝐷𝑃𝑃𝐼𝑀 . When a system or a component exceeds its 𝑇𝐷𝑃 , it has
to be slowed down to reduce its throughput and hence, its power consumption. For example, a PIM system throughput
can be reduced by activating fewer XBs or rows in each cycle, increasing the cycle time, or a combination of both. CPU
power can be reduced by forcing idle time on the memory bus to limit its bandwidth (i.e., "throttling").

6 THE BITLET MODEL - PUTTING IT ALL TOGETHER

So far, we have established the main principles of the PIM and CPU performance. In this section, we first present
the Bitlet model itself, basically summarizing the relevant parameters and equations to compute the PIM, CPU, and
combined performance in terms of throughput. Then, we demonstrate the application of the model to evaluate the
potential benefit of PIM for various use cases. We conclude with a sensitivity analysis studying the interplay and impact
of the various parameters on the PIM and CPU performance and power.

6.1 The Bitlet Model Implementation

The Bitlet model consists of ten parameters and nine equations that define the throughput, power, and energy of the
different model configurations. Table 4 summarizes all Bitlet model parameters. Table 5 lists all nine Bitlet equations.

PIM performance is captured by six parameters: 𝑂𝐶 , 𝑃𝐴𝐶 , 𝐶𝐶 , 𝑋𝐵𝑠 , 𝑅 and 𝐶𝑇 . Note that 𝑂𝐶 and 𝑃𝐴𝐶 are just
auxiliary parameters used to compute 𝐶𝐶 . CPU performance is captured by two parameters: 𝐵𝑊 and 𝐷𝐼𝑂 . PIM and
CPU energy are captured by the 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 and the 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 parameters. For conceptual clarity and to aid our analysis, we
designate three parameter types: technological, architectural, and algorithmic. Typical values or ranges for the different
parameters are also listed in Table 4. The table contains references for the typical values of the technological parameters
𝐶𝑇 , 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 , and 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 , which are occasionally deemed controversial. The model itself is very flexible, it accepts
a wide range of values for all the parameters. These values do not even need to be implementable and can differ
from the parameters’ typical values or ranges. This flexibility allows limit-studies by modeling systems using extreme
configurations.

The nine Bitletmodel equations determine the PIM, CPU and the combined performance (𝑇𝑃𝑃𝐼𝑀 ,𝑇𝑃𝐶𝑃𝑈 ,𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ),
power (𝑃𝑃𝐼𝑀 , 𝑃𝐶𝑃𝑈 , 𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ), and energy per computation (𝐸𝑃𝐶𝑃𝐼𝑀 , 𝐸𝑃𝐶𝐶𝑃𝑈 , 𝐸𝑃𝐶𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 ).

11https://en.wikipedia.org/wiki/Thermal_design_power
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Table 4. Bitlet Model Parameters.

Parameter name Notation Typical Value(s) Type
PIM operation complexity 𝑂𝐶 1 - 64k cycles Algorithmic

PIM placement and alignment complexity 𝑃𝐴𝐶 0 - 64k cycles Algorithmic
PIM computational complexity 𝐶𝐶 = 𝑂𝐶+𝑃𝐴𝐶 1 - 64k cycles Algorithmic

PIM cycle time 𝐶𝑇 10 ns [26] Technological
PIM array dimensions (rows × columns) 𝑅 ×𝐶 16x16 - 1024x1024 Technological

PIM array count 𝑋𝐵𝑠 1 - 64k Architectural
PIM energy for operation (𝑂𝐶=1) per bit 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 0.1pJ [26] Technological

CPU memory bandwidth 𝐵𝑊 0.1 - 16 Tbps Architectural
CPU data in-out bits 𝐷𝐼𝑂 1 - 256 bits Algorithmic

CPU energy per bit transfer 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 15pJ [29] Technological

Table 5. Bitlet model Equations

Entity Equation Units

PIM Throughput 𝑇𝑃𝑃𝐼𝑀 = 𝑅×𝑋𝐵𝑠
𝐶𝐶×𝐶𝑇 GOPS

CPU Throughput 𝑇𝑃𝐶𝑃𝑈 = 𝐵𝑊
𝐷𝐼𝑂

GOPS

Combined Throughput 𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 1
1

𝑇𝑃𝑃𝐼𝑀
+ 1
𝑇𝑃𝐶𝑃𝑈

GOPS

PIM Power 𝑃𝑃𝐼𝑀 =
𝐸𝑏𝑖𝑡𝑃𝐼𝑀×𝑅×𝑋𝐵𝑠

𝐶𝑇
Watts

CPU Power 𝑃𝐶𝑃𝑈 = 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 × 𝐵𝑊 Watts

Combined Power 𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = ( 𝑃𝑃𝐼𝑀
𝑇𝑃𝑃𝐼𝑀

+ 𝑃𝐶𝑃𝑈

𝑇𝑃𝐶𝑃𝑈
) ×𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 Watts

PIM Energy per Computation 𝐸𝑃𝐶𝑃𝐼𝑀 =
𝑃𝑃𝐼𝑀
𝑇𝑃𝑃𝐼𝑀

J/GOP

CPU Energy per Computation 𝐸𝑃𝐶𝐶𝑃𝑈 =
𝑃𝐶𝑃𝑈
𝑇𝑃𝐶𝑃𝑈

J/GOP

Combined Energy per Computation 𝐸𝑃𝐶𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 =
𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑
𝑇𝑃𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑

J/GOP

6.2 Applying The Bitlet Model

The core Bitlet model is implemented as a straightforward Excel spreadsheet12. All parameters are inserted by the user
and the equations are automatically computed. Figure 6 is a snapshot of a portion of the Bitlet Excel spreadsheet that
reflects several selected configurations.

Few general notes:

• The spreadsheet can include many configurations, one per column, simultaneously, allowing a wide view of
potential options to ease comparison.
• For convenience, in each column, the model computes the three related PIM Pure (PIM), CPU Pure (CPU), and
the Combined configurations. To support this, the two DIO parameters are needed; one, 𝐷𝐼𝑂𝐶𝑃𝑈 , for the CPU
Pure system, and one (usually lower), 𝐷𝐼𝑂𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 , for the combined PIM+CPU system. See rows 13-14 in the
spreadsheet.
• Determining the 𝑂𝐶 , 𝑃𝐴𝐶 , and 𝐷𝐼𝑂 parameters needs special attention. Sections 3.2 and 4.2 detail how to
determine these parameters.

12The spreadsheet is available at https://asic2.group/tools/architecture-tools/
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Fig. 6. Throughput and Power comparison of CPU Pure vs. combined PIM+CPU system.

• Fonts and background are colored based on the system they represent: blue for PIM, green for CPU, and red for
combined PIM+CPU system.
• Bold parameter cells with a light background mark items highlighted in the following discussions and are not
inherent to the model.

Following is an in-depth dive into the various selected configurations.
Compaction. Cases 1a-1f (columns E-O) describe simple parallel aligned operations. In all these cases, the PIM

performs a 16-bit binary computation in order to reduce data transfer between the memory and the CPU from 48 bits
to 16 bits. The various cases differ in the operation type (OR/ADD/MULTIPLY, columns E-G), the PIM array count
(1024/16384 XBs), and the CPU memory bandwidth (1000/16000 Gpbs) see cases 1b, 1d-1f, rows 4, 10 and 12. Note that
in row 3, "pim" means a small PIM system (1024 XBs) while "PIM" mean a large PIM system (16384 XBs). Same holds for
"cpu" (1Tbs) and "CPU" (16Tbs). In each configuration, we are primarily interested in the difference between the CPU
and the combined PIM+CPU system results. Several observations:

• A lower 𝑂𝐶 (row 5) yields higher PIM throughput and combined PIM+CPU system throughput. The combined
PIM+CPU system provides a significant benefit over CPU for OR and ADD operations, yet almost no benefit for
MULTIPLY.
• When the combined throughput is close to the throughput of one of its components, increasing the other
component has limited value (e.g., in case 1d, using more XBs (beyond 1024) has almost no impact on the
combined throughput (61 GOPS), as the maximum possible throughput with the current bandwidth (1000 Gbps)
is 62 GOPS).
• When the throughput goes up, so does the power. Using more XBs or higher bandwidth may require higher
power than the system 𝑇𝐷𝑃 . Power consumption of over 200 Watts is likely too high. Such a system has to be
slowed down by activating fewer XBs, enforcing idle time, etc...
• A comparison of the PIM throughput and the CPU throughput (row 18 and 20) provides a hint as to how to speed
up the system. Looking at case 1b (column F), the PIM throughput is 728 GOPS while the CPU throughput is 63
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Fig. 7. Combined Throughput [GOPS] and Power [Watt] as function of𝐶𝐶 and 𝐷𝐼𝑂 . Black curved lines are equal throughput lines.
Red curved lines are equal power lines. Blue horizontal (vertical) lines are equal 𝐷𝐼𝑂 (𝐶𝐶) lines to allow comparison between PIM,
CPU and Combined throughput. Diamond and circle marks legend appears on the top right corner of the graph.
Fixed Parameters: 𝑋𝐵𝑠 = 1024 arrays, 𝑅 = 1024 rows, 𝐵𝑊 = 1000 Gpbs,𝐶𝑇 = 10ns, 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 = 0.1pJ, 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 = 15pJ.

GOPS. In this case, it makes more sense to increase the CPU throughput, and indeed, case 1e (row 21, column L),
which increases the CPU bandwidth, improves the throughput more than case 1d (column I) does.

Shifted Vector-add. Case 2 (column R) summarizes the example that was widely used in Sections 4.1 , 4.3 and 5.3.
Filter. Case 3a-3d (columns S-V) repeats the example in Section 4.2. It describes a filter that eventually selects 1% of

the records and passes a bit-vector to identify the selected items. Each record is of 𝑠 = 200 bits. As in the compaction case
above, the four configurations differ in their memory array size 𝑋𝐵𝑠 and the memory 𝐵𝑊 . Similar to the compaction
case, we can get an idea of how to speed up the system by looking at rows 18 and 20. In this case, the PIM throughput is
lower and it makes sense to add more XBs and not memory 𝐵𝑊 . Indeed, case 3b (column T) with stronger PIM, exhibits
higher throughput than case 3c (column U) with higher memory 𝐵𝑊 .

Reduction. Case 4 (column W) reflects summing all elements in a 16-bit vector. For simplicity, we use the per-XB
reduction method, 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛1, where all initial per-XB results are transferred to the CPU. On the CPU side, this
computation is like a filter where only one element per XB (𝑝 = 1/𝑅) is transferred, and there is no need to transfer a
bit-vector. On the PIM side, 𝐶𝐶 is determined as described in Table 2. With 𝑅 = 1024 rows, the number of phases is
𝑝ℎ = ⌈log2 (1024)⌉ = 10. Overall, the 𝐶𝐶 of the reduction is relatively high, therefore, a PIM-based reduction solution
requires many XBs to be more beneficial than a Pure CPU solution.

6.3 Impact and Interplay among Model Parameters

In the previous sub-section, we showed how to determine the throughput and the power of a given system configuration.
Now we want to illustrate the sensitivity of the throughput and power to changes in different parameters. In this
discussion, due to limited space and limited ability to visualize many parameters concurrently, we focus on the
algorithmic and the architectural parameters only, i.e., 𝐶𝐶 and 𝑋𝐵𝑠 on the PIM side and 𝐷𝐼𝑂 and 𝐵𝑊 on the CPU side.
The model itself, as illustrated in Figure 6, supports manipulation of all parameters.
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First, in Figure 7, we present the PIM, the CPU, and the combined PIM+CPU throughput and power as a function of
𝐶𝐶 and 𝐷𝐼𝑂 for a certain PIM and CPU configuration, where 𝑋𝐵𝑠 = 1024 and 𝐵𝑊 = 1000 Gbps. The color on the graph
at point (𝑥,𝑦) indicates the combined PIM+CPU throughput value when PIM 𝐶𝐶 = 𝑥 and CPU 𝐷𝐼𝑂 = 𝑦. The black
curved lines on the graph are equal throughput lines and are annotated with the throughput value in Gpbs. Points
below a line have higher throughput and vice-versa. The throughput value at the point (𝐶𝐶 = 𝑥 , 𝐷𝐼𝑂 = 0) reflects
the PIM Pure throughput when 𝐶𝐶 = 𝑥 . The throughput value at the point (𝐶𝐶 = 0, 𝐷𝐼𝑂 = 𝑦) reflects the CPU Pure
throughput when 𝐷𝐼𝑂 = 𝑦. Note that since the axes are in logarithmic scales, the points where 𝐶𝐶 = 0 or 𝐷𝐼𝑂 = 0 do
not appear on the graph but can be approximated by looking at the value of the equal throughput line that is close
to it. For example, the PIM Pure throughput for 𝐶𝐶 = 200 is approximately 512 GOPS. Blue horizontal (vertical) lines
are equal 𝐷𝐼𝑂 (𝐶𝐶) lines to allow comparison between PIM, CPU, and Combined throughput. Red curved lines on the
graph are equal power lines; in this graph, power goes up when going from bottom right to top left. Several points
were highlighted on the graph. Diamond-shaped points represent the three 16-bit operations (OR/ADD/MULTIPLY)
mentioned in the previous sub-section (cases 1a-1c in Figure 6). The circle-shaped points represent the 32-bit MULTIPLY
operation. The relevant operation is marked above the relevant diamond on the 𝑋 axis. Observing marks with the
same shape and operation type allows throughput comparison of the same operation between all three PIM, CPU, and
combined PIM+CPU configurations. Observations:

• For the same 𝐷𝐼𝑂 , higher 𝐶𝐶 implies lower throughput.
With higher 𝐶𝐶 , PIM benefits decline, e.g., PIM 32/64 bit MULTIPLY has same/lower throughput than CPU.
• For the same 𝐶𝐶 , higher 𝐷𝐼𝑂 implies lower throughput.
• An equal throughput (black) line has a knee. On the left of the knee, the throughput is impacted mostly by 𝐷𝐼𝑂 ,
that is, the CPU is the bottleneck in this region. Below the knee, the throughput is impacted mostly by 𝐶𝐶 , i.e.,
the PIM is the bottleneck in this region.
• For a given case, it is worth looking at three points:
(1) 𝑥 = 𝐶𝐶, 𝑦 = 0, representing the PIM Pure throughput,
(2) 𝑥 = 0, 𝑦 = 𝐷𝐼𝑂𝐶𝑃𝑈 , representing the CPU Pure throughput,
(3) 𝑥 = 𝐶𝐶, 𝑌 = 𝐷𝐼𝑂𝑃𝐼𝑀 , representing the combined PIM+CPU system throughput.
• The equal power (red) lines reveal three power regions. The top left reflects the CPU bottle-necked region, where
the power is very close to CPU Pure power. The bottom right reflects the PIM bottle-necked region, where the
power is very close to PIM Pure power. The power changes mainly around the knee, where each small move
to the left changes the power closer to the CPU Pure power and, similarly, each small move down changes the
power closer to the PIM Pure power. In the current configuration (𝑋𝐵𝑠 = 1024 , 𝐵𝑊 = 1000 Gpbs ), where CPU
Pure power is higher than PIM Pure power, left means higher power and down means lower power. Different
configurations may exhibit different behaviors.
• The linear behavior of the power lines reflects the fact that the combined PIM+CPU system power is a linear
combination of the PIM Pure and CPU Pure power, where each is weighted according to the share of time they
are active. When we multiply𝐶𝐶 and 𝐷𝐼𝑂 by the same number, the time ratio remains the same, and so does the
combined power.

Table 6 lists the marked points in the graph. The 64-bit MULTIPLY was added to the table to highlight a high
computation complexity case where CPU Pure performs better than the combined PIM+CPU configuration.
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Table 6. Throughput of Binary-Operations Examples

Operation 16-bit
OR

16-bit
ADD

16-bit
MULTIPLY

32-bit
MULTIPLY

64-bit
MULTIPLY

CC [cycles] 32 144 1600 6400 25600
DIO CPU / Combined [bits] 48 / 16 48 / 16 48 / 16 96 / 32 192 / 64
PIM Throughput [GOPS] 3277 728 65.5 16.4 4.1
CPU Throughput [GOPS] 20.8 20.8 20.8 10.4 5.2

Combined Throughput [GOPS] 61.3 57.6 32.0 10.7 3.2
PIM Power [Watts] 10.5
CPU Power [Watts] 15.0

Combined Power [Watts] 14.9 14.6 12.8 12 11.4

Fig. 8. Combined throughput [GOPS] and power [Watt] as function of number of 𝑋𝐵𝑠 and memory 𝐵𝑊 . Black curved lines are
equal combined throughput lines. Red curved lines are equal combined power lines, both at 𝐷𝐼𝑂 = 16 bits. Blue/magenta horizontal
lines are equal CPU throughput/power lines at 𝐷𝐼𝑂 = 48 bits. Diamond marks indicate crossover point where CPU throughput
(power) equals combined throughput (power).
Fixed parameters:𝐶𝐶 = 6400 cycles, 𝑅 = 1024 rows, 𝐷𝐼𝑂 = 16/48 bits,𝐶𝑇 = 10ns, 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 = 0.1pJ, 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 = 15pJ.

Finally, Figure 8 presents the impact of 𝑋𝐵𝑠 and 𝐵𝑊 on throughput and power. This figure assumes a certain
pre-defined 𝐶𝐶=6400 bits, 𝐷𝐼𝑂𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑=16 bits, and 𝐷𝐼𝑂𝐶𝑃𝑈 =48bits. The color on the graph at point (𝑥,𝑦) indicates
the combined PIM+CPU throughput value when PIM 𝑋𝐵𝑠 = 𝑥 and CPU 𝐵𝑊 = 𝑦. The figure has curved and horizontal
equal throughput and power lines. Black curved equal throughput lines and magenta curved equal power lines reflect
the combined PIM+CPU configuration using 𝐷𝐼𝑂=16 bits. Blue horizontal lines reflect the CPU Pure throughput,
Magenta horizontal lines reflect the CPU Pure power, both at 𝐷𝐼𝑂𝐶𝑃𝑈 =48 bits. The diamond marks indicate throughput
and power crossover points between natural trade-offs of Pure CPU at 𝐷𝐼𝑂=48 bits and combined PIM+CPU at 𝐷𝐼𝑂=16
bits. Observations:

• Both throughput and power increase linearly when either 𝑋𝐵𝑠 or 𝐵𝑊 increase. The crossover points help
compare the CPU Pure and combined PIM+CPU alternatives. When 𝐵𝑊 is high and 𝑋𝐵𝑠 is low, the PIM becomes
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the bottleneck and using CPU Pure is more beneficial than using PIM. On the other hand, when 𝐵𝑊 is low and
𝑋𝐵𝑠 is high, the combined PIM+CPU configuration is better.
• The choice of working points out of all points on the same equal throughput or power line depends on the
available technology and possible configurations. Bandwidth, memory size, or power limitation leaves only part
of the space available, e.g., if 𝐵𝑊 is limited to 4000 Gbps and memory size is limited to 8192K 𝑋𝐵𝑠 , then roughly
only points from the bottom left quarter of the graph are valid. If we also limit the power to 40 Watts, another
part of the space becomes invalid.
• We can model a PIM Pure system, by adding vertical lines to reflect PIM Pure power and performance (lines are
not shown).

The above are just several examples of the types of analyses that are enabled by the Bitlet model. The model enables
analytic exploration of many parameter combinations of PIM and CPU systems.

6.4 Analysis of Real-Life Examples using the Bitlet Model

In the previous sections, we analyzed relatively simple and synthetic examples. In this subsection, we apply the Bitlet
model on several real-life examples taken from two PIM-related papers, the Fixed Point Dot Product (FiPDP), the
Hadamard Product, and the Image Convolution from the IMAGING paper [15] and the Floating Point multiplication
and addition from the FloatPIM paper [20]. All examples map useful and important algorithms onto a MAGIC-based
PIM system.

In all examples, the authors made an admirable effort to compute the latency and tried to assess the throughput and
power of these computations. In most cases, the authors used a single configuration (𝑋𝐵𝑠 , 𝑅), assumed a single value
for the technological parameters, and deduced the throughput, power, and energy based on the single values.

The Bitlet model complements the above works nicely. Using their values for 𝐶𝐶 , the model can easily illustrate the
throughput, power, and energy for different parameters. The model can help compare the results to the CPU Pure and
the combined PIM+CPU systems.

6.4.1 IMAGING. The IMAGING paper [15] implements several algorithms and analyzes them, but does not consider
technological parameters, e.g., cycle time and energy, in the analysis. As a consequence, it presents results in throughput
per cycle and determines area based on the number of memory cells.

• Fixed Point Dot Product (FiPDP)13. FiPDP is a classical dot-product 𝑆 =
∑𝑁
𝑖=1𝐴𝑖 × 𝐵𝑖 , where two vectors

are multiplied element-wise, and the result vector is summed. Assume two 8-bit vectors producing 16-bit
interim results that are summed into 32-bit numbers. The paper assumes 𝑅 = 512. The 𝐶𝐶 of the algorithm, as
implemented in the IMAGING paper, consists of the multiplication step (12.5 × 82 = 800 cycles) followed by the
tree-like reduction step (𝑝ℎ × (𝑂𝐶 +𝑊 ) + 𝑅 − 1 = 9 × (288 + 32) + 511 ≈ 3391 cycles). The two steps together
take approximately 4200 cycles. The paper neither states the throughput of this operation nor does it make any
sensitivity analysis. Using the Bitlet model, we can easily compute the throughput and analyze its sensitivity. For
example, for 𝑋𝐵𝑠 = 512, 𝑅 = 512, and 𝐶𝑇 = 10𝑛𝑠 , we achieve PIM Pure and combined PIM+CPU throughput of
about 6 GOPS, which is rather low compared to the CPU Pure throughput of 31 GOPs at 𝐵𝑊 = 1000 Gpbs. Using
a configuration of 𝑋𝐵𝑠 = 4096 and 𝑅 = 1024 increases the PIM Pure (and combined PIM+CPU) throughput to
about 100 GOPS, which is higher than the CPU Pure throughput of 31 GOPS stated above.

13https://en.wikipedia.org/wiki/Dot_product
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• Hadamard Product14. The Hadamard Product is an element-wise 𝐾 × 𝐾 matrix product, that is, for all (𝑖, 𝑗),
𝐶𝑖, 𝑗 = 𝐴𝑖, 𝑗 × 𝐵𝑖, 𝑗 . In fact, it is equivalent to an element-wise 𝑁 vector product, that is, for all 𝑖 , 𝐶𝑖 = 𝐴𝑖 × 𝐵𝑖 . The
paper focuses on 8-bit pixels as the elements to multiply. If memory space is scarce, several pairs of elements are
located in the same row to fit the matrices in the available memory. The paper also considers the case where
the input vectors are larger than the size of available memory, so the computation needs to be repeated. None
of these manipulations affect the computation throughput since they result in doing, e.g., 10× more work in
10× longer time. For throughput computation, we use the Bitlet model assuming a single multiplication in each
row. Doing so, we can obtain the real throughput in GOPS and compare it to the CPU Pure and the combined
PIM+CPU system throughput.
Table 7 provides several examples with varying 𝑋𝐵𝑠 and 𝑅 values. We assume the paper’s original value of
𝐶𝐶 = 710 cycles. We use the Bitlet model to also compute the PIM Pure, CPU Pure, and combined PIM+CPU
system throughput. For the CPU configuration, we assume 𝐵𝑊 = 1000 Gbps, 𝐷𝐼𝑂 = 32 bits for CPU Pure, and
𝐷𝐼𝑂 = 16 bits for the combined system. As expected, the throughput goes up with the number of 𝑋𝐵𝑠 (and 𝑅).
For low numbers of 𝑋𝐵𝑠 and 𝑅, CPU Pure is better than a combined PIM+CPU system (31 GOPS vs. 23 GOPS).
However, adding XBs improves the combined PIM+CPU system throughput compared to CPU Pure, providing
over 49 GOPS vs. 31 GOPS, respectively.

Table 7. Throughput of the Hadamard Product

𝑿𝑩𝒔 𝑹
𝑪𝑪

[Cycles]
𝑻𝑷/𝒄𝒚𝒄𝒍𝒆

[GOP/Cycle]
𝑻𝑷𝑷𝑰𝑴
[GOPS]

𝑻𝑷𝑪𝑷𝑼
[GOPS]

𝑻𝑷𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅
[GOPS]

512 512 710 369 37 31 23
1,024 512 710 738 74 31 34
4,096 1,024 710 5,907 591 31 57
16,384 1,024 710 23,630 2,363 31 61

• Image Convolution15. A single convolution computation consists of multiplying a 𝑃 × 𝑃 pixel window in a
picture with a 𝑃 × 𝑃 coefficient matrix and creating a new picture where the center element of the selected
window is set with the newly computed value. 𝑃 is usually a small odd number, e.g., 3 or 5. Each pixel is𝑊 -bits
wide. The IMAGING paper goes a long (and smart) way to implement the convolution on top of the MAGIC
NOR memory array and computing its latency. For our discussion, we need to consider only the following: (a)
Computing each pixel involves 𝑃2𝑊 -bit multiplications, (𝑃2 − 1) 2𝑊 -bit additions,𝑊 × 𝑃 × (𝑃 − 1) HCOPY
operations and (𝑃 − 1) VCOPY operations. The last 𝑃−1

2 pixels in each row (e.g., 1 or 2 pixels for 𝑃 = 3, 5) are
duplicated at the beginning of the next row. Therefore, to reduce space overhead, each row has to have a minimal
number of pixels. In the aforementioned examples, 8 + 1 = 9 pixels per row for 𝑃 = 3 and 8 + 2 = 10 for 𝑃 = 5.
Table 8 lists the 𝐶𝐶 for convolutions using𝑊 = 8 bits, 𝑃 = 3, 5 and 𝑅 = 512, 1024. The table clearly shows that
convolution has a very high computation complexity.
At this point, we can use the Bitlet model and obtain the throughput values. One immediate observation is that
since the input and output matrices have the same size, there is no data transfer reduction, and the value of
using PIM as a pre-processing stage is questionable. In other words, both 𝐷𝐼𝑂𝐶𝑃𝑈 =16 and 𝐷𝐼𝑂𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑=16,
thus the CPU Pure throughput is higher than that of the combined PIM+CPU throughput. We ignore this

14https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
15https://en.wikipedia.org/wiki/Kernel_(image_processing)
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Table 8. Convolution Computation Complexity.

𝑷
𝑪𝑪 (𝑹 = 512)
[Cycles]

𝑪𝑪 (𝑹 = 1024)
[Cycles]

3 69,296 77,488
5 188,592 204,976

concern and compare PIM Pure to CPU Pure. Results are shown in Table 9. The table shows that convolution
is significantly heavier than the previous examples examined above. This is expected, as convolution involves
many multiplications per pixel, especially when 𝑃 = 5. According to the model, only a huge PIM configuration
(𝑋𝐵𝑠 = 64𝐾, 𝑅 = 1024) may compete with CPU Pure. One may question even that, since the power needed
for this configuration, obtained from the Bitlet model as well, is approximately 650 Watts. It is worth noting
that this computation is quite heavy for the CPU core as well. Every pixel requires (for 𝑃 = 3) 32=9 8-bit
multiplications and 32-1=8 16-bit additions, so to sustain 63𝐺 convolutions per second, the CPU needs to perform
about 63𝐺 × 17 ≃ 1𝑇 instructions per second. Achieving that throughput requires, for example, four 4-GHz high
end CPUs, supporting two wide SIMD instructions (e.g., AVX-51216) per cycle.

Table 9. Convolution Throughput.

𝑷 𝑿𝑩𝒔 𝑹
𝑪𝑪

[Cycles]
𝑻𝑷/𝒄𝒚𝒄𝒍𝒆

[GOP/Cycle]
𝑻𝑷𝑷𝑰𝑴
[GOPS]

𝑻𝑷𝑪𝑷𝑼
[GOPS]

𝑻𝑷𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅
[GOPS]

3 1,024 1,024 77,488 14 1.4 63 1.3
3 8,192 1,024 77,488 108 10.8 63 9.2
3 65,536 1,024 77,488 866 86.6 63 36.3
5 1,024 1,024 204,976 5 0.5 63 0.5
5 8,192 1,024 204,976 41 4.1 63 3.8
5 65,536 1,024 204,976 327 32.7 63 21.5

6.4.2 FloatPIM. The FloatPIM paper implements a fully-digital scalable PIM architecture that natively supports
floating-point operations. As opposed to the IMAGING paper, FloatPIM does address time and power evaluation. In this
section, we discuss the in-memory floating-point operation used in FloatPIM.

A floating-point multiply operation takes𝑇𝑀𝑢𝑙 = 12𝑁𝑒 + 6.5𝑁 2
𝑚 + 7.5𝑁𝑚 − 2 cycles, where 𝑁𝑚 and 𝑁𝑒 are the number

of mantissa and exponent bits, respectively. Similarly, floating-point add operation takes𝑇𝐴𝑑𝑑 = (3+16𝑁𝑒 +19𝑁𝑚 +𝑁 2
𝑚)

NOR cycles and (+2𝑁𝑚 + 1) search cycles. For simplicity, we assume here that NOR and search cycles have the same
cycle time. The paper uses the bfloat1617 number format where 𝑁𝑚 = 7 and 𝑁𝑒 = 8. Following that, 𝑇𝑀𝑢𝑙 = 360 cycles
and 𝑇𝐴𝑑𝑑 = 328 cycles. On average, each of the two bfloat16 operations takes 𝐶𝐶 ≃ 344 cycles.

We tried to approximate the FloatPIM floating-point throughput and power using the Bitlet model. In particular, we
tried to understand the sensitivity of these numbers to the technological cycle time and energy model parameters. Bitlet
default parameters for 𝐶𝑇 and 𝐸𝑏𝑖𝑡𝑃𝐼𝑀 are 10ns and 0.1pJ, respectively. The FloatPIM equivalents are 1.1ns and 0.29fJ.
Table 10 shows the significant impact of the model parameters on the results. The first line in the table uses FloatPIM
parameters, while the second line uses the Bitlet model default parameters. The results differ a lot, but once shown,
seem quite obvious. A 9× faster cycle time increases the throughput by 9×. Reducing energy per bit by 345× increases

16https://en.wikipedia.org/wiki/AVX-512
17https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
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computation per Joule by 345×, and, finally, accounting the two differences combined, increases power by 345
9.1 = 38×.

Note that FloatPIM uses near-memory functions in addition to in-memory functions to implement bfloat16 add. Our
comparison focuses on highlighting the impact of the model parameter setting, so we have accounted MAGIC-NOR
cycles only and ignored the near-memory work.

Table 10. FloatPIM parameters vs. Bitlet Defaults.

Model 𝑿𝑩𝒔 𝑹
𝑪𝑪

[Cycles]
𝑪𝑻
[sec]

𝑬𝒃 𝒊𝒕𝑷𝑰𝑴
[Joule]

𝑻𝑷/𝒄𝒚𝒄𝒍𝒆
[GOP/Cycle]

𝑻𝑷𝑷𝑰𝑴
[GOPS]

𝑷𝑷𝑰𝑴
[Watt]

𝑻𝑷𝑷𝑰𝑴/𝑷𝑷𝑰𝑴
[GOPS/Watt]

FloatPIM 65,536 1024 336.5 1.10E-09 2.90E-16 199,432 181,302 18 10247
Default 65,536 1024 336.5 1.00E-08 1.00E-13 199,432 19,943 671 30

Two observations from the FloatPIM analysis:

• The choice of bfloat16 is quite beneficial. The bfloat16 add/multiply computation complexity is 328/380 cycles,
quite reasonable compared to fixed32 add/multiply computation complexity of 288/6400 cycles.
• The choice of technological (and other) parameters has a major impact on the results. The 345× difference in
GOPS per Watt is quite significant when comparing a PIM system to a CPU system.

6.5 Model Limitations

As in many models, the Bitlet model trades accuracy with simplicity. In this section, we list several model limitations
that Bitlet users should be aware of. Some of these limitations will be addressed in future versions of Bitlet. The list
below distinguishes between limitations due to lack of refinement and unsupported features.

Potential model refinement:

• Inter-XB Copying. The model ignores inter-XB copying (see Section 3.2). Some use cases may require many
inter-XB copies, and accounting for themwill improve themodel accuracy. Adding inter-XB copying is challenging
since it requires modeling of the memory internal busses.
• Impact of Arithmetic Intensity. The model assumes that in PIM-relevant workloads, the CPU throughput is
solely determined by the data transfer throughput (Section 4.2). This assumption is valid for today’s data-intensive
applications, and it simplifies the Bitlet model tremendously. If, in the future, the memory bus bandwidth increases
to the point it is no longer a bottleneck, the CPU core activity will have to be taken into consideration when
assessing the CPU throughput.
• Cell Initialization.Depending on the PIM logic technology and the specific basic operation in use, an output cell
may need to be initialized before it is computed (e.g., to 𝑅𝑂𝑁 in MAGIC NOR based PIM). The extra initialization
cycles can potentially double the PIM execution time and should be considered in the computation complexity.
• Row Selection. When computing power, the current model assumes that at every PIM cycle, all cells in the
target column consume energy. This assumption may be false if row selection is used. Counting all rows instead
of only the participating rows increases the energy estimate and degrades the model accuracy. This may be
significant in algorithms that make serial 𝑉𝐶𝑂𝑃𝑌 s, like shifted vector-add and reductions (see Section 3.2).
• Comparing PIM to systems other than CPU. The current Bitlet model supports PIM, CPU, and combined
PIM and CPU systems. Extending the model to support other systems, e.g., GPU, is conceptually similar to
modeling a CPU, as long as the data transfer remains the main system bottleneck. In a high level, only the
non-PIM parameters 𝐵𝑊 , 𝐷𝐼𝑂 , and 𝐸𝑏𝑖𝑡𝐶𝑃𝑈 need to be modified in order to model a GPU.
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Potential new features:

• Pipelined PIM and CPU. So far, we assumed that PIM computation and data transfer cannot overlap. We can
achieve such overlapping by employing a mechanism similar to double buffering18. That is, we dynamically
divide the available XBs into two groups. While one group performs PIM computation, the other does the memory
to CPU data transfer, and vice versa. Doing so, the PIM computation may take twice the time, but data transfer
can operate continuously. As a result, if the memory bus is the bottleneck (consuming more than half of the
total time), the total time can be reduced from (𝑇𝑃𝐼𝑀 +𝑇𝐶𝑃𝑈 ) to max(𝑇𝐶𝑃𝑈 , 2 ×𝑇𝑃𝐼𝑀 ). The throughput (and the
power) increase accordingly.
• Endurance and Lifetime. Low endurance is a major obstacle for achieving a reasonable lifetime in memristor-
based PIM systems, due to the high rate of memory writes when PIM is employed. The current Bitlet model does
not support endurance and lifetime considerations or estimates. Since the model does count the 𝐶𝐶 cycles, it can
help count cell writes, and hence, help in assessing endurance impact on lifetime.
• Non-single-row Based PIM Computations. Bitlet assumes the single row-based computing principle, where
each row contains a separate computation element and, in each cycle, all of the rows may participate in
computation concurrently (Section 2.4). In some PIM use cases, a record may span over more than one row to
either improve latency or to locate long data elements within a short row. The model can support such cases,
assuming the 𝐶𝐶 and the 𝑅 parameters are carefully computed to reflect this.

7 CONCLUSIONS

This paper motivates and describes Bitlet, a parameterized analytical model for comparison of PIM and CPU systems
in terms of throughput and power. We explained the PIM computation principles, presented several use cases, and
demonstrated how the model can be used to analyze real-life examples. We showed how to use the model to pinpoint
when PIM is beneficial and when it is not, and to understand the related trade-offs and limits. We believe the model
provides insights into how stateful logic-based PIM performs.

We analyzed several selected PIM and CPU systems and some insights following this analysis. For example, the
effectiveness of a PIM system depends on several parameters, e.g., the degree of parallelism, data reduction potential,
and power limitations of the architecture. In our analysis, we stabilized several model parameters and performed only a
partial analysis of the systems, mainly for demonstration of the model abilities and features. Many more systems can be
fully explored by the Bitlet model, and we expect more insights will be reached.

In the future, we plan to extend the Bitlet model and refine it to consider inter-XB copying, the impact of arithmetic
intensity, cell initialization, and row selection. Such model refinements will increase the model accuracy. We also plan
to add new features, e.g., endurance/lifetime estimation and non-single-row based PIM evaluation. The former will
provide deeper inspection, analysis, and comparison of PIM systems, while the latter will significantly expand the span
of PIM systems that can be analyzed by the Bitlet model.
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